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Abstract

Low-Rank Adaptation (LoRA) has become a widely adopted parameter-efficient
fine-tuning (PEFT) technique for adapting large language models (LLMs) to down-
stream tasks. While prior work has explored strategies for integrating LLM training
and serving, there still remains a gap in unifying fine-tuning and inference for
LoRA-based models. We present Loquetier, a virtualized multi-LoRA framework
that seamlessly integrates LoRA fine-tuning and serving within a single runtime.
Loquetier introduces two key components: (1) a Virtualized Module that isolates
PEFT-based modifications and supports multiple adapters on a shared base model,
and (2) an optimized computation flow with a kernel design that merges fine-
tuning and inference paths in forward propagation, enabling efficient batching and
minimizing kernel invocation overhead. Extensive experiments across three task
settings show that Loquetier consistently outperforms existing baselines in both per-
formance and flexibility, achieving up to 3.0× the throughput of the state-of-the-art
co-serving system on inference-only tasks and 46.4× higher SLO attainment than
PEFT on unified fine-tuning and inference tasks. The implementation of Loquetier
is publicly available at https://github.com/NJUDeepEngine/Loquetier.

1 Introduction

Large Language Models (LLMs) built on stacked transformer blocks [Vaswani et al., 2017] have
achieved remarkable success across a wide range of text generation tasks. This success has driven
the development of ever-larger models, such as the LlaMA series [Touvron et al., 2023, Grattafiori
et al., 2024] and the Qwen family [Bai et al., 2023, Yang et al., 2024]. However, the rapid growth
in model size has introduced prohibitive costs. For example, LlaMA 3 contains 405B parameters,
and DeepSeek-V3 [Bi et al., 2024] scales to 671B. Their computational and memory requirements
of full-parameter training now represent a major bottleneck, restricting both the scalability and
accessibility of LLM development.

Parameter-efficient fine-tuning (PEFT) has emerged as a practical solution to these challenges. By
reducing the number of trainable parameters while retaining the effectiveness of full-model fine-
tuning, PEFT offers a balance between efficiency and adaptability [Ding et al., 2023a]. Recent studies
have evaluated PEFT across diverse applications and theoretical dimensions [Balne et al., 2024, Xu
et al., 2023a], and have surveyed its underlying mechanisms and practical benefits [Han et al., 2024,
Fu et al., 2023]. Notice that PEFT approaches such as Prefix Tuning [Li and Liang, 2021] and Prompt
Tuning [Lester et al., 2021] have demonstrated strong adaptability by optimizing small task-specific
vectors. Moreover, PEFT has shown competitive or superior performance in low-resource settings,
including zero- and few-shot learning [Liu et al., 2022, Hu et al., 2023].
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Table 1: Comparison on different LoRA tasks between Loquetier, PEFT and FlexLLM

Inference Finetune Finetune & Inference

Framework or System Single Multi Single Multi Single Multi

Loquetier ✓ ✓ ✓ ✓ ✓ ✓
PEFT ✓ ✓ ✓ × ✓ ×
S-LoRA+PEFT ✓ ✓ ✓ × ✓ ×
FlexLLM ✓ △3 ✓4 ×4 × ×

Among PEFT approaches, Low-Rank Adaptation (LoRA) [Hu et al., 2022] has become particularly
prominent, offering scalable and effective fine-tuning across diverse LLM tasks. Numerous extensions
have been proposed to enhance its flexibility, including LoHa [Hyeon-Woo et al., 2021], VeRA
[Kopiczko et al., 2023], and LoKr [Yeh et al., 2023]. LoRA has also shown strong potential for
personalization, powering systems in recommendation [Kong et al., 2024, Zhu et al., 2024], and
user-centered content generation [Zhang et al., 2024, Wu et al., 2024a]. Its modularity makes it
well-suited for large-scale serving systems where real-time customization is critical.

In practice, systems that serve LoRA often need to support fine-tuning adapters while simultaneously
deploying them for inference across diverse tasks. However, no existing framework can seamlessly
unify these two capabilities, resulting major obstacles for scaling LoRA into production. Jointly fine-
tuning and serving multiple adapters requires minimizing memory and computation overhead while
efficiently handling heterogeneous workloads. Prior efforts have mainly optimized the base LLM,
such as through KVCache improvements or inference pipeline parallelization [Li et al., 2024a], with
only limited advances in multi-LoRA inference [Chen et al., 2024, Sheng et al., 2023] or integrated
fine-tuning and inference [Miao et al., 2024]. However, these approaches still face critical challenges:
adapters are often fused into monolithic instances for efficiency, thus they cannot be dynamically
loaded or unloaded; decoding efficiency degrades significantly when fine-tuning and inference run
concurrently; and task switching typically requires halting the current job before starting another,
causing downtime, bandwidth overhead, and wasted resources. As a result, existing frameworks
remain inadequate for large-scale, production-ready LoRA applications.

