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Abstract

The utilization of long contexts poses a big challenge for large language models
due to their limited context window length. Although the context window can be
extended through fine-tuning, it will result in a considerable cost at both training
and inference time, and exert an unfavorable impact to the LLM’s original capa-
bilities. In this work, we propose Activation Beacon, which condenses LLM’s
raw activations into more compact forms such that it can perceive a much longer
context with a limited context window. Activation Beacon is introduced as a plug-
and-play module for the LLM. It fully preserves the LLM’s original capability on
short contexts while extending the new capability on processing longer contexts.
Besides, it works with short sliding windows to process the long context, which
achieves a competitive memory and time efficiency in both training and inference.
Activation Beacon is learned by the auto-regression task conditioned on a mixture
of beacons with diversified condensing ratios. Thanks to such a treatment, it can
be efficiently trained purely with short-sequence data in just 10K steps, which
consumes less than 9 hours on a single 8×A800 GPU machine. The experimental
studies show that Activation Beacon is able to extend Llama-2-7B’s context length
by ×100 times (from 4K to 400K), meanwhile achieving a superior result on both
long-context language modeling and understanding tasks. Our model and code will
be available at the BGE repository3.
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Figure 1: Comparison between Activation Beacon and other context extension methods, including 1)
Position Interpolation [5], 2) NTK-Aware Scaled RoPE [1], 3) LongLlama [32]. Activation Beacon
leads to a better long-context generation quality with a higher running efficiency (memory, time).
The perplexity is measured by sliding windows on PG19 testset [6; 20].
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(A) Activation Condensing with Beacon (B) Beaconed Auto-Regression
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Figure 2: (A) The beacon is used to condense the activations into more compact forms; (B) The
condensed activations are streamingly processed within a short sliding window for auto-regression.

1 Introduction

Large language models (LLMs) need to process long contexts to accomplish many important tasks,
such as retrieval-augmented generation and in-context learning. However, existing LLMs are typically
constrained by fixed context lengths, e.g., 2048 for Llama-1 [29] and 4096 for Llama-2 [30], which is
far from enough to handle some real-world scenarios. Although LLMs can be fine-tuned or retrained
to establish longer context windows [16; 6; 5; 28; 20; 32; 18], it will result in considerable costs at
both training and inference time due to the quadratic computing complexity of self attention. Besides,
the continued training on long-sequence data may compromise the LLM’s general capability on
shorter contexts, which is unfavorable to their practical usability. In light of these challenges, it is
desirable to explore new mechanisms, which can not only realize the cost-effective extension of
context length for the well-pretrained LLMs, but also be compatible with their existing capabilities.

To address the above problem, we propose Activation Beacon for the extension of LLM’s context
length (shown as Figure 2). Our method is inspired by an arguably correct hypothesis that the LLM’s
raw activations are information redundant. As a result, they can be condensed into much more
compact forms with very little information loss. On top of such highly condensed activations, the
LLM will be able to perceive the information from a vast scope of context even with a very short
context window. The above idea shares the common philosophy as sparse attention [8; 3; 38; 12] and
context compression [4; 7; 19; 22; 14]. However, it enjoys substantial advantages over the previous
methods in terms of effectiveness of context extension (esp. quality of long-context generation and
flexibility of supporting diverse context lengths), inference and training efficiency, and compatibility
with the existing LLMs and the basic infrastructure thanks to a series of crucial technical designs.

In our work, the LLM’s raw activations are condensed by the special tokens, known as beacons.
The beacons are dispatched to different positions of the context and used to generate the condensed
activations for each specific interval. For one interval of length L, a team of k beacons are deployed
(L ≫ k), leading to a condensing ratio of α for the raw activations (α = L/k). The beacons
are parameter efficient because they mostly relies on the LLM’s original parameters. Furthermore,
the beacons are learned in a post-hoc manner on top of a fixed LLM. Therefore, they can work
as a plug-and-play component, introducing extended contextual information for the LLM without
adversely affecting its existing capabilities on the short context.

The condensed activations from beacons are streamingly processed by sliding windows. Particularly,
each sliding window is formulated as [bcn1, ... bcnm, xm+1, ... xn], where bcni represents the
beacon generated by the previous windows and x is an ordinary token in the current window. The
size of sliding window is upper-bounded by the maximum context length of the LLM, e.g., 4096
for Llama-2. In this way, the long-sequence data can be processed window-by-window instead of
simultaneously, which significantly benefits the running efficiency at both training and inference time.

