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Abstract
Recent advancements have significantly enhanced
the performance of large language models (LLMs)
in tackling complex reasoning tasks, achieving no-
table success in domains like mathematical and
logical reasoning. However, these methods en-
counter challenges with complex planning tasks,
primarily due to extended reasoning steps, diverse
constraints, and the challenge of handling multi-
ple distinct sub-tasks. To address these challenges,
we propose HyperTree Planning (HTP), a novel
reasoning paradigm that constructs hypertree-
structured planning outlines for effective planning.
The hypertree structure enables LLMs to engage
in hierarchical thinking by flexibly employing the
divide-and-conquer strategy, effectively breaking
down intricate reasoning steps, accommodating
diverse constraints, and managing multiple dis-
tinct sub-tasks in a well-organized manner. We
further introduce an autonomous planning frame-
work that completes the planning process by it-
eratively refining and expanding the hypertree-
structured planning outlines. Experiments demon-
strate the effectiveness of HTP, achieving state-of-
the-art accuracy on the TravelPlanner benchmark
with Gemini-1.5-Pro, resulting in a 3.6× perfor-
mance improvement over o1-preview.

1. Introduction
Planning has long been recognized as a core skill for intelli-
gent agents and a key benchmark for evaluating the cognitive
capabilities of large language models (LLMs) (Zhu et al.,
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Figure 1. An example of hierarchical thinking, demonstrating its
ability to decompose complex reasoning chains into manageable
components, effectively handle diverse constraints, and systemati-
cally manage multiple distinct sub-tasks.

2022; Shum et al., 2023). Unlike mathematical or logical
reasoning tasks, which have clear, definitive answers (like
numbers or specific nouns), planning tasks require a feasible
plan consisting of multiple interdependent components. For
example, a travel plan involves selecting hotels, booking
flights, choosing restaurants, and deciding on attractions,
each of which can be further broken down with various con-
straints. Hotel selection, for instance, may involve factors
like house rules, room types, budget limitations, and more.
Therefore, completing complex planning tasks typically
requires reasoning over extended steps, decision-making
under diverse complex constraints, and generating com-
prehensive and feasible solutions, which presents unique
challenges for existing LLMs (Ju et al., 2024; Xie et al.,
2024; Huang et al., 2023; Valmeekam et al., 2024b).

A series of works have been proposed to enhance the plan-
ning capabilities of LLMs. In-context learning approaches,
by providing curated demonstration examples before in-
ference, enable models to improve their planning ability
through analogical reasoning (Sprague et al., 2024; Chen &
Li, 2024). An innovative breakthrough is Chain-of-Thought
(CoT) prompting (Wei et al., 2022; Kojima et al., 2022),
which extends the reasoning process from a simple input-
output format into a multi-step chain of reasoning, enabling
models to think step-by-step. Building on this, Tree-of-
Thought (ToT) prompting (Yao et al., 2024) takes it a step
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further by transforming the linear reasoning process into a
branching structure, allowing LLMs to reason along multi-
ple paths and systematically explore the search space. Re-
cent planning methods have increasingly explored innova-
tions in agent systems, where specialized agents collaborate
through structured processes to tackle complex planning
tasks, further extending the scope and effectiveness of plan-
ning solutions (Yuan et al., 2024; Zhang et al., 2024a).

Despite these advances, existing planning methods exhibit
several limitations. First, existing reasoning paradigms pri-
marily focus on mathematical or logical reasoning tasks,
making them ill-suited for planning problems and their
unique challenges. Second, the performance of LLMs re-
lying on in-context learning is highly dependent on the
quality of the provided examples, requiring significant hu-
man expertise and constraining generalization ability (Dong
et al., 2022; Zhao et al., 2021; Lu et al., 2021). Although
various methods have been proposed to address these lim-
itations (Liu et al., 2021; Tanwar et al., 2023; Qin et al.,
2023), the discrepancy between the example and the ac-
tual query remains a fundamentally unresolved challenge.
Third, current autonomous agent methods consistently rely
on human-designed interventions, such as requiring the man-
ual creation of distinct personas and task-specific descrip-
tions for each agent, which hinders generalization across
diverse tasks (Hong et al., 2023; Liang et al., 2023).

To address these challenges, this paper proposes HyperTree
Planning (HTP), a novel reasoning paradigm that constructs
hypertree-structured planning outlines for effective plan-
ning 1. We observe that humans naturally approach planning
tasks by flexibly and hierarchically employing the divide-
and-conquer strategy. They continuously break down a task
into smaller, more manageable subtasks, address each com-
ponent individually, and synthesize the results to create the
final plan. This cognitive process, known as hierarchical
thinking, is illustrated in Figure 1. Inspired by this, HTP
extends the ToT framework by incorporating the hypertree
structure proposed in (Lample et al., 2022). In this enhanced
framework, each edge connects a parent node to a set of
child nodes, providing an intuitive structural foundation for
the divide-and-conquer mechanism. By flexibly applying
this strategy across multiple layers, our planning outline
effectively implements hierarchical thinking tailored to the
original query. Furthermore, we design an autonomous
planning framework that seamlessly integrates these plan-
ning outlines into self-guided planning and plan generation
processes, ultimately producing high-quality plans.

Specifically, we begin by modeling step-by-step reasoning,
multi-path inference, and the divide-and-conquer within the

1A hypergraph is a graph where an edge leads to a set of
nodes. A hypertree is a hypergraph without cycles. More formal
definitions can be found in Section 3.1.

hypertree structure. Next, we introduce the top-down hyper-
tree construction algorithm, which systematically applies
these strategies to build the hypertree-structured planning
outline. Following this, we refine and expand the planning
outline iteratively, ultimately generating the final plan. Ex-
perimental results demonstrate that HTP, leveraging GPT-4
or Gemini-1.5-Pro as its backbone, achieves significant per-
formance improvements across multiple complex planning
benchmarks, outperforming state-of-the-art agent methods,
planning strategies, and closed-source models. The core
contributions are summarized as follows:

• HyperTree Reasoning Paradigm: We propose HTP,
a novel hypertree reasoning paradigm, which, to the
best of our knowledge, is the first to use a hypertree
structure to model the reasoning process, empowering
LLMs to perform hierarchical thinking.

• Novel Planning Framework: We present a fully
autonomous planning framework that leverages task-
specific planning outlines to self-guide the planning
process, generalizing effectively to diverse tasks with-
out relying on manually crafted examples.

• Superior Performance: HTP significantly outper-
forms existing methods on complex planning bench-
marks, achieving 36.1% accuracy on TravelPlanner
with Gemini-1.5-Pro, substantially outperforming o1-
preview (10.0%).

2. Related Work
Reasoning Paradigms Owing to its parameter-free na-
ture, the prompting paradigm has garnered significant atten-
tion and emerged as a promising approach to unlocking the
reasoning potential of LLMs (Zhou et al., 2024; Edelman
et al., 2024; Jeon et al., 2024; Lin & Lee, 2024). Few-shot
prompting, in particular, provides curated demonstration
examples before inference, enabling LLMs to perform rea-
soning tasks by leveraging analogical examples (Wei et al.,
2022; Sprague et al., 2024; Chen & Li, 2024). However,
their reasoning performance heavily depends on the quality
of the provided examples, requiring substantial human ex-
pertise and limiting their generalization ability (Dong et al.,
2022; Zhao et al., 2021; Lu et al., 2021). In response to this
limitation, HiAR-ICL (Wu et al., 2024) proposes replacing
demonstration examples with reasoning patterns formed by
permutations of five fixed actions. However, the guidance
from fixed elements is quite limited, and due to the chain-
like structure of the patterns, they cannot fully support the
hierarchical thinking needed for planning.

Starting from Chain-of-Thought (CoT) (Wei et al., 2022),
a series of techniques have been developed to improve the
reasoning capabilities of LLMs by introducing novel rea-
soning paradigms. Zero-shot-CoT (Kojima et al., 2022)
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enables reasoning step generation without the need for exam-
ples. Departing from the linear, left-to-right chain-like struc-
ture, a significant body of work, exemplified by ToT (Yao
et al., 2024), has extended reasoning paradigms into tree-
based frameworks to broaden potential search spaces, subse-
quently employing diverse tree search algorithms to improve
reasoning precision (Hao et al., 2023; Wang et al., 2024c;
Qi et al., 2024; Zhang et al., 2024b; Feng et al., 2023; Putta
et al., 2024). However, these tree search-based methods
focus on optimizing the CoT path through trials, lacking fun-
damental innovations in the reasoning process itself (Zhang
et al., 2024c). Plan-and-Solve (Wang et al., 2023a) requires
LLMs to devise a plan that breaks the task into smaller sub-
tasks, and then carry out the subtasks according to the plan.
Similarly, Skeleton-of-Thought (Ning et al., 2024) first gen-
erates a skeleton answer outline, and then completes content
in parallel to reduce generation latency. These methods
demonstrate some divide-and-conquer capability, but they
lack technical innovation in constructing the outline and
are limited to a single level of task decomposition due to
insufficient support from reasoning structures.

Planning Agents Autonomous agents are systems de-
signed to execute diverse tasks through self-directed ac-
tions (Wang et al., 2024b), with planning serving as a funda-
mental function (Valmeekam et al., 2024a; Xie et al., 2024;
Zheng et al., 2024; Zhang et al., 2024a). Methods such as
ReAct (Yao et al., 2022) and RAP (Hao et al., 2023) for-
malize planning as a Markov decision process, allowing
agents to dynamically reason and act by evaluating interme-
diate states and iteratively making decisions. Recent studies
have leveraged multi-agent systems to improve the planning
capabilities in specific tasks (Chen et al., 2023a;c; Zhang
et al., 2024a). However, these approaches often rely heavily
on human-designed interventions, including the creation
of tailored personas and task-specific descriptions for each
agent. EvoAgent (Yuan et al., 2024) utilizes evolutionary
algorithms to automate agent role generation, but its abil-
ity to address diverse constraints remains limited. Another
promising direction entails integrating LLMs with external
planning tools (Dagan et al., 2023; Guan et al., 2023; Yang
et al., 2023; Ju et al., 2024; Lee et al., 2025). While these
hybrid approaches can achieve high accuracy, the construc-
tion of feasible solvers or evaluators remains challenging,
with high engineering overhead, design costs, and a lack of
generalization across different datasets.

3. Preliminary
In this section, we first illustrate the problem statement in
Section 3.1, and subsequently define the concepts related to
hypertrees in Section 3.2, drawing from the definitions of
hypertree proof search (Lample et al., 2022).