In this paper, we introduce Loquetier2, a unified virtualization framework that integrates fine-tuning
and serving of LLMs with LoRA-based PEFT. Loquetier provides a streamlined computation flow
that handles both fine-tuning and inference requests within a shared runtime, using kernel-level
optimizations to reduce memory overhead and execution latency. Specifically, Loquetier introduces
the Segmented Multi-LoRA Multiplication (SMLM) kernel, which enables mixed-task execution by
distinguishing forward-pass behaviors for fine-tuning, evaluation, prefilling, and decoding. To support
multiple concurrent LoRA adapters without modifying the base model, Loquetier further incorporates
a Virtualized Module abstraction that dynamically injects adapter logic while preserving compatibility
and isolation across tasks and devices. This design enables seamless co-serving of heterogeneous
LoRA configurations and supports instance-to-instance migration of fine-tuning jobs without kernel
restarts or memory duplication. The main contributions are as follows:

• We design an SMLM kernel and an unified computation flow that efficiently supports
fine-tuning and inference with multiple LoRA adapters on a shared base model.

• We propose a modular virtualization mechanism that isolates PEFT-based modifications from
the base model, enabling flexible instance-level migration and seamless adapter management.

• We develop Loquetier to unify LoRA fine-tuning and serving. Extensive experiments show
that Loquetier outperforms existing systems across diverse scenarios and enables unified
practical fine-tuning and serving configurations previously unsupported.

2The name Loquetier is a synthesis of “LoRA” and “coquetier”, reflecting our design philosophy: the base
model serves as the foundational spirit, while LoRA modules act as adjunct ingredients-spirits, juices, and
syrups-mixed in for task-specific customization.

3FlexLLM cycles through loading LoRA models during multi-LoRA inference, disregarding the maximum
number of resident LoRAs set, which makes its multi-LoRA inference efficiency practically unusable.

4The backward procedure of FlexLLM triggered an error originating from an unsupported operation in its
gradient computation logic. We describe our solution in the Appendix B.

2



2 Related Work

LLM inference optimization via KV cache. Key-value (KV) caching is a core technique for
accelerating LLM inference by avoiding redundant computation and memory transfers [Pope et al.,
2023]. Recent work improves cache efficiency and reduces GPU memory overhead through tailored
management strategies. Prompt Cache [Gim et al., 2024] reuses prompt embeddings to reduce
duplication. vLLM [Kwon et al., 2023] and vAttention [Prabhu et al., 2025] address fragmentation
using paging and virtual memory, respectively. Infinite-LLM [Lin et al., 2024] enables dynamic
sharing of cache segments between host and GPU. LoongServe [Wu et al., 2024b] enhances long-
context serving by balancing prefilling and decoding workloads.

LLM inference parallelism. A large amount of work improves LLM inference throughput by
optimizing batch scheduling and pipeline execution. Response Length Perception [Zheng et al.,
2023] and S3 [Jin et al., 2023] predict output lengths to batch similar requests, with S3 further
refining its predictions over time. Orca [Yu et al., 2022] uses token-level continuous batching, while
DeepSpeed-Fastgen [Holmes et al., 2024] adjusts request lengths for better GPU utilization. Sarathi-
Serve [Agrawal et al., 2024] co-schedules prefilling and decoding tasks, whereas TetriInfer [Hu et al.,
2024], Splitwise [Patel et al., 2024], and DistServe [Zhong et al., 2024] decouple these phases across
threads, machines, or clusters to improve parallel efficiency. In kernel, FlashDecoding++ [Hong et al.,
2024] overlaps computation with data transfer to hide latency. FlashAttention [Dao, 2023, Shah et al.,
2024] uses warp specialization and asynchronous execution to maximize attention-layer throughput.

Efficient multi-LoRA inference and unified fine-tuning-inference systems. FlashInfer [Ye et al.,
2025] reduces redundant storage and optimizes GPU memory access for efficient multi-LoRA
inference. Cutlass [Thakkar et al., 2023], a high-performance CUDA library for GEMM operations,
serves as the kernel foundation for Punica [Chen et al., 2024], which combines with FlashInfer to
support scalable LoRA serving. Built on this stack, S-LoRA [Sheng et al., 2023] further improves
GPU memory utilization through dynamic host-device memory transfers. In parallel, FlexLLM [Miao
et al., 2024] explores unified token-level computation for co-serving inference and PEFT fine-tuning,
though scalability remains limited.

LoRA optimization and variants. There are lots of extensions that have been proposed to enhance
the flexibility, efficiency, and adaptability of LoRA. AdaLoRA [Zhang et al., 2023a] introduces
singular value decomposition for dynamic pruning, while IncreLoRA [Zhang et al., 2023b] allocates
parameters based on module importance. SoRA [Ding et al., 2023b] adaptively adjusts rank via
gated weight control during training. DiffoRA [Jiang et al., 2025] selects modules to finetune
using a Differential Adaptation Matrix (DAM). To improve expressiveness and stability, DoRA
[Liu et al., 2024] decomposes weights into magnitude and direction. VB-LoRA [Li et al., 2024b]
reduces redundancy by sharing global vector banks across modules. LoRA-XS [Bałazy et al., 2024]
compresses storage with minimal r × r matrices, and QA-LoRA [Xu et al., 2023b] integrates
quantization and grouping to increase representational flexibility.