Activation Beacon can be learned through the auto-regression task: in each sliding window, the
generation likelihood of one ordinary token xi is maximized based on the beacons and its preced-
ing ordinary tokens, i.e., max p(xi|bcn1, ... bcnm, xm+1... xi−1). Considering that an aggressive
extension of the context length calls for a large condensing ratio, while a moderate extension just
needs a small condensing ratio, we perform random sampling of α during the streaming process.
Consequently, the generation can be conditioned on a mixture of beacons with diversified condensing
ratios, which substantially contributes to the Activation Beacon’s generalization in handling the
extension of different context lengths.
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I. Working Mechanism of Activation Beacon
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Figure 3: The working mechanism of Activation Beacon (I) and the attention scheme of beacons (II).

Activation Beacon is applied to the Llama-2-7B (chat) model, whose maximum context length is 4K.
The training is performed over the mixture of sampled data from RedPajama [10] and LongAlpaca [6]
(all training instances are less than 8K), where it merely takes 10K steps (accomplished less than 9
hours on an 8×A800 GPU machine) to reach a strong performance. Notably, it leads to a superior
quality of language modeling on the extended context lengths, like 8K, 16K, and 32K, whose result
is even better than the finetuned full-attention baselines. It is equally competitive on long context
understanding tasks, such as question answering and few-shot learning. Activation Beacon also shows
the capability to establish super long contexts, as the context length can be remarkably extended to
100K and 400K.

To summarize, Activation Beacon presents an effective, efficient, compatible, and low-cost (training)
method to extend the context length of LLM. It should also be noted that Activation Beacon does not
conflict with other alternatives, such as the fine-tuning and retrieval-based methods [2]. In fact, they
can complement each other for an even longer extension of the LLM’s context.

2 Activation Beacon

2.1 Overview

The LLM generates content by predicting the next token based on its preceding context. Without
loss of generality, the prediction can be expressed as: p(xn|x1, ...xn−1; θ), n ≤ L∗, where θ is the
parameters of LLM and L∗ is the maximum length of LLM. The existing LLMs are still severely
constrained by their maximum context length, which is the major obstacle of utilizing the rich
information of the long-sequence data. However, the above constraint can be conquered by a large
extent if the LLM’s raw activations can be condensed into more compact forms. On top of the highly
condensed activations, the LLM will be able to perceive much more information from a vast scope
even if the maximum length of the context window stays the same.

2.2 Activation Condensing

When predicting the next token xn, the LLM queries the activations within the context window,
i.e. the keys K:n−1 and values V:n−1, for the useful preceding information. As introduced, the raw
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activations are memory consuming and expensive to query, which severely constrain the size of
context window. In our work, we introduce the special tokens, namely the beacon, which condenses
LLM’s raw activations (the blue squares in Figure 3) into more compact ones (the green squares in
Figure 3). Consequently, the same context window can intake more information from the previous
context, which will benefit the prediction of new tokens. Specifically, we divide the entire context into
intervals of length L, where k beacons are dispatched to the end of each interval. In each decoding
layer of the LLM, the input hidden states of beacons (Hb ∈ Rk×D) are transformed to query the
raw KV activations within the interval: {K,V | K ∈ RL×D, V ∈ RL×D}, where the condensed
activations can be produced. Formally,

Qb ← HbW
′
Q, Kb ← HbW

′
K , Vb ← HbW

′
V (1)

A← softmax
(
mask(Qb{K ⊕Kb}T )

)
, Vb ← A{V ⊕ Vb}T , Ob ← VbW

′
O
T
. (2)

The newly generated KV activations for the beacons, i.e., Kb, Vb ∈ Rk×D, which leads to a condens-
ing ratio of α = L/k (k ≪ L). To optimize the condensation’s effect, we explore three attention
schemes of the beacons, i.e. three implementations of mask(·), as shown in Figure 3 II: 1) Segmenta-
tion, where each beacon can attend to an equally segmented sub-interval of the context. 2) Stepwise
expansion, where each beacon can attend to one more sub-interval than its predecessor, and the last
beacon can attend to the entire context. 3) Full coverage, where the entire context can be attended by
all beacons. The three options are of the same computation cost. However, it’s empirically found that
the second option, i.e. the stepwise expansion, leads to the optimal performance.