3.1. Problem Statement

Given a planning query q and a pre-trained LLM πθ, the
problem-solving process can typically be divided into two
phases: planning and plan generation. The planning phase
involves generating intermediate reasoning results, formal-
ized as C = πθ(Φ(q)), where Φ denotes the predefined
instructions. Building on this, the plan generation phase re-
fines C into the final solution, expressed as P = πθ(Φ(C)).

In the planning phase, a common approach is to frame it
as a multi-step thinking process. Specifically, we guide
the large model to generate a sequence of reasoning steps
starting from q, which results in C that completes the phase.
In detail, suppose there are N intermediate reasoning steps
s0...N = [s0, s1, s2, ..., sN ], where s0 = q and sN = C.
At each time step n, the model receives a state Sn−1,
which consists of the original input q and the preceding
reasoning steps (s1, s2, ..., sn−1), and generates the cur-
rent reasoning step sn = πθ(Φ(Sn−1)). The sequence
s1...N = [s1, s2, ..., sN ] forms a complete chain-like struc-
ture of step-by-step reasoning (Wei et al., 2022).

Building on the chain-like structure, ToT (Yao et al., 2024)
extends a tree structure to explore different choices and their
outcomes. Given the current state Sn−1, the LLM generates
multiple feasible steps {s(1)n , . . . , s

(m)
n } = πθ(Φ(Sn−1)),

each of which remains independent in subsequent expan-
sions. This branching allows the model to explore the search
space and results in a tree T, from which a single leaf is
ultimately selected as the result C.

3.2. HyperTree Definition

Formally, let G represent a set of nodes, and R a set of rules.
A hypertree library is defined as a tuple L = (G, q,R),
where q ∈ G serves as the root node. Each rule r ∈ R is
a function r : g 7→ c, where g ∈ G is referred to as the
start node, and c ⊆ G represents the corresponding set of
child nodes. Here, P(G) denotes the power set of G. To
ensure acyclicity, no sequence g0, g1, . . . , gℓ = g0 (ℓ > 0)
is allowed, where gi+1 is a child of gi for all 0 ≤ i < ℓ. The
set of divisible nodes is defined as:

D = {d ∈ G | ∃r ∈ R such that d is the start node of r}.

Using the hypertree library L, a generating hypertree H is
defined as a hypertree satisfying the following properties:

1. Every leaf node of H belongs to G.

2. Every non-leaf node of H belongs to D.

3. For any non-leaf node g with a branch of child nodes
c, there exists a rule r ∈ R such that r : g 7→ c.

A special case of H, referred to as a hyperchain C, is a
hypertree with no branching. In a hyperchain, each non-leaf
node gi ∈ C generates its child nodes using the same rule r.
Examples of L can be found in Appendix E.1.
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Figure 2. An overview of HyperTree Planning (HTP). Compared
to previous tree planning methods such as ToT (Yao et al., 2024)
and RAP (Hao et al., 2023), HTP introduces structural innovations
that enable each edge to connect multiple child nodes, making it
suitable for a divide-and-conquer strategy.

4. Methodology
Overview of HTP In this section, we introduce HTP in
detail and illustrate the entire process in Figure 3. We begin
by modeling the reasoning path as a hypertree and, based on
this framework, introduce a top-down hypertree construction
algorithm. This algorithm generates a hypertree-structured
planning outline O tailored to the specific query q. Guided
byO, the self-guided planning process systematically solves
the corresponding sub-tasks, completes the planning pro-
cess, and derives C. Finally, the plan generation process
integrates the results into a comprehensive final plan P .

4.1. From Tree Planning to HyperTree Planning

Building on the concept of hypertrees, HTP introduces a
hypertree-structured reasoning paradigm. For a real-world
planning dataset, let R denote a fixed set of rules derived
from the descriptions of the dataset, while G represents
reasoning steps expressed in natural language. As shown in
Figure 2, given the current state Sn−1, suppose a divisible
leaf node sn−1 is selected. By definition of a hypertree, the
next reasoning steps following sn−1 can be represented as:{

{s(1,1)n , . . . , s(1,k1)
n }, . . . , {s(m,1)

n , . . . , s(m,km)
n }

}
,

where m represents the number of branches, and ki denotes
the number of child nodes within the i-th branch. Similar to
tree planning methods, since the branches are independent
of one another, we ultimately select a hyperchain C from H,
which contains no branches. Once the hyperchain C is fully
expanded, the set of all leaf nodes collectively serves as the
outcome C of the planning phase, in contrast to previous
methods that select only a single leaf node.

Similar to tree planning, we continue to use edges to rep-
resent the connections underlying sequential reasoning in
the hypertree structure. Since all child nodes within the
same branch share the same edge with the parent node,

Algorithm 1 Top-down HyperTree Construction Algorithm
Input: rules R, query q, LLM πθ, reasoning depth K,
expansion width W
Convert divisible set: D ← Convert(R)
Initialize hypertree: H← q
for d← 1 to K do

Extract hyperchains: {C1, . . . ,Cm} ← Map(H)
if m > W then

Filter hyperchains: {C1, . . . ,CW } ← πθ(H)
end
for i← 1 to min(W,m) do

Extract divisible nodes: g1, . . . , gni
← πθ(Ci, D)

Select node: g∗i ← πθ(q,H, g1, . . . , gni
))

Retrieve rules: r1, . . . , rP ← πθ(R, g∗i )
for p← 1 to P do

Expand nodes: {spi } ← πθ(q,Ci, g
∗
i , rp))

H← AttachNodes({spi },H, g∗i )
p← p+ 1

end
i← i+ 1

end
d← d+ 1

end
Select the optimal hyperchain: C∗ ← πθ(H)
return Planning Outline O ← C∗

the structure inherently reflects a divide-and-conquer strat-
egy. Additionally, due to the inherent flexibility of the
hypertree structure, any divisible child node s

(i,j)
n gener-

ated from sn−1 can be further expanded through succes-
sive divide-and-conquer steps. While the chain structure
equips LLMs with step-by-step reasoning and the tree struc-
ture enables exploration across multiple paths, the hyper-
tree structure uniquely introduces a capability we term as
hierarchical thinking—a multi-level divide-and-conquer
approach that facilitates deeper and more organized reason-
ing. Through hierarchical thinking, each path ultimately
evolves to address distinct subtasks, with the final outcomes
{s(1)N , s

(2)
N , . . . , s

(k)
N } representing the solutions to the re-

spective subtasks.

4.2. Top-down Hypertree Construction Algorithm

The core of HTP is to generate a hypertree-structured plan-
ning outline based on the given rules R. To the best of our
knowledge, no existing hypertree construction algorithm has
been designed for reasoning tasks. In this context, we pro-
pose a top-down hypertree construction algorithm that starts
from the root node and progressively builds a hypertree.
Specifically, the algorithm unfolds in four stages: selection,
expansion, construction, and decision.

(1) Selection. Suppose the current hypertree is H, which can
naturally be mapped to a series of hyperchains {C1, . . . ,
Cm} based on its distinct branches, where m represents the
total number of hyperchains. This phase aims to identify
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Figure 3. Flowchart of HTP, which consists of three parts: (1) HyperTree Construction; (2) Self-Guided Planning; (3) Plan Generation.

the appropriate leaf nodes of H for subsequent expansion,
which involves two main steps: first, selecting the optimal
hyperchains from H, and then determining the most suitable
leaf node within each chosen hyperchain.

To effectively select the optimal hyperchains from H and
manage their number, inspired by the tree-structured meth-
ods for limiting width, we adopt three strategies: a width-
based pruning method, which restricts the total number of
branches; a probability-based pruning method, where hy-
perchains with low confidence probabilities—generated by
the LLM during branching—are eliminated; and an LLM-
guided evaluation method, which leverages the LLM to filter
and assess candidate hyperchains.

Given a selected hyperchain C, the next step is to identify
the most suitable leaf node. Since only divisible nodes can
be expanded further, we start by extracting the divisible leaf
nodes from C. Determining whether a node is divisible is
straightforward, as the starting nodes under the given rules
R typically follow a specific format, which is detailed in
Appendix E.1. When selecting a leaf node from the divis-
ible leaf nodes, traditional methods like UCT (Kocsis &
Szepesvári, 2006), PUCT (Silver et al., 2017), and Regu-
larized Policy (Grill et al., 2020) are not suitable. These
methods are designed for scenarios where paths perform
the same task, balancing exploration and exploitation. How-
ever, in our setting, paths are to address distinct subtasks,
making these approaches ineffective. Furthermore, simple
heuristics fail to capture the broader context of the entire
hyperchain, which is critical for making appropriate node
selections. Therefore, we turn to LLMs, which can analyze
the rules R and the structure of the current hyperchain C to
identify the most promising leaf node for expansion.

(2) Expansion. During the expansion phase, given the se-
lected node g, we first retrieve the set S = {r ∈ R |
g is the start node of r}, which includes all the rules where
g serves as the starting node. We then sample P rules
r1, . . . , rP from the set S. For each sampled rule rp, we gen-
erate the corresponding child nodes {s(p,1), . . . , s(p,kp)} =
πθ(Φ(q,C, g, rp)), which are collectively treated as a single

branch and added to C as part of the expansion for node g.

(3) Construction. The construction process for a single
hyperchain C involves iteratively performing selection and
expansion, starting from the root q, until either all leaf nodes
become indivisible or the iteration limit is reached.

(4) Decision. Once the hypertree H is fully constructed, the
decision-making process takes place. During this phase,
LLMs are prompted to identify the optimal hyperchain
within H, which will then serve as the final planning outline
O for the hypertree construction algorithm.

The algorithm generates a hypertree-structured planning
outline automatically for any query, requiring no human
intervention. With features such as task decomposition,
multi-path exploration, and self-evaluation, it adapts seam-
lessly to diverse planning frameworks without prerequisites.
The entire process is illustrated in Figure 3, and the details
of our algorithm are provided in Algorithm 1.

4.3. Self-guided Planning and Plan Generation

After executing the top-down hypertree construction algo-
rithm, we obtain a planning outlineO for the query q. While
this outline is structurally clear and comprehensive, it lacks
the detailed content required for a fully developed plan.
This limitation arises from two main factors. First, certain
planning tasks like TravelPlanner rely on external knowl-
edge—such as a list of tourist attractions—to create a com-
plete plan, and the knowledge base is not included during
the hypertree construction process. Second, the leaf nodes
of the planning outline generally break the task down into
subtasks, but further in-depth reasoning is needed to address
these subtasks and generate their corresponding solutions.