3 Loquetier Framework

In this section, we describe the overall architecture of Loquetier, followed by details of its unified
computation flow and the proposed LoRA model virtualization.

3.1 Framework

As illustrated in Figure 1, Loquetier framework consists of two core components: (1) a model library
centered around the Virtualized Module for isolating PEFT modifications, and (2) a redesigned kernel
and computation flow that jointly support fine-tuning and inference workloads. To enable concurrent
execution, Loquetier integrates a context management system that coordinates the runtime scheduling
of heterogeneous tasks.

When loading a base model into CPU or GPU memory, Loquetier instantiates multiple virtual models,
each acting as an isolated container for a specific PEFT configuration. These virtual models are
bound to distinct adapters, enabling independent and concurrent execution. For LoRA-based adapters,
we introduce the MixedLoraModel class to support fine-tuning. Based on our computation flow
(see Section 3.3), each MixedLoraModel efficiently fine-tunes its associated LoRA adapter within
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Figure 1: The framework diagram of Loquetier.

its own container from dedicated trainers, while other virtual models can simultaneously remain in
inference mode.

Loquetier’s modular design is compatible with most existing LLM inference optimizations and
training strategies. It fully supports architectures that leverage FlashInfer [Ye et al., 2025] kernel and
remains extensible to those that do not, requiring only localized modification to the inference logic
within the computation flow. Section 3.2 further details how the Virtualized Module enables base
model sharing across diverse PEFT methods beyond LoRA.

3.2 Virtualized module

The mixing of different LoRA or other PEFT methods in the same model object makes model
configurations chaotic and difficult to handle. Moreover, dynamic model loading and unloading
should be supported in order to apply the fine-tuned and up-to-date LoRA models quickly.

We propose the Virtualized Module that provides methods and data proxies to foundation modules to
solve the above problems. Applying the Virtualized Module to the base model is extremely low-cost,
with no additional GPU memory overhead and provides independent model instances in an intuitive
way. For each module type, the Virtualized Module creates the corresponding virtual module at
runtime to provide the correct proxy methods. The Virtualized Module prepares additional properties
and methods for Linear and Model to accommodate the architecture of Transformers and PEFT.

Since each virtual module class is created at runtime, which means none of these virtual modules
can be shared, nor can a process that owns any virtual module create child processes from fork or
spawn method. Furthermore, any deep copying behavior that includes a virtual module will cause
the base module linked to it to be copied, thus invalidating base module sharing. For this reason, we
provide a non-local class definition for deep copying, serialization, and deserialization. By voiding
the containing Virtualized Module, LoRA models and other PEFT models loaded onto the Virtualized
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Algorithm 1 Computation flow control in attention layer of Loquetier
Input: hidden states matrix X with shape [S,H], list of fine-tuning inputs batch-sequence informa-

tion tuples F, list of prefilling and evaluation inputs sequence lengths P, decoding inputs count
D.

Output: attention outputs matrix O.
Q = Qproj(X); K = Kproj(X); V = Vproj(X);
Os = [];
if len(F) > 0 then

Extract Qf ,Kf ,Vf from Q,K,V based on F;
Compute Of through the standard forward implementation;
Of is appended to Os;

end if
if len(P) > 0 then

Compute offset of prefills Offsetp based on F;
Extract Qp,Kp,Vp from Q,K,V based on P and Offsetp;
Initialize KVCache for prefills;
Compute Op through the FlashInfer forward implementation;
Op is appended to Os;

end if
if D > 0 then

Compute offset of decodes Offsetd based on F and P;
Extract Qd,Kd,Vd from Q,K,V based on Offsetd;
Append KVCache for decodes;
Compute Od through the standard forward implementation;
Od is appended to Os;

end if
Concatenate Os into one tensor as O;
O = Oproj(O);
return O;

Module can be migrated to other GPU devices after deep-copying and used after unvoiding based on
instances of the new Virtual Model.

Based on the above design, the Virtualized Module is compatible with all PEFT methods, as well as
any custom model modification methods that do not modify the underlying model’s own data, such
as weights and module configurations. For scenarios where the target module overwrites the base
module with new data, the module design needs to be normalized so that the target module runs the
new forward method based on its own data and the base module’s data, rather than running the base
module’s forward method after using destructive modification methods.

3.3 Unified computation flow management and SMLM kernel

For multiple LoRA adapters within the same linear layer, traditional methods typically process the
computation sequentially, computing the output for one LoRA at a time and iterating through all
adapters. This approach significantly slows computation. Since different LoRAs within the same
layer usually share identical or similar shapes, it is feasible to compute all outputs in a single kernel
call. Punica [Chen et al., 2024] leverages this property by implementing a foundational algorithm on
top of the Cutlass GEMM (General Matrix Multiplication) library [Thakkar et al., 2023], enabling
simultaneous processing of multiple input-LoRA pairs for efficient multi-adapter computation.