2.3 Beaconed Auto-Regression

The condensed activations from the beacons together with the raw activations from the ordinary
tokens are streamingly processed with sliding windows. Each sliding window consists of m beacons
from the past context intervals, and the ordinary tokens from the latest context interval. With the
above formulation, the next token can be predicted as:

p(xn|bcn1, ...bcnm, xm+1, ...xn−1; θ, θb). (3)

Both bcn∗ and x∗, are encoded by their relative positions within the sliding window, regardless of their
absolute positions in the entire context. Therefore, it is free from modifying LLM’s original position
encoding scheme. The size of the sliding window is small and is up-bounded by the maximum
context length, i.e., n≪ L∗, which brings forth high efficiency in terms of both memory and time
during training and inference. Nevertheless, it is able to cover α(m− 1) + n past tokens on top of
the sliding window. When using a large condensing ratio (α) and a large amount of beacons (m), the
LLM can access to the information from a broad scope of the context.

2.4 Learning Method

Beacon as a plug-in. Beacon is made up of the following parameters (θb): beacon’s embedding
bcn.embed, and beacon’s layerwise linear projection matrices {W ′

Q,W
′
K ,W ′

V ,W
′
O}l. Beacon reuses

other transformer modules from the LLM, i.e., FFN and LayerNorm, which turns out to be the optimal
trade-off of effectiveness and training cost. As a result, beacon accounts for less than 1/3 of the
LLM’s original size, e.g., 2.1B with the Llama-2-7B (chat) model. Beacon is a plug-and-play module
for the LLM. It is learned while the LLM’s parameters are fixed. Besides, it is only used to condense
the raw activations for the past contexts. Thus, it is able to introduce the long contextual information
for the LLM without affecting the LLM’s existing capabilities on processing the short context.

Auto-Regression. Beacon is trained by auto-regression, where the next token is predicted based
on the condensed activations from beacons and the raw activations from the ordinary tokens. As
mentioned in §2.2, a training instance is partitioned into equal-sized intervals. For each interval of
length L, the following loss is minimized:

min
θb

.−
∑
X

⌈|X|//L⌉∑
j=1

L∑
i=1

log p(xj,i|bcn1, ...bcnmj , xj,1, . . . , xj,i−1; θ, θb). (4)

where xj,i is the i-th token in the j-th interval of X , mj stands for the number of beacons generated
before the jth interval whose value depends on the condensing ratio of each preceding interval (αi).
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Stepwise sampled condensing ratio. The training is performed on short-sequence data, i.e. 1024 <
|X| < 8192, where the majority of training instances are less than 4096 (see Table 1). Therefore, we
are able to achieve a superior training efficiency. To generalize the beacon for longer and diverse
context lengths, e.g., 16K, 32K, and beyond, the auto-regression needs to be conditioned on different
amount of beacons of diversified condensing ratios. For this purpose, we perform stepwise sampling
at each interval where the condensing ratio is randomly chosen from a large scope: αi ∼ [2, 4, 8, ...
128]. This operation will dramatically diversify the condensing ratios and the amount of beacons
where the auto-regression is conditioned.

3 Experiment

Our experiments are performed for the exploration of the following issues. 1) Activation Beacon’s
impact on the long-context generation capabilities (measured by Perplexity). 2) Activation Beacon’s
impact on the long-context utilization capability (reflected by tasks like long document QA and
summarization). 3) Activation Beacon’s impact on efficiency in terms of GPU memory and inference
time. 4) The individual contribution of different technical factors.

3.1 Settings

Implementation. Our method is applied to Llama-2-7B (chat) [30] for empirical studies. It is
trained with a mixture of 80K sampled data from RedPajama [10] and LongAlpaca [6] (70K
from RedPajama and 10K from LongAlpaca, respectively). The sequence length of each sam-
ple is between 1024 and 8192. The statistics of our training data is reported in Table 1.

