
Under review as submission to TMLR

Loss Landscape Degeneracy Drives Stagewise Development
in Transformers

Anonymous authors
Paper under double-blind review

Abstract

Deep learning involves navigating a high-dimensional loss landscape over the neural network
parameter space. Over the course of training, complex computational structures form and
re-form inside the neural network, leading to shifts in input/output behavior. It is a priority
for the science of deep learning to uncover principles governing the development of neural
network structure and behavior. Drawing on the framework of singular learning theory, we
propose that model development is deeply linked to degeneracy in the local geometry of the
loss landscape. We investigate this link by monitoring loss landscape degeneracy throughout
training, as quantified by the local learning coefficient, for a transformer language model
and an in-context linear regression transformer. We show that training can be divided
into distinct periods of change in loss landscape degeneracy, and that these changes in
degeneracy coincide with significant changes in the internal computational structure and
the input/output behavior of the transformers. This finding underscores the potential of a
degeneracy-based perspective for understanding modern deep learning.

1 Introduction

A striking phenomenon in modern deep learning is the sudden shift in a model’s internal computational
structure and associated changes in input/output behavior (e.g., Wei et al., 2022; Olsson et al., 2022; McGrath
et al., 2022). As large models become more deeply integrated into real-world applications, understanding
this phenomenon is a priority for the science of deep learning.

A key feature of the loss landscape of neural networks is degeneracy—parameters for which some local per-
turbations do not affect the loss. Motivated by the perspectives of singular learning theory (SLT; Watanabe,
2009) and nonlinear dynamics (Waddington, 1957; Thom, 1972), where degeneracy plays a fundamental role
in governing development, we believe that studying degeneracy in the local geometry of the loss landscape
is key to understanding the development of structure and behavior in modern deep learning.

In this paper, we contribute an empirical investigation of the link between degeneracy and development for
transformers in two learning settings. We track loss landscape degeneracy along with model structure and
behavior throughout training, using the following methodology.

1. Transformer training (Section 3): We train two transformers, a language model (LM) with around
3M parameters trained on a subset of the Pile (Gao et al., 2020; Xie et al., 2023), and an in-
context linear regression model (LR) with around 50k parameters trained on synthetic regression
data following Garg et al. (2022).

2. Degeneracy tracking (Section 4): We quantify loss landscape degeneracy throughout training by
estimating the local learning coefficient (LLC; Lau et al., 2025), a measure of degeneracy derived
from SLT.

3. Degeneracy-based stage division (Section 5): Motivated by the singular learning process in
Bayesian inference (Watanabe, 2009, §7.6; Chen et al., 2023), we use critical points in the LLC
curve to divide training into developmental stages.

1

Under review as submission to TMLR

Stage LM1 LM2 LM3 LM4 LM5

End t 900 6.5k 8.5k 17k 50k
∆ℓ̂ −2.33 −1.22 −0.18 −0.40 −0.34
∆λ̂ +26.4 +22.5 −1.57 +8.62 +1.77

(a) Two-layer attention-only language transformer (LM).

Stage LR1 LR2 LR3 LR4 LR5

End t 1k 40k 126k 320k 500k
∆ℓ̂ −0.32 −2.21 −0.07 −0.05 −0.029
∆λ̂ +21.4 +149 −12.3 −44.1 +3.56

(b) In-context linear regression transformer (LR).

Figure 1: Tracking loss landscape degeneracy reveals developmental stages. We train transformer
models on both (a) natural language data and (b) synthetic in-context linear regression data. In addition to
test loss (top row), we track loss landscape degeneracy as quantified by the local learning coefficient (LLC)
(middle row; Section 4). Critical points in the LLC curve mark boundaries between distinct developmental
stages (bottom row; warm hues for increasing LLC, cold for decreasing LLC; Section 5). We show in Sections 6
and 7 that most of these stages coincide with the formation of significant internal structures or changes in
input/output behavior. The language model first learns to predict using bigram statistics (LM1), then
common n-grams (LM2), before forming the induction circuit studied by Olsson et al. (2022) (LM3&LM4).
The regression model first learns the optimal context-independent solution (LR1), then acquires robust in-
context learning (LR2), then specializes to the pre-training distribution (LR3&LR4). These stage divisions
and interpretations are specific to the above training runs, but we show in Appendix B.4 that similar divisions
arise with different training seeds.

4. Developmental analysis (Sections 6 and 7): We track shifts in each model’s internal computa-
tional structure and input/output behavior across training, quantified using various setting-specific
metrics.

Crucially, we discover that most of the developmental stages identified by changes in loss landscape degener-
acy coincide with significant, interpretable shifts in the internal computational structure and input/output
behavior of the transformers, showing that the stage division is meaningful. This discovery represents pre-
liminary evidence of a fundamental link between degeneracy and development in deep learning, underscoring
the potential of degeneracy as a lens for understanding modern neural network development. Section 8
discusses this and other implications of our investigation.

2 Related work

Degeneracy and development in singular learning theory Our hypothesis that degeneracy and
development are fundamentally linked is motivated by singular learning theory (SLT; Watanabe, 2009), a
framework for studying singular statistical models (a class that includes neural networks, Hagiwara et al.,
1993; Watanabe, 2007; Wei et al., 2023). SLT proves that in singular models, Bayesian inference follows
the singular learning process, in which degeneracy in the likelihood governs stagewise development in the
posterior as the number of samples increases (Watanabe, 2009, §7.6; Lau et al., 2025; Chen et al., 2023).

2

Under review as submission to TMLR

While there are many differences between Bayesian inference and modern neural network training, an analogy
to the singular learning process informs our methodology for stage division.

Degeneracy and development in nonlinear dynamics Further motivation for our hypothesis comes
from viewing neural network training as a stochastic dynamical system, in which the population loss is
a governing potential encoding the data distribution. It is well-understood in nonlinear dynamics that
degeneracy in the local geometry of a potential can give rise to stagewise development of system structure
(Waddington, 1957; Thom, 1972, cf. Franceschelli, 2010). This connection has been observed in biological
systems at significant scale and in the presence of stochasticity (Freedman et al., 2023). We emphasize
changes in degeneracy over a stage whereas in bifurcation theory the focus is more on the degeneracy at
stage boundaries (Rand et al., 2021; MacArthur, 2022; Sáez et al., 2022).

Stagewise development in deep learning The idea that neural networks development occurs in stages
goes back decades (Raijmakers et al., 1996) and has received renewed attention in modern deep learning (e.g.,
Wei et al., 2022; Olsson et al., 2022; McGrath et al., 2022). In the case of deep linear networks, we understand
theoretically that models learn progressively higher-rank approximations of their data distribution (see, e.g.,
Baldi & Hornik, 1989; Rogers & McClelland, 2004; Saxe et al., 2019) throughout training. Our findings
suggest that studying degeneracy could help generalize this understanding to modern architectures that
exhibit more complex internal computational structure, such as transformers.

Studying loss landscape geometry Given the central role played by the loss landscape in deep learning,
it is unsurprising that there have been many attempts to study its geometry.

One approach is to visualize low-dimensional slices of the loss landscape (Erhan et al., 2010; Goodfellow
et al., 2014; Lipton, 2016; Li et al., 2018; Tikeng Notsawo et al., 2024). Unfortunately, a random slice is
with high probability a quadratic form associated to nonzero eigenvalues of the Hessian and is thus biased
against geometric features that we know are important, such as degeneracy (Wei et al., 2023). Moreover,
Antognini & Sohl-Dickstein (2018) have emphasized the difficulty of probing the loss landscape of neural
networks with dimensionality reduction tools.

Other standard methods of quantifying the geometry of the loss landscape, such as via the Hessian, are
insensitive to important aspects of degeneracy. For example, the Hessian trace or maximum eigenvalues
quantify the curvature of a critical point but ignore degenerate dimensions, and the Hessian rank counts the
number of degenerate dimensions but fails to distinguish between dimensions by the order of their degeneracy
(e.g., quartic vs. zero). In contrast, the LLC is a principled quantitative measure of loss landscape degeneracy.
Appendix B.5 includes experiments showing that Hessian statistics do not reveal the clear stage boundaries
revealed by the LLC in our in-context linear regression setting.

3 Training transformers in two settings

We study transformers trained in two learning settings, namely language modeling and in-context linear
regression. These settings have been the subject of recent work on the emergence of in-context learning
(ICL), a compelling example of a sudden shift in a model’s internal computational structure in modern deep
learning (Olsson et al., 2022).

In this section, we describe both settings and introduce their loss functions and data distributions. Common
to both settings is a transformer model denoted fw with parameters w, which takes as input a sequence
of tokens, also called a context. We describe specific architecture details and training hyperparameters in
Appendices F.1 and F.2.

Language modeling Elhage et al. (2021) and Olsson et al. (2022) observed that two-layer attention-
only transformers (transformers without MLP layers) form interesting internal computational structures
supporting ICL, including induction heads. In order to compare with their behavioral and structural analysis
we adopt the same architecture. In Appendix E we also study one-layer attention-only transformers. We

3

Under review as submission to TMLR

note that, while we don’t study language models with MLP layers (following prior work), we do use MLP
layers for in-context linear regression.

We consider the standard task of next-token prediction for token sequences taken from a subset of the Pile
(Gao et al., 2020; Xie et al., 2023). We denote the input context by SK = (t1, . . . , tK) where K is the context
length. We denote by S≤k the prefix context (t1, . . . , tk) of context SK . Our data is a collection of length-K
contexts, {Si

K}n
i=1. Thus Si

≤k denotes a prefix of the ith context, Si
K .

Given the context Si
≤k, the transformer model fw outputs a vector of logits fw(Si

≤k) such that
softmax(fw(Si

≤k)) is a probability distribution over all tokens (we denote by softmax(fw(Si
≤k))[t] the prob-

ability of token t). The per-token empirical loss for language modeling is then the average cross-entropy
between this distribution and the true next token at each index k ∈ {1, . . . , K − 1},

ℓn,k(w) = 1
n

n∑
i=1

− log
(
softmax(fw(Si

≤k))[ti
k+1]

)
. (1)

The empirical loss is then ℓn(w) = 1
K−1

∑K−1
k=1 ℓn,k(w), with the test loss ℓ̂(w) defined analogously on a

held-out set of examples. The corresponding population loss ℓ(w) is defined by taking the expectation with
respect to the true distribution of contexts (see also Appendix A.5).

In-context linear regression Following Garg et al. (2022), a number of recent works have explored
ICL in the setting of learning simple function classes, such as linear functions. This setting is of interest
because we understand theoretically optimal (in-context) linear regression, and because simple transformers
are capable of good ICL performance in practice (see, e.g., Garg et al., 2022; Raventós et al., 2023).

We consider a standard synthetic in-context linear regression problem. A task is a vector t ∈ RD, and
an example is a pair (x, y) ∈ RD × R. We sample a context by sampling one task t ∼ N (0, ID) and
then sampling K i.i.d. inputs x1, . . . , xK ∼ N (0, ID) and outputs y1, . . . , yK ∼ N (t⊤x, σ2). This results
in the context SK = (x1, y1, . . . , xK−1, yK−1, xK) with label yK . We denote by S≤k the prefix context
(x1, y1, . . . , xk) of context SK , its label is yk. Appendix F.2.2 describes how we encode the xi and yi as
tokens. Our data is a set of contexts {(ti, Si

K , yi
K)}n

i=1 sampled i.i.d. as described above.

Running a context Si
≤k through the transformer yields a prediction ŷi

k = fw(Si
≤k), leading to the per-token

empirical loss for in-context linear regression for k ∈ {1, . . . , K},

ℓn,k(w) = 1
n

n∑
i=1

(ŷi
k − yi

k)2. (2)

The associated empirical loss is ℓn(w) = 1
K

∑K
k=1 ℓn,k(w). The corresponding test loss ℓ̂(w) and population

loss ℓ(w) are defined analogously as in the language modeling setting.

4 Quantifying degeneracy with the local learning coefficient

We track the evolution of degeneracy in the local geometry of the loss landscape throughout training by
estimating the local learning coefficient (LLC; Watanabe, 2009; Lau et al., 2025) at model checkpoints. In
this section, we review the LLC and the estimation procedure of Lau et al. (2025).

The local learning coefficient (LLC) Given a local minimum w∗ of a population loss ℓ (a negative log
likelihood), the LLC of w∗, denoted λ(w∗), is a positive rational number measuring the amount of degeneracy
in ℓ near w∗ (Watanabe, 2009; Lau et al., 2025). Intuitively, the loss landscape is more degenerate (lower
LLC) at a parameter w∗ if there are more ways in which w can be infinitesimally varied near w∗ such that
ℓ(w) remains equal to ℓ(w∗).

More formally, let B be a closed ball around w∗ such that w∗ is a maximally degenerate global minimum on
B, by which we mean the point within with (equal) lowest loss. If there are multiple such global minima, the
volume asymptotics are determined by the geometry of one that is most degenerate in the precise sense of

4

Under review as submission to TMLR

Local learning coefficient

Figure 2: The local learning coefficient (LLC) measures loss landscape degeneracy. The LLC
can be defined in terms of the rate at which the parameter space volume (within a given neighborhood
and with a given maximum loss) shrinks as the loss threshold is reduced to that of the local minimum. We
show four population loss landscapes for a two-dimensional parameter space with decreasing LLC (increasing
degeneracy). In these examples, the local multiplicity is 1. See Appendix A.1 for a detailed description of
each example, as well as several additional examples.

SLT, formalised in Lau et al. (2025), roughly corresponding to having the lowest LLC. We call this minimum
the maximally degenerate global minimum on . Consider the volume of the set of nearby low-loss parameters,

V (ϵ) =
∫

B

1{ℓ(w) ≤ ℓ(w∗) + ϵ} dw.

As ϵ → 0, V (ϵ) is asymptotically equivalent to

cϵλ(w∗) log(1/ϵ)m(w∗)−1,

where λ(w∗) is the LLC, m(w∗) is another geometric quantity called the local multiplicity, and c > 0 is a
constant. See Figure 2 for a conceptual illustration, Appendix A.1 for further discussion, and Lau et al.
(2025) for formal treatment.