However, the original Punica kernel design is incompatible with fine-tuning, as it statically con-
catenates LoRA weights from the same module across different layers. This rigid coupling limits
architectural flexibility and prevents selective application of LoRA to specific layers, which is particu-
larly problematic in training scenarios where layerwise heterogeneity is common. This requires every
layer in fine-tuning tasks to adopt the exact same configuration, even when certain linear modules do
not actually require LoRA. Meanwhile, this design incurs substantial overhead in tracking and mem-
ory management, especially when operating on very large tensors during training. For inference tasks,
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Algorithm 2 Computation flow control in causal LM of Loquetier
Input: LM inputs X, list of fine-tuning inputs batch-sequence information tuples F, list of evaluation

inputs sequence lengths E, Labels of fine-tuning and evaluation inputs Labels, Accumulation
steps of fine-tuning and evaluation inputs A.

Output: list of losses Loss, logits Logits.
Compute Logits by forward propagation;
Loss = []
for (batch-sequence (B,S), accumulation step AFE in (F,E),A) do

Extract LogitsFE and LabelsFE from Logits and Labels;
Shift LogitsFE and LabelsFE;
Compute LossFE of LogitsFE and LablesFE from the given loss function;
LossA = LossFE/AFE;
LossA is appended to Loss;

end for
return Loss,Logits;

it also eliminates the possibility of rapidly swapping LoRAs during runtime. Thus, the computation
process must be halted before replacement, and the required LoRA must be re-spliced together.

To overcome these limitations, we adapt the Punica kernel to process LoRA weights one linear layer
at a time. This decoupling removes the need to regenerate model files via weight transformation
before execution. For static scaling factors in LoRA, we apply the scale directly to the weight tensor at
MixedLoraModel instantiation to reduce runtime overhead. When dynamic scaling is required, it is
applied on a per-request basis during the forward pass. Loquetier then executes forward computation
across all active requests in a unified manner, supporting four types of requests: fine-tuning (training),
evaluation, prefilling, and decoding. Evaluation requests are structurally similar to prefilling but
compute a loss over labels and execute only a single generation pass, while prefilling requests omit
the loss computation and transition into decoding after the initial pass.

For the backward pass, since FlashInfer does not support gradient computation, Loquetier falls back
to the standard forward implementation backed by PyTorch’s Autograd when handling fine-tuning
requests. This enables full gradient computation through efficient C++-based differentiation. For
inference-only requests, Loquetier instead leverages FlashInfer’s batch-prefill and batch-decode
kernels to maximize throughput and memory efficiency.

The forward computation flow for the attention layer is summarized in Algorithm 1. First, the Q,
K, and V projections are computed jointly for all incoming requests. Attention outputs are then
computed independently for each request type, concatenated, and passed through a shared output
projection O. Algorithm 2 outlines the forward method for the causal language model. For each
incoming request, Loquetier computes output logits and, when applicable, the loss with respect to
provided labels. Fine-tuning and evaluation requests include ground truth labels and thus return both
logits and loss values, while prefilling and decoding requests return only logits. Loquetier enables
joint forward pass of fine-tuning and evaluation requests within the same batch. Because the losses
are tracked separately in Loquetier, this separation allows distinct gradient accumulation strategies
for different fine-tuning tasks in parallel, without cross-interference. By summing losses across all
fine-tuning requests, Loquetier produces a shared backward pass, enabling gradients from multiple
fine-tuning jobs to be computed efficiently in a single backpropagation step.

We further extend the Transformers’ Trainer [Wolf et al., 2020] to support an interruptible
fine-tuning process. Multiple trainers can now share the same computation flow in Loquetier,
performing unified forward and backward propagation for fine-tuning different LoRA adapters
concurrently. To ensure that each trainer only updates its corresponding parameters, we in-
troduce MixedLoRAModelForTrainer, which applies parameter masking on top of a shared
MixedLoraModel instance to achieve isolation.

4 Experiments

The Loquetier framework expects to enable fine-tuning and reasoning across multiple LoRA models.
Based on the objective, we design three experiments to evaluate the performance of Loquetier in
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Table 2: Comparison on model loading between Loquetier, PEFT, S-LoRA and FlexLLM. Metrics
include time to load (Time) and additional storage footprint (Storage).

