
GaLore-mini: Low Rank Gradient Learning with
Fewer Learning Rates

Weihao Huang4∗, Zhenyu Zhang3, Yushun Zhang1,2, Zhi-Quan Luo1,2, Ruoyu Sun1,2, Zhangyang Wang3

1 The Chinese University of Hong Kong, Shenzhen, China
2 Shenzhen Research Institute of Big Data,

3 University of Texas at Austin, 4 Tsinghua University
wh.huang.mlc@gmail.com, {zhenyu.zhang, atlaswang}@utexas.edu,

yushunzhang@link.cuhk.edu.cn, {luozq, sunruoyu}@cuhk.edu.cn

Abstract

Training large language models (LLMs) requires a significant memory capacity,
mainly because of its vast number of model weights and optimizer states. In this
work, we introduce a new memory-efficient optimizer called Galore-mini. Galore-
mini exploits the inherent low-rank properties of weight gradients and the Hessian
structure of transformers. These two characteristics significantly reduce the mem-
ory overhead by allowing the optimization states to be maintained in a low-rank
format, while parameters are grouped into blocks, each sharing the same learning
rate. However, directly combining these two strategies can easily lead to signifi-
cant training instabilities. We explore several possible combinations and propose
a strategy that stabilizes the training process. GaLore-mini reduces memory by
40% compared to GaLore and 81% compared to AdamW, while maintaining per-
formance on par with vanilla AdamW. Experiments on LLaMA models ranging
from 130M to 1B parameters demonstrate the effectiveness of GaLore-mini.

1 Introduction

In recent years, large foundation models have demonstrated outstanding performance across various
domains, including natural language processing, speech recognition, and image generation. How-
ever, the immense number of parameters in these models has led to a substantial increase in the
demand for computational resources during training. Among these, memory requirements have
emerged as a critical bottleneck in the development of large foundation models. For instance, the
popular Llama 7B model, with approximately 7 billion parameters, requires around 28GB of mem-
ory when stored in 32-bit full precision. When training from scratch using the Adam optimizer,
which requires storing another two additional optimization states, m and v, for each parameter (dou-
bling the memory usage), the total memory requirement for the optimizer reaches 56GB. This high
memory demand significantly increases the cost of training large models, especially when the num-
ber of parameters further increases, the demand for memory increases rapidly, and the contradiction
becomes more acute. Therefore, it is crucial to explore large model training solutions with low
memory resources.

Recently, two studies, GaLore [1] and Adam-mini [2], have made initial progress in reducing opti-
mizer memory usage. GaLore leverages the low-rank properties of parameter gradients, projecting
the gradients into a low-rank space to update m and v, achieving exceptional memory efficiency. As
an independent study of GaLore, Adam-mini explores the Hessian structure of Transformers and

∗Work done as a visiting student at Prof. Ruoyu Sun’s group.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



proposes to use the same v within each parameter block, where the parameter blocks are defined un-
der certain principles. This approach can effectively eliminate most of v without any adverse effects,
saving a lot of memory.

Our Approach In this study, we found that the methods mentioned above are orthogonal. There-
fore, we integrated the ideas of Adam-mini and GaLore to propose GaLore-mini. Our main contri-
butions are as follows:

• GaLore-mini is a co-design solution that updates the optimizer in a low-rank space while
simultaneously reducing the number of learning rates by degenerating v. A comparison of
memory usage across various methods is shown in Figure 1. GaLore-mini reduces memory
requirements by 40% compared to GaLore and by 81% compared to AdamW.

• Combining GaLore and Adam-mini was not a straightforward task. We explore three pos-
sible combinations and two of them encounter loss spikes. Fortunately, one of our trials
work well and it effectively stabilize the training.

• In LLM experiments with parameters ranging from 125M to 1B, GaLore-mini performs
comparably to AdamW.

Figure 1: Memory consumption of different approaches for pre-training Llama-7B with FP16.

2 Related Works

Low-rank-based methods. To reduce memory demands, one approach is to decrease the number
of parameters that need to be updated. LoRA [3], as a foundational work in this area, freezes the pre-
trained weights and introduces additional trainable low-rank matrices, optimizing weights within a
low-rank subspace. This approach significantly reduces resource consumption. However, LoRA is
primarily used for model fine-tuning and cannot achieve performance comparable to full-rank fine-
tuning. Subsequently, a variant known as ReLoRA [4] was introduced, which enables pre-training
and achieves baseline performance; however, it still requires full-rank training as a warm-up.