Estimating the LLC Lau et al. (2025) introduced an estimator for the LLC based on stochastic-gradient
Langevin dynamics (SGLD; Welling & Teh, 2011), which we use in our experiments. Let w∗ be a local
minimum of the population loss ℓ. The LLC estimate λ̂(w∗) is

λ̂(w∗) = nβ
[
Eβ

w|w∗,γ [ℓn(w)] − ℓn(w∗)
]

, (3)

where Eβ
w|w∗,γ denotes the expectation with respect to the localized Gibbs posterior

p(w; w∗, β, γ) ∝ exp
{

−nβℓn(w) − γ

2 ||w − w∗||22
}

with inverse temperature β (controlling the contribution of the empirical loss landscape) and localization
strength γ (controlling proximity to w∗). The basic idea behind this estimator is the following: the more
degenerate the loss landscape, the easier it is for a sampler exploring the Gibbs posterior to find points
of low loss, and, in turn, the lower λ̂(w∗). Appendix A.2 discusses technical SGLD details, Appendix A.3
documents the hyperparameters used in our experiments, and Appendix A.4 outlines our hyperparameter
tuning procedure.

Assumptions of LLC estimation Strictly speaking, the LLC is defined only for loss functions arising
as a negative log likelihood, whereas our loss function includes terms from overlapping context prefixes.
It is possible to define a negative log likelihood-based loss for transformer training—we show empirically

5

Under review as submission to TMLR

in Appendix A.5 that this does not have a significant effect on LLC estimates, and so we proceed with
overlapping contexts for efficiency.

Moreover, the LLC is defined only for local minima of such loss functions, whereas we note equation (3)
is defined for arbitrary w∗ and we apply the estimator throughout training. This approach has precedent
in prior work on LLC estimation: Lau et al. (2025) showed that when applied to trained parameters, the
estimator accurately recovers the learning coefficient associated with a nearby minimum, and Chen et al.
(2023) found that the estimator produces reliable results for parameters throughout training. In our case,
we obtain stable estimates throughout training given sufficiently strong localization γ. See Appendix A.6
for more details.

preferred preferred

Figure 3: In the singular learning process, the Bayesian posterior can shift between neighbor-
hoods with different degeneracy. Watanabe’s free energy formula (4) highlights a tradeoff between loss
ℓn (the linear term coefficient) and degeneracy λ (the LLC, the logarithmic term coefficient). Consider two
local minima w∗

1 , w∗
2 with neighborhoods W ∗

1 , W ∗
2 . As the number of samples n increases, if w∗

2 has lower
loss and higher LLC than w∗

1 , W ∗
2 will suddenly achieve lower free energy than W ∗

1 at some critical sample
size ncrit, causing the Bayesian posterior to shift from concentrating in W ∗

1 to W ∗
2 .

5 Degeneracy-based stage division

We use critical points (that is, plateaus, where the first derivative vanishes) in the LLC curve to define
stage boundaries that divide training into developmental stages. This approach is motivated by the singular
learning process in Bayesian inference, which we review below.

Bayesian local free energy Let W ∗ be a neighborhood of a local minimum w∗ of the population loss ℓ
(a negative log likelihood). Given n samples we can define the local free energy of the neighborhood (Lau
et al., 2025),

Fn(W ∗) = − log
∫

W ∗
exp(−nℓn(w))φ(w) dw,

where φ(w) is a prior positive on the neighborhood W ∗. The lower the local free energy of a neighborhood
W ∗, the higher the Bayesian posterior mass of W ∗. In fact, by a log-sum-exp approximation, the Bayesian
posterior is approximately concentrated on the neighborhood with the lowest local free energy (cf., Chen
et al., 2023).

The singular learning process Watanabe’s free energy formula gives, under certain technical conditions,
an asymptotic expansion in n of the local free energy (Watanabe, 2018, Theorem 11; Lau et al., 2025):

Fn(W ∗) = nℓn(w∗) + λ(w∗) log n − (m(w∗) − 1) log log n + Op(1). (4)

Here, ℓn(w∗) is the empirical loss, λ(w∗) is the LLC, m(w∗) is the local multiplicity, and the lower-order
terms include a constant contribution from the prior mass of W ∗.

The first two terms in equation (4) create a tradeoff between accuracy (ℓn) and degeneracy (λ). Moreover,
as n increases, the linear term becomes increasingly important relative to the logarithmic term, changing the

6

Under review as submission to TMLR

nature of the tradeoff. At certain critical n the neighborhood with the lowest local free energy may rapidly
change to a neighborhood with decreased loss and increased LLC, as illustrated in Figure 3.

A sequence of such posterior transitions between increasingly degenerate neighborhoods is a prime example
of the singular learning process (Watanabe, 2009, §7.6). We note that this is not the only possible dynamic—
lower-order terms may also play a role in the evolving competition.

LLC plateaus separate developmental stages While the general connection between the singular
learning process in Bayesian inference and stagewise development in deep learning remains to be understood,
Chen et al. (2023) showed that, in small autoencoders, both Bayesian inference and stochastic gradient
descent undergo rapid transitions between encoding schemes, and these transitions are reflected as sudden
changes in the estimated LLC.

This perspective suggests that changes in the loss landscape degeneracy, as measured by the LLC, reflect
qualitative changes in the model. In larger models, we expect that these qualitative changes may be more
gradual, while still being delineated by brief moments in which the posterior is stably concentrated around a
given local minimum. This motivates our approach of identifying plateaus in the estimated LLC curve—brief
pauses before and after a given increase or decrease in degeneracy—as stage boundaries which divide training
into developmental stages.

Results In our experiments, we identify plateaus in the estimated LLC curve by first lightly smoothing the
LLC curve with a Gaussian process to facilitate stable numerical differentiation with respect to log training
time. We identify plateaus as approximate zeros of this derivative, namely local minima of the absolute
derivative that fall below a small threshold (see Appendix B.1). Figure 1 and Appendices B.2 and B.3 show
the results. Appendix B.4 shows that similar stage divisions arise for independent training runs.

6 Results for language modeling

Plateaus in LLC estimates (Figure 1a) reveal five developmental stages for our language model. In order to
validate that this stage division is meaningful, we search for concomitant changes in the model’s input/output
behavior and its internal computational structure. In this section, we report a range of setting-specific metrics
that reveal the following significant, interpretable changes coinciding with each stage: in LM1 the model
learns to predict according to bigram statistics; in LM2 the model learns to predict frequent n-grams and
use the positional embedding; in LM3 and LM4 the model respectively forms “previous-token heads” and
“induction heads” as part of the same induction circuit studied by Olsson et al. (2022). Note that we did not
discover significant changes in LM5, and we do not claim that these are the only interesting developmental
changes occurring throughout training. There may be other interesting developmental changes that are not
captured by our metrics, or are not significant enough to not show up in the LLC curve.

6.1 Stage LM1 (0–900 steps)

Learning bigram statistics Figure 4(a) shows that the bigram score—the average cross entropy between
model logits and empirical bigram frequencies (see Appendix C.1.1)—is minimized around the LM1–LM2
boundary, with a value only 0.3 nats above the irreducible entropy of the empirical bigram distribution.
This suggests that during LM1 the model learns to predict using bigram statistics (the optimal next-token
prediction given only the current token).

6.2 Stage LM2 (900–6.5k steps)

Using positional information During LM2 the positional embedding becomes structurally important.
Figure 4(b) shows that here the test loss for the model with the positional embedding zero-ablated diverges
from the test loss of the unablated model (see Appendix C.2.1). Specifically, we mean setting learned
positional embeddings to zero during evaluation. Conditional on our architecture this establishes whether
the model effectively uses positional information. A similar method could be used in a model without learned

7

Under review as submission to TMLR

positional embeddings. There is also an uptick in previous-token attention among some first-layer attention
heads shown in green in Figure 4(d).

Learning common n-grams We define an n-gram score as the ratio of final-position token loss on (1) a
baseline set of samples from a validation set truncated to n tokens, and (2) a fixed set of common n-grams
(see Appendix C.1.2). To compute the “common n-grams” score after extracting the top 1000 n-grams, we
compute the loss on contexts like

[<bos_token>, <token_1>, <token_2>, ..., <token_n>]

using the loss on <token_n> and normalize against the average loss on the n-th token of similar-length
contexts drawn from the pretraining distribution, then divide the n-th token loss of truncated pretraining
contexts by the n-gram loss to get the n-gram score.

Figure 4(c) shows a large improvement in n-gram score for n = 3, 4 during LM2. This suggests that during
LM2 the model memorizes and learns to predict common n-grams for n > 2 (note this requires using the
positional encoding and may also involve previous-token heads).

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: Language model stages coincide with significant structural and behavioral changes.
(a) The model learns bigram statistics in LM1, (b) then the positional embedding becomes useful from LM2,
(c) enabling the learning of common n-grams. Induction circuit formation begins with (d) previous-token
heads in LM3, followed by (e) induction heads in LM4, leading to (f) a drop in ICL score indicating the
acquisition of in-context learning. Note: in (d,e), l:h denotes attention head h in layer l; dark lines indicate
heads comprising the induction circuit.

Foundations of induction circuit In this stage, the heads that eventually become previous-token and
induction heads in future stages begin to compose (that is, read from and write to a shared residual stream
subspace; see Figure C.4 and Appendix C.2.2). This suggests that the foundations for the induction circuit
are laid in advance of any measurable change in model outputs or attention patterns.

6.3 Stages LM3 & LM4 (6.5k–8.5k & 8.5k–17k steps)

Formation of induction circuit (as studied in Olsson et al., 2022) Figure 4(d) shows the previous-token
matching score (Appendix C.2.3) rises over LM3 and LM4 for the two first-layer heads that eventually par-
ticipate in the induction circuit (as distinguished by their composition scores, Appendix C.2.2). Figure 4(e)

8

Under review as submission to TMLR

shows that during LM4 there is an increase in the prefix-matching score (Appendix C.2.4) for the two second-
layer induction heads that complete the induction circuit. Figure 4(f) shows a corresponding drop in the
ICL score (Appendix C.1.3) as the model begins to perform in-context learning.

The LLC decreases during LM3, suggesting an increase in degeneracy (a decrease in model complexity).
This may be related to interaction between heads. It would be interesting to study this stage further via
mechanistic interpretability.

7 Results for in-context linear regression

Plateaus in the LLC estimates (Figure 1b) reveal five developmental stages for our in-context linear regression
model. We validate that this stage division is meaningful by identifying significant, concomitant changes in
the model’s structure and behavior: in LR1 the model learns to predict without looking at the context; in
LR2 the model acquires a robust in-context learning ability; and in LR3 and LR4 the model becomes more
fragile to out-of-distribution inputs. We did not discover significant changes in LR5, nor do we claim this is
an exhaustive list of developments.

7.1 Stage LR1 (0–1k steps) (a)

(b)

(c)

Figure 5: In-context linear regression model
stages coincide with significant structural
and behavioral changes. (a) During LR1, the
model learns to make context-independent predic-
tions, xk 7→ ŷk = 0. (b) During LR2, ICL per-
formance improves, then during LR3 the model be-
comes worse at ICL on OOD inputs xk ∼ N (0, gID)
for g > 3. (c) During LR3 and LR4, layer normal-
ization weights “collapse,” possibly contributing to
the LLC decrease.

Learning to predict without context Fig-
ure 5(a) shows that the mean square prediction for
all tokens E[∥ŷk∥2] decreases during LR1, reaching
a minimum of 0.1 (smaller than the target noise
σ2 = 0.125) slightly after the end of LR1. Similar
to how the language model learned bigram statis-
tics in LM1, this suggests the model first learns the
optimal context-independent prediction ŷk = t̄⊤

xk

where t̄ is the mean of the task distribution (zero in
this case).

7.2 Stage LR2 (1k–40k steps)

Acquiring in-context learning Figure 5(b)
shows that during LR2 there is a drop in ICL score
(Appendix D.1.2), indicating that the model ac-
quires in-context learning.

Embedding and attention collapse Ap-
pendix D.2 documents additional changes. Near
the end of LR2, token and positional embeddings
begin to “collapse,” effectively losing singular
values and aligning with the same activation
subspace (Appendices D.2.1 and D.2.2). At the
same time, several attention heads form con-
centrated, input-independent attention patterns
(Appendix D.2.3).

7.3 Stages LR3 & LR4 (40k–126k & 126k–320k steps)

Reduced robustness to input magnitude While performance continues to improve on typical se-
quences, Figure 5(b) shows that during LR3 and LR4, the model’s in-context learning ability deteriorates
for outlier sequences with higher-than-average |xk|.

9

Under review as submission to TMLR

Layer-normalization collapse Figure 5(c) shows the individual weights in the final layer normalization
module. A large fraction of these weights go to zero in LR3 and LR4. This occurs in tandem with a similar
collapse in the weights of the unembedding transforms (Appendix D.2.4). This results in the model learning
to read its prediction ŷk from a handful of privileged dimensions of the residual stream. Since this means
that the network outputs become insensitive to changes in many of the parameters, we conjecture that this
explains part of the striking decrease in estimated LLC over these stages (Appendix D.2.4).

This collapse is most pronounced and affects the largest proportion of weights in the unembedding module,
but in LR4 it spreads to earlier layer normalization modules, particularly the layer normalization module
before the first attention block (Appendix D.2.5).

8 Discussion

In this paper, we have examined the development of transformer models in two distinct learning settings.
We quantified the changes in loss landscape degeneracy throughout transformer training by estimating the
local learning coefficient (LLC). Motivated by the singular learning process in Bayesian inference, we divided
these training runs into developmental stages at critical points of the LLC curve. We found that these
developmental stages roughly coincided with significant changes in the internal computational structure and
the input/output behavior of each model. In this section, we discuss several implications of these findings.

Towards a degeneracy-based understanding of deep learning That significant structural and be-
havioral changes show up in the LLC curve is evidence that the development of our transformers is closely
linked to loss landscape degeneracy. This finding underscores the potential of loss landscape degeneracy as
a crucial lens through which to study the development of deep learning models.

While we studied two distinct learning settings (including language modeling with a nontrivial transformer
architecture), it remains necessary to verify the connection between degeneracy and development across a
more diverse range of emergent model structures and behaviors. Moreover, future work should investigate
this connection in more depth, seeking to establish a causal connection between changes in degeneracy and
changes in structure and behavior.

Towards developmental interpretability We showed that degeneracy can reveal meaningful changes
in transformers. We emphasize that our analysis is not exhaustive—we expect only certain “macroscopic”
changes, such as the emergence of in-context learning, will have a significant enough effect on loss landscape
degeneracy to appear separated by plateaus in the LLC curve. Recent work has extended these ideas by
measuring the LLC with respect to network sub-modules and with different data distributions, providing a
more refined picture of model development (Wang et al., 2025). We expect this research direction will lead
to insights into the development of more complex models.