Base Model LoRA Model Total

Framework or System Time Storage Time Storage Time Storage

Loquetier 2.927 s 0 B 2.409 s 0 B 5.336 s 0 B
PEFT 2.877 s 0 B 1.914 s 0 B 4.791 s 0 B
S-LoRA 33.037 s 0 B 0.948 s 0 B 33.985 s 0 B
FlexLLM 37.933 s 14.96 GB 0.924 s 40.04 MB 38.857 s 15.00 GB
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Figure 2: Comparison of the performance of Loquetier, FlexLLM, S-LoRA and PEFT in inference
tasks. The upper is single LoRA model inference and the lower part is multiple LoRA model
inference. Partial means that only 3 modules are enabled for FlexLLM including up, gate, and down.
For detailed information on S-LoRA, please refer to the Appendix E. Full means that all 7 modules
are enabled, including q, k, v, o, up, gate, and down. × indicates that the results were not obtained:
FlexLLM does not support enabling LoRA modules for linear layers other than up, gate, and down;
FlexLLM cycles through loading LoRA models during multi-LoRA inference.

these scenarios: inference-only, fine-tuning-only, and unified fine-tuning and inference. In addition,
we perform two experiments to evaluate the performance of Loquetier in simulated real-world
environments: a shorter, approximate simulation for rapidly testing different load conditions across
different times of the day, and a 120-minute precise simulation using data extracted from real-world
scenarios for a more demanding and realistic stress test. To further validate the effectiveness of our
design, we conduct a micro-experiment to evaluate the efficiency of the model loading process.

4.1 Evaluation settings

Baselines. FlexLLM is an advanced co-serving system for LLM serving and parameter-efficient
fine-tuning. We deployed docker images as its runtime environment following the guidelines. S-LoRA
is designed specifically for large-scale LoRA inference. Therefore, we combine S-LoRA with PEFT
as another baseline, in which PEFT handles the fine-tuning task. We use HuggingFace Transformers
with PEFT as the most basic baseline.

Models. We use the Llama3-8B model as the base model. The LoRA adapter is obtained by training
on the Alpaca dataset. For the fine-tuning task, we use the same LoRA configuration as the inference
LoRA adapter and initialize the weights from the Gaussian distribution.

Datasets. We use the ShareGPT dataset as input for the inference task, and the Alpaca and GSM8K
datasets as input for the fine-tuning task. BurstGPT [Wang et al., 2025] is an LLM service workload
dataset comprising over ten million traces collected from Azure OpenAI GPT services. Data spanning
more than 60 days is segmented into 20-minute slices according to its provided partitioning scheme.
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Figure 3: Comparison of the performance of Loquetier, FlexLLM and PEFT in fine-tuning tasks.
The meanings of Partial and Full are the same as in Figure 2. × indicates that the results were not
obtained: FlexLLM does not support backward propagation computations for modules other than up,
gate and down. PEFT can only finetune one LoRA adapter at a time, so its time cost is cumulative.

Hardware. We test the inference-only tasks on a server with NVIDIA A6000 48G GPUs. We test
the fine-tuning-only tasks and the unified fine-tuning and inference tasks on servers with NVIDIA
H800 80G GPUs. Each test process has at least 128G of host memory available.

Metrics and Tasks. The metrics used for the evaluation are listed in Appendix C. The inference-only
tasks run inference tasks at different request arrival rates where inference needs to be as fast as
possible to achieve the Service Level Objective (SLO). The fine-tuning-only tasks need to run the
training task for a specified number of epochs to measure its efficiency in processing tokens. The
unified fine-tuning and inference tasks need to run the training task along with the inference task,
weighing the efficiency of fine-tuning tokens against the SLO of the inference request. The real-world
workload simulation experiment samples six time periods from the BurstGPT dataset, comprising
one low-load, two medium-load, and three high-load intervals. Each slice was categorized into one
of three load tiers based on its request rate: low-load periods for average RPS < 1; medium-load
for 1~1.75; and high-load for > 1.75 (which may include transient spikes exceeding RPS 10). Here,
RPS denotes requests per second. The detailed configurations can be viewed in Appendix D.

4.2 Evaluation results

Model Loading. The loading speed and additional loading storage overhead are shown in Table 2.
Compared to PEFT, Loquetier requires creating Virtualized Modules and applying scaling to each
LoRA linear when loading LoRA models, resulting in a slight slowdown in this part of the loading.
FlexLLM needs to transform and cache the model weights, which leads to a significant additional
storage footprint. Even with cached transformed models, FlexLLM’s loading is still very slow due to
the need to read small weight files.

Inference. Figure 2 shows the test results of the inference task. Loquetier maintains the highest SLO
attainment at different request arrival rates. As the request rate increases, Loquetier’s decoding speed
gradually increases. Until at 3 RPS, the decoding speed no longer increases, indicating that the GPU
memory access bottleneck has been hit. As the request rate continues to increase, some requests
begin to fail to reach their SLOs due to the inability to achieve faster inference on the current GPU.