To address these gaps, we provide the planning outline O,
along with any available knowledge base K, to the LLM
πθ. The self-guided process expands and enriches the out-
line with detailed content while maintaining its hierarchical
structure. Specifically, for non-leaf nodes in O, we leverage
K to refine them. For leaf nodes in O, we facilitate further
growth of the hypertree by iteratively expanding the nodes
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Table 1. Main results of different LLMs and planning strategies across three planning benchmarks. DR, CPR, HCPR, and SR represent
the Delivery Rate, Commonsense Pass Rate, Hard Constraint Pass Rate, and Success Rate, respectively, while Blocks., Mys. and Trip.
denote the Blocksworld, Mystery Blocksworld and Trip Planning tasks, respectively. The best results are bolded, and the second best
ones are underlined. Our method, HTP consistently achieves the best performance across models and datasets.

MODEL SETTING
TravelPlanner Blocks. Mys. Trip.

DR CPR HCPR SR SR SR SR
Micro Macro Micro Macro

GPT-4o

CoT 100 80.4 18.9 46.9 22.2 4.4 35.5 0.0 15.6
ToT 100 75.8 16.7 44.0 21.1 3.9 37.5 0.67 18.1
LATS 100 78.3 16.7 44.8 21.1 3.9 40.2 1.7 20.6
One-shot 100 76.4 17.2 43.3 20.6 3.9 28.2 0.67 3.7
HiAR-ICL 100 81.2 20.6 47.4 22.8 6.7 36.5 1.8 12.8
RAP 100 81.0 20.6 50.5 25.6 6.7 41.2 1.8 12.5
EvoAgent 100 81.5 21.1 31.2 18.9 7.2 34.0 0.17 13.4
HTP 100 87.2 37.8 44.3 32.2 20.0 54.7 8.7 36.9

Gemini-1.5-Pro

CoT 100 81.4 17.2 44.5 20.5 5.6 26.7 0.0 34.7
ToT 100 79.0 18.9 46.7 21.7 6.1 31.0 0.0 36.6
LATS 100 78.8 17.8 44.3 21.7 6.1 38.2 2.2 37.2
One-shot 100 80.3 18.9 47.1 22.2 4.4 16.8 0.67 32.2
HiAR-ICL 100 81.9 20.6 50.7 26.0 7.2 24.0 1.8 34.4
RAP 100 80.7 21.7 51.9 26.7 7.9 37.7 4.2 35.1
EvoAgent 100 82.6 21.7 34.5 20.5 8.9 25.3 0.68 35.6
HTP 100 91.1 55.0 62.6 49.1 36.1 67.2 19.2 42.8

GPT-3.5-turbo

CoT 100 61.0 2.8 10.0 3.3 0.0 6.7 0.0 8.8
ToT 100 57.7 2.8 8.3 2.7 0.0 13.2 0.0 10.0
LATS 99.4 64.4 1.7 3.1 2.7 0.0 14.2 0.0 12.5
One-shot 100 57.8 3.9 8.6 3.3 0.0 7.8 0.0 7.2
HiAR-ICL 100 62.8 1.7 3.3 1.1 0.6 16.5 0.16 9.4
RAP 100 66.3 6.7 10.7 3.3 1.1 16.7 0.16 8.8
EvoAgent 100 64.2 7.8 11.0 4.4 1.1 12.2 0.0 7.5
HTP 100 55.0 6.7 6.2 3.3 1.7 27.2 0.67 19.7

to address the corresponding subtasks, as shown in Figure 3.
Through this self-guided approach, πθ receives precise guid-
ance tailored to the specific query, empowering it to generate
comprehensive and detailed planning outcomes C that ad-
here to the specific constraints. Finally, we execute the plan
generation process, converting the planning outcomes C into
the required final solution as P = πθ(Φ(C)).

5. Experiments
5.1. Setups

Benchmarks To evaluate the effectiveness of our method,
we select three of the most challenging planning datasets:
Travel Planner (Xie et al., 2024), PlanBench (Valmeekam
et al., 2024a) and Natural Plan (Zheng et al., 2024).

1) TravelPlanner is a planning benchmark focused on travel
planning, aiming to find an itinerary that satisfies diverse
constraints regarding flights, accommodations, and other
travel arrangements. In this study, we select the validation
set for evaluation, which contains 180 queries and is divided
into 9 groups based on difficulty levels (easy, medium and
hard) and trip durations (3, 5, and 7 days).

2) PlanBench is a benchmark suite that includes domains
from the International Planning Competition (IPC, 1998).
In this study, we focus on Blocksworld, a commonsense
domain centered around stacking blocks on a table, and
Mystery Blocksworld, an obfuscated version of the same
domain. Each task contains 600 instances.

3) Natural Plan is a realistic natural language planning
benchmark designed for itinerary creation under specific
constraints, simulating real-world planning challenges. In
this study, we focus on the Trip Planning task within
the benchmark, which evaluates the ability to generate
itineraries based on varying requirements. The dataset con-
tains 1,600 queries, divided into eight difficulty levels based
on the number of cities involved, ranging from 3 to 10.

Baselines We evaluate HTP against four strong baseline
categories: (1) planning strategies, including CoT (Kojima
et al., 2022), ToT (Yao et al., 2024) and LATS (Zhou et al.,
2023); (2) in-context learning methods, including one-shot
learning and HiAR-ICL (Wu et al., 2024); (3) agent methods,
including EvoAgent (Yuan et al., 2024), RAP (Hao et al.,
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2023) and MTP (Zhang et al., 2024a) 2; (4) powerful LLMs,
including o1-preview (OpenAI, 2024b), o1-mini, LLaMA-
3.1-405B (AI, 2024), LLaMA-3.1-70B (Dubey et al., 2024),
GPT-4 (Achiam et al., 2023), GPT-4o (OpenAI, 2024a),
Gemini-1.5-Pro (DeepMind, 2024), Claude 3.5 (Anthropic,
2024a) and Claude 3 (Anthropic, 2024b). We provide de-
tailed descriptions of the baseline methods in Appendix B.1.

Evaluation Metrics For all benchmarks, we follow the eval-
uation metrics specified in the original settings. Specifically,
for the TravelPlanner task, we report the delivery rate, com-
monsense rate, hard constraint rate and success rate. For
both the Blocksworld and Mystery Blocksworld tasks, we
utilize a plan executor to execute the plans, verify their cor-
rectness, and report the success rate. In the Trip Planning
task, since the correct plan is unique, we calculate the suc-
cess rate based on the number of matching plans. More
evaluation details are given in Appendix C.1.

5.2. Main Results

As shown in Table 1, we evaluate HTP’s effectiveness across
these benchmarks. We can get the following key results:

1) HTP consistently achieves the best success rate across
all tasks, regardless of the backbone model. For exam-
ple, the success rate of Gemini-1.5-Pro on TravelPlanner
increased from 8.9% (EvoAgent) to 36.1% with HTP, repre-
senting a 4.06× performance improvement. This highlights
HTP’s effectiveness, strong generalization across diverse
benchmarks, and adaptability to different backbone models.

2) HTP demonstrates more significant performance im-
provements on tasks with longer reasoning chains. As
shown in Appendix E.3, a single inference on the TravelPlan-
ner and Mystery Blocksworld dataset typically requires over
60 reasoning steps, much longer than the approximately 30
steps needed for datasets like Blocksworld and Trip Plan-
ning. As a result, HTP achieves a 2.8× and a 4.8× per-
formance improvement on the TravelPlanner and Mystery
Blocksworld respectively, far surpassing the 1.3× and 1.8×
improvements observed on the other two datasets based on
GPT-4o. This improvement is attributed to the ability of
HTP to flexibly implement a divide-and-conquer strategy,
effectively reducing the length of reasoning chains while
maintaining the integrity of the planning process.

5.3. Comparison with powerful SOTA LLMs

To comprehensively demonstrate the effectiveness of our
method, we compare our approach with current SOTA
closed-source models and prominent open-source models.
As shown in Table 2, HTP outperforms the majority of pow-
erful closed-source and open-source models with several

2Due to the unconventional experimental setups of MTP, we
present the comparison results in the Appendix C.2.

Table 2. Comparison with leading LLMs across three tasks. The
best results are bolded, and the second best ones are underlined.
SR represents the Success Rate. The cost is calculated based on
the API cost for a single instance.

Benchmark Model SR Cost(in $)

TravelPlanner

GPT-4o 4.4 0.025
GPT-4 4.4 0.025
o1-preview 10.0 0.380
o1-mini 1.67 0.067
Gemini-1.5-Pro 5.6 0.035

GPT-4o+HTP 20.0 0.071
Gemini-1.5-Pro+HTP 36.1 0.102

Blocksworld

GPT-4o 35.5 0.007
GPT-4 34.6 0.018
GPT-4-Turbo 40.1 0.012
o1-preview 97.8 0.420
o1-mini 56.6 0.037
Gemini-1.5-Pro 23.8 0.003
Claude 3.5(Sonnet) 54.8 0.004
Claude 3(Opus) 59.3 0.017
LLaMA-3.1-405B 62.6 -
LLaMA-3.1-70B 34.4 -

GPT-4o+HTP 54.8 0.032
Gemini-1.5-Pro+HTP 67.2 0.023

Trip Planning

GPT-4o 3.7 0.003
GPT-4 31.1 0.009
o1-preview 36.2 0.530
Gemini-1.5-Pro 34.8 0.005
LLaMA-3.1-70B 32.5 -

GPT-4o+HTP 36.9 0.046
Gemini-1.5-Pro+HTP 42.8 0.069

hundred billions of parameters across three datasets. In
addition, HTP significantly reduces token cost. Notably,
HTP based on Gemini-1.5-Pro achieves 42.8% accuracy on
the Natural Plan benchmark, exceeding the performance of
o1-preview while requiring only 13% of its cost. Similarly,
HTP based on GPT-4o attains performance equivalent to
o1-preview, with the cost reduced to just 8.7%.