Loss landscape degeneracy offers a setting-agnostic, “unsupervised” alternative to setting-specific progress
measures such as those derived by Barak et al. (2022) or developed using mechanistic insights from similar
models by Nanda et al. (2023). Both approaches can reveal developments invisible in the loss, but loss
landscape degeneracy is able to detect changes without requiring a mechanistic understanding in advance.
Of course, once a change is detected through its effect on degeneracy, it remains to interpret the change.

Cases studies in transformer development We do not claim that the structural and behavioral de-
velopments we observed in each setting are universal phenomena. Transformers trained with different archi-
tectures, data distributions, algorithms, or hyperparameters may develop differently. Rather, our detailed
analysis contributes two “case studies” to the growing empirical literature on the emergence of structure in
transformers.

On this note, our observations extend those of Olsson et al. (2022) and Elhage et al. (2021). We show that
before the induction circuit forms, our 2-layer language model learns simpler interpretable strategies (based
on bigram statistics and common n-grams). This shows that a single training run follows a progression
akin to that found by Olsson et al. (2022) for fully-developed models of increasing depth (they showed that

10

Under review as submission to TMLR

“0-layer” models learn bigram statistics and 1-layer models learn “skip-trigrams”). A similar progression
was observed by Edelman et al. (2024) in a Markovian sequence modeling task.

Moreover, in both settings, we saw that before in-context learning emerges, the model learns to predict tokens
using the optimal prediction given only the current token (bigram statistics for language modeling, zero for
in-context linear regression with this distribution of tasks).

Development and model complexity While we have described the LLC as a measure of loss landscape
degeneracy, it can also be understood as a measure of model complexity (cf. Appendix A.1). It is natural for
changes in a model’s internal structure to show up as a change in complexity. For example, Chen et al. (2024)
showed that the emergence of syntactic attention structure coincides with a spike in two model complexity
measures, namely the model’s Fisher information and the intrinsic dimension (Facco et al., 2017) of the
model’s embeddings.

Notably, we observe stages in which the LLC decreases, corresponding to a simplification of the computational
structure of the model. Such model simplification has empirical precedent, for instance with Chen et al.
(2024) and the recent literature on grokking (Power et al., 2022; Nanda et al., 2023; Tikeng Notsawo et al.,
2024). In our case, the mechanistic nature of the simplification is not fully clear, with the collapse of various
weights and attention patterns arising as candidates in the in-context linear regression setting.

This phenomenon is currently not accounted for by theories of neural network development. In the theory
of saddle-to-saddle dynamics, deep linear networks learn progressively more complex approximations of the
data (Saxe et al., 2019). Likewise, the example transitions in the singular learning process outlined in
Section 5 and Figure 3 describe LLC increases. Though we note that decreasing the LLC while holding the
loss constant would be another way to decrease the free energy according to equation (4), providing a full
theoretical account of these stages is an open problem.

References
Joseph Antognini and Jascha Sohl-Dickstein. PCA of high dimensional random walks with compar-

ison to neural network training. In Advances in Neural Information Processing Systems 31, pp.
10307–10316. Curran Associates, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
7a576629fef88f3e636afd33b09e8289-Abstract.html.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from examples
without local minima. Neural Networks, 2(1):53–58, 1989. doi: 10.1016/0893-6080(89)90014-2.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hidden progress
in deep learning: SGD learns parities near the computational limit. In Advances in Neural Information
Processing Systems 35, pp. 21750–21764, 2022. URL https://proceedings.neurips.cc/paper_files/
paper/2022/hash/884baf65392170763b27c914087bde01-Abstract-Conference.html.

Angelica Chen, Ravid Shwartz-Ziv, Kyunghyun Cho, Matthew L Leavitt, and Naomi Saphra. Sudden
drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in MLMs. In The Twelfth
International Conference on Learning Representations. OpenReview, 2024. URL https://openreview.
net/forum?id=MO5PiKHELW.

Zhongtian Chen, Edmund Lau, Jake Mendel, Susan Wei, and Daniel Murfet. Dynamical versus Bayesian
phase transitions in a toy model of superposition, 2023.

Ezra Edelman, Nikolaos Tsilivis, Benjamin L Edelman, Eran Malach, and Surbhi Goel. The evolution
of statistical induction heads: In-context learning Markov chains. In Advances in Neural Information
Processing Systems 37, 2024.

Ronen Eldan and Yuanzhi Li. TinyStories: How small can language models be and still speak coherent
English?, 2023.

11

https://proceedings.neurips.cc/paper/2018/hash/7a576629fef88f3e636afd33b09e8289-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/7a576629fef88f3e636afd33b09e8289-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/884baf65392170763b27c914087bde01-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/884baf65392170763b27c914087bde01-Abstract-Conference.html
https://openreview.net/forum?id=MO5PiKHELW
https://openreview.net/forum?id=MO5PiKHELW

Under review as submission to TMLR

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda Askell,
Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom
Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A mathematical framework for
transformer circuits. Transformer Circuits Thread, 2021. URL https://transformer-circuits.pub/
2021/framework/index.html.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy
Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research,
11(19):625–660, 2010. URL http://jmlr.org/papers/v11/erhan10a.html.

Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic dimension of
datasets by a minimal neighborhood information. Scientific Reports, 7(1):12140, 2017. doi: 10.1038/
s41598-017-11873-y.

D H Fowler. Structural Stability and Morphogensis: An Outline of a General Theory of Models. W. A.
Benjamin, Inc., 1975. English translation of Thom (1972), with updates from the author.

Sara Franceschelli. Morphogenesis, structural stability and epigenetic landscape. In Paul Bourgine and
Annick Lesne (eds.), Morphogenesis: Origins of Patterns and Shapes, pp. 283–293. Springer, 2010. doi:
10.1007/978-3-642-13174-5_16.

Simon L Freedman, Bingxian Xu, Sidhartha Goyal, and Madhav Mani. A dynamical systems treatment of
transcriptomic trajectories in hematopoiesis. Development, 150(11):dev201280, 2023. doi: 10.1242/dev.
201280.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace
He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile: an 800GB dataset of
diverse text for language modeling. Technical report, EleutherAI, 2020.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn in-context?
A case study of simple function classes. In Advances in Neural Information Processing Systems 35, pp.
30583–30598. Curran Associates, 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/hash/c529dba08a146ea8d6cf715ae8930cbe-Abstract-Conference.html.

Hamidreza Ghader and Christof Monz. What does attention in neural machine translation pay attention
to? In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 30–39. Asian Federation of Natural Language Processing, 2017. URL https://
aclanthology.org/I17-1004/.

Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural network optimiza-
tion problems, 2014. Conference paper presented at ICLR 2015.

Katsuyuki Hagiwara, Naohiro Toda, and Shiro Usui. On the problem of applying AIC to determine the
structure of a layered feedforward neural network. In Proceedings Of 1993 International Joint Conference
On Neural Networks, volume 3, pp. 2263–2266. IEEE, 1993. doi: 10.1109/IJCNN.1993.714176.

Andrej Karpathy. NanoGPT, 2022. URL https://github.com/karpathy/nanoGPT.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. Conference paper
presented at ICLR 2015.

Edmund Lau, Zach Furman, George Wang, Daniel Murfet, and Susan Wei. The local learning coefficient:
A singularity-aware complexity measure. In The 28th International Conference on Artificial Intelligence
and Statistics, 2025.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. In Advances in Neural Information Processing Systems 31, pp. 6389–6399.
Curran Associates, 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/hash/
a41b3bb3e6b050b6c9067c67f663b915-Abstract.html.

12

https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
http://jmlr.org/papers/v11/erhan10a.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/c529dba08a146ea8d6cf715ae8930cbe-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/c529dba08a146ea8d6cf715ae8930cbe-Abstract-Conference.html
https://aclanthology.org/I17-1004/
https://aclanthology.org/I17-1004/
https://github.com/karpathy/nanoGPT
https://proceedings.neurips.cc/paper_files/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html

Under review as submission to TMLR

Zachary C Lipton. Stuck in a what? Adventures in weight space, 2016. Workshop paper presented at ICLR
2016.

Ben D MacArthur. The geometry of cell fate. Cell Systems, 13(1):1–3, 2022. doi: 10.1016/j.cels.2021.12.001.

Thomas McGrath, Andrei Kapishnikov, Nenad Tomašev, Adam Pearce, Martin Wattenberg, Demis Hassabis,
Been Kim, Ulrich Paquet, and Vladimir Kramnik. Acquisition of chess knowledge in AlphaZero. Proceed-
ings of the National Academy of Sciences, 119(47):e2206625119, 2022. doi: 10.1073/pnas.2206625119.

Neel Nanda and Joseph Bloom. TransformerLens, 2022. URL https://github.com/neelnanda-io/
TransformerLens.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. In The Eleventh International Conference on Learning Repre-
sentations. OpenReview, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. In-context learning
and induction heads. Transformer Circuits Thread, 2022. URL https://transformer-circuits.pub/
2022/in-context-learning-and-induction-heads/index.html.

Mary Phuong and Marcus Hutter. Formal algorithms for transformers. Technical report, DeepMind, 2022.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Generalization
beyond overfitting on small algorithmic datasets, 2022.

Ofir Press, Noah A Smith, and Mike Lewis. Shortformer: Better language modeling using shorter inputs.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 5493–5505.
Association for Computational Linguistics, 2021.

Maartje E J Raijmakers, Sylvester van Koten, and Peter C M Molenaar. On the validity of simu-
lating stagewise development by means of PDP networks: Application of catastrophe analysis and
an experimental test of rule-like network performance. Cognitive Science, 20(1):101–136, 1996. doi:
10.1207/s15516709cog2001_4.

David A Rand, Archishman Raju, Meritxell Sáez, Francis Corson, and Eric D Siggia. Geometry of gene
regulatory dynamics. Proceedings of the National Academy of Sciences, 118(38):e2109729118, 2021. doi:
10.1073/pnas.2109729118.

Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the emergence
of non-Bayesian in-context learning for regression. In Advances in Neural Information Processing Systems
36, pp. 14228–14246. Curran Associates, 2023. URL https://proceedings.neurips.cc/paper_files/
paper/2023/hash/2e10b2c2e1aa4f8083c37dfe269873f8-Abstract-Conference.html.

Timothy T Rogers and James L McClelland. Semantic Cognition: A Parallel Distributed Processing Ap-
proach. MIT Press, 2004. doi: 10.7551/mitpress/6161.001.0001.

Meritxell Sáez, Robert Blassberg, Elena Camacho-Aguilar, Eric D Siggia, David A Rand, and James Briscoe.
Statistically derived geometrical landscapes capture principles of decision-making dynamics during cell fate
transitions. Cell Systems, 13(1):12–28, 2022. doi: 10.1016/j.cels.2021.08.013.

Andrew M Saxe, James L McClelland, and Surya Ganguli. A mathematical theory of semantic development
in deep neural networks. Proceedings of the National Academy of Sciences, 116(23):11537–11546, 2019.
doi: 10.1073/pnas.1820226116.

Maxwell Shinn. Phantom oscillations in principal component analysis. Proceedings of the National Academy
of Sciences, 120(48):e2311420120, 2023. doi: 10.1073/pnas.2311420120.

13

https://github.com/neelnanda-io/TransformerLens
https://github.com/neelnanda-io/TransformerLens
https://openreview.net/forum?id=9XFSbDPmdW
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/2e10b2c2e1aa4f8083c37dfe269873f8-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/2e10b2c2e1aa4f8083c37dfe269873f8-Abstract-Conference.html

Under review as submission to TMLR

René Thom. Stabilité Structurelle et Morphogénèse: Essai d’une Théorie Générale des Modèles [Structural
Stability and Morphogensis: An Outline of a General Theory of Models]. W. A. Benjamin, Inc., 1972. In
French. Translated into English by Fowler (1975).

Pascal Tikeng Notsawo, Jr., Hattie Zhou, Mohammad Pezeshki, Irina Rish, and Guillaume Dumas. Predict-
ing grokking long before it happens: A look into the loss landscape of models which grok. In ICLR 2024
Workshop on Mathematical and Empirical Understanding of Foundation Models. OpenReview, 2024. URL
https://openreview.net/forum?id=AUjCSjxhGj.

Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language model. In
Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 63–76. Association for Computational Linguistics, 2019. doi: 10.18653/v1/W19-4808.

C H Waddington. The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology. Allen
& Unwin, 1957.

George Wang, Jesse Hoogland, Stan van Wingerden, Zach Furman, and Daniel Murfet. Differentiation and
specialization of attention heads via the refined local learning coefficient. In The Thirteenth International
Conference on Learning Representations. OpenReview, 2025. URL https://openreview.net/forum?id=
SUc1UOWndp.

Sumio Watanabe. Almost all learning machines are singular. In IEEE Symposium on Foundations of
Computational Intelligence, pp. 383–388. IEEE, 2007. doi: 10.1109/FOCI.2007.371500.

Sumio Watanabe. Algebraic Geometry and Statistical Learning Theory. Cambridge University Press, 2009.
doi: 10.1017/CBO9780511800474.

Sumio Watanabe. Mathematical Theory of Bayesian Statistics. CRC Press, 2018. doi: 10.1201/
9781315373010.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models. Transactions on
Machine Learning Research, 2022. URL https://openreview.net/forum?id=yzkSU5zdwD.

Susan Wei, Daniel Murfet, Mingming Gong, Hui Li, Jesse Gell-Redman, and Thomas Quella. Deep learning
is singular, and that’s good. IEEE Transactions on Neural Networks and Learning Systems, 34(12):
10473–10486, 2023. doi: 10.1109/TNNLS.2022.3167409.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin dynamics. In Proceedings
of the 28th International Conference on Machine Learning, pp. 681–688. ACM, 2011. URL https://icml.
cc/Conferences/2011/papers.php.html.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language mod-
els via importance resampling. In Advances in Neural Information Processing Systems 36, pp. 34201–
34227. Curran Associates, 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
hash/6b9aa8f418bde2840d5f4ab7a02f663b-Abstract-Conference.html.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. PyHessian: neural networks through
the lens of the Hessian. In 2020 IEEE International Conference on Big Data (Big Data), pp. 581–590,
2020. doi: 10.1109/BigData50022.2020.9378171.