FlexLLM’s maximum decoding speed is lower than Loquetier’s, causing its SLO attainment rate to
start dropping earlier and fall off a cliff at higher request arrival rates. In addition, in conjunction with
the findings in Section 4.2, FlexLLM’s lazy loading mechanism prevents it from handling some of
the earliest arriving requests under SLO. Forcing early loading of the model weights improves SLO
attainment to or near 100% at 1-2 RPS, but the improvement is very limited for higher request arrival
rates due to the limitations of its highest decoding speed. FlexLLM is unable to apply LoRA to all
7 modules, causing it to fail under the corresponding experiments. When loading multiple LoRA
models, FlexLLM is trapped in a dead loop for more than 10 minutes, missing SLOs for all requests.
After a longer wait, FlexLLM cannot get out of the trap still, and therefore is marked as a failure.
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Figure 4: Comparison of the performance of Loquetier and PEFT in unified tasks. The 4 subplots
correspond respectively to single-finetune & single-infer, single-finetune & multi-infer, multi-finetune
& single-infer, and multi-finetune & multi-infer. The meanings of Partial and Full are the same as
in Figure 2. × indicates that the results were not obtained: FlexLLM and PEFT can only finetune
1 LoRA at a time due to GPU memory limitations, causing it to fail the multi-LoRA fine-tuning
scenarios; FlexLLM only support 3 target modules as mentioned in previous figures.

Transformers’ batch strategy of padding different inputs to the same length makes its GPU memory
footprint greatly affected by the batch size, making it very easy to trigger the error "CUDA out of
memory". The processing speed of PEFT is constrained by the batch size to avoid exceeding the GPU
memory. In multiple LoRA inference tasks, PEFT can only apply LoRAs in a serial for different
configurations of inputs, making the inference speed further degraded. PEFT’s SLO attainment rate
is unacceptable even under 1 RPS.

Fine-tuning. The test results for the fine-tuning task are shown in Figure 3. The shorter total training
time for Loquetier is due to its faster evaluation. Loquetier’s fine-tuning is slightly slower than
that of PEFT, mainly because of the independent computational calls from the LoRA linears during
backward propagation. FlexLLM encounters an unsupported operation error during its peft backward
propagation, indicating its inability to complete the experiments. The results show that Loquetier
leads to almost no loss of fine-tuning efficiency.

Unified Fine-tuning and Inference. We test a combination of different configurations of fine-tuning
and inference tasks, and the results are shown in Figure 4. Loquetier is able to provide an average of
about 40% fine-tuning efficiency over three different request arrival rates while maintaining similar
SLOs as in the inference-only tasks. PEFT’s inference efficiency is too low, resulting in over 90% of
the inference tasks timing out before they even begin. PEFT’s fine-tuning tasks only drop about 20%
efficiency, but this is due to the fact that PEFT has almost no computational overhead on the inference
tasks, allowing the vast majority of the computing resources to still be used by the fine-tuning tasks.
FlexLLM fails to complete the fine-tuning task, so it is not available for unified tests.

Mutable Capacity Allocation Simulation. In order to evaluate performance facing dynamic loads
in real-world scenarios, we design an inference subtask with dynamic input throughput. As shown
in Figure 5, Loquetier is able to adaptively adjust the efficiency of both fine-tuning and inference
tasks under dynamic loads in the mutable unified task. The fine-tuning task makes concessions for
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Figure 5: Performance of Loquetier under dynamic load in unified task.
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Figure 6: Performance of Loquetier under simulated real-world load in unified task.

the inference task to ensure the quality of service when request throughput increases, and adjusts
back the efficiency by itself when throughput decreases.

Simulated Real-world Workload. To better simulate real-world serving conditions, we construct a
composite workload using slices from the BurstGPT dataset, as mentioned in Section 4.1. Each slice
contains request arrival times, input lengths, and output lengths. In our simulation, we fully utilize
the request arrival times and reference the input length data. For an overview of sampling data and
preference adjustments, see Appendix D.6. As shown in Figure 6, Loquetier demonstrates strong
adaptability to real-world workloads, aligning closely with trends evaluated in the earlier simulation
experiments. The final SLO for the entire experiment reaches 92.37%. All requests that failed to meet
service metrics occur during transient workload spikes under high-load conditions (RPS > 5), which
exceeded the load capacity of the hardware. In all other periods, Loquetier consistently achieves the
defined SLO.

5 Conclusion

We present Loquetier, a virtualized multi-LoRA framework that runs fine-tuning and inference tasks
uniformly. Loquetier performs well in the inference task, with an SLO attainment 20.8× higher
than PEFT, and up to 3.0× that of FlexLLM at high request arrival rates, maintaining comparable
efficiency in the fine-tuning task. In the unified task, inference efficiency is maintained as much
as possible with an SLO attainment 46.4× higher than PEFT, well balancing the performance of
fine-tuning and inference tasks.
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A Limitations

Loquetier can be improved by combination with other training and fine-tuning optimization methods,
and by applying other cluster management systems to provide clusterized services. We plan to provide
a backward propagation kernel operating in concert with the SMLM kernel to accelerate fine-tuning.

Co-operating with forward propagation computations during backward propagation can go some way
to balancing the bottleneck of GPU memory bandwidth and computational resources for fine-tuning
and inference tasks, and Loquetier can be further improved in this regard. We also consider providing
support for other LoRA-like PEFT methods.