5.4. Ablation Study and Additional Analysis

Ablations To assess the impact of individual HTP modules
on overall performance, we conduct an ablation study us-
ing GPT-4o and Gemini-1.5-Pro as the backbone models.
Specifically, we evaluate five ablated versions of HTP, each
omitting a distinct module. Detailed descriptions of these
variants are provided in Appendix C.3. As shown in Table 3,
removing any module consistently leads to a notable decline
in performance. In particular:

1) The hierarchical thinking mechanism plays a crucial
role in enhancing LLM performance for planning prob-
lems. The removal of the division module, which supports
hierarchical thinking, results in a significant drop in success
rates. This suggests that LLMs with hierarchical thinking ca-
pabilities achieve substantial improvements across various
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Table 3. Ablation studies for key components of HTPAgent based
on GPT-4o and Gemini-1.5-Pro, evaluating the success rate (SR)
across TravelPlanner (Travel.), Blocksworld (Blocks.), and Trip
Planning (Trip.).

Model Method Travel. Blocks. Trip.

SR SR SR

GPT-4o

HTP 20.0 54.7 36.9
w/o selection 18.9 42.0 21.1
w/o division 6.1 37.2 18.8
w/o decision 17.8 48.5 15.3
w/o outline 14.4 43.3 30.7
w/o self-guided 8.3 42.2 36.6

Gemini-1.5-Pro

HTP 36.1 67.2 42.8
w/o selection 34.4 55.8 36.6
w/o division 7.2 27.8 38.4
w/o decision 33.9 57.2 35.0
w/o outline 30.6 56.0 37.2
w/o self-guided 18.9 46.5 42.5

aspects of the solution process.

2) The planning outline, in comparison to demonstration
examples, significantly boosts the potential of LLMs.
For instance, GPT-4o-based HTP achieves a success rate of
54.7% on Blocksworld, whereas substituting the planning
outline with a fixed hypertree-structured example reduces
the success rate to 43.3%.

3) The self-guided planning process markedly improves
the performance of HTP on both the TravelPlanner and
Blocksworld datasets. For example, GPT-4o-based HTP
achieves a success rate of 20.0 on the TravelPlanner dataset,
which drops sharply to 8.3 when the self-guided planning
process is removed. This highlights the importance of in-
depth reasoning for solving subtasks. The self-guided plan-
ning process has a lesser effect on Trip Planning, primarily
due to the simplicity of its subtasks.
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Figure 4. Success rates on the TravelPlanner benchmark catego-
rized by problem instance difficulty and trip durations. Circles
indicate instances with a success rate of 0 for clearer identification.

Reasoning Difficulty To evaluate the impact of planning
difficulty on the success rates of different planning methods,
we conducted a detailed analysis using the TravelPlanner
benchmark. As outlined in Section 5.1, TravelPlanner can be
categorized by trip durations. With every two-day increase
in trip duration, there is a significant rise in the required

reasoning steps, constraints, and subtasks in the itinerary.
Figure 4 shows the success rates for four methods across
various trip durations based on Gemini-1.5-pro. The re-
sults reveal a noticeable decline for HiAR-ICL, Evoagent,
and LATS as trip duration increases, while HTP maintains a
more consistent performance trend. These findings highlight
HTP’s superior adaptability to more challenging planning
tasks, demonstrating its robustness and scalability in scenar-
ios with increasing planning complexity.

Pruning Strategies To determine the optimal hyperchain
pruning strategy, we evaluate three selection methods: (1)
Width-basedn: prune branches exceeding a maximum width
of n. (2) Probability-basedn: retain only the top n branches
with the highest confidence probabilities. (3) LLM-basedn:
use a LLM to select up to n branches considered most
promising. As shown in Table 3, both the selection and
the decision module have a minimal impact on the Trav-
elPlanner benchmark, which indicates that the TravelPlanner
benchmark is less sensitive to pruning strategies. Therefore,
we focus on the Blocksworld and Trip Planning datasets,
with Gemini-1.5-Pro as the backbone model and GPT-4o
employed for confidence scoring in the Probability-basedn
method and decision-making in the LLM-basedn method.
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Figure 5. Success rates on the Blocksworld and Trip Planning
benchmarks, categorized by different pruning strategies.

Figure 5 presents a detailed comparison of the strategies
across the two tasks. Notably, in the Blocksworld task,
peak performance is achieved at n = 2, with a slight de-
cline as n increases. In contrast, performance in the Trip
Planning task improves steadily as n increases, suggest-
ing that Blocksworld is more likely to find an optimal path
with fewer attempts, while Trip Planning benefits from ex-
ploring a larger number of branches. Additionally, when
n is small, the LLM-based and Probability-based strate-
gies perform similarly, both outperforming the Width-based
strategy. However, as n increases, the LLM-based strat-
egy outperforms the others, while the Probability-based
approach shows a decline in performance. This discrepancy
is likely due to biases in the confidence scores, which may
accumulate inaccuracies at deeper levels of reasoning.
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6. Limitations and Future Work
Limitations While our approach consistently improves
performance on complex planning tasks, several key limi-
tations remain when compared to human planning. LLMs
struggle with complex single-step reasoning, lack human
prior knowledge (e.g., budgeting strategies), are vulnera-
ble to long-horizon errors, and lack mechanisms for self-
reflection and backtracking.

Future Work Looking ahead, our work offers several
promising directions for future research. First, HTP inte-
grates naturally with self-reflection and backtracking, mak-
ing it well-suited for real-world tasks such as meeting plan-
ning and calendar scheduling. Its hierarchical hyperchain
structure enables more accurate error correction by avoiding
redundant reasoning over unrelated paths. Second, HTP’s
scalability and adaptability make it a strong candidate for
autonomous agent decision-making. Future work may ex-
plore equipping end-to-end agents with hierarchical rea-
soning abilities using HTP. Third, combining HTP with
LLM-based heuristic reward functions presents a promising
path for improving decision quality and learning efficiency.

7. Conclusion
In this work, we introduce HTP, a novel planning paradigm
that utilizes hypertree construction for hierarchical thinking.
By iteratively expanding the hypertree through a top-down
process, HTP enables a multi-level divide-and-conquer strat-
egy to create an effective planning outline. In our evaluation
across three benchmarks, HTP consistently outperforms
all models. Its ability to transform extensive inference
chains into hypertree structures led to significant perfor-
mance improvements, especially on datasets with long in-
ference chains. These results highlight the effectiveness of
HTP in tackling complex planning challenges.
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A. More Background
Reasoning path modeling LLMs are increasingly used for inference, with reasoning path modeling methods evolving
beyond traditional CoT and ToT to decompose complex problems into simpler tasks. Program of Thought (PoT) (Chen
et al., 2023b) structures reasoning as programmatic steps, using variable names for semantic clarity. Algorithm of Thought
(AoT) (Sel et al., 2024) compacts these steps into a single prompt, reducing token consumption while improving efficiency.
Graph of Thought (GoT) (Besta et al., 2024) models inference as a graph, enabling dynamic path selection and backtracking.
Forest of Thought (FoT) (Bi et al., 2024) builds an ensemble of inference trees, leveraging sparse activation for more
efficient decision-making. These methods enhance LLMs’ ability to handle complex problems with greater flexibility and
accuracy. Meanwhile, complex reasoning has also been widely explored in circuit design (Wang et al., 2024e; 2025), logic
synthesis (Bai et al., 2025; Wang et al., 2024d;a), and optimization (Wang et al., 2023b), demonstrating its potential in
guiding structured and efficient decision-making. Notably, hierarchical and sample-efficient frameworks (Wang et al., 2022;
2023c) have shown success in these domains, motivating their extension to hierarchical reasoning with LLMs.

B. Experiment Settings
B.1. Implementation Details of the Baselines

Below, we provide short descriptions of the five planning strategy baseline methods and two agent methods.

• CoT: CoT (Chain-of-Thought) (Kojima et al., 2022) facilitates efficient and effective step-by-step reasoning by
appending the phrase ”Let’s think step by step” to the prompt, guiding the model through a structured reasoning
process.

• ToT: ToT (Tree-of-Thought) (Yao et al., 2024) enables multi-path reasoning by guiding large models to generate
multiple feasible parallel reasoning paths simultaneously. In our setup, the pruning strategy of ToT is always aligned
with the HTP method.

• LATS: LATS refers to Language Agent Tree Search (Zhou et al., 2023), a general framework that harnesses the
reasoning, acting, and planning capabilities of language models while integrating Monte Carlo Tree Search to explore
the search space. It has demonstrated exceptional performance in planning tasks (Chen et al., 2024).

• One shot: The one-shot approach enhances the reasoning ability of large models by providing a fixed example, guiding
them to learn through analogy. For specific examples, please refer to Appendix E.4.

• HiAR-ICL: HiAR-ICL stands for High-level Automated Reasoning Paradigm in In-Context Learning (Wu et al., 2024),
a powerful ICL method that shifts the focus from specific examples to abstract thinking patterns, thereby enhancing the
generalization ability of LLMs.

• RAP: RAP (Reasoning via Planning) (Hao et al., 2023) repurposes the LLM as both a world model and a reasoning
agent, integrating a principled planning algorithm based on Monte Carlo Tree Search to enable strategic exploration
within the vast reasoning space.

• EvoAgent: EVOAGENT (Yuan et al., 2024) is a generic method to automatically extend expert agents to multi-agent
systems via the evolutionary algorithm, thereby improving the effectiveness of LLM-based agents in solving tasks.

• MTP: MTP(meta-task planner) (Zhang et al., 2024a) is a zero-shot methodology for collaborative LLM-based multi-
agent systems that simplifies complex task planning by decomposing it into a hierarchy of subordinate tasks.

B.2. Backbone Model Selection

For OpenAI models, we use gpt-3.5-turbo-1106 and gpt-4o-2024-08-06. For Gemini-1.5-Pro, we use Google Gemini-1.5-Pro
APIs to obtain results. We set the temperature to 0 for all models.
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C. Additional Results
C.1. Evaluation Details of TravelPlanner

Grounding to travel planning, a real-world use-case that inherently involves various constraints like user preferences and
commonsense rules, TravelPlanner evaluates whether agents can formulate flexible travel plans using gathered information
to meet these constraints. We test EVOAGENT and all baselines on the TravelPlanner validation set, which consists of
180 user queries with the collected information. To evaluate the travel plans generated by agents, TravelPlanner adopts the
following evaluation metrics:

1. Delivery Rate: Assesses if agents can complete a plan within a limited number of steps (30 in our experimental setting).
Failures are due to dead loops, numerous failed attempts, or exceeding the step limit.

2. Commonsense Constraint Pass Rate: Evaluates if an agent can incorporate commonsense into their plan.

3. Hard Constraint Pass Rate: Measures if a plan meets all explicit hard constraints in the query, testing the agent’s ability
to adapt to diverse user preferences.