Length 1K∼2K 2K∼4K 4K∼6K 6K∼8K Total

Count 38K 23K 6K 13K 80K
Portion 47% 29% 8% 16% 100%

Table 1: The length distribution of the training data.
The average length of all training data is 3180.

We use a single 8×A800 GPU machine for train-
ing. The training is performed for 10,000 steps
(one epoch of the whole training data) with a
batch size of 8 and a learning rate of 5e-5 using
the linear scheduler. The length of each context
interval is set to 1024. The condensing ratio is
sampled from {2, 4, 8, 16, 32, 64, 128} during
training. As introduced, Llama’s own parame-
ters are fixed throughout the training process.

Baselines. The following types of baselines are chosen for comparison (all based on the LLaMA-2-7B
(chat) model unless otherwise specified). 1) The basic method, i.e. LLaMA-2-7B (chat) [29] with
4096 context length. 2) The fine-tuning free methods, including Positional Interpolation (PI) [5],
the NTK-Aware Scale ROPE (NTK) [1], and StreamingLLM [36]. 3) The finetuned full-attention
methods, including LongChat-32K [16], LongAlpaca-16K [6], YaRN-128K [20]. 4) The fine-
tuned methods with adapted architectures for long context, including AutoCompressor-6K [7] and
LongLlama [32] (based on CodeLlama [24]). We enable FlashAttention-2 [11] to accelerate self-
attention computation and save GPU usage for all the baselines. At the present time, Activation
Beacon is incompatible with FlashAttention-2 due to its utilization of the customized attention
scheme; thus, we use the scaled dot product attention (sdpa) from PyTorch [17] for acceleration.

3.2 Main Results

3.2.1 Long Context Language Modeling

The experiment on long context language modeling is performed with three datasets: PG19 [22],
Proof-Pile [40], and CodeParrot [31]. Specifically, for PG19, we use its entire test set with 100 books.
For Proof-Pile, we extract the arxiv papers from the test set and sample 100 texts for evaluation. For
CodeParrot, there is not pre-defined test set. Following previous studies [25; 39], we first concatenate
code from the same repository to form long sequences, then we sample 100 sequences for evaluation.
The perplexity is computed with sliding window of size 2048 [21].

The evaluation results are reported in Table 2, where Activation Beacon leads to a superior long
context language modeling performance. First of all, it not only outperforms the Llama-2-7B baseline
but also results in a notably improved performance than the fine-tuning free methods. It should be also
noted that with the extension of context length from 4K to 32K, the language modeling performance
can be gradually improved by Activation Beacon, indicating that the expanded information from the

5



Method PG19 Proof-Pile CodeParrot

4K 16K 32K 100K 4K 16K 32K 100K 4K 16K 32K 100K

Llama-2-7B 9.21 >103 >103 OOM 3.47 >103 >103 OOM 2.55 >103 >103 OOM
PI 9.21 19.5 >102 OOM 3.47 5.94 33.7 OOM 2.55 4.57 29.33 OOM
NTK 9.21 11.5 37.8 OOM 3.47 3.65 7.67 OOM 2.55 2.86 7.68 OOM
StreamingLLM 9.21 9.25 9.24 9.32 3.47 3.51 3.50 3.55 2.55 2.60 2.54 2.56

AutoCompre.-6K 11.8 >102 >103 OOM 4.55 >102 >103 OOM 5.43 >102 >103 OOM
YaRN-128K 6.68 6.44 6.38 OOM 2.70 2.47 2.41 OOM 2.17 2.04 2.00 OOM
LongChat-32K 9.47 8.85 8.81 OOM 3.07 2.70 2.65 OOM 2.36 2.16 2.13 OOM
LongAlpaca-16K 9.96 9.83 >102 OOM 3.82 3.37 >103 OOM 2.81 2.54 >103 OOM
LongLlama 9.06 8.83 OOM OOM 2.61 2.41 OOM OOM 1.95 1.90 OOM OOM

Activation Beacon 9.21 8.54 8.56 8.68 3.47 3.42 3.39 3.35 2.55 2.54 2.53 2.55

Table 2: Sliding window perplexity of different context window extension methods on PG19, Proof-
Pile, and CodeParrot. Activation Beacon successfully extends the context window of Llama-2-7B
model to sequences much longer than ones seen during training.

longer context can be effectively utilized. By comparison, the language modeling performance is
decreased with other fine-tuning free methods. Most of them become ineffective after the context
length goes beyond 32K.