14

https://openreview.net/forum?id=AUjCSjxhGj
https://openreview.net/forum?id=SUc1UOWndp
https://openreview.net/forum?id=SUc1UOWndp
https://openreview.net/forum?id=yzkSU5zdwD
https://icml.cc/Conferences/2011/papers.php.html
https://icml.cc/Conferences/2011/papers.php.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/6b9aa8f418bde2840d5f4ab7a02f663b-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/6b9aa8f418bde2840d5f4ab7a02f663b-Abstract-Conference.html

Under review as submission to TMLR

Appendix
Appendix A reviews the learning coefficient, providing some simple toy examples contrasting the learning
coefficient with Hessian-based measures. This section also discusses SGLD-based LLC estimation including
experiment hyperparameters (Appendix A.3), and offers a detailed example of the calibrations involved in
applying LLC estimation to regression transformers to serve as a reference (Appendix A.4). Appendix B
provides further detail on our procedure for LLC-based stage identification, including stages identified in
additional training runs and a brief comparison with Hessian statistics. Appendices C and D examine
the developmental stages of language models and in-context linear regression in more detail and explain the
various metrics we use to track behavioral and structural development. Appendix E describes some additional
experiments on a one-layer language model. Appendix F covers transformer training experimental details,
such as model architectures, training procedures, and hyperparameters.

To facilitate reproduction of our analyses, we have made our codebase available. An anonymized repository
containing additional figures and code can be accessed at the URL https://anonymous.4open.science/r/icl-
0C47.

A The local learning coefficient (LLC) 17

A.1 Interpretations and examples of the LLC . 17

A.2 Estimating LLCs with SGLD . 18

A.3 LLC estimation experiment details . 18

A.4 A guide to SGLD-based LLC estimation . 19

A.5 LLC estimates for a non-log-likelihood-based loss . 22

A.6 LLC estimates away from local minima . 23

B LLC-based stage boundary identification 24

B.1 Procedure for stage boundary identification . 24

B.2 Stage boundary identification details for language model . 24

B.3 Stage boundary identification details for in-context linear regression 25

B.4 Stage identification for additional training runs . 25

B.5 Comparison to Hessian statistics . 26

C Developmental analysis of language models 27

C.1 Behavioral development . 27

C.2 Structural development . 28

D Developmental analysis of regression transformers 33

D.1 Behavioral development . 33

D.2 Structural development . 35

E One-layer language model experiments 43

F Transformer training experiment details 45

15

https://anonymous.4open.science/r/icl-0C47
https://anonymous.4open.science/r/icl-0C47

Under review as submission to TMLR

F.1 Language models . 45

F.2 In-context linear regression transformers . 46

16

Under review as submission to TMLR

A The local learning coefficient (LLC)

A.1 Interpretations and examples of the LLC

In Section 4, we introduced the LLC as a quantification of geometric degeneracy. In this section, we discuss
an additional perspectives on the LLC as a count of the “effective” dimensionality of a parameter, and we
give additional examples of the LLC. We refer the reader to Watanabe (2009) and Lau et al. (2025) for more
discussion.

The LLC has some similarity to an effective parameter count. If the population loss ℓ looks like a quadratic
form near w∗ then λ(w∗) = d

2 is half the number of parameters, which we can think of as d contributions of
1
2 from every independent quadratic direction. If there are only d − 1 independent quadratic directions, and
one coordinate wi such that small variations in wi near w∗

i do not change the model relative to the truth
(this dimension is “unused”) then λ(w∗) = d−1

2 .

The situation becomes more intricate when certain dimensions are degenerate but not completely unused,
varying to quartic or higher order near the parameter (rather than being quadratic or flat). While every
unused coordinate reduces the LLC by 1

2 , changing the dependency on a coordinate from quadratic (w2
i) to

quartic (w4
i) (increasing its degeneracy while still “using” it) reduces the contribution to the LLC from 1

2 to
1
4 .

As a source of intuition, we provide several examples of exact LLCs:

• ℓ(w1, w2, w3) = aw2
1 + bw2

2 + cw2
3 with a, b, c > 0. This function is nondegenerate, and λ(0, 0, 0) =

1
2 + 1

2 + 1
2 = 3

2 . This is independent of a, b, c. That is, the LLC λ does not measure curvature. For
this reason, it is better to avoid an intuition that centers on “basin broadness” since this tends to
suggest that lowering a, b, c should affect the LLC.

• ℓ(w1, w2, w3) = w2
1+w2

2+0 in R3 is degenerate, but its level sets are still submanifolds and λ(0, 0, 0) =
1
2 + 1

2 . In this case the variable w3 is unused, and so does not contribute to the LLC.

• ℓ(w1, w2, w3) = w2
1 +w4

2 +w4
3 is degenerate and its level sets are, for our purposes, not submanifolds.

The singular function germ (ℓ, 0) is an object of algebraic geometry, and the appropriate mathemat-
ical object is not a manifold or a variety but a scheme. The quartic terms contribute 1

4 to the LLC,
so that λ(0, 0, 0) = 1

2 + 1
4 + 1

4 = 1. The higher the power of a variable, the greater the degeneracy
and the lower the LLC.

Figure 2 offers several additional examples, from left to right:

• A quadratic potential ℓ1(w1, w2) = w2
1 + w2

2, for which the LLC is maximal in two dimensions,
λ1(0, 0) = d/2 = 1.

• A quartic potential ℓ2(w1, w2) = w4
1 + w4

2, for which the LLC is λ2(0, 0) = 1/2.

• An even more degenerate potential ℓ3(w1, w2) = w2
1w4

2, for which λ3(0, 0) = 1/4. We note that
Hessian-derived metrics cannot distinguish between this degeneracy and the preceding quartic de-
generacy.

• A qualitatively distinct potential ℓ4(w1, w2) = (w1 − 1)2(w2
1 + w2

2)4 from Lau et al. (2025) with the
same LLC at the origin, λ4(0, 0) = 1/4.

While nondegenerate functions can be locally written as quadratic forms by the Morse Lemma (and are thus
qualitatively similar to the approximation obtained from their Hessians), there is no simple equivalent for
degenerate functions, such as the population losses of deep neural networks.

17

Under review as submission to TMLR

A.2 Estimating LLCs with SGLD

We follow Lau et al. (2025) in using SGLD to estimate the expectation value of the loss in the estimator of
the LLC. For a given choice of weights w∗ we sample C independent chains with TSGLD steps per chain. Each
chain c is a sequence of weights {w

(c)
τ }TSGLD

τ=1 . From these samples, we estimate the expectation Eβ
w|w∗,γ [O(w)]

of an observable O by
1

CTSGLD

C∑
c=1

TSGLD∑
τ=1

O(w(c)
τ), (5)

with an optional burn-in period. Dropping the chain index c, each sample in a chain is generated according
to:

wτ+1 = wτ + ∆wτ , (6)
w1 = w∗, (7)

where the step ∆wτ comes from an SGLD update

∆wτ = ϵ

2

(
βn∇ℓ(τ)

m (wτ) + γ
2 (wτ − w∗)

)
+ N (0, ϵ) . (8)

In each step τ we sample a mini-batch of size m and the associated empirical loss, denoted ℓ
(τ)
m , is used to

compute the gradient in the SGLD update. We note that LLC estimator defined in (3) uses the expectation
Eβ [ℓn(w)] which in the current notation means we should take O(w) to be ℓn(w). For computational efficiency
we follow Lau et al. (2025) in recycling the mini-batch losses ℓm(w(c)

τ) computed during the SGLD process.
That is, we take O = ℓ

(τ)
m rather than O = ℓn.

A.3 LLC estimation experiment details

A.3.1 LLC estimation details for language models

For language models, we use SGLD to sample 20 independent chains with 200 steps per chain and 1 sample
per step, at a temperature β = 1/ log(m), where m = 100 is the size of the batch (the maximum size that
would fit in memory). For the one-layer model, we used ϵ = 0.003, γ = 300, and for the two-layer model
we used ϵ = 0.001, γ = 100. Estimating the LLC across all checkpoints took around 200 GPU hours for the
two-layer model on a single A100 and around 125 GPU hours for the one-layer model. For additional runs
of the two-layer model, we ran fewer chains, bringing the time down to about 2 TPU hours per training run.

We sampled a separate set of 1 million lines (lines 10m-11m) from the DSIR filtered Pile, denoted as Dsgld.
The first 100,000 lines from this SGLD set (lines 10m-10.1m) were used as a validation set. The sampling of
batches for SGLD mirrored the approach taken during the primary training phase. Each SGLD estimation
pass was seeded analogously, so, at different checkpoints, the SGLD chains encounter the same selection of
batches and injected Gaussian noise.

Table 1: Hyperparameters for estimating the LLC for language models.

Hyperparameter Category Description/Notes 1-Layer 2-Layer
C Sampler # of chains 20

TSGLD Sampler # of SGLD steps / chain 200
ϵ SGLD Step size 0.003 0.001

γ̃ = ϵγ/2 SGLD Localization strength 300 200
β̃ = ϵβ/2n SGLD Inverse temperature 0.0000217147

m SGLD (Default: β∗ = 1
log n) 100

The size of each SGLD batch
µ Data Dataset size for gradient minibatches 13m

18

Under review as submission to TMLR

103 104 105

t

0

50

100

150

200

(w
t)

(a) (wt) Dependence on Dataset Size
= 1024
= 2048
= 4096
= 8192
= 16384
= 32768
= 65536
= 131072
= 262144
= 524288

Figure A.1: Past some threshold, the choice of validation set size from which SGLD batches are sampled has
little effect on learning coefficient estimates. Estimation hyperparameters are C = 8, TSGLD = 2, 000, m =
210, ϵ = 0.0003, γ̃ = 0.01, β̃ = 0.01. Loss is evaluated over gradient minibatches at a representative selection
of checkpoints. LLCs quickly converge to a constant value as the size increases.

A.3.2 LLC estimation details for in-context linear regression

For in-context linear regression models, we generate a fixed dataset of 220 samples. Using SGLD, we sample
10 independent chains with 5,000 steps per chain, of which the first 1,000 are discarded as a burn-in, after
which we draw observations once per step, at a temperature ϵβ/2n = 0.01, ϵ = 0.0003, and ϵγ/2 = 0.01,
over batches of size m = 1024. LLC estimation takes up to 72 CPU-hours per training run.

Table 2: LLC estimation hyperparameters. A summary of the hyperparameters involved in estimating
the LLC and the default values we use.

Hyperparameter Category Description/Notes Default Values
C Sampler # of chains 10

TSGLD Sampler # of SGLD steps / chain 5, 000
ϵ SGLD Step size 0.0003

γ̃ = ϵγ/2 SGLD Localization strength 0.01
β̃ = ϵβ/2n SGLD Inverse temperature 0.01

(Default: β∗ = 1
log n)

m SGLD The size of each SGLD batch 210

µ Data Dataset size for gradient minibatches 220

A.4 A guide to SGLD-based LLC estimation

This section walks through some of the hyperparameter choices and sweeps involved in calibrating LLC
estimates. We provide it as a reference for others seeking to adjust LLC estimation to novel settings.

A.4.1 Varying the temperature

In Lau et al. (2025), the inverse temperature β is set to a fixed “optimal” value β∗ = 1/ log n, where n is
the number of training samples. In practice, we find that it can be advantageous to sample at a higher
temperature.

Since β always shows up in a product with n (in (8) for the SGLD step and in (3) for the LLC), we can view
the inverse temperature as a multiplier that adjusts the effective size of your dataset. In a Bayesian setting,
β = 2 would mean updating twice on each of the samples in your dataset.

19

Under review as submission to TMLR

0 500 1000 1500 2000
0

100

200

300

t

= 1024

0 500 1000 1500 2000

= 2048

0 500 1000 1500 2000

= 4096

0 500 1000 1500 2000

= 8192

0 500 1000 1500 2000
0

100

200

300

t

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000

Step t
t = 507
t = 1124
t = 3247
t = 9375
t = 27072
t = 59968
t = 121212
t = 499999

Figure A.2: The size of SGLD minibatches has a negligible effect on LLC estimates (at least among the
batch sizes considered). Top: Loss is evaluated on the same minibatch as the SGLD gradients. Bottom:
Loss is evaluated on a newly sampled minibatch from the SGLD gradients (of the same size). Estimation
hyperparameters are C = 8, TSGLD = 2, 000, µ = 220.

102 103 104 105

Step t

0

50

100

150

200

250

t

Token
(1)
t
(2)
t
(3)
t
(4)
t
(5)
t
(6)
t
(7)
t
(8)
t

Diff. seed
Same seed

Figure A.3: Consistently seeding SGLD estimates at each checkpoint smooths out the resulting LLC-over-
time curve. Except towards the end of training (this is plotted over a log time axis), the difference is barely
noticeable. Variable seeds yield a noisier set of estimates.

The problem with the default choice of β∗ is that as we increase n we have to decrease the SGLD step
size ϵ to prevent the update from becoming ill-conditioned, and this eventually causes the gradient term to
suppress the noise term. This, in turn, leads to requiring larger batches to suppress the gradient noise and
requiring longer chains to sufficiently explore the local posterior (Appendix A.4.3).

Instead of nβ = n/ log n, we perform LLC estimation at nβ = m/ log m, where m is the SGLD batch size.

A.4.2 Seeding the random noise

To smooth out the λ̂t curves, we reset the random seed before LLC estimation run at each checkpoint. This
means the sequence of injected Gaussian noise is the same for LLC estimation runs at different checkpoints.
Additionally, if the batch size is held constant, the batch schedule will also be constant across different
estimation runs. Figure A.3 shows that this does not affect the overall shape of the learning coefficient
curves; it simply smooths it out.