4. Success rate: Indicates the proportion of viable plans that meet all criteria, reflecting the agent’s proficiency in creating
practical plans.

Furthermore, TravelPlanner uses micro and macro strategies to assess the Commonsense and Hard Constraint Pass Rates.
The micro strategy calculates the ratio of met constraints to the total. The macro strategy measures the proportion of plans
that meet all commonsense or hard constraints. Together, these strategies assess an agent’s ability to satisfy individual
constraints and all constraints comprehensively.

C.2. Comparision with MTP

In this part, we compare our HyperTree Planning (HTP) method with the Meta-task Planner (MTP) (Zhang et al., 2024a)
approach. As MTP reports its results exclusively on 3-day trip durations within the TravelPlanner benchmarks, we adopt the
same evaluation setting to ensure consistency. Furthermore, we introduce three additional baseline methods for comparison:
React (Yao et al., 2022), Direct, and CoT (Wei et al., 2022). Importantly, both the React and MTP methods employ a
two-stage mode, while the Direct, CoT, and HTP methods utilize a sole-planning mode, bypassing the information-gathering
step for a more streamlined process.

From Table 4, 5, and 6, it is clear that HTP consistently achieves the highest success rate across tasks of varying difficulty
levels: easy, medium, and hard. This superiority is even more evident in the detailed metrics of Commonsense and Hard
Constraint, underscoring the effectiveness of our approach in comprehensively addressing complex problems.

Table 4. The Success Rates (%) on Easy Instances. The highest success rates are highlighted in bold blue.
Methods GPT-4 + React GPT-4 + MTP GPT-4 + Direct GPT-4 + CoT GPT-4 + HTP(Ours)

Delivery Rate 95.00 100.00 100.00 100.00 100.00

Common- Micro 75.00 95.63 95.00 89.38 95.63

Validation sense Macro 5.00 70.00 65.00 55.00 65.00

Set Hard Micro 15.00 55.00 60.00 55.00 60.00

Constraint Macro 15.00 55.00 60.00 55.00 60.00

Success Rate 5.00 55.00 35.00 40.00 55.00

Table 5. The Success Rates (%) on Medium Instances. The highest success rates are highlighted in bold blue.
Methods GPT-4 + React GPT-4 + MTP GPT-4 + Direct GPT-4 + CoT GPT-4 + HTP(Ours)

Delivery Rate 100.00 95.00 100.00 100.00 100.00

Common- Micro 83.75 82.50 91.88 84.38 96.88

Validation sense Macro 10.00 20.00 50.00 55.00 75.00

Set Hard Micro 7.50 55.00 55.00 55.00 80.00

Constraint Macro 0.00 55.00 20.00 25.00 70.00

Success Rate 0.00 15.00 5.00 10.00 55.00
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Table 6. The Success Rates (%) on Hard Instances. The highest success rates are highlighted in bold blue.
Methods GPT-4 + React GPT-4 + MTP GPT-4 + Direct GPT-4 + CoT GPT-4 + HTP(Ours)

Delivery Rate 100.00 95.00 100.00 100.00 100.00

Common- Micro 79.38 83.75 89.38 88.75 94.38

Validation sense Macro 10.00 40.00 35.00 45.00 60.00

Set Hard Micro 5.00 41.25 50.00 55.00 75.00

Constraint Macro 0.00 30.00 5.00 5.00 45.00

Success Rate 0.00 30.00 0.00 0.00 35.00

C.3. Details of Ablations

We evaluate five ablated versions of HTP using GPT-4 as the backbone model, where each version omits one specific design
principle:

1)w/o selection: The selection module is replaced with a strategy that always chooses the leftmost leaf node.

2)w/o division: The decomposition module is removed. The hypertree-structure planning outline degenerates into tree-
structure.

3)w/o decision: The decision module is removed, and during expansion, a single branch is always maintained for each
non-leaf node.

4)w/o outline: The planning outline is replaced with a fixed hypertree planning example instead of being dynamically
generated for each query.

5)w/o self-guided: The hypertree results are directly used as the complete planning content, but all necessary external
information is provided during the construction of the hypertree.

D. Analysis of Computational Cost
To address concerns regarding the efficiency of our proposed method, we provide a comprehensive analysis of computational
cost across different reasoning paradigms, including CoT (Wei et al., 2022), RAP (Hao et al., 2023), and our method HTP,
using the TravelPlanner dataset. Due to the suboptimal performance of open-source models on this task, we adopt GPT-4o
as the backbone model for all evaluations.

We assess computational efficiency from three perspectives: inference speed, token cost, and computational complexity. Let
n be the number of branches expanded at each step (with n ≤ 2 in TravelPlanner), l the average number of reasoning steps
per chain, and k the number of sampled trajectories in MCTS-based methods.

Model Inference Speed (s) Token Cost (in/out) Computational Complexity
CoT 6.92 4328 / 641 O(l)
RAP 41.94 5440 / 3374 O(nkl)
HTP 25.27 5562 / 963 O(nl)

Table 7. Comparison of computational cost across different reasoning methods on TravelPlanner.

The results clearly demonstrate that HTP significantly reduces computational cost compared to RAP across all three metrics.
This is attributed to the elimination of MCTS in HTP, which avoids costly sampling and value estimation procedures, thereby
improving efficiency.

Additionally, although HTP employs a hyperchain reasoning structure to support hierarchical planning, this does not
increase its overall computational complexity. The higher dimensionality of reasoning is counterbalanced by shorter average
reasoning paths, resulting in computational efficiency that remains on par with non-hierarchical approaches.

Additional Analysis and Potential Improvements. We note that the inference cost of HTP can sometimes exceed that of
conventional single-path backbone models, primarily due to two factors:

1. Multi-path reasoning overhead, resulting from the expansion of multiple candidate paths (e.g., tree search).
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2. Hierarchical decomposition, where the original task is divided into finer-grained subproblems, requiring more detailed
reasoning.

The impact of these factors varies across tasks. In the TravelPlanner task, the overhead mainly stems from the need for
constraint-aware reasoning (factor 2), whereas in NaturalPlan, the major cost is associated with the search process needed to
identify a feasible solution via trial-and-error (factor 1).

Despite these additional sources of cost, HTP remains substantially more efficient than MCTS-based methods, as it avoids
repeated simulations and value estimation.

To further improve efficiency, we propose two directions for future work:

• Using smaller fine-tuned models (instead of large backbone models) for intermediate reasoning steps during hypertree
construction.

• Adopting meta-learning techniques to predict task complexity and dynamically adjust hypertree parameters (e.g.,
depth and width), allowing for adaptive and efficient reasoning based on task demands.

E. Case Study
This includes examples of different states on the four task sets of TravelPlanner, Blocksworld, Mystery Blocksworld, and Trip
Planning. E.1 include examples of the HyperTree library (rules and nodes). E.2 include examples of the HyperTree-stuctured
planning outline. E.3 include examples of the planning process. E.4 include examples of the final plan.

E.1. Examples of the HyperTree Library (Rules and Nodes)

TravelPlanner:
1Rules:
21. [Plan] -> [Transportation][Accommodation][Attraction][Dining] # The plan can be divided

into four aspects.
32. [Transportation] -> {{Specific segments of transportation}} # Break transportation down

into specific transportation choices for each segment of the trip.
43. [transportation from A to B] -> [Self-driving][Taxi][Flight] # The transportation mode

for each segment can be choose from self-driving, taxi, and flights.
54. [Self-driving] -> [transportation availability][transportation preference][cost][non-

conflicting] # For each mode of transportation, you should consider transportation
availability, transportation preference, cost and non-conflicting.

6[Taxi] -> [transportation availability][transportation preference][cost][non-
conflicting]

7[Flight] -> [transportation availability][transportation preference][cost][non-
conflicting]

85. [Accommodation] -> {{Specific accommodation for each city}} # Break accommodation down
into specific accommodation options for each city.

96. [Accommodation for A] -> [cost][house rule][room type][minimum stay] # For
accommodation in each city, consider the cost, house rules, room type, and minimum stay
requirements.

107. [Attraction] -> {{specific attraction for each city}} # Break accommodation down into
specific attraction options for each city.

118. [Dining] -> {{Specific dining for each city}} # Break dining down into specific dining
options for each city.

129. [Dining for A] -> [cost][cuisine] # For dining in each city, consider the cost and
cuisine.

13

14Divisible Nodes:
15[Plan]; [Transportation]; [Taxi]; [Self-driving]; [Flight]; [Accommodation]; [Attraction];

[Dining];
16{{Specific segment of transportation}} # (Note: This placeholder represents the specific

modes of transportation for one segment of the trip, such as [transportation from A to B])
;

17{{Specific accommodation for one city}} # (Note: This placeholder represents the specific
accommodation options for one city in the trip, such as [Accommodation for A]);
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18{{Specific dining for one city}} # (Note: This placeholder represents the specific dining
options for one city in the trip, such as [Dining for A]);

19

20Leaf Nodes(Example):
21[transportation availability]; [transportation preference]; [transportation cost]; [house

rule]; [room type]; [accommodation cost]; [minimum stay]; [cuisine]; [dining cost];
22{{specific attraction for one city}} # (Note: This placeholder represents the specific

attraction options for one city in the trip, such as [attraction for A]).