Secondly, Activation Beacon’s performance is comparable to or even better than the finetuned full-
attention methods. This result is remarkable knowing that Activation Beacon runs with a much higher
efficiency (to be analyzed in Section 3.3). Although there are cases where some of the finetuned
full-attention baselines achieve even better performances, their empirical advantages may not be
fully resulted from the introduction of long contextual information. For example, YaRN-128K’s
performance is siginificantly improved over Llama-2-7B at the context length of 4K, and so is the case
with LongChat-32K on Proof-Pile and CodeParrot. It is worth noting that the update of the LLM’s
original parameters are not always favorable because it may not be well generalized to many other
scenarios. By comparison, our method is simply a plug-and-play module where the long contextual
information can be introduced without affecting the LLM’s existing capabilities.

Thirdly, Activation Beacon is able to achieve a much longer extension of the context than the rest of
the methods. Particularly, it maintains a quality generation performance after the context length is
extended to 100K, where most of the baselines become either ineffective or out-of-memory (OOM).
In fact, Activation Beacon is still effective even after the context length is further extended to
400K (see Figure 1), which means a 100× extension of Llama-2-7B’s maximum context length. In
addition, unlike many alternative methods like fine-tuning, Activation Beacon does not require any
long-sequence training data to acquire such a super long context capability.

3.2.2 More Long Context Tasks

Method Single-Doc QA Multi-Doc QA Summarization Few-Shot Code

Llama-2-7B 24.90 22.60 24.70 60.00 48.10
PI 18.98 17.16 25.03 49.43 52.73
NTK 23.21 23.34 24.40 59.29 49.28
StreamingLLM 21.47 22.22 22.20 50.05 48.00

AutoCompressor-6K 13.22 10.61 14.00 15.72 23.62
YaRN-128K 24.03 24.11 19.82 60.00 62.73
LongChat-4K 28.14 21.88 26.59 62.06 52.77
LongChat-32K 31.58 23.50 26.70 64.02 54.10
LongAlpaca-4K 26.81 24.44 26.93 62.92 55.15
LongAlpaca-16K 28.70 28.10 27.80 63.70 56.00
LongLlama 30.12 16.37 24.19 60.31 66.05

Activation Beacon 27.14 28.28 25.15 60.72 57.83

Table 3: Evaluation of different methods on LongBench. Activation Beacon performs on par with the
fine-tuned full-attention baselines.

We further study the five real-world tasks from LongBench [2], including single-doc QA, multi-doc
QA, summarization, few-shot learning, and code completion, where the experiment result on each
task is reported in Table 3. We also evaluate the topic retrieval task [16], whose result is shown in
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Figure 4: The evaluation of topic retrieval accuracy at different context lengths. Activation Beacon
achieves a similar performance as the fine-tuned methods, like LongChat-32K and LongAlpaca-16K.

Figure 4. Similar to our previous observation on long context language modeling, Activation Beacon
leads to a notable improvement over Llama-2-7B and the fine-tuning free baselines. Meanwhile,
it reaches a comparable performance with the finetuned full-attention methods. Because a large
portion of the evaluation samples can be (almost) covered by the 16K or 32K context window, the
finetuned full-attention methods indeed set a high bar for this benchmark. However, knowing that the
fine-tuning operation will change the LLM’s original parameters, it is still interesting to investigate
where does the empirical advantage of the finetuned methods come from. To figure out this problem,
we benchmark the performance of LongChat-32K and LongAlpaca-16K at the context length of
4K, where they use the same information as the Llama-2-7B baseline. Interestingly, both methods
result in a substantial improvement over Llama-2-7B on every task. Especially for summarization,
where both methods are already sufficiently strong at 4K, yet little extra improvements are made
with the further extended context window. By comparison, Activation Beacon inherits Llama-2-7B’s
performance at the context length of 4K, where its performance gain over Llama-2-7B fully comes
from the extended context. In this sense, its impact on introducing long contextual information can
still be no inferior to the ones from the finetuned methods in the corresponding situations.