Inspired by LoRA, [5] compresses gradients into a low-dimensional space through random projec-
tion, so that weights can be fully updated without excessive memory cost.

Based on prior research, GaLore [1] was proposed, whose key innovation is to utilize the natural
low-rank structure of the gradient, rather than approximating the weight matrix itself as low-rank.
GaLore is more memory-efficient in both pre-training and fine-tuning, performs well, and does
not require full-rank warm-up like ReLoRA. Additionally, GaLore employs singular value decom-
position (SVD) to compress gradients, offering more stability and accuracy compared to random
projections. However, frequent SVD operations come with significant time overhead. In response
to this challenge, Zhang et al. introduced Q-GaLore [6], which adaptively updates gradients based
on statistical data from the training convergence process. Experiments have shown that Q-GaLore

2



demonstrates highly competitive performance in both pre-training and fine-tuning tasks, while also
having excellent memory efficiency.

Learning rate simplification methods. Another research approach focuses on reducing the num-
ber of learning rates without affecting model performance, thereby lowering memory requirements.
Typical methods in this category include Adafactor and its variant CAME. Adafactor [7] and CAME
[8] reduce memory consumption by applying low-rank matrix factorization to the second-order mo-
ment. Unfortunately, these methods are reported to exhibit worse performance compared to Adam.

Adam-mini [2] is a recent memory-efficient optimizer designed based on the Hessian structure of
Transformers. Adam-mini cuts down memory by implying Adam’s v: it proposes to use the same v
within each parameter block, where the parameter blocks are defined under certain principles. Such
a design can effectively eliminate > 90% Adam’s v, and as a result, Adam-mini can save 45% to
50% memory of Adam.

3 GaLore-mini: Memory-Efficient Training

We now explore how to effectively combine GaLore and Adam-mini. We first summarize the key
designs of both methods.

Key designs of GaLore: Firstly, GaLore projects the gradient g into a low dimensional space, and
we call it ĝ. GaLore then computes Adam’s 1st-order and 2nd-order momentum using ĝ, and we
call them m̂ and v̂. Finally, GaLore projects the low-dimensional update matrix m̂/

√
v̂ back to the

original space to update parameters.

Key designs of Adam-mini: Adam-mini partitions parameters into groups and assigns a shared
2nd-order momentum within each group. Such a 2nd-order momentum is calculated by taking the
average of Adam’s v within the group, and we denote it as vmean.

To combine GaLore and Adam-mini, we need to decide how to calculate vmean and how to apply it
to update parameters. We find there are at least three possible approaches.

• Approach 1: Calculate vmean using the low dimensional gradient ĝ, and then apply the learning
rate 1/

√
vmean to low dimensional m̂. The procedure is illustrated in Figure 2 (a).

• Approach 2: Calculate vmean using the original gradient g, and then apply the learning rate
1/
√
vmean to low dimensional m̂. The procedure is illustrated in Figure 3 (a).

• Approach 3: Calculate vmean using the original gradient g, and then use the learning rate
1/
√
vmean after the low dimensional m̂ is projected back to the original space. The procedure

is illustrated in Figure 4 (a).

(a) Illustration of Approach 1 (b) Training curves of Approach 1

Figure 2: Pre-training results of the GPT-2 125M under Approach 1. We find that combining
GaLore and Adam-mini under Approach 1 will suffer training instability.

3



(a) Illustration of Approach 2 (b) Training curves of Approach 2

Figure 3: Pre-training results of the GPT-2 125M under Approach 2. We find that combining
GaLore and Adam-mini under Approach 2 will suffer training instability.

(a) Illustration of Approach 3 (b) Training curves of Approach 3

Figure 4: Pre-training results of the GPT-2 125M under Approach 3. We find that combining
GaLore and Adam-mini under Approach 3 works well. We call the resulting method GaLore-mini.

The training curves are shown in Figure 2, 3, and 4. We find that Approach 1, 2 both encounter train-
ing instability. In contrast, Approach 3 works well. One possible reason for the training instability
is that the Hessian structure is changed in the low-rank space, so the original parameter partition in
Adam-mini no long applies. In the following, we will adopt Approach 3 and call it GaLore-mini.

3.1 Detailed Form of GaLore-mini

Based on the above discussion, we now formally present the details of GaLore-mini here. GaLore-
mini consists of two main components: initialization and iteration.