Blocksworld:
1Rules:
2[Plan] -> {{[{{Block}} on the table][{{Block}} on the table][{{Block}} on top of {{Block

}}] [{{Block}} on top of {{Block}}]}} # (Note: The quantity and types of symbols are
indefinite. The plan is divided into different floors, and if the target state requires
multiple blocks on the same floor, there will result in multiple symbols in parallel
relationship);

3[{{Block}} on the table] -> {{[to get {{Block}} clear][to get hand empty][to get {{Block}}
on the table]}} # (Note: The quantity and types of symbols are indefinite. The general

approach is to break down the task into atomized, specific actions, and there can be
multiple symbols in parallel relationships);

4[{{Block}} on top of {{Block}}] -> {{[to get {{Block}} clear][to get hand empty][to get
{{Block}} clear][to get hand empty][to get {{Block}} on top of {{Block}}]}} # (Note: The
quantity and types of symbols are indefinite. The general approach is to break down the
task into atomized, specific actions, and there can be multiple symbols in parallel
relationships);

5

6Divisible Nodes:
7[Plan];
8[{{Block}} on the table] # (Note: This placeholder represents the specific blocks);
9[{{Block}} on top of {{Block}}] # (Note: This placeholder represents the desired

arrangement of the blocks);
10

11Leaf Nodes(Example):
12[to get {{Block}} clear] # (Note: This placeholder represents the specific blocks);
13[to get hand empty];
14[to get {{Block}} on the table]; [to get {{Block}} on top of {{Block}}] # (Note: Unlike

non-terminals which refer to broad directions, here it refers to atomized specific tasks.)
;

Mystery Blocksworld:
1Rules:
2[Plan] -> {{[Planet {{Object}}][Planet {{Object}}][{{Object}} Craves {{Object}}] [{{Object

}} Craves {{Object}}]}} # (Note: The quantity and types of symbols are indefinite. The
plan is divided into different Crave-relationship, and if the target state requires
multiple objects on similar Crave-relationship, there will result in multiple symbols in
parallel relationships);

3[Planet {{Object}}] -> {{[to get Province {{Object}} becomes True][to get Harmony becomes
True][to get Planet {{Object}} becomes True]}} # (Note: The quantity and types of symbols
are indefinite. The general approach is to break down the task into atomized, specific
actions, and there can be multiple symbols in parallel relationships);

4[{{Object}} Craves {{Object}}] -> {{[to get Province {{Object}} becomes True][to get
Harmony becomes True][to get Province {{Object}} becomes True][to get Harmony becomes True
][to get {{Object}} craves {{Object}}]}} # (Note: The quantity and types of symbols are
indefinite. The general approach is to break down the task into atomized, specific actions
, and there can be multiple symbols in parallel relationships);

5

6Divisible Nodes:
7[Plan];
8[Planet {{Object}}] # (Note: This placeholder represents specific objects on a planet,

such as [Planet object A]);
9[{{Object}} Craves {{Object}}] # (Note: This placeholder represents the desired

arrangement where one object craves another);
10
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11Leaf Nodes(Example):
12[to get Province {{Object}} becomes True]# (Note: This placeholder represents specific

objects that need to be cleared);
13[to get Harmony becomes True]; [to get Planet {{Object}} becomes True]; [to get {{Object}}

craves {{Object}}] # (Note: Unlike non-terminals which refer to broad directions, here it
refers to atomized specific tasks.);

Trip Planning:

1Rules:
2[Plan] -> [Cities with determine dates][Cities with undetermine dates] # (Note: Translate

the travel plan into cities with specific dates and cities with unspecific dates, and
consider them separately);

3[Cities with determine dates] -> {{[{{City}}][{{City}}]}} # (Note: The quantity of
symbols are indefinite. The cities here are those where the activities are explicitly
specified in the query);

4[Cities with undetermine dates] -> {{[{{City}}][{{City}}]}} # (Note: The quantity and
types of symbols are indefinite. The cities here are the remaining cities in the query);

5[{{City}}] -> [from day {{i}} to day {j}] # (Note: Further expand the city into specific
dates).

6

7Devisible Nodes:
8[Plan]; [Cities with determine dates]; [Cities with undetermine dates];
9[{{City}}] # (Note: This placeholder represents the city in the query, such as [London]);
10

11Leaf Nodes(Example):
12[from day {{i}} to day {j}] # (Note: This placeholder represents specific date in one city

);

E.2. Examples of the HyperTree-stuctured Planning Outline

TravelPlanner:

1[Plan]
2[Transportation]
3[Transportation from Fort Lauderdale to City 1 in Georgia]
4[Self-driving]
5[transportation availability]
6[transportation preference]
7[transportation cost]
8[Taxi]
9[transportation availability]
10[transportation preference]
11[transportation cost]
12[Flight]
13[transportation availability]
14[transportation preference]
15[transportation cost]
16[Transportation from City 1 in Georgia to City 2 in Georgia]
17[Self-driving]
18[transportation availability]
19[transportation preference]
20[transportation cost]
21[Taxi]
22[transportation availability]
23[transportation preference]
24[transportation cost]
25[Flight]
26[transportation availability]
27[transportation preference]
28[transportation cost]
29[Transportation from City 2 in Georgia to City 3 in Georgia]
30[Self-driving]
31[transportation availability]
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32[transportation preference]
33[transportation cost]
34[Taxi]
35[transportation availability]
36[transportation preference]
37[transportation cost]
38[Flight]
39[transportation availability]
40[transportation preference]
41[transportation cost]
42[Transportation from City 3 in Georgia to Fort Lauderdale]
43[Self-driving]
44[transportation availability]
45[transportation preference]
46[transportation cost]
47[Taxi]
48[transportation availability]
49[transportation preference]
50[transportation cost]
51[Flight]
52[transportation availability]
53[transportation preference]
54[transportation cost]
55[Accommodation]
56[Accommodation for City 1 in Georgia]
57[minimum stay]
58[house rule]
59[room type]
60[accommodation cost]
61[Accommodation for City 2 in Georgia]
62[minimum stay]
63[house rule]
64[room type]
65[accommodation cost]
66[Accommodation for City 3 in Georgia]
67[minimum stay]
68[house rule]
69[room type]
70[accommodation cost]
71[Attraction]
72[Attraction for City 1 in Georgia]
73[Attraction for City 2 in Georgia]
74[Attraction for City 3 in Georgia]
75[Dining]
76[Dining for City 1 in Georgia]
77[cuisine]
78[dining cost]
79[Dining for City 2 in Georgia]
80[cuisine]
81[dining cost]
82[Dining for City 3 in Georgia]
83[cuisine]
84[dining cost]

Blocksworld:
1[Plan]
2[Blue block on the table]
3[to get the blue block clear]
4[to get the blue block on the table]
5[Orange block on the table]
6[to get the orange block clear]
7[to get the orange block on the table]
8[Orange block on top of Blue block]
9[to get the blue block clear]
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10[to get the orange block clear]
11[to get the orange block on top of the blue block]
12[Red block on top of Orange block]
13[to get the red block clear]
14[to get the orange block clear]
15[to get the red block on top of the orange block]

Mystery Blocksworld:

1[Plan]
2[Planet object b]
3[to get Province object b becomes True]
4[to get Planet object b becomes True]
5[Object d Craves Object b]
6[to get Province object d becomes True]
7[to get Province object b becomes True]
8[to get object d Crave object b]
9[Object c Craves Object d]
10[to get Province object c becomes True]
11[to get Province object d becomes True]
12[to get object c Crave object d]

Trip Planning:

1[Plan]
2[Cities with determine dates]
3[Valencia]
4[from day 1 to day 3]
5[Stockholm]
6[from day 6 to day 10]
7[Madrid]
8[from day 20 to day 21]
9[Cities with undetermine dates]
10[Seville]
11[from day 3 to day 4]
12[Bucharest]
13[from day 21 to day 22]
14[Nice]
15[from day 17 to day 20]
16[Manchester]
17[from day 4 to day 6]
18[Krakow]
19[from day 10 to day 11]
20[Vilnius]
21[from day 11 to day 14]
22[Zurich]
23[from day 14 to day 17]

E.3. Examples of the Planning Process

TravelPlanner:

1Break down the travel planning into four parts: transportation, attractions, dining, and
accommodation.

2For the transportation part:
3The transportation I need to consider involves four parts: from Houston to

Nashville on 2022-03-21, from Nashville to Knoxville on 2022-03-23, from Knoxville to
Chattanooga on 2022-03-25, from Chattanooga to Houston on 2022-03-27.

4For the transportation from Houston to Nashville:
5I observe that flights, self-driving, and taxis are all available.
6The user prefer no self-driving, so I can only choose between Flight or

taxi for transportation. I should choose the one that costs less.
7Now calculate the cost of choosing the flight option: the lowest-priced

flight is $145, and there are 2 travelers, making the total cost $145 * 2 = $290.
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8Now calculate the cost of choosing the taxi option: there are 2 travelers,
we need 1 taxi, the price is $1253 * 1 = $1253.

9So I will choose the flight option. I will submit: "Flight Number:
F3956409, from Houston to Nashville, Departure Time: 17:36, Arrival Time: 19:12".

10For the transportation from Nashville to Knoxville on 2022-03-23:
11I observed that there is no flight from Nashville to Knoxville on

2022-03-23, but self-driving and taxis are available.
12The user prefer no self-driving, so I can only choose taxi. I will submit:

"taxi, from Nashville to Knoxville, duration: 2 hours 42 mins".
13For the transportation from Knoxville to Chattanooga on 2022-03-25:
14I observed that there is no flight from Knoxville to Chattanooga on

2022-03-25, but self-driving and taxis are available.
15The user prefer no self-driving, so I can only choose taxi. I will submit:

"taxi, from Knoxville to Chattanooga, duration: 1 hour 41 mins".
16For the transportation from Chattanooga to Houston on 2022-03-27:
17I observed that there is no flight Chattanooga to Houston on 2022-03-27,

but self-driving and taxis are available.
18The user prefer no self-driving, so I can only choose taxi. I will submit:

"taxi, from Chattanooga to Houston, duration: 11 hours 47 mins".
19For the attractions part:
20The attractions I need to consider involves three parts: attractions in Nashville,

Knoxville, Chattanooga.
21For the attractions in Nashville:
22I am in Nashville from 2022-03-21 to 2022-03-22, so I should choose two

attractions in Nashville. I will submit: "Country Music Hall of Fame and Museum, Nashville
" for day 1 and "Nashville Zoo at Grassmere, Nashville" for day 2.

23For the attractions in Knoxville:
24I am in Knoxville from 2022-03-23 to 2022-03-24, so I should choose two

attractions in Knoxville. I will submit: "World’s Fair Park, Knoxville" for day 3 and "
Knoxville Museum of Art, Knoxville" for day 4.

25For the attractions in Chattanooga:
26I am in Chattanooga from 2022-03-25 to 2022-03-27, so I have chosen three

attractions in Chattanooga. I will submit: "The Chattanooga Zoo at Warner Park,
Chattanooga" for day 5, "Rock City Gardens, Chattanooga" for day 6 and "Tennessee Aquarium
, Chattanooga" for day 7.

27For the dining part:
28The dining I need to consider involves three parts: dining in Nashville from

2022-03-21 to 2022-03-22, in Knoxville from 2022-03-23 to 2022-03-24, in Chattanooga from
2022-03-25 to 2022-03-27.