A.4.3 Calibrating ϵ, β, and γ

As a rule of thumb, ϵ should be large enough that the λ̂ estimate converges within the TSGLD steps of each
chain but not too large that you run into issues with numerical stability and divergent estimates. Subject

20

Under review as submission to TMLR

101

102

103

E[
L n

(w
)]

= 0.0001, = 0.0001 = 0.0001, = 0.0003 = 0.0001, = 0.001 = 0.0001, = 0.003 = 0.0001, = 0.01 = 0.0001, = 0.03

101

102

103

E[
L n

(w
)]

= 0.0003, = 0.0001 = 0.0003, = 0.0003 = 0.0003, = 0.001 = 0.0003, = 0.003 = 0.0003, = 0.01 = 0.0003, = 0.03

101

102

103

E[
L n

(w
)]

= 0.001, = 0.0001 = 0.001, = 0.0003 = 0.001, = 0.001 = 0.001, = 0.003 = 0.001, = 0.01 = 0.001, = 0.03

0 1000 2000 3000 4000

101

102

103

E[
L n

(w
)]

= 0.003, = 0.0001

0 1000 2000 3000 4000

= 0.003, = 0.0003

0 1000 2000 3000 4000

= 0.003, = 0.001

0 1000 2000 3000 4000

= 0.003, = 0.003

0 1000 2000 3000 4000

= 0.003, = 0.01

0 1000 2000 3000 4000

= 0.003, = 0.03

E[Ln(w)] vs. M for Various , , and (t = 27072)

0.001
0.01
0.1
1.0
10.0
100.0

Figure A.4: Results of grid sweep over SGLD hyperparameters for model 0 at t = 500k.

to this constraint, γ should be as small as possible to encourage exploration without enabling the chains to
“escape” to nearby better optima, and β should be as large as possible (but no greater than 1/ log n).

To determine the optimal SGLD hyperparameters, we perform a grid sweep over a reparametrization of the
SGLD steps in terms of β̃, γ̃, ε:

∆wt = β̃∇ℓ(τ)
m + γ̃(w∗ − wt) + N (0, ε),

where β̃ = εβn/2, γ̃ = εγ/2.

The results of this hyperparameter sweep are illustrated in Figure A.4 for final checkpoints. Separately (not
pictured), we check the resulting hyperparameters for a subset of earlier checkpoints. This is needed since,
for example, a well-behaved set of hyperparameters at the end of training may lead to failures like divergent
estimates (Figure A.5) earlier in training when the geometry is more complex and thus the chains less stable.

A.4.4 LLC traces

As a useful diagnostic when calibrating the LLC estimates, we propose an online variant for learning coef-
ficient estimation. When overlaid on top of individual-chain LLC traces, this helps reveal common failure
modes like divergent estimates, non-converged estimates, and escapes (Figure A.5). These traces display the
running estimate of λ̂ as a function of the number of steps taken in a chain (with the estimate averaged
across independent chains).

Define λ̂τ (w0), the LLC at w0 after τ time-steps for a single SGLD chain as follows (Lau et al., 2025):

λ̂τ (w0) = nβ

(
1
T

T∑
t=1

ℓn(wτ) − ℓn(w0)
)

.

21

Under review as submission to TMLR

(a) Numerical instability (b) Non-convergence

(c) Negative estimates

Figure A.5: Failure modes of SGLD estimation. Top left: the gradient term is too large, leading to
issues with numerical instability and exploding λ̂ estimates. Top right: ϵ is too small, leading to λ̂ not
converging within each chain. Bottom: the localization term is too small, which allows the chain to escape
to better optima.

Moving terms around, we get,

λ̂τ (w0) = n

log n

(
1
τ

τ∑
τ ′=1

ℓn(wτ ′) − ℓn(w0)
)

(9)

= nβ

(
τ − 1

τ

(
1

τ − 1

τ−1∑
τ ′=1

ℓn(w′
τ) − ℓn(w0) + ℓn(w0)

)
+ 1

τ
ℓn(wτ) − ℓn(w0)

)
(10)

= τ − 1
τ

λ̂τ−1(w0) + nβ

(
1
τ

ℓn(wτ) +
(

τ − 1
τ

− 1
)

ℓn(w0)
)

(11)

= 1
τ

(
(τ − 1)λ̂τ−1(w0) + nβ (ℓn(wτ) − ℓn(w0))

)
, (12)

where
λ̂0(w0) = 0.

This can be easily extended to an online estimate over chains by averaging the update nβ (ℓn(wτ) − ℓn(w0))
over multiple chains.

A.5 LLC estimates for a non-log-likelihood-based loss

In the main body, we apply the LLC to empirical loss functions that do not arise as the log likelihood of
independent random variables, due to the repeated use of dependent sub-sequences. Here we explain that it
is possible to define a proper negative log likelihood over independent observations for the in-context linear
regression setting: similar observations can be made in the language modeling setting.

Let Π(k) be a probability distribution over the context length k. Ideally, the transformer would be trained
to make predictions yk given a context of length k where k is sampled from Π. With the given distribution
over contexts this leads to a negative log likelihood of the form

L(w) =
∑

k

pkL[k](w) (13)

22

Under review as submission to TMLR

where pk is the probability of sampling k from Π and

L[k](w) =
∫

q(Sk, yk|t, k)q(t)
[
fw(Sk) − yk

]2
dSk dyk dt (14)

using the notation of Section 3 so Sk = (x1, y1, . . . , xk−1, yk−1, xk) is a context of length k. It is straightfor-
ward to check that this negative log likelihood L agrees with the population loss ℓ associated to the empirical
loss defined in Section 3. However the empirical quantities Ln(w) and ℓn(w) defined for a set of samples of
size n are not the same.

Since we use the empirical loss ℓn in our calculation of the estimated LLC, whereas the foundational theory
of SLT is written in terms of the empirical negative log likelihood Ln, it is natural to wonder how much of a
difference this makes in practice. Figure A.6 depicts LLC traces (Appendix A.4) for a highlighted number of
checkpoints using either a likelihood-based estimate (with variable sequence length) or loss-based estimate
(with fixed sequence length). The relative orderings of complexities does not change, and even the values
of the LLC estimates do not make much of a difference, except at the final checkpoint, which has a higher
value for the sub-sequence-based estimate.

0 250 500 750 1000 1250 1500 1750 2000
0

50

100

150

200

250

300

350

t

(a) MSE

0 250 500 750 1000 1250 1500 1750 2000

(b) Subsequence MSE

Step t
t = 507
t = 1124
t = 3247
t = 9375
t = 27072
t = 59968
t = 121212
t = 499999

Figure A.6: Loss-based (left) and likelihood-based (right) LLC estimation yield identically ordered LLC
estimates. With the exception of final checkpoint’s LLC estimate (which is larger for the loss-based estimate),
the values are close to identical. These plots display LLC traces, which show the LLC estimate as a function
of SGLD steps. This is a useful tool for calibrating LLC estimation (Appendix A.4).

A.6 LLC estimates away from local minima

Our methodology for detecting stages is to apply LLC estimation to compute λ̂(w∗) at neural network
parameters w∗ = wt across training. In the typical case these parameters will not be local minima of the
population loss, violating the theoretical conditions under which the LLC is defined.

It is not surprising that the estimator appears to work if w∗ is approximately a local minima. Lau et al.
(2025) validated their estimator at both parameters constructed to be local minima of the population loss
and also at parameters found through training with stochastic gradient descent (possibly not local minima
of the empirical loss, let alone the population loss). They showed that in both cases the estimator recovers
the true learning coefficient associated with the global minimum of the population loss.

On the other hand, if w∗ is far from any local minima, it is a priori quite surprising that the SGLD-based
estimation procedure works at all, as in this situation one might expect the chains to explore directions in
which the loss decreases. Nevertheless, Chen et al. (2023) found that, empirically, LLC estimation away
from local minima appears to give sensible results in practice. In our case, with sufficient localization we see
stable estimates throughout training.

Theoretically accounting for this phenomenon is an interesting open problem. Perhaps there is a notion of
stably evolving equilibrium in the setting of neural network training, echoing some of the ideas of Waddington
(1957), such that the LLC estimation procedure is effectively giving us the LLC of a different potential to
the population loss—a potential for which the current parameter actually is at a critical point. We leave
addressing this question to future work.

23

Under review as submission to TMLR

B LLC-based stage boundary identification

B.1 Procedure for stage boundary identification

To identify stage boundaries, we look for plateaus in the LLC: checkpoints at which the slope of λ̂(wt) over
t vanishes. To mitigate noise in the LLC estimates, we first fit a Gaussian process with some smoothing to
the LLC-over-time curve. Then we numerically calculate the slope of this Gaussian process with respect to
log t. The logarithm corrects for the fact that the learning coefficient, like the loss, changes less as training
progresses. We identify stage boundaries by looking for checkpoints at which this estimated slope equals
zero. The results of this procedure are depicted in Figure B.1 for language and Figure B.2 for in-context
linear regression.

At a local minima or maxima of the estimated LLC curve identifying a plateau from this estimated slope is
straightforward, since the derivative crosses the x-axis. However at a saddle point, the slope may not exactly
reach zero, so we have to specify a “tolerance” for the absolute value of the derivative, below which we treat
the boundary as an effective plateau.

In this case, we additionally require that the plateau be at a local minimum of the absolute first derivative.
Otherwise, we may identify several adjacent points as all constituting a stage boundary.

To summarize, identifying stage boundaries is sensitive to the following choices: the intervals between check-
points, the amount of smoothing, whether to differentiate with respect to t or log t, and the choice of
tolerance. However, once a given choice of these hyperparameters is fixed, stages can be automatically
identified, without further human judgment.

B.2 Stage boundary identification details for language model

Figure B.1 displays the test loss and LLC curves from Figure 1a in addition to the weight norm over time
and associated slopes. Stage boundaries coincide with where the slope of the LLC crosses zero, that is, where
there is a plateau in the LLC.

Figure B.1: A more detailed version of Figure 1a for two-layer language models. Top: Loss, LLC, and weight
norm, along with an overlaid Gaussian process fit to these curves (red dotted lines). Bottom: Associated
slopes, both numerically estimated finite differences (transparent blue) and of the Gaussian process (red
dotted lined). Note that stage LM5 may be subdivided into further stages (Appendix B.1). However, the
noise in LLC estimates late in training is high, so we do not draw any conclusions from this.

24

Under review as submission to TMLR

B.3 Stage boundary identification details for in-context linear regression

Figure B.2 displays the test loss and LLC curves from Figure 1b in addition to the weight norm over time,
and numerically estimated slopes associated to these three metrics. As in the case of language models, we
identify stage boundaries by looking for plateaus in the LLC. Unlike the language models, here the boundaries
LR1–LR2 and LR2–LR3 are clearly visible in the loss.

Figure B.2: A more detailed version of Figure 1b for in-context linear regression. Top: Loss, LLC, and weight
norm, along with an overlaid Gaussian process fit to these curves (red dotted lines). Bottom: Associated
slopes, both numerically estimated finite differences (transparent blue) and of the Gaussian process (red
dotted lined). Top middle: Error bars displaying the standard deviation over the 10 SGLD chains are
displayed in the background. Note that large error bars across chains are to be expected. Between different
SGLD estimations, the variance is much lower. For example, averaged over training, the standard deviation
over different seeds is only 4.2.

B.4 Stage identification for additional training runs

102 103 104
3

4

5

Te
st

los
s

(w
t)

102 103 104

Training step t

75

100

125

150

Lo
ca

l le
arn

ing
 co

eff
.

(w
t)

(a) Two-layer attention-only language transform-
ers.

102 103 104 105

2

3

4

Te
st

los
s

(w
t)

102 103 104 105

Training step t

0

50

100

150

Lo
ca

l le
arn

ing
 co

eff
.

(w
t)

(b) In-context linear regression transformers.

Figure B.3: Figure 1a and Figure 1b for multiple seeds. In both settings, LLC reveals a consistent set of
stages across five seeds. Late-training behavior shows more variance across seeds (see Appendix B.4).

25

Under review as submission to TMLR

Figure B.3a shows loss and LLC curves for five seeds (differing in model initialization and batch schedule).
In each seed, LLC estimation reveals stage LM1–LM4. In three of the five seeds, stage LM5 is subdivided
into two additional stages.

Figure B.3b shows loss and LLC curves for five unique seeds (differing in model initialization and batch
schedule). In each seed, LLC estimation reveals stages LR1–LR5. There is remarkably little variance across
different seeds.

B.5 Comparison to Hessian statistics

Figure B.4 shows a quantification of the curvature-based notion of flatness captured by the Hessian (in
contrast to the degeneracy-based notion of flatness captured by the LLC) for our in-context linear regression
transformer. To estimate the trace and maximum eigenvalues shown in this figure, we use the PyHessian
library (Yao et al., 2020) over a batch of m = 1024 samples.

Crucially, we observe that these Hessian-derived metrics (henceforth, “curvature”) and the LLC are not
consistently correlated. During the first part of LR2, the LLC and the curvature are jointly increasing.
Starting at around t = 20k, while the LLC is still increasing, the curvature starts decreasing. In the first
part of LR3, both metrics decrease in tandem, but as of around t = 120k, the curvature turns around and
starts increasing.

The Hessian fails to detect three of the four stage boundaries identified by our LLC-based methodology.
Since these Hessian-based metrics are dominated by the largest eigenvalues—the directions of maximum
curvature—they fail to observe the finer-grained measures of degeneracy that dominate the LLC. Moreover,
we observe that LLC estimation is more scalable (empirically, it seems to be roughly linear in parameter
count) than estimating the full Hessian (which is quadratic).

Figure B.4: Hessian-based statistics reveal only one stage boundary in the development of our in-context
linear regression transformer.

26

Under review as submission to TMLR

C Developmental analysis of language models

In this section, we present further evidence on behavioral (Appendix C.1) and structural (Appendix C.2)
development of the language model over the course of training.

C.1 Behavioral development

C.1.1 Bigram score

We empirically estimate the conditional bigram distribution by counting instances of bigrams over the
training data. From this, we obtain the conditional distribution q̃(t′|t), the likelihood that a token t′ follows
t. The bigram score BS

k at index k of an input context S is the cross entropy between the model’s predictions
p(tk+1|tk) at that position and the empirical bigram distribution,

BS
k = −

dvocab∑
i=1

q̃(t(i)
k+1|tk) log p(t(i)

k+1|tk), (15)

where the t
(i)
k+1 range over the possible second tokens from the tokenizer vocabulary. From this we obtain

the average bigram score

B̄ = 1
n

n∑
i=1

BSi

ki
, (16)

where we take fixed random sequences of ki and Si for 1 ≤ i ≤ n = 5, 000, which is displayed over training
in Figure 4(a). This is compared against the best-achievable bigram score, which is the bigram distribution
entropy itself, averaged over the validation set.