Initialization In the initialization phase (t = 0), we start with the weight matrix W0 ∈
Rm×n,m ≤ n and set the following hyperparameters: low rank r, decay rates β1 and β2, first-
order moment matrix M0, second-order moment matrix V0, learning rate η, scale factor α, low rank
space change frequency T and the neural-wise parameter partition mentioned earlier.

Iteration During the iteration phase, we update the weight matrix step by step according to the
process illustrated in Figure 5b, until the convergence condition is met. Specifically:

• Step 1: Compute the gradient matrix based on loss function: Gt = ∇WL(Wt)

4



(a) GaLore (b) GaLore-mini

Figure 5: Comparison of the GaLore and GaLore-mini iteration processes. Wt represents the weight
matrix, Gt denotes the gradient matrix, Um×r

t is the projection matrix truncated to r columns, Ĝt is
the gradient matrix projected into a low-rank space, and Mt, Vt represent the first and second order
moment of the optimizer, respectively. Additionally, G̃t =

Mt√
Vt+ε·Im×n is the gradient matrix used

for updating the weights, and t indicates the time step.

• Step 2: Following the neural-wise partition, the second-order moment matrix Vt is updated
(as indicated by the red dashed box in the figure) with bias correction applied;

• Step 3: According to the suggestion of Q-GaLore [6], the singular value decomposition
of the gradient matrix is dynamically adjusted: Gt = Um

t Σm×n
t (V n

t )T and the projection
matrix Um×r

t is obtained by truncating Um
t by column according to the hyperparameter r.

Besides this, the projection matrix from the previous moment is reused: Um×r
t = Um×r

t−1 ;

• Step 4: The gradient matrix is projected as follows: Ĝt = (Um×r
t )TGt

• Step 5: In the low-rank space, the first-order moment matrix is updated as Mr×n
t =

β1M
r×n
t−1 + (1− β1)Ĝt, with bias correction applied;

• Step 6: The first-order moment matrix in the low-rank space is mapped back to the origi-
nal space (Mm×n

t ) and combined with the second-order moment matrix Vt to update the
adaptive learning rate as follows: ηG̃t = η Mt√

Vt+ε·Im×n ;

• Step 7: The weight matrix is updated: Wt = Wt−1 + ηG̃t

Remark 1 We compute Vt in the original space, while calculating Mr×n
t in the low-rank space.

This design stems from our intent to leverage the well-established experience of Adam-mini as much
as possible. Previously, we attempted to degenerate Vt in the low-rank space, as shown on the
left side of Figure 5a, but this approach led to training instability. The details of this issue will be
discussed further in Section 5.

In summary, the algorithm for GaLore-mini is presented in Algorithm 1.

3.2 Analysis of Memory Consumption

Based on the analysis presented above, we can summarize the memory consumption as shown in
Table 1 (Assume that -mini methods can be approximately regarded as eliminating all v values).

Table 1: Memory comparison of related methods
GaLore-mini GaLore LoRA Adam-mini AdamW

Weights mn mn mn+mr + nr mn mn
Optimizer mr + nr mr + 2nr 2mr + 2nr mn 2mn

Taking one layer in the Llama architecture as an example, the layer is divided into two parts: self-
attention and MLP. The main model parameters for self-attention include the weight matrices for

5



Algorithm 1 GaLore-mini

Input: weight matrix W0 ∈ Rm×n, low rank r, decay rates β1 and β2, first-order moment matrix M0,
second-order moment matrix V0, learning rate η, scale factor α, subspace change frequency T and the
neural-wise parameter partition principle.
repeat

Gt = ∇WL(Wt) ∈ Rm×n

Following the neural-wise partition principle, update Vt = β2Vt−1 + (1− β2)Ĝt with Vt =
Vt

1−βt
2

if t mod T = 0 then
SVD: Gt = Um

t Σm×n
t (V n

t )T

Um×r
t , assuming m ≤ n {truncate by hyperparameter r to get projection matrix}

Adaptively update T based on the cosine similarity between adjacent projection matrices
else

Um×r
t = Um×r

t−1 {Reuse the previous projection matrix}
end if

Update in low rank space Rr×n

Ĝt = (Um×r
t )TGt {Project gradient into low rank space}

update Mr×n
t = β1M

r×n
t−1 + (1− β1)Ĝt with Mr×n

t =
Mr×n

t

1−βt
1

Mt = Um×r
t Mr×n

t {Project back to original space Rm×n}
G̃t = α Mt√

Vt+ε·Im×n

Wt = Wt−1 + ηG̃t

t = t+ 1
until convergence criteria met
return Wt

Q,K, V : WQ,WK ,WV ∈ Rh×h, and the output weight matrix WO ∈ Rh×h. The MLP consists of
two linear layers: the first linear layer has a matrix of size Rh×4h, and the second linear layer has a
matrix of size R4h×h.