29For the dining in Nashville from 2022-03-21 to 2022-03-22:
30Since breakfast and lunch on the first day do not need to be considered, I

need to account for 4 meals.
31The user requests French cuisine, and the French restaurant with the

lowest price is: Twigly.
32The user requests Mexican cuisine, and the Mexican restaurant with the

lowest price is: Bablu Fast Food.
33I still need to find 4 - 2 = 2 more restaurants, and the 2 with the lowest

prices are: Kitchen King, Govinda’s Confectionery.
34To sum up, I will submit: "Twigly, Nashville" for day 1 and "Bablu Fast

Food, Nashville", "Kitchen King, Nashville", "Govinda’s Confectionery, Nashville" for day
2.

35For the dining in Knoxville from 2022-03-23 to 2022-03-24:
36I need to select 6 different restaurants.
37The user requests French cuisine, and the French restaurant with the

lowest price is: Biryani By Kilo.
38The user requests Mexican cuisine, and the Mexican restaurant with the

lowest price is: Open Kitchen.
39I still need to find 6 - 2 = 4 more restaurants, and the 4 with the lowest

prices are: Chit Chat, Mamagoto, La-Nawaab, Tandoori Tadka.
40To sum up, I will submit: "Biryani By Kilo, Knoxville", "Open Kitchen,

Knoxville", "Chit Chat, Knoxville" for day 3 and "Mamagoto, Knoxville", "La-Nawaab,
Knoxville", "Tandoori Tadka, Knoxville" for day 4.

41For the dining in Chattanooga from 2022-03-25 to 2022-03-27:
42Since lunch and dinner on the last day do not need to be considered, I

need to select 9 - 2 = 7 different restaurants.
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43The user requests French cuisine, and the French restaurant with the
lowest price is: Tpot.

44The user requests Mexican cuisine, and the Mexican restaurant with the
lowest price is: Liquid.

45I still need to find 7 - 2 = 5 more restaurants, and the 5 with the lowest
prices are: Muradabadi, Burger’s King, Basil Tree, Sardar A Pure Meat Shop, Pizza Hut

Delivery.
46To sum up, I will submit: "Tpot, Chattanooga", "Liquid, Chattanooga", "

Muradabadi, Chattanooga" for day 5, "Burger’s King, Chattanooga", "Basil Tree, Chattanooga
", "Sardar A Pure Meat Shop, Chattanooga" for day 6, and "Pizza Hut Delivery, Chattanooga"
for day 7.

47For the accommodation part:
48The accommodation I need to consider involves three parts: accommodation in

Nashville from 2022-03-21 to 2022-03-22, in Knoxville from 2022-03-23 to 2022-03-24, in
Chattanooga from 2022-03-25 to 2022-03-27.

49For the accommodation in Nashville from 2022-03-21 to 2022-03-22:
50The user requests private room, the accommodations filtered based on the

criterion are: Clean and large bedroom in a private house, Lovely room in heart of
Williamsburg, FiDi Cozy room overlooking East River, Cozy bedroom close to Manhattan.

51The user requests house that allow smoking, the accommodations further
filtered based on the criterion are: Lovely room in heart of Williamsburg, FiDi Cozy room
overlooking East River, Cozy bedroom close to Manhattan.

52Since the stay is only for two nights, the minimum nights for
accommodation should be limited to less than 3, and the accommodations further filtered
based on the criterion are: Lovely room in heart of Williamsburg, FiDi Cozy room
overlooking East River, Cozy bedroom close to Manhattan.

53Among the filtered accommodations, I should choose the one with the lowest
price:

54Lovely room in heart of Williamsburg has a maximum occupancy of 4
people and is priced at $61. Since we are 2 people, we need 1 room, the total price is $61
* 1 = $61.

55FiDi Cozy room overlooking East River has a maximum occupancy of 5
people and is priced at $870. Since we are 2 people, we need 1 room, the total price is

$870 * 1 = $870.
56Cozy bedroom close to Manhattan has a maximum occupancy of 3

people and is priced at $576. Since we are 2 people, we need 1 room, the total price is
$576 * 1 = $576.

57Based on the calculations above, I will submit: "Lovely room in
heart of Williamsburg, Nashville".

58For the accommodation in Knoxville from 2022-03-23 to 2022-03-24:
59The user requests private room, the accommodations that meet the criteria

are: Cozy Private Room in Chinatown/ Lower East Side, The Diamond Room, Light-filled Room
in Renovated Apt, Private Room, Beautiful & Private Manhattan Room, Brooklyn Sunny room 5
min to subway, Private 1 Bdrm Suite in Historic Brownstone, Charming bedroom with huge
terrace in Greenpoint, Private large room near LGA airport with queen bed.

60The user requests house that allow smoking, the accommodations further
filtered based on this criterion are: Cozy Private Room in Chinatown/ Lower East Side, The
Diamond Room, Light-filled Room in Renovated Apt, Private Room, Brooklyn Sunny room 5 min
to subway, Private 1 Bdrm Suite in Historic Brownstone, Charming bedroom with huge

terrace in Greenpoint, Private large room near LGA airport with queen bed.
61Since the stay is only for two nights, the minimum nights for

accommodation should be limited to less than 3, and the accommodations further filtered
based on the criterion are: The Diamond Room, Light-filled Room in Renovated Apt, Private
Room, Brooklyn Sunny room 5 min to subway, Private 1 Bdrm Suite in Historic Brownstone,
Charming bedroom with huge terrace in Greenpoint, Private large room near LGA airport with
queen bed.

62Among the filtered accommodations, I should choose the one with the lowest
price:

63The Diamond Room has a maximum occupancy of 1 people and is priced
at $1008. Since we are 2 people, we need 2 room, the total price is $1008 * 2 = $2016.

64Light-filled Room in Renovated Apt has a maximum occupancy of 2
people and is priced at $310. Since we are 2 people, we need 1 room, the total price is
$310 * 1 = $310.

65Private Room has a maximum occupancy of 1 people and is priced at
$922. Since we are 2 people, we need 2 room, the total price is $922 * 2 = $1844.
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66Brooklyn Sunny room 5 min to subway has a maximum occupancy of 2
people and is priced at $793. Since we are 2 people, we need 1 room, the total price is
$793 * 1 = $793.

67Private 1 Bdrm Suite in Historic Brownstone has a maximum
occupancy of 2 people and is priced at $479. Since we are 2 people, we need 1 room, the
total price is $479 * 1 = $479.

68Charming bedroom with huge terrace in Greenpoint has a maximum
occupancy of 1 people and is priced at $712. Since we are 2 people, we need 2 room, the
total price is $712 * 2 = $1424.

69Private large room near LGA airport with queen bed has a maximum
occupancy of 1 people and is priced at $552. Since we are 2 people, we need 2 room, the
total price is $552 * 2 = $1104.

70Based on the calculations above, I will submit: "Light-filled Room
in Renovated Apt, Knoxville".

71For the accommodation in Chattanooga from 2022-03-25 to 2022-03-27:
72The user requests private room, the accommodations filtered based on the

criterion are: Affordable Private Spacious Room in Brooklyn, Sunny room+Pvte office in
huge loft, Extra Cozy Room in Center of Williamsburg, Fort Greene Room, Cozy room in
Bushwick- 15 min to the city, Modern apartment w/ gorgeous view, Artsy Private BR in Fort
Greene Cumberland, Studio Deluxe 1 - Wyndham Midtown 45.

73The user requests house that allow smoking, the accommodations further
filtered based on the criterion are: Affordable Private Spacious Room in Brooklyn, Sunny
room+Pvte office in huge loft, Extra Cozy Room in Center of Williamsburg, Fort Greene Room
, Cozy room in Bushwick- 15 min to the city, Modern apartment w/ gorgeous view, Artsy
Private BR in Fort Greene Cumberland.

74Since the stay is only for two nights, the minimum nights for
accommodation should be limited to less than 3, and the accommodations further filtered
based on the criterion are: Affordable Private Spacious Room in Brooklyn, Extra Cozy Room
in Center of Williamsburg, Fort Greene Room, Cozy room in Bushwick- 15 min to the city.

75Among the filtered accommodations, I should choose the one with the lowest
price:

76Affordable Private Spacious Room in Brooklyn has a maximum
occupancy of 2 people and is priced at $790. Since we are 2 people, we need 1 room, the
total price is $790 * 1 = $790.

77Extra Cozy Room in Center of Williamsburg has a maximum occupancy
of 1 people and is priced at $1033. Since we are 2 people, we need 2 room, the total price
is $1033 * 2 = $2066.

78Fort Greene Room has a maximum occupancy of 1 people and is priced
at $722. Since we are 2 people, we need 2 room, the total price is $722 * 2 = $1444.

79Cozy room in Bushwick- 15 min to the city has a maximum occupancy
of 2 people and is priced at $933. Since we are 2 people, we need 1 room, the total price
is $933 * 1 = $933.

80Based on the calculations above, I will submit: "Affordable
Private Spacious Room in Brooklyn, Chattanooga".

Blocksworld:
1[Plan]
2[to get the blue block clear]
3I can unstack the yellow block from on top of the blue block
4The current state is: the orange block is on the table and not clear, the

red block is on top of the orange block and not clear, the blue block is on top of the red
block and clear, the yellow block is in my hand and not clear.

5[to get the blue block on the table]
6I can put down the yellow block.
7The current state is: the orange block is on the table and not clear, the

red block is on top of the orange block and not clear, the blue block is on top of the red
block and clear, the yellow block is on the table and clear.

8I can unstack the blue block from on top of the red block.
9The current state is: the orange block is on the table and not clear, the

red block is on top of the orange block and clear, the blue block is in my hand and not
clear, the yellow block is on the table and clear.

10I can put down the blue block.
11The current state is: the orange block is on the table and not clear, the

red block is on top of the orange block and clear, the blue block on the table and clear,
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the yellow block is on the table and clear.
12[to get the orange block clear]
13I can unstack the red block from on top of the orange block.
14The current state is: the orange block is on the table and clear, the red

block is in my hand and not clear, the blue block on the table and clear, the yellow block
is on the table and clear.

15[to get the orange block on top of the blue block]
16I can put down the red block.
17The current state is: the orange block is on the table and clear, the red

block is on the table and clear, the blue block on the table and clear, the yellow block
is on the table and clear.

18I can pick up the orange block.
19The current state is: the orange block is in my hand and not clear, the

red block is on the table and clear, the blue block on the table and clear, the yellow
block is on the table and clear.

20I can stack the orange block on top of the blue block.
21The current state is: the orange block is on top of the blue block and

clear, the red block is on the table and clear, the blue block on the table and not clear,
the yellow block is on the table and clear.