C.1.2 n-gram scores

In stage LM2 we consider n-grams, which are sequences of n consecutive tokens, meaning 2-grams and
bigrams are the same. Specifically, we consider common n-grams, which is defined heuristically by comparing
our 5,000 vocab size tokenizer with the full GPT-2 tokenizer. We use the GPT-2 tokenizer as our heuristic
because its vocabulary is constructed iteratively by merging the most frequent pairs of tokens.

We first tokenize the tokens in the full GPT-2 vocabulary to get a list of 50,257 n-grams for various n. The
first 5,000 such n-grams are all 1-grams, after which 2-grams begin appearing, then 3-grams, 4-grams, and
so on (where 2-grams and 3-grams may still continue to appear later in the vocabulary). We then define the
set of common n-grams as the first 1,000 n-grams that appear in this list for a fixed n, n ≥ 2.

If we track the performance on n-grams and see it improve, we may ask whether this is simply a function of
the model learning to use more context in general, rather than specifically improving on the set of n-grams
being tracked. We measure performance against this baseline by defining an n-gram score. For a fixed n,
we obtain the average loss ℓn

gram of the model on predicting the final tokens of our set of 1,000 n-grams and
also obtain the average loss ℓn

test of the model on a validation set at position n of each validation sequence.
The n-gram score is then defined to be ℓn

test/ℓn
gram.

C.1.3 In-context learning score

The in-context learning score is a behavioral measure of the relative performance of a model later in a
sequence versus earlier in the sequence. We follow a similar construction as Olsson et al. (2022), where we
take the loss at the 500th token minus the loss at the 50th token, so that a more negative score indicates
better performance later in the sequence. This is then averaged over a 100k-row validation dataset. The
performance of the language model over the course of training can be seen at the bottom of Figure 4(f).

27

Under review as submission to TMLR

C.1.4 Visualizing behavioral changes

In Figure C.1, we visualize changes in the model’s input/output behavior by comparing model predictions
before and after developmental stages and highlighting tokens with the greatest differences.

Figure C.1: Samples are shown with tokens highlighted to indicate changes in logits during a given range.
Red is improved performance (higher logit output for the true next token) and blue is worse. Sample (a):
improvement in bigrams (LM1) such as “te/ll, ab/out, des/ire, mot/ion, eng/aged, strugg/le, etc." Sample
(b): improvement in common n-grams (LM2) such as “L/in/ux, P/y/th/on, h/on/or/able, S/up/reme,
dat/ab/ase, f/ram/ew/ork." Sample (c): development of in-context learning via induction circuits (LM3,
LM4), visible in the improved predictions in the word “D/urs/ley" after the first time it appears in the
context, as initially observed by (Olsson et al., 2022).

C.2 Structural development

C.2.1 Positional embedding

In Figure C.2, we measure the effect of the positional embedding on model performance by comparing the
model’s performance at particular context positions on a validation set over the course of training against
performance on the same validation set but with the positional embedding zero-ablated. The full context
length is 1024, and we measure test loss at positions 1, 2, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500, and 1000.
In the transition from stage LM1 to LM2, the model begins using the learnable positional embedding to
improve performance. The difference between test loss with and without the positional ablation is negligible
at all measured positions until the LM1–LM2 boundary.

Structurally, we might predict that the positional embeddings should organize themselves in a particular
way: in order to understand relative positions, adjacent positions should be embedded close to each other,
and far-away positions should be embedded far apart.

In Figure C.3, we examine the development of the positional embedding itself over time from two angles. The
first is to take the embeddings of each position in the context and to run PCA on those embeddings. The
result is that as training progresses, the positional embedding PCAs gradually resolve into Lissajous curves,
suggesting that the positional embeddings might look like a random walk (Antognini & Sohl-Dickstein, 2018;
Shinn, 2023). However, if we look to the explained variance, we see that it grows very large for PC1, reaching
94.2% at training step 6400. This is much higher than we would expect for Brownian motion, where we
expect to see about 61% explained variance in PC1 (Antognini & Sohl-Dickstein, 2018).

The second perspective we use is to look at how the magnitudes of positional embeddings over the context
length develop. In this case, we observe that the magnitudes seem to have a fairly regular structure. In
conjunction with the PCAs and explained variance, we might infer that the positional embeddings look
approximately like a (possibly curved) line in dmodel = 256 dimensional space. A positional embedding

28

Under review as submission to TMLR

Figure C.2: The model learns to start using the positional encoding in LM2, when the performance starts
to worsen when ablating the positional encoding. In both plots, earlier token positions are colored more
purple, while later token positions are more yellow, and the overall mean loss is colored in red. Both sets
of per-token losses are shown in both graphs for ease of comparison. Left: original test loss is emphasized.
Right: test loss with the positional embedding ablated is emphasized.

organized in this way would make it easier for an attention head to attend to multiple recent tokens, which
is necessary if a single head is to learn n-grams.

29

Under review as submission to TMLR

0.2 0.0 0.2
PC 2

0.2

0.0

0.2

PC
 1

Training step 0

0.0 0.5
PC 2

0.2

0.0

0.2

0.4

PC
 1

Training step 400

0.0 0.5
PC 2

1

0

1

PC
 1

Training step 800

0 1
PC 2

4

2

0

2

4

PC
 1

Training step 1600

0 2
PC 2

5.0

2.5

0.0

2.5

5.0

PC
 1

Training step 3200

0 1
PC 2

5.0

2.5

0.0

2.5

5.0

PC
 1

Training step 6400

0.2 0.0 0.2
PC 3

0.2

0.1

0.0

0.1

0.2

PC
 2

0.2 0.0 0.2
PC 3

0.2

0.0

0.2

0.4

0.6

PC
 2

0.0 0.5
PC 3

0.25

0.00

0.25

0.50

0.75

PC
 2

0 1
PC 3

0.0

0.5

1.0

PC
 2

0 2
PC 3

0

1

2

3

PC
 2

1 0 1
PC 3

0

1

PC
 2

0.2 0.0 0.2
PC 1

0.2

0.1

0.0

0.1

0.2

PC
 3

0.25 0.00 0.25
PC 1

0.2

0.0

0.2

PC
 3

1 0 1
PC 1

0.25

0.00

0.25

0.50

0.75

PC
 3

2.5 0.0 2.5
PC 1

0.5

0.0

0.5

1.0

PC
 3

5 0 5
PC 1

0

1

2

PC
 3

5 0 5
PC 1

1

0

1

PC
 3

1 2 3
PC

0.000

0.002

0.004

0.006

0.008

Ex
pla

ine
d v

ari
an

ce

1 2 3
PC

0.00

0.01

0.02

Ex
pla

ine
d v

ari
an

ce

1 2 3
PC

0.0

0.2

0.4

Ex
pla

ine
d v

ari
an

ce

1 2 3
PC

0.0

0.2

0.4

0.6

0.8

Ex
pla

ine
d v

ari
an

ce

1 2 3
PC

0.0

0.2

0.4

0.6

0.8

Ex
pla

ine
d v

ari
an

ce

1 2 3
PC

0.0

0.2

0.4

0.6

0.8

Ex
pla

ine
d v

ari
an

ce

0 500 1000
Position

0.70

0.75

0.80

0.85

0.90

M
ag

nit
ud

e

0 500 1000
Position

0.8

1.0

1.2

M
ag

nit
ud

e

0 500 1000
Position

0.75

1.00

1.25

1.50

M
ag

nit
ud

e

0 500 1000
Position

1

2

3

4

M
ag

nit
ud

e

0 500 1000
Position

2

4

6

M
ag

nit
ud

e

0 500 1000
Position

2

4

6

M
ag

nit
ud

e

Figure C.3: Columns progress through training time at training steps 0, 400, 800, 1600, 3200, and 6400.
The first three rows are plots of the first three principle components of PCA on the positional embedding
weights, while the fourth row shows the explained variance for each of the principal components. The fifth
row plots the magnitude of the embedding of each position in the context length of 1024.

30

Under review as submission to TMLR

C.2.2 Composition scores

Let W h
Q, W h

K , W h
V be the query, key, and value weights of attention head h respectively. There are three

types of composition between attention heads in transformer models in Elhage et al. (2021):

• Q-Composition: the query matrix W h
Q of an attention head reads in a subspace affected by a previous

head

• K-Composition: the key matrix W h
K of an attention head reads in a subspace affected by a previous

head

• V-Composition: the value matrix W h
V of an attention head reads in a subspace affected by a previous

head

If W h
O is the output matrix of an attention head, then W h

QK = W h T
Q W h

K and W h
OV = W h

OW h
V . The

composition scores are
||MW h1

OV ||F /(||M ||F ||W h1
OV ||F) (17)

Where M = W h2 T
QK , M = W h2

QK , and M = W h2
OV for Q-, K-, and V-Composition respectively. See Figure C.4

for K-composition scores over time between attention heads in the induction circuits.

C.2.3 Previous-token matching score

The previous-token matching score is a structural measure of induction head attention. It is the attention
score given to [A] by an attention head at [B] in the sequence . . . [A][B] (i.e., how much the head attends to
the immediately preceding token).

We compute this score using a synthetic data generating process, generating 10k fixed random sequences
with length between 16 and 64. The first token is a special “beginning of string" token, and the remaining
tokens are uniformly randomly sampled from other tokens in the vocabulary.

For each sample in this synthetic dataset, we measure the attention score that an attention head gives to
the previous token when at the last token in the sequence. These scores are averaged across the dataset to
produce the previous-token matching score for that attention head at a given checkpoint. The progression
of previous-token matching scores over time can be seen in Figure 4(d).

C.2.4 Prefix matching score

The prefix matching score from Olsson et al. (2022) is defined similarly to the previous-token matching score.
Given a sequence [A][B] . . . [A], the prefix matching score of a particular attention head is how much the
attention head attends back to the first instance of [A] when at the second instance of [A].

We compute this score using a synthetic data-generating process. We first generate 10k fixed random
sequences of length 128. The first token is always a special “beginning of string" token and the [A] and [B]
tokens are selected and placed randomly. One [A] token is placed in the first half of the sequence, the other
is placed in the second half, and the [B] token is placed directly after the first [A] token. The remaining
tokens are randomly sampled from the tokenizer vocabulary, excluding the [A], [B], and beginning of string
tokens.

For each sample in this synthetic dataset, we measure the attention score that each attention head assigns
to the earlier instance of [A] from the latter instance of [A]. These scores are averaged across the dataset to
produce the prefix matching score for that attention head at a given checkpoint. The progression of prefix
matching scores over time can be seen in Figure 4(e).

31

Under review as submission to TMLR

0.00

0.05

0.10

0.15

0.20

K-
co

mp
os

itio
n

1:1 < > 2:1 1:1 < > 2:7 1:1 < > 2:8

0.00

0.05

0.10

0.15

0.20

K-
co

mp
os

itio
n

1:2 < > 2:1 1:2 < > 2:7 1:2 < > 2:8

102 103 104

Training step, t

0.00

0.05

0.10

0.15

0.20

K-
co

mp
os

itio
n

1:5 < > 2:1

102 103 104

Training step, t

1:5 < > 2:7

102 103 104

Training step, t

1:5 < > 2:8

Figure C.4: The K-composition scores (Elhage et al., 2021) between first and second layer attention heads.
The hth attention head in layer l is indexed by l : h. The attention heads that eventually become previous
token heads are h = 2, 5 in layer 1 (subplot rows 2 and 3), and the attention heads that eventually become
induction heads are h = 7, 8 in layer 2 (subplot columns 2 and 3). The attention heads 1 : 1 and 2 : 1 are
included for comparison. The induction heads 2 : 7 and 2 : 8 begin K-composing with first layer heads near
the start of stage LM2. They continue to compose with the previous token heads in stages LM3 and LM4
(highlighted in green) while their K-composition scores drop with other attention heads in layer 1 in later
stages.

32

Under review as submission to TMLR

D Developmental analysis of regression transformers

In this section, we present further evidence on the behavioral (Appendix D.1) and structural (Appendix D.2)
development of the transformer in the setting of in-context linear regression.

D.1 Behavioral development

D.1.1 Task prior score

In addition to training models on a data distribution in which tasks t are generated on-the-fly, we examine
the setting of Raventós et al. (2023), in which a finite set of M tasks is generated ahead of time, and training
samples involve randomly selected tasks from this set.

Figure D.1 depicts (a) the mean square distance between the model’s predictions and the zero prediction in
addition to (b) the mean square distance between the model’s predictions and the “task prior” prediction,
using the component-wise averaged t over the set of tasks encountered during training. For all models, the
minimum distance to the task prior prediction is lower than the minimum distance to the zero prediction.
Hence, we call stage LR1 “learning the task prior” rather than simply learning the zero prediction.

101 103 105

Step t

10 1

100

101

M
SE

(a) MSE from 0 Prediction

101 103 105

Step t

10 1

100

101

M
SE

(b) MSE from t Prediction

M = 24

M = 28

M = 212

M = 216

M = 220

Figure D.1: Learning the task prior is universal across models trained on very different data distributions.
Each line represents a model trained on a data distribution with a different number of M distinct tasks (“task
diversity” in Raventós et al., 2023). In addition to taking a finite M , the models depicted here differ from
the other models considered in this paper in that the former were trained with a maximum learning rate of
0.01, and the models (inadvertently) lack an output matrix after the multi-head attention layer.

D.1.2 ICL

We consider two variants of the ICL score: ICL1:D, and ICLD:K .

If the noise term σ2 equals zero and both tasks t and inputs xk are normalized (i.e., t ∈ SD−1), then
D −1 observations of input/output pairs are enough to precisely identify t. Therefore, ICL1:D measures how
successful the model is at initially locating the task. The fact that the tasks and inputs are not normalized
changes this only slightly: the task will still sit near SD−1 within a shell of vanishing thickness as D → ∞.

Once localized, ICLD:K measures how successfully the model refines its internal estimate of t with additional
examples, which it can use to reduce the error due to noise.

In terms of implementation, it’s not necessary for the model to internally make a distinction between locating
and refining its estimate of the task. For example, ridge regression makes no distinction. Still, we find it
useful for reasoning about the progression of the model. In particular, we note that early in stage LR2, while
the model begins to develop ICL for early tokens, it becomes worse at ICL over tokens late in the context.
Later, at around 23k steps, ICLD:K stabilizes, while ICL1:D continues improving over the entire training
run.