Thus, we can calculate the memory consumption of the optimizer for each method as follows:
AdamW (24h2), Adam-mini (12h2), GaLore (30hr), and GaLore-mini (18hr). It is evident that
GaLore-mini saves 40% of memory compared to GaLore, and 81.25% compared to AdamW (when
h = 4096 and r = 1024).

4 Experiments

Implementation Details We evaluate the effectiveness of GaLore-mini on C4 pre-training tasks
using LLaMA models with parameter sizes of 130M, 350M, and 1B. The models are trained on
2.2B, 6.4B, and 2.4B tokens, respectively. Other hyperparameters follow the original setup[1].

Baselines We compare GaLore-mini against five baselines: (i) Full: the original training ap-
proach using the Adam optimizer; (ii) Low-Rank: where the original weights are decomposed into
two low-rank components W = AB, and the low-rank weights are optimized using the Adam
optimizer; (iii) LoRA [3], which introduces a low-rank adapter, optimizing only the adapter with
W = W0 + AB while keep W0 freezed; (iv) ReLoRA [4]: an extension of LoRA, where the low-
rank adapter is periodically merged back into the weight Wo and re-initialized for the next training
phase; and (v) GaLore [1]: which maintains low-rank optimization states while keeping full-rank
weights and trains using the Adam optimizer.

End-to-End Results As shown in Table 2, we report the perplexity on the validation set and the
estimated memory consumption of the weights and optimization states. Compared to other baselines,
GaLore-mini requires significantly less memory overhead while maintaining perplexity comparable
to the Full training approach. For instance, in the 1B parameter training, GaLore-mini uses less
than half (48.59%) of the memory required by Full with no performance loss (18.73 v.s. 18.67).

6



Table 2: Pre-traing on C4 dataset with LLaMA models. The model size ranges from 130M to 1B
and the reported memory counts for the weight and optimization states.

Methods 130M 350M 1B
Perplexity Memory Perplexity Memory Perplexity Memory

Full 25.08 0.76G 18.80 2.06G 18.73 7.80G

Low-Rank 45.51 0.54G 37.41 1.08G 144.03 3.57G
LoRA 33.92 0.80G 25.58 1.76G 29.08 6.17G

ReLoRA 29.37 0.80G 29.08 1.76G 31.82 6.17G
GaLore 25.36 0.52G 18.95 1.22G 19.29 4.38G

GaLore-mini 25.59 0.44G 19.89 1.04G 18.67 3.79G

5 Conclusions

We proposed GaLore-mini, a memory-efficient optimizer that reduces memory by 40% compared to
GaLore and 81% compared to AdamW. Experiments on LLaMA models ranging from 130M to 1B
demonstrate that GaLore-mini can perform on par with vanilla AdamW.

Acknowledgments

This paper is supported by NSFC (No. 12326608); Hetao Shenzhen-Hong Kong Science and Tech-
nology Innovation Cooperation Zone Project (No.HZQSWS-KCCYB-2024016); University Devel-
opment Fund UDF01001491, the Chinese University of Hong Kong, Shenzhen; Guangdong Provin-
cial Key Laboratory of Mathematical Foundations for Artificial Intelligence (2023B1212010001).

7



References
[1] Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong

Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

[2] Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan
Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv preprint
arXiv:2406.16793, 2024.

[3] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[4] Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. In The Twelfth International Conference on Learning
Representations, 2023.

[5] Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. arXiv preprint arXiv:2402.03293, 2024.

[6] Zhenyu Zhang, Ajay Jaiswal, Lu Yin, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang
Wang. Q-galore: Quantized galore with int4 projection and layer-adaptive low-rank gradients.
arXiv preprint arXiv:2407.08296, 2024.

[7] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

[8] Yang Luo, Xiaozhe Ren, Zangwei Zheng, Zhuo Jiang, Xin Jiang, and Yang You. Came:
Confidence-guided adaptive memory efficient optimization. arXiv preprint arXiv:2307.02047,
2023.

8


	Introduction
	Related Works
	GaLore-mini: Memory-Efficient Training
	Detailed Form of GaLore-mini
	Analysis of Memory Consumption

	Experiments
	Conclusions