22[to get the red block on top of the orange block]
23I can pick up the red block.
24The current state is: the orange block is on top of the blue block and

clear, the red block is in my hand and not clear, the blue block on the table and not
clear, the yellow block is on the table and clear.

25I can stack the red block on top of the orange block.
26The current state is: the orange block is on top of the blue block and not

clear, the red block is on top of the orange block and clear, the blue block on the table
and not clear, the yellow block is on the table and clear.

Mystery Blocksworld:
1[Plan]
2[to get Province object b becomes True]
3Since Harmony is True, Province object a is True, object a Craves object b

is True, I can Feast object a from object b.
4Province object a, object a Craves object b becomes False
5Hamony becomes False
6Pain object a, Province object b becomes True.
7Harmony is False, the Pain object is a
8Province object b is True, object b Craves object c
9object c Craves object d
10Planet object d is True.
11The subtask is achieved.
12[to get Planet object b becomes True]
13Since Harmony is False, the Pain object is a, I can succumb object a.
14Planet object a, Province object a becomes True
15Harmony becomes True
16Pain object a becomes False.
17Planet object a, Province object a is True
18Province object b is True, object b Craves object c
19Province object c is False
20Planet object d is True.
21Since Harmony is True, Province object b is True, object b Craves object c

is True, I can Feast object b from object c.
22Province object b, object b Craves object c becomes False
23Hamony becomes False
24Pain object b, Province object c becomes True.
25Planet object a, Province object a is True
26Province object c is True, object c Craves object d
27Planet object d is True.
28Since Harmony is False, the Pain object is b, I can succumb object b.
29Planet object b, Province object b becomes True
30Harmony becomes True
31Pain object b becomes False.
32Harmony is True
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33Planet object a, Province object a is True
34Planet object b, Province object b is True
35Province object c is True, object c Craves object d
36Planet object d is True.
37The subtask is achieved.
38[to get Province object d becomes True]
39Since Harmony is True, Province object c is True, object c Craves object d

is True, I can Feast object c from object d.
40Province object c, object c Craves object d becomes False
41Hamony becomes False
42Pain object c, Province object d becomes True.
43Planet object a, Province object a is True
44Planet object b, Province object b is True
45Planet object d, Province object d is True.
46The subtask is achieved.
47[to get Province object b becomes True]
48The subtask is achieved.
49[to get object d Crave object b]
50Since Harmony is False, the Pain object is c, I can succumb object c.
51Planet object c, Province object c becomes True
52Harmony becomes True
53Pain object c becomes False.
54Planet object a, Province object a is True
55Planet object b, Province object b is True
56Planet object c, Province object c is True
57Province object d, Planet object d is True.
58Since Harmony is True, Province object d, Planet object d is True, I can

Attack object d.
59Province object d, Planet object d becomes False
60Harmony becomes False
61Pain object d becomes True.
62Planet object a, Province object a is True
63Planet object b, Province object b is True
64Planet object c, Province object c is True.
65Since Harmony is False, the Pain object is d, Province object b is True, I

can Overcome object d from object b.
66Province object d, object d Craves object b becomes True
67Harmony becomes True
68Province object b, Pain object d becomes False.
69Planet object a, Province object a is True
70Planet object b is True
71Planet object c, Province object c is True
72Province object d is True, object d Craves object b.
73The subtask is achieved.
74[to get Province object c becomes True]
75The subtask is achieved.
76[to get Province object d becomes True]
77The subtask is achieved.
78[to get object c Crave object d]
79Since Harmony is True, Province object c, Planet object c is True, I can

Attack object c.
80Province object c, Planet object c becomes False
81Harmony becomes False
82Pain object c becomes True.
83Planet object a, Province object a is True
84Planet object b is True
85Province object d is True, object d Craves object b.
86By [3.2], since Harmony is False, the Pain object is c, Province object d

is True, I can Overcome object c from object d.
87Province object c, object c Craves object d becomes True
88Harmony becomes True
89Province object d, Pain object c becomes False.
90Planet object a, Province object a is True
91Planet object b is True
92Province object c is True, object c Craves object d
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93object d Craves object b.
94The subtask is achieved.

Trip Planning:

1[Plan]
2For the Venice part:
3I need to consider two parts: the dates for staying in Venice, and the

transportation to the next city.
4To consider the dates for staying in Venice:
5The rest of the time is from day 1 to day 7.
6The required stay duration is 3 days, and it is necessary to be in Venice

from day 5 to day 7.
7So I will submit: "**Day 5-7:** Visit Venice for 3 days".
8To consider the transportation to plan for next:
9According to the flight information, Venice can lead to Berlin, so next we

will think about Berlin.
10Since the stay in Berlin should be connected to the stay in Venice, it

should either end on day 5 or start on day 7.
11Since the rest of the time is from day 1 to day 5, the stay in Berlin

should end on day 5.
12So the transportaion I will submit is: "**Day 5:** Fly from Berlin to

Venice."
13For the Berlin part:
14I need to consider two parts: the dates for staying in Berlin, and the

transportation to the next city.
15To consider the dates for staying in Berlin:
16The rest of the time is from day 1 to day 5.
17The required stay duration is 4 days, and the stay in Berlin should end on

day 5, so it is necessary to be in Berlin from day 2 to day 5.
18So I will submit: "**Day 2-5:** Visit Berlin for 4 days".
19To consider the transportation to plan for next:
20According to the flight information, Berlin can lead to Venice and Tallinn

. Because Venice has already discussed it, so next we will talk about Tallinn next.
21Since the stay in Tallinn should be connected to the stay in Berlin, it

should either end on day 2 or start on day 5.
22Since the rest of the time is from day 1 to day 2, the stay in Tallinn

should end on day 2.
23So the transportaion I will submit is: "**Day 2:** Fly from Tallinn to

Berlin."
24For the Tallinn part:
25I need to consider two parts: the dates for staying in Tallinn, and the

transportation to the next city.
26To consider the dates for staying in Tallinn:
27The rest of the time is from day 1 to day 2.
28The required stay duration is 2 days, and the stay in Tallinn should end

on day 2, so it is necessary to be in Tallinn from day 1 to day 2.
29Notice that day 1 is in the dates for staying in Tallinn, so need to

arrive in Tallinn and visit.
30I will submit: "**Day 1-2:** Arriving in Tallinn and visit Tallinn for 2

days".
31To consider the transportation to plan for next:
32Since the rest of the time is empty, the trip plan has been completed.
33Based on the above plan, I need to sort them in time, and use flights to connect

these cities for trip plan.
34According to the chronological order, day 1 to day 2 is Tallinn, day 2 to day 5 is

Berlin, and day 5 to day 7 is Venice.
35So I will fly from Tallinn to Berlin in day2, and fly from Berlin to Venice in

day5.

E.4. Examples of the Final Plan

TravelPlanner:
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1Travel Plan:
2Day 1:
3Current City: from Houston to Nashville
4Transportation: Flight Number: F3956409, from Houston to Nashville, Departure Time: 17:36,

Arrival Time: 19:12
5Breakfast: -
6Attraction: Country Music Hall of Fame and Museum, Nashville
7Lunch: -
8Dinner: Twigly, Nashville
9Accommodation: Lovely room in heart of Williamsburg, Nashville
10

11Day 2:
12Current City: Nashville
13Transportation: -
14Breakfast: Bablu Fast Food, Nashville
15Attraction: Nashville Zoo at Grassmere, Nashville
16Lunch: Kitchen King, Nashville
17Dinner: Govinda’s Confectionery, Nashville
18Accommodation: Lovely room in heart of Williamsburg, Nashville
19

20Day 3:
21Current City: from Nashville to Knoxville
22Transportation: taxi, from Nashville to Knoxville, duration: 2 hours 42 mins
23Breakfast: Biryani By Kilo, Knoxville
24Attraction: World’s Fair Park, Knoxville.
25Lunch: Open Kitchen, Knoxville
26Dinner: Chit Chat, Knoxville
27Accommodation: Light-filled Room in Renovated Apt, Knoxville
28

29Day 4:
30Current City: Knoxville
31Transportation: -
32Breakfast: Mamagoto, Knoxville
33Attraction: Knoxville Museum of Art, Knoxville
34Lunch: La-Nawaab, Knoxville
35Dinner: Tandoori Tadka, Knoxville
36Accommodation: Light-filled Room in Renovated Apt, Knoxville
37

38Day 5:
39Current City: from Knoxville to Chattanooga
40Transportation: taxi, from Knoxville to Chattanooga, duration: 1 hour 41 mins
41Breakfast: Tpot, Chattanooga
42Attraction: The Chattanooga Zoo at Warner Park, Chattanooga.
43Lunch: Liquid, Chattanooga
44Dinner: Muradabadi, Chattanooga
45Accommodation: Affordable Private Spacious Room in Brooklyn, Chattanooga
46

47Day 6:
48Current City: Chattanooga
49Transportation: -
50Breakfast: Burger’s King, Chattanooga
51Attraction: Rock City Gardens, Chattanooga.
52Lunch: Basil Tree, Chattanooga
53Dinner: Sardar A Pure Meat Shop, Chattanooga
54Accommodation: Affordable Private Spacious Room in Brooklyn, Chattanooga
55

56Day 7:
57Current City: from Chattanooga to Houston
58Transportation: taxi, from Chattanooga to Houston, duration: 11 hours 47 mins
59Breakfast: Pizza Hut Delivery, Chattanooga
60Attraction: Tennessee Aquarium, Chattanooga.
61Lunch: -
62Dinner: -
63Accommodation: -
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Blocksworld:
1[PLAN]
2unstack the yellow block from on top of the blue block
3put down the yellow block
4unstack the blue block from on top of the red block
5put down the blue block
6unstack the red block from on top of the orange block
7put down the red block
8pick up the orange block
9stack the orange block on top of the blue block
10pick up the red block
11stack the red block on top of the orange block
12[PLAN END]

Mystery Blocksworld:
1[PLAN]
2feast object a from object b
3succumb object a
4feast object b from object c
5succumb object b
6feast object c from object d
7succumb object c
8attack object d
9overcome object d from object b
10attack object c
11overcome object c from object d
12[PLAN END]

Trip Planning:
1Trip Plan:
2**Day 1-2:** Arriving in Tallinn and visit Tallinn for 2 days.
3**Day 2:** Fly from Tallinn to Berlin.
4**Day 2-5:** Visit Berlin for 4 days.
5**Day 5:** Fly from Berlin to Venice.
6**Day 5-7:** Visit Venice for 3 days.
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