33

Under review as submission to TMLR

Figure D.2: ICL scores for the in-context linear regression model. Right: ICL scores between inputs 1 and
4 and inputs 4 and 8 over time. We see that ICL emerges during the first half of LR2. Left: Highlighted ICL
score curves from the end of LR1 to halfway through LR2. Note that when the model first starts improving
on early tokens, it temporarily becomes worse at predicting later tokens. Note also that the model ceases
to become better at later tokens as of the second half of LR2, whereas ICL on early tokens continues to
improve throughout training.

D.1.3 OOD generalization

To further investigate behavior in stages LR2 and LR3, we probe the model on data sampled from different
distributions than encountered during training.1 We evaluate behavior on two families of perturbations:
“OOD inputs” xk, sampled according to a different scale

xk ∼ N (0, gID), (18)

for some gain parameter g, and “OOD tasks”

t ∼ N (0, gID). (19)

Note that these inputs and tasks are not out-of-distribution in the sense of coming from a distribution with
a different support than the training distribution. However, the samples drawn from these “extreme” distri-
butions are exponentially suppressed by the original training distribution. Figure D.3 plots the normalized
MSE for these two distributions over training time.

Between t = 1k and t = 4k the model’s outputs rapidly diminish in scale for out-of-distribution samples,
both for g > 1 and g < 1, especially for out-of-distribution inputs. While the model is moving away from
predicting with the task prior for in-distribution samples, it moves closer to predicting with the task prior
for-in-distribution samples.

Between t = 4k and t = 23k, the model recovers on moderately out-of-distribution inputs g < 101.5 with
performance remaining close to constant beyond this range. Past this stage, performance improves constantly
for out-of-distribution tasks.

For out-of-distribution inputs, performance eventually worsens for some ranges of g. Between t = 23k
and t = 80k the model further approaches the task prior prediction for extreme out-of-distribution inputs
g > 101.5 . Subsequently, between t = 75k and t = 130k the model moves away from the task prior prediction
for extreme inputs, and performance deteriorates for inputs with g > 100.5. As of LR5, performance is roughly
constant.

1Cf. Raventós et al. (2023) evaluating models trained on a set of discrete tasks on the “true” distribution consisting of novel
tasks.

34

Under review as submission to TMLR

Figure D.3: Performance on extreme inputs over time may reveal additional substages in LR2 and in LR3.
Left: The model first becomes better, then worsens at ICL on inputs sampled from N (0, gID) for large g.
Right: The model continues to improve on ICL at tasks sampled from N (0, gID). Top: Normalized loss
(divided by g2) over time for OOD inputs and tasks. Bottom: Average |ŷ| over time for OOD inputs and
tasks.

D.2 Structural development

D.2.1 Embedding

The embedding matrix WE is a linear transformation from RD+1 → Rdembed . Plotting the D + 1 singular
values of this matrix, we notice that the embedding partially loses one of its components starting at the end
of LR2 (Figure D.4a).

The input “tokens” xk span a D-dimensional subspace of the (D + 1)-dimensional “token space.” The
target tokens yk span an orthogonal 1-dimensional subspace. The collapse of one of the embedding matrix’s
singular values means that the model learns to redundantly encode the inputs and targets in the same D-
dimensional subspace of the space of residual stream activations. The almost order of magnitude separation
in the magnitudes of the square singular value means that the (D + 1)th component of the token embedding
explains only 2.9% of the variance in activations of the residual stream immediately after the embedding,
whereas the dominant components explain roughly 24% each.

Contributions to degeneracy Given a linear transformation T1 : RD1 → RD2 followed by another linear
transformation T2 : RD2 → RD3 , reducing the rank of T1 from r to r′ < r renders D3(r − r′) components of
the second transformation irrelevant. This would mean a decrease in the learning coefficient of D3(r−r′)/2 (a
decrease in the effective dimensionality of d leads to a decrease in the LLC of d/22). In the actual model, we
don’t see an exact decrease in the rank, and a layer normalization sits between the linear transformation of
the embedding and the linear transformations of each transformer block and unembedding. It is unclear what
the precise relation between structure and degeneracy is in this case (Appendix D.2.6). Still, suggestively,
the onset of embedding collapse coincides with a decrease in the rate of increase of λ̂(wt).

2Note that this is not the only possible way for the LLC to decrease. Changing the local loss landscape from quadratic to
quartic or some higher power would also lower the LLC, by a fractional amount.

35

Under review as submission to TMLR

Figure D.4: Left: The embedding partially “collapses” during the second half of LR2. At the start of stage
LR2, the minimum singular values explains only 3% of the variance in residual stream activations due to
the sample. By the end of training, it explains half that. Middle: The positional encoding goes through a
similar shift during LR3 (that begins earlier during LR2). Right: The cosine similarity between the 5 rows
of Wembed and the projection of those rows onto the subspace spanned by Wunembed shows that the model
learns to write to the same write tokens and positional information to the same subspace.

D.2.2 Positional encoding

The positional encoding goes through a similar collapse to the unembedding starting during the second
part of LR2 and continuing into LR3 (Figure D.4b). Additionally, throughout these stages, the subspace
spanned by the embedding becomes more aligned with the subspace spanned by the positional encoding
(Figure D.4c).

Contributions to degeneracy For the same reason as with the token embedding, a decrease in the
dimensionality of the subspace occupied by activations reduces the effective number of dimensions and thus
the learning coefficient. This occurs both as the positional encoding’s effective dimensionality decreases
(vanishing singular values, Figure D.4b) and as the token embedding subspace and positional embedding
subspace align (increasing cosine similarity, Figure D.4b).

D.2.3 Attention collapse

Over the course of training, we observe that some attention heads learn to attend solely (soft attention
becomes hard attention) and consistently to certain positions (the attention pattern becomes content-
independent). We call this phenomenon attention collapse in parallel with the other observed forms of
collapse. Not only does this potentially contribute to a decrease in the LLC, but it also makes the attention
heads identifiable: we find a self-attention head, previous-attention heads, previous-x-attention heads, and
previous-y-attention heads.

x-attention vs. y-attention For convenience we separate each attention head in two: one part for the
x-tokens, and the other for the y-tokens.

Attention entropy score To quantify attention hardness, we use the attention entropy score (Ghader &
Monz, 2017; Vig & Belinkov, 2019). Given the attention pattern α

(b,h)
k,k′ for how much token k in head h in

block b attends back to token k′, its attention entropy score H
(b,h)
k is the Shannon entropy over preceding

indices k′ < k,
H

(b,h)
k = −

∑
k′≤k

α
(b,h)
k,k′ log2 α

(b,h)
k,k′ . (20)

From this, we compute the normalized entropy Ĥ
(b,k)
k , which divides the attention entropy by the maximum

entropy for the given context length,

Ĥ
(b,h)
k = H

(b,h)
k

log2(k) . (21)

36

Under review as submission to TMLR

Figure D.5: Attention hardening as measured by the normalized attention entropy score (Appendix D.2.3).
Block 1 heads 1y/3y and block 2 head 1y harden over training. In combination with the fact that these
attention heads become less variable (Figure D.6), this may contribute to a decrease in the LLC (discussed
in Appendix D.2.3) The x-components of the attention heads remain much softer over the entire training
run.

This accounts for the entropy being calculated over different numbers of tokens and is displayed in Figure D.5.
Notably, the identified stages line up closely to stages of these attention entropy curves.

Constant attention Accomplishing constant attention requires the presence of biases in the query and
key transformations, or if there is no bias (as is the case for the models we investigated), requires attending
to the positional embedding. With the Shortformer-style positional encoding used for the language models
(Appendix F.1.1), this is straightforward: the positional information is injected directly into the key and
weight matrices. With the in-context linear regression models, where the positional embedding is added to
the residual stream activations, this is less straightforward: achieving constant attention requires separating
residual stream activations into orthogonal positional- and input-dependent subspaces, then reading from
the former with the query and key weight matrices.

Attention variability score To quantify how constant the attention pattern is, we use measure attention
variability (Vig & Belinkov, 2019),

37

Under review as submission to TMLR

Figure D.6: Attention variability over time. The heads that develop hard attention in Figure D.5 (block
1 heads 1y, 3y, and 4y) also become less variable over time.

V
(b,h)

k =

∑n
i=1
∑

k′≤k

∣∣∣α(b,h)
k,k′ (S(i)

K) − ᾱ
(b,h)
k,k′

∣∣∣
2n
∑

k′≤k ᾱ
(b,h)
k,k′

, (22)

where the division by 2 ensures the variability lies in the range [0, 1]. This is displayed in Figure D.6. These
reveal that though attention hardness and variability are independent axes of differentiation, empirically, we
observe that hard attention is correlated with low variability.

Self-attention score Self-attention is measured by the average amount a token k attends to itself, α
(b,h)
k,k .

Previous-token attention score Previous-token attention is measured the same as in the language model
setting (Appendix C.2) with one difference: we compute the previous-token score not over a synthetic dataset
but over a validation batch.

x-attention score The total amount attended to inputs xk, that is α
(b,h)
k,x =

∑K
k′=1 α

(b,h)
k,2k .

y-attention score Defined analogously α
(b,h)
k,x =

∑K
k′=1 α

(b,h)
k,2k+1.

38

Under review as submission to TMLR

Figure D.7: Collection of attention heads identified by their consistent and recognizable attention patterns.
Left to right: previous-xs head, previous-token head, previous-ys head, previous-ys head

Classifying attention heads Several attention heads are easy to identify by virtue of being both concen-
trated and consistent. These are depicted in Figure D.7 and include: (B1H3y) previous-token heads (also
present in the language model case), (B1H1y) previous-x, and (B1H4x, B2H1y) previous-y heads. Other
training runs also include self-attention heads.

Contributions to degeneracy Suppose an attention head h in block b has the following constant attention
pattern (after the softmax) A(b,h) =

∑
i δl(i) i. That is, for each token i, that attention head attends solely to

a single earlier token l(i) ≤ i and no others. Restricting to single-head attention (the argument generalizes
straightforwardly), the final contribution of this attention head to the residual stream is the following (Phuong
& Hutter, 2022):

O = WO · (V · A) (23)

where A ∈ Rℓz ×Rℓx is the attention pattern, V ∈ Rdout ×Rℓz is the value matrix, and WO ∈ Rdz ×Rℓz is the
matrix of residual stream activations, and V ∈ Rdout × Rℓz is the value matrix. The result of this operation
is subsequently multiplied by the output matrix and then added back into the residual stream. Plugging in
the hard and constant attention pattern, writing out the matrix multiplication, and filling in the definition
of A we get

Oij =
∑

k

(WO)ikVkl(j)δl(j)j . (24)

For each column in A, the hard attention picks out a single element of V at column l(j) for each row k. Now
suppose that there is a token l′ that receives no attention from any position j. That is, there exists no j such
that l′ = l(j). Then, there is a column l′ in V which does not contribute to the result of V · A, and, in turn,
a column l′ in WO, which does not contribute to the output of the head. As discussed for the embedding
and layer norm, this decrease in effective dimensionality leads to a decrease in the learning coefficient.

Note that this argument does not hold for all hard and constant attention patterns. It holds solely for
attention patterns that consistently ignore some earlier token across all positions, such as the previous-x
and previous-y heads, but not the self-attention and previous-token heads. As discussed in Appendix D.2.6,
it remains unclear what exactly the threshold for “ignoring” a token should be before it contributes to
degeneracy and whether any of the heads we examine actually meet this threshold.

D.2.4 Unembedding collapse

The unembedding block consists of a layer normalization layer LN(z) followed by a linear transformation
WU z + bU and finally a projection πy to extract the y-component. Given the 64-dimensional vector of
activations z in the residual stream right before the unembedding (for a specific token), the full unembedding
operation is:

πy

[
WU

(
z − E[z]√
V[z] + ϵ

⊙ γ + β

)
+ bU

]

39

Under review as submission to TMLR

Figure D.8: Unembedding weights over time for the RT 1 transformer undergo a “collapse” that begins
towards the end of LR2. When these weights reach zero in LR3 and LR4, it may contribute to the observed
decrease in the LLC. Top: Weights over time. The outlier in the positive direction is the weight for the y-
token output. Bottom: Biases over time. Left: Unembedding layer normalization weights over time. Middle:
Unembedding linear weights over time (restricted to y-subspace). Right: Effective unembedding weights
over time (obtained by element-wise multiplication of preceding columns, and focusing on the bias for only
the y-token.

where ⊙ denotes element-wise multiplication of two vectors and γ, β are the layer normalization weights and
biases respectively.

Effective unembedding weights and biases Moving terms around, we can represent this as

(
(WU)[0,:] ⊙ γ

)(z − E[z]√
V[z] + ϵ

)
+
(
(WU)[0,:]β

)
+ (bU)[0]

where we order the outputs so that the y-token corresponds to the 0th row. Because we are reading out a
single y component, we can express the unembedding transformation in terms of “effective" unembedding
weights and biases

W̃U = (WU)[0,:] ⊙ γ,

b̃U =
(
(WU)[0,:]β

)
+ (bU)[0].

Unembedding weights over time In Figure D.8, we plot (γ, β), ((WU)[0,:], (bU)[0]), and (W̃U , b̃U) as a
function of training steps, along with the mean weight over time. These are 64- and 1-dimensional vectors, so
we can display the entire set of components. During stage LR3 the majority of weights β and WU “collapse”
to zero. Additionally, the layer normalization biases temporarily experience a large increase in variance
before returning to small values. Despite this, the mean of the linear weights, layer normalization biases,
and effective weights remains remarkably constant and close to zero throughout the entire process.

Contributions to degeneracy Suppose that D of the layer normalization weights have vanished, say
γi = 0 for 1 ≤ i ≤ D. Then the corresponding columns of WU only contribute to the unembedding via their
product (WU)[:,1:D]β[1:D] with the first D rows of β. This creates a typical form of degeneracy studied in SLT
and found, for example, in deep linear networks, where we can change the weights to (WU)[:,1:D]A, A−1β[1:D]
for any invertible D × D matrix A without changing the function computed by the network. If in addition
the βi vanish for 1 ≤ i ≤ D then the entries of (WU)[:,1:D] are completely unconstrained, creating further
degeneracy.

40

Under review as submission to TMLR

Figure D.9: Layer norm weights over time. Top: After LR3, the layer normalization collapse expands
from the unembedding to earlier layers, most notably in the first pre-attention layer norm. This occurs
without explicit regularization and may contribute to the concurrent decrease in LLC. Bottom: During layer
normalization collapse, the variance of layer normalization biases increases drastically while the mean of the
biases remains relatively constant. Inset: Plotting the fraction of weights or biases whose magnitude is less
than 0.1 over time reveals that the collapse is more measured for intermediate layer norms: weights shrink
to small values but not extremely close to zero as in the unembedding and first attention layer.