3.3 Efficiency Analysis

Method GPU Memory (GB) Inference Time (s)
4K 8K 16K 32K 100K 4K 8K 16K 32K 100K

LongChat-32K 18.5 24.2 35.6 58.4 OOM 0.045 0.089 0.191 0.460 OOM
StreamingLLM 19.9 19.9 19.9 19.9 19.9 – – – – –
AutoCompressor-6K 17.7 22.6 32.3 51.7 OOM 0.087 0.134 0.224 0.478 OOM
LongLlama 18.2 21.9 34.2 OOM OOM 0.079 0.190 0.436 OOM OOM

Activation Beacon 20.8 20.3 20.5 20.4 20.3 0.071 0.121 0.237 0.473 1.494

Table 4: Evaluation of inference time and GPU memory usage. Both metrics are measured by the
average value of 100 forward passes (FlashAttention-2 is enabled for LongChat).

Method Time (Hour) Memory (GB)

LongAlpaca-16K 20.8 57.1
Activation Beacon 9.0 55.9

Table 5: Comparison of training time and GPU
memory cost between LongAlpaca-16K (8xA100
GPUs) and Activation Beacon (8xA800 GPUs).

We evaluate the running efficiency at the infer-
ence time in terms of time cost and GPU mem-
ory usage, whose results are reported in Table 4.
Compared with LongChat (full-attention) and
LongLlama, Activation Beacon enjoys a much
smaller GPU memory usage at the long context
lengths. Activation Beacon and StreamingLLM
result in a similar memory cost because both
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methods are based on sliding windows. As for the inference time, Activation Beacon is faster than
LongLlama, but slower than LongChat when the context length is short. This is because Activation
Beacon is streamingly processed while LongChat is fully parallel4. However, Activation Beacon
is able to gradually catch up when the context length gets longer, as its time cost is linear to the
context length. It will ultimately become much faster than the full-attention methods if the context
length is extended long enough. Finally, we also compare our training cost with LongAlpaca, which
is featured for its high training efficiency (shown in Table 5). Under a similar hardware condition
(8×A800 GPUs vs. 8×A100 GPUs), the training of Activation Beacon can be accomplished in just 9
hours, which is even faster than the reported time cost of LongAlpaca-16K with S2-attn5.

3.4 Ablation Studies

Factor Setting PG19 Single-Doc QA8K 16K 32K

Attention Scheme
Segmentation 8.72 8.67 8.65 21.30
Full coverage 8.66 8.63 8.66 25.59
Stepwise expansion* 8.55 8.54 8.56 27.14

Condensing Ratio
Monotonous (α = 4) 8.53 8.56 > 102 17.85
Instance-wise sampling 8.73 8.68 8.67 22.76
Step-wise sampling* 8.55 8.54 8.56 27.14

Data Composition RedPajama only 8.54 8.54 8.55 24.02
RedPajama+LongAlpaca* 8.55 8.54 8.56 27.14

Table 6: The impact of different technical factors, including the attention schemes of beacons, the
condensing ratio, and the composition of training data. The default setting marked by *.

We perform ablation studies to evaluate the impact from different technical factors, including the
attention scheme of beacons (2.2), the sampling strategy of condensing ratio (2.4), and the composition
of training data. The experiment results are shown in Table 6.

First of all, We can find that the attention scheme exerts a substantial impact to Activation Beacon’s
performances on both long-context language modeling (PG19) and long context understanding
(Single-Doc QA). The stepwise expansion works with the gradually expanded attention scope.
Therefore, it enables the beacons to acquire different levels of local and global visibility of each
context interval, which notably improves the empirical performance over the other two options.

Secondly, the sampling of condensing ratio is another influential factor. In this place, we compare
two alternative strategies. The instance-wise option samples one condensing ratio for all context
intervals of each training instance X (from the same scope as the step-wise method, i.e. [2, 4, 8,
16, 32, 64, 128]). While the monotonous option makes use of one constant condensing ratio of 4
(which can support a up-to 16K context length). We can observe that the step-wise sampling strategy,
which introduces the most diversified condensing ratios for auto-regression, results in the strongest
empirical performance for every evaluated context length.

Thirdly, we can also observe that only using RedPajama as the training data already leads to a
competitive performance on both evaluation tasks. The introduction of more training data from
LongAlpica contributes little to the language modeling task. However, it substantially improves the
long context understanding performance on Single-Doc QA.