B Solutions of FlexLLM Backward Procedure Issues

Several cases of operation remain unimplemented in FlexLLM’s gradient computation logic, including
OP_GELU, OP_RELU, OP_SIGMOID, OP_TANH, and OP_ELU. We noticed that their repository
contained forward and backward kernels related to these operations, but they had never applied these
backward kernels to their computation flow, resulting in its inability to perform fine-tuning tasks.
We ultimately built a runnable version by instantiating these kernels at the missing locations. This
fix was based on our understanding of their framework, and we did not implement any additional
computational steps. The correction will not result in a performance degradation of FlexLLM.

C Experimental Metrics

We use the following experimental metircs:

• Service Level Objective (SLO): Measuring service satisfaction at a level.

• SLO Attainment: Percentage of all requests reaching the given SLO.

• Request Throughput: Throughput of incoming inference requests. Measured as request
per second (RPS).

• Decode Throughput: Throughput of inference requests in decoding. Measured as decode
token per second (DTPS).

• Finetune Throughput: Throughput of fine-tuning requests in training forward. Measured
as finetune token per second (FTPS).

• Evaluate Throughput: Throughput of fine-tuning requests in evaluation forward. Measured
as evaluate token per second (ETPS).

D Experimental Settings

D.1 SLO

For all inference requests in the experiments, we use the following targets in Figure 3 as SLO.

Since PEFT performs batch generation with padding, resulting in additional computational delays in
prefilling and decoding, we do not require more decoding aspects for PEFT.

Table 3: SLO settings.

Framework or System Max Waiting Time (s)
Mean Decoding

Latency (ms)
Max Decoding
Latency (ms)

Loquetier 6 200 1,000
PEFT 6 - -
FlexLLM 6 200 1,000
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Table 4: Inference-only tasks configurations. The number of requests in multiple (4) LoRAs is
expressed as the total number / number of one LoRA.

Single (1) LoRA Multiple (4) LoRAs

Throughput (RPS) Requests Max New Tokens Requests Max New Tokens

1 800 400 800 / 200 400
2 1,600 400 1,600 / 400 400
3 2,400 400 2,400 / 600 400
4 3,200 300 3,200 / 800 300
5 4,000 200 4,000 / 500 200

D.2 Inference

We use the following configurations in Figure 4 to test the inference-only tasks.

Note that the maximum tokens supported by FlexLLM is 1024, so all inference requests for FlexLLM
do not exceed this limit.

D.3 Fine-tuning

We use the following configurations in Figure 5 to test the fine-tuning-only tasks.

Table 5: Fine-tuning-only tasks configurations.

Configurations Single (1) LoRA Multiple (2) LoRAs

LoRA Config
r (rank) 8 8
lora_alpha 16 16
lora_dropout 0.05 0.05
bias none none
task_type CAUSAL_LM CAUSAL_LM
init_lora_weights gaussian gaussian

Training Args
per_device_train_batch_size 2 1
per_device_eval_batch_size 2 1
num_train_epochs 4 4
eval_strategy epoch epoch
logging_strategy steps steps
logging_steps 100 100
save_strategy epoch epoch
learning_rate 2e-5 2e-5
gradient_accumulation_steps 4 4
report_to none none

D.4 Unified fine-tuning and inference

We use the following configurations in Figure 6 to test the unified tasks.

Note that the maximum tokens supported by FlexLLM is 1024, so all inference requests for FlexLLM
do not exceed this limit.

D.5 Mutable capacity allocation simulation

We use the following configurations in Figure 7 for inference requests and the single LoRA fine-tuning
configurations in Figure 6 for fine-tuning requests to test the mutable unified tasks.
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Table 6: Unified tasks configurations.

Single (1) LoRA Multiple (4) LoRAs

Throughput (RPS) Requests Max New Tokens Requests Max New Tokens

1 600 400 600 / 150 400
2 1,200 400 1,200 / 300 400
3 1,800 400 1,800 / 450 400
4 2,400 300 2,400 / 600 300
5 3,000 200 3,000 / 750 200

Configurations Single (1) LoRA Multiple (2) LoRAs

LoRA Config
r (rank) 8 8
lora_alpha 16 16
lora_dropout 0.05 0.05
bias none none
task_type CAUSAL_LM CAUSAL_LM
init_lora_weights gaussian gaussian

Training Args
per_device_train_batch_size 2 1
per_device_eval_batch_size 2 1
num_train_epochs 1 1
eval_strategy epoch epoch
logging_strategy steps steps
logging_steps 100 100
save_strategy epoch epoch
learning_rate 2e-5 2e-5
gradient_accumulation_steps 4 4
report_to none none

Table 7: Mutable unified tasks configurations.

Multiple (4) LoRAs

Index LoRA Index Requests Throughput (RPS) Start at (s) Duration (s)

1 0 120 1 0 120
2 1 150 2.5 120 60
3 2 240 2 180 120
4 3 120 1 300 120

D.6 Simulated real-world workload

We use the following time periods in Figure 8 to test (the inference task of) the simulated real-world
workload. The fine-tuning task use the same configuration as mutable capacity allocation simulation.