D.2.5 Layer normalization collapse

The “collapse” in layer normalization weights is not unique to the unembedding. As depicted in Figure D.9,
this behavior occurs in all layer norms except for the second MLP. The biases also remain centered close
to zero even as the variance in biases grows much larger. Unlike in the unembedding, these layers begin to
change earlier (starting halfway through LR2).

What is most striking about the layer normalization collapse is that it occurs without any explicit regulariza-
tion (neither weight decay nor dropout). As such, it demonstrates a clear example of implicit regularization,
i.e., inductive biases in the optimizer or model that favor simpler solutions.

Contributions to degeneracy In the previous section, we describe how layer norm collapse in the un-
embedding is linked to an increase in degeneracy because it ensures that parameters in the subsequent linear
layer become irrelevant. The same is true for layer norm which precedes the attention and MLP blocks.

D.2.6 Degeneracy and development

In the previous subsections, we provide a set of theoretical arguments for how embedding collapse (Ap-
pendix D.2.1), layer normalization collapse (Appendix D.2.5), and attention collapse (Appendix D.2.3) can
lead to an increase in degeneracy, even while leaving the implemented function unchanged.

The free energy formula tells us that, for two different solutions (sets of weights) with the same loss, the
Bayesian posterior will asymptotically prefer the model that has the lower learning coefficient (i.e., higher
degeneracy). This suggests that these different forms of collapse may be driven by a bias towards higher
degeneracy, as captured in the free energy formula. However, in idealized Bayesian inference, we do not
expect the posterior to concentrated around the neighborhood of an equal-loss-but-higher-degeneracy local
minimum to begin with. That this kind of transition arises in practice might arise from one of the various
differences between Bayesian inference and gradient-based training.

Actually establishing a causal link between increasing degeneracy and structure development is beyond the
scope of this paper. For one, the theoretical arguments hinge on the collapse being complete, that is, the
components that go to zero must become exactly zero in the limit, where we take the number of samples to
compute the loss to infinity. In practice, we expect there to be some threshold ϵ below which we can treat
weights as effectively zero. Second, even if these explanations are correct, we do not know that they account
for all of the empirically observed decrease in the LLC during these stages. There may be other drivers

41

Under review as submission to TMLR

we missed. Finally, establishing a causal link requires theoretical progress in relating the Bayesian learning
process to the SGD learning process. The arguments are suggestive, but currently only a source of intuition
for how structure and degeneracy can be related, and a starting point for future research.

42

Under review as submission to TMLR

E One-layer language model experiments

We also trained and ran some experiments on a one-layer language model (see Appendix F.1.1 for details).
We aggregate results for the one-layer language model here, mirroring the experiments for the two-layer
language model where possible. The early development of the one-layer model has many parallels with the
two-layer model. At a single stage boundary, just as it occurs in the two-layer model, the one-layer model
minimizes its bigram score (see Appendix C.1.1), begins utilizing the positional embedding to noticeably
improve performance (see Appendix C.2.1), and starts making sudden improvements to the same n-gram
scores (see Appendix C.1.2). Remarkably this occurs at the same checkpoint as in the 2-layer model (at 900
training steps).

One key difference, however, is that this occurs at the second stage boundary as discerned by the plateaus
of the LLC estimation. We did not closely investigate why the LLC estimation appears to drop between
steps 400 and 900 in this model. As a result though, we do observe an interesting qualitative similarity to
the drop in LLC in stage LM3 of the two-layer model, that this drop precedes a noticeable bump in the loss
function.

Figure E.1: We train a one-layer transformer model in the language setting to compare with the two-
layer model. The development of certain behavioral and structural metrics over time closely mirrors the
development of the same metrics in the early stages of the two-layer language model. Top: test loss and
LLC estimations over time for the one-layer attention-only transformer, compare with Figure 1a. Bottom:
bigram score, test loss with positional embedding ablated, and n-gram scores for the one-layer attention-only
transformer, compare with Figure 4(a,b,c).

43

Under review as submission to TMLR

Figure E.2: A more detailed version of Figure E.1 for the one-layer language model. Top: Loss, LLC,
and weight norm, along with an overlaid Gaussian process fit to these curves (red dotted lines). Bottom:
Associated slopes, both numerically estimated finite differences (transparent blue) and of the Gaussian
process (red dotted lined).

44

Under review as submission to TMLR

F Transformer training experiment details

F.1 Language models

F.1.1 Architecture

The language model architectures we consider are one- and two-layer attention-only transformers. They
have a context length of 1024, a residual stream dimension of dmodel = 256, H = 8 attention heads per layer,
and include layer normalization layers. We also used a learnable Shortformer positional embedding (Press
et al., 2021). The resulting models have a total of d = 3, 091, 336 parameters for L = 1 and d = 3, 355, 016
parameters for L = 2. We used an implementation provided by TransformerLens (Nanda & Bloom, 2022).

Component 1-Layer 2-Layer
Token Embedding Weights 1, 280, 000
Positional Embedding Weights 262, 144
Layer 1 Layer Norm Weights 256
Layer 1 Layer Norm Bias 256
Layer 1 Attention Query Weights 65, 536
Layer 1 Attention Key Weights 65, 536
Layer 1 Attention Value Weights 65, 536
Layer 1 Attention Output Weights 65, 536
Layer 1 Attention Query Bias 256
Layer 1 Attention Key Bias 256
Layer 1 Attention Value Bias 256
Layer 1 Attention Output Bias 256
Layer 2 Layer Norm Weights N/A 256
Layer 2 Layer Norm Bias N/A 256
Layer 2 Attention Query Weights N/A 65, 536
Layer 2 Attention Key Weights N/A 65, 536
Layer 2 Attention Value Weights N/A 65, 536
Layer 2 Attention Output Weights N/A 65, 536
Layer 2 Attention Query Bias N/A 256
Layer 2 Attention Key Bias N/A 256
Layer 2 Attention Value Bias N/A 256
Layer 2 Attention Output Bias N/A 256
Final Layer Norm Weights 256
Final Layer Norm Bias 256
Unembedding Weights 1, 280, 000
Unembedding Bias 5, 000

Figure F.1: Attention-only transformers with Shortformer position-infused attention and pre-layer norm.
The one-layer model has a total of 3,091,336 trainable parameters, while the two-layer model has 3,355,016.

F.1.2 Tokenization

For tokenization, we used a truncated variant of the GPT-2 tokenizer that cut the original vocabulary of
50,000 tokens down to 5,000 (Eldan & Li, 2023) to reduce the size of the model. We think this may contribute
to the prominence of the the plateau at the end of LM1: the frequency of bigram statistics depends on your
choice of tokens, and a larger tokenizer leads to bigrams that are individually much less frequent.

F.1.3 Training

The models are trained on a single epoch over 50, 000 steps on ∼5 billion tokens using a resampled subset of
the Pile (Gao et al., 2020; Xie et al., 2023) using a batch size of 100. A snapshot was saved every 10 steps

45

Under review as submission to TMLR

for a total of 5000 checkpoints, though a majority of analysis used checkpoints every 100 steps. The training
time was around 6 GPU hours per model on an A100. Additional seeds were trained on v4 TPUs at around
1.5 TPU hours per model.

Training was conducted on the first 10 million lines of the DSIR-filtered Pile (Xie et al., 2023; Gao et al.,
2020) but did not exhaust all 10 million lines. The model was subject to weight decay regularization, without
the application of dropout. We did not employ a learning rate scheduler throughout the training process.

Table 3: Summary of hyperparameters and their values for transformer language model training experiments.

Hyperparameter Category Description/Notes Value
n Data # of training samples 5, 000, 000
T Data # of training steps 50, 000
Ntest Data # of test samples 512
Tokenizer Type Data Type of Tokenizer Truncated GPT-2 Tokenizer
D Data Vocabulary size 5,000
K Data Context size 1,024
L Model # of layers in the model 2
H Model # of heads per layer 8
dmlp Model MLP hidden layer size N/A
dembed Model Embedding size 256
dhead Model Head size 32
seed Model Model initialization 1
m Training Batch Size 100
Optimizer Type Optimizer Type of optimizer AdamW
η Optimizer Learning rate 0.001
λwd Optimizer Weight Decay 0.05
β1,2 Optimizer Betas (0.9, 0.999)

F.2 In-context linear regression transformers

F.2.1 Architecture

In the following L refers to the number of layers (blocks) in the transformer, H is the number of heads
in each layer, D is the dimension of inputs x ∈ RD and K is the number of (x, y) pairs provided to the
Transformer in-context.

The architecture is a pre-layer-norm decoder-only transformer modeled after NanoGPT (Karpathy, 2022;
see also Phuong & Hutter, 2022) with a learnable positional embedding. For the models discussed in the
main body, we consider L = 2, H = 4 transformers (with d = 51, 717 parameters), i.e., two transformer
blocks with four attention heads each.

F.2.2 Tokenization

To run contexts SK through the above model requires an initial encoding or “tokenization step” and final
“projection step.” The context is encoded as a sequence of “tokens” Tk as follows:

Tk =

0

x1

 ,

y1
0
...
0

 , · · ·

0

xk

 ,

yk

0
...
0

 .

Through the main text, we write fw(Sk) for fw(Tk). Note that this tokenization includes the final yk token
even though this receives no training signal. For this reason, we omit this token from the attention entropy
and variability plots (Figures D.5 and D.6).

46

Under review as submission to TMLR

Component # of Parameters
Token Embedding Weight 320
Positional Embedding Weight 1, 024
Layer 1 Layer Norm Weight 2 64
Layer 1 Layer Norm Bias 1 64
Layer 1 Attention Weights 12, 288
Layer 1 Attention Output Weights 4, 096
Layer 1 Layer Norm Weight 1 64
Layer 1 Layer Norm Bias 2 64
Layer 1 Feed-Forward MLP Weight 4, 096
Layer 1 Feed-Forward MLP Bias 64
Layer 1 Feed-Forward Output Weight 4, 096
Layer 1 Feed-Forward Output Bias 64
Layer 2 Layer Norm Weight 1 64
Layer 2 Layer Norm Bias 1 64
Layer 2 Attention Weights 12, 288
Layer 2 Attention Output Weights 4, 096
Layer 2 Layer Norm Weight 2 64
Layer 2 Layer Norm Bias 2 64
Layer 2 Feed-Forward MLP Weight 4, 096
Layer 2 Feed-Forward MLP Bias 64
Layer 2 Feed-Forward Output Weight 4, 096
Layer 2 Feed-Forward Output Bias 64
Unembedding Layer Norm Weight 1 64
Unembedding Layer Norm Bias 1 64
Unembedding Weight 2 320
Unembedding Bias 2 5

Figure F.2: Transformer parameters in the in-context linear regression setting. The model has
two transformer blocks for a total of 51, 717 trainable parameters.

The transformer outputs a series of tokens of the same shape as Tk. To read out the ŷk predictions, we read
out the first component of every other token, i.e.,

πY : R(D+1)×2K → RK (25)((
ŷ1
...

)
,

(
.
...

)
, · · · ,

(
ŷk

...

)
,

(
.
...

))
7→ (ŷ1, . . . , yk). (26)

F.2.3 Training

We train from a single seed for each choice of architecture and optimizer hyperparameters using minibatch
stochastic gradient descent. We train without explicit regularization and use the Adam optimizer (Kingma
& Ba, 2014). The training runs take 1 to 5 TPU-hours on TPUs provided by Google Research. Models are
trained from the same initialization and on the data vectors within each batch (but for different sets of tasks
and task orderings).

Models are trained on a single epoch: each of the T = 500, 000 batches consists of a new set of sequences with
batch size 256. For the LLC estimates, we save 190 checkpoints: 100 are linearly spaced over the training
run, and the remaining 90 are logarithmically spaced. We perform LLC estimation and other analyses on
these checkpoints.

47

Under review as submission to TMLR

Table 4: Summary of hyperparameters and their default values for in-context linear regression transformer
model training experiments.

Hyperparameter Category Description/Notes Default Values
n Data # of training samples 128,000,000
B Data Batch size during training 256
T Data # of training steps 500k
Ntest Data # of eval samples 2048
D Data Dimensions of linear regression task

(Task size)
4

K Data Maximum in-context examples 8
σ2 Data Variance of noise in data generation 0.125
L Model # of layers in the model 2
H Model # of attention heads per layer 4
dmlp Model Size of the hidden layer in MLP 64
dembed Model Embedding size 64
seed Misc Training run seeds {0, 1, 2, 3, 4}
Optimizer Type Optimizer Type of optimizer Adam
η Optimizer Maximum learning rate 0.003
λwd Optimizer Weight Decay 0
β1,2 Optimizer Betas (0.9, 0.999)
Scheduler Type Scheduler Type of learning rate scheduler OneCycleLR
Strategy Scheduler Strategy for annealing the learning rate Linear
% start Scheduler Percentage of the cycle when learning

rate is increasing
0.5

48

	Introduction
	Related work
	Training transformers in two settings
	Quantifying degeneracy with the local learning coefficient
	Degeneracy-based stage division
	Results for language modeling
	Stage LM1 (0–900 steps)
	Stage LM2 (900–6.5k steps)
	Stages LM3 & LM4 (6.5k–8.5k & 8.5k–17k steps)

	Results for in-context linear regression
	Stage LR1 (0–1k steps)
	Stage LR2 (1k–40k steps)
	Stages LR3 & LR4 (40k–126k & 126k–320k steps)

	Discussion
	Appendix
	The local learning coefficient (LLC)
	Interpretations and examples of the LLC
	Estimating LLCs with SGLD
	LLC estimation experiment details
	A guide to SGLD-based LLC estimation
	LLC estimates for a non-log-likelihood-based loss
	LLC estimates away from local minima

	LLC-based stage boundary identification
	Procedure for stage boundary identification
	Stage boundary identification details for language model
	Stage boundary identification details for in-context linear regression
	Stage identification for additional training runs
	Comparison to Hessian statistics

	Developmental analysis of language models
	Behavioral development
	Structural development

	Developmental analysis of regression transformers
	Behavioral development
	Structural development

	One-layer language model experiments
	Transformer training experiment details
	Language models
	In-context linear regression transformers