4 Related Works

We discuss the following research works which are devoted to the extension of LLM’s context length.

First of all, a large body of methods have been proposed to increase the size of LLM’s context window.
For example, ALiBi [21] leverages linear-decaying attention biases to achieve the extrapolation of

4StreamingLLM is extremely slow due to its current stepwise implementation. However, it should be able to
achieve a similar time efficiency as Activation Beacon with improved implementation in the future.

5https://openreview.net/forum?id=6PmJoRfdaK
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position encoding. Similarly, methods like Position Interpolation [5], NTK-Aware scaling [1] and
ReRoPE [26] make progresses on top of RoPE [27], which enables the LLM to handle unseen
positions at the inference time. Although such methods can be directly applied to the well-trained
LLM, it is usually helpful to perform continual fine-tuning such that the extended context can be
better utilized [20]. The fine-tuning with long-sequence data is expensive. Therefore, people have
investigated several new methods to reduce the training cost. For example, LongLora [6] proposes
S2-Attn and leverages LoRA for the cost-effective training; while PoSE [41] uses skip-wise position
indices to train LLMs on 2K context length as a simulation of 128K. However, the fine-tuning
operation will still be extremely expensive if super long context is presented. The fine-tuned LLM
still relies on full-attention, where the inference cost will be also unaffordable even with acceleration
techniques, like FlashAttention [11]. Finally, the fine-tuning operation may impair the LLM’s existing
capacity on short contexts [20]. By comparison, our method serves as a drop-in module which is fully
compatible with the existing LLM. Besides, it also enjoys much higher efficiency at both training and
inference time.

The quadratic complexity of self attention is a major bottleneck to achieve long contexts using
transformers. Therefore, many previous works aim to address this problem by using sparse attention
[8; 3; 38; 12] or approximate attention computation [15; 33; 9; 23]. However, there are threefold
challenges about these methods as analyzed in [36]: the requirement of customized GPU kernels for
specific variants of matrix-matrix multiplication, the dependency on global attention patterns which
are unsuitable for autoregressive language models, and the incompatibility with the well-pretrained
models. In contrast, our method is free from the above constraints, which can work as a drop-in
component for the extension of the LLM’s context.

Another line of research seeks to offload the long context to external memory devices and retrieve the
useful part from it as the working context. The retrieved data can be either the chunked input [37; 39]
or the cached KV activations, e.g., Memorizing Transformers [35] and LongMem [34]. The similar
idea has been further extended by many recent works. For example, Landmark Attention [18] uses a
special token to represent a chunk of activations, which enables more efficient computation of retrieval.
Focused Transformers [32] proposes to use contrastive training which improves the discrimination of
relevant keys from the cached data. The retrieval-based methods share a similar spirit as our method
in the sense of condensing the context, but tackle the problems from a different perspective.

Finally, it is also plausible to introduce long contexts on top of sliding windows. For example,
StreamingLLM [36] and LM-Infinite [13] are able to achieve an infinite context by only maintaining
the activations for the very first and the latest tokens. However, they are not able to leverage the rich
information within the long context because the portion beyond the sliding window will be ignored.
Although some other works make use of the summarized or compressed memory to mitigate such a
problem [4; 7; 19; 22; 14], it will still incur a substantial loss of long-contextual information given
the existing memorization mechanisms. By comparison, our method enjoys both the high running
efficiency because of its streaming mechanism and the high effectiveness of utilizing the long context
thanks to its high-quality condensing of the activations.

5 Conclusion

In this work, we introduce Activation Beacon for the extension of LLM’s context length. Activation
Beacon condenses the LLM’s raw activations into more compact forms, enabling the LLM to perceive
a vast context with a limited context window. As a plug-and-play component for the LLM, it brings in
long contextual information while fully preserving the LLM’s existing capabilities on short contexts.
When dealing with long-sequence data, it resorts to sliding windows for streaming processing, which
leads to a superior working efficiency at both inference and training time. With the diversely sampled
condensing ratios, it can be effectively learned to support the extensions for a wide scope of context
lengths based on short-sequence training data. The experimental study verifies Activation Beacon as
an effective, efficient, compatible, low-cost (training) method to extend the context length of LLM.
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