Based on our analysis of the BurstGPT dataset, less than one-third of the time periods correspond to
high-load scenarios, with the majority being low-load periods. Given the lower challenge of low-load
periods, we adopt the configuration above to ensure representative coverage. Among the selected
workloads, high-load periods include several minutes where the RPS exceeded 5, with a peak RPS of
11.

E Detailed Information Related to S-LoRA in the Experiment

S-LoRA does not support the LLaMA 3 series models, and its repository has been archived. This
limitation arises from the Group Query Attention (GQA) architecture used in LLaMA 3, where the
shapes of K and V differ from those of Q and O. Consequently, the shape of the weight matrix B in
the LoRA linear layers for K and V also differs from Q and O. Current S-LoRA requires all LoRA
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Table 8: Time periods configurations. Peak RPS refers to the highest RPS within a 2-second interval.

Time Period Requests Mean RPS Peak RPS

Day 29, 13:00 ~13:20 676 0.563 1.5
Day 29, 15:00 ~15:20 2,145 1.788 11.5
Day 29, 16:00 ~16:20 1,465 1.226 7
Day 33, 13:40 ~14:00 2,823 2.354 10
Day 33, 11:40 ~12:00 2,360 1.966 12
Day 33, 11:00 ~11:20 1,856 1.547 10.5

weights within the same layer to be concatenated at runtime. However, due to the shape discrepancies
mentioned above, this concatenation operation fails. As a workaround, we replicate K and V weights
in advance during model initialization to enable S-LoRA to start properly.

"Partial" in Figure 2 means that only 4 modules are enabled for S-LoRA including q, k, v, and o, as
S-LoRA supports applying LoRA only on these 4 linear layers, and does not support the up, gate,
and down layers within the MLP. Therefore, its runtime efficiency resembles the Partial scenario
described in our paper, where only three linear layers (up, gate, down) are targeted.

In experiments, we observed instability in the S-LoRA kernel, which frequently produced incorrect
outputs leading to NaN or Inf values. These errors propagate quickly, causing model generation
failures. At this time, we did not modify the kernel. Our preliminary analysis suggests this may be
due to missing synchronization mechanisms in some computational steps. (Note that this is an initial
observation and may not be definitive.)

Due to these issues, S-LoRA struggled to complete all inference requests in our scenarios, as it
frequently outputs the eos token directly, making SLO appear better than it actually should be.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper proposes a redesigned kernel SMLM and a unified computation flow
for the unified operation of fine-tuning and inference tasks for LoRA models (Section 3.3),
and Virtualized Module implementation to isolate PEFT-based model modifications and
flexible instance-to-instance migration (Section 3.2).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: The limitations of the work is discussed in Section A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper discloses all the information needed for reproducibility (Section
4.1). This paper releases the code for quick reproducibility. The implementation code is
available at https://github.com/s3co3wjy5tr2bdfj/Loquetier.

20

https://github.com/s3co3wjy5tr2bdfj/Loquetier


Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The implementation code is available at https://github.com/
s3co3wjy5tr2bdfj/Loquetier.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental settings are presented in Section 4.1. More details
could be found in our code repository, which is available at https://github.com/
s3co3wjy5tr2bdfj/Loquetier.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experimental metrics are already the statistical result of a large amount of
data, so there is no need to conduct multiple experiments to plot the errorbar. For the data in
Figure 4, we took a total of 5 data before and after each data point for smoothing operations
to improve chart readability and eliminate extreme values over short periods of time.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: We present the information on the computer resources in Section 4.1. That
is, we test the inference-only tasks on a server with 4 NVIDIA A6000 48G GPUs. We test
the fine-tuning-only tasks and the unified fine-tuning and inference tasks on servers with 4
NVIDIA H800 80G GPUs. Each test process has at least 128G of host memory available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conformed the NeurIPS Code of Ethics and make sure to preserve
anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed. Our work proposes a
framework for unified LLM fine-tuning and serving on multiple LoRA models, which does
not lead to any negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper presents a framework for unified LLM fine-tuning and serving
with an SMLM kernel for unified tasks, an unified computation flow management, and an
implementation of Virtualized Module. This framework does not include any data or models,
and therefore this work does not pose any associated risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing assets used in the paper are listed here. Alpaca: Creative Commons
Attribution Non Commercial 4.0, https://huggingface.co/datasets/tatsu-lab/
alpaca. GSM8K: MIT License, https://huggingface.co/datasets/openai/gsm8k.
Llama3-8B: Llama 3 Community License Agreement, https://huggingface.co/
meta-llama/Meta-Llama-3-8B. ShareGPT Vicuna: Apache License Version 2.0, https:
//huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our released code is well organized in the repository.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]
Justification: The entire approach development in this research does not involve LLMs as
any important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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