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Abstract

Pre-trained language models have been re-001
cently shown to benefit task-oriented dialogue002
(TOD) systems. Despite their success, exist-003
ing methods often formulate this task as a cas-004
caded generation problem which can lead to005
error accumulation across different sub-tasks006
and greater data annotation overhead. In this007
study, we present PPTOD, a unified plug-and-008
play model for task-oriented dialogue. In ad-009
dition, we introduce a new dialogue multi-task010
pre-training strategy that allows the model to011
learn the primary TOD task completion skills012
from heterogeneous dialog corpora. We ex-013
tensively test our model on three benchmark014
TOD tasks, including end-to-end dialogue015
modelling, dialogue state tracking, and intent016
classification. Experimental results show that017
PPTOD achieves new state of the art on all018
evaluated tasks in both high-resource and low-019
resource scenarios. Furthermore, comparisons020
against previous SOTA methods show that the021
responses generated by PPTOD are more fac-022
tually correct and semantically coherent as023
judged by human annotators. 1024

1 Introduction025

Task-oriented dialogue is often decomposed into026

three sub-tasks: (1) dialogue state tracking (DST)027

for tracking user’s belief state; (2) dialogue policy028

learning (POL) for deciding which system action029

to take; (3) natural language generation (NLG) for030

generating dialogue response (Young et al., 2013).031

Traditional approaches (Smith and Hipp, 1995;032

Young et al., 2013) adopt a modularized pipeline033

that addresses different sub-tasks with distinct ded-034

icated modules. In contrast, recent systems (Wen035

et al., 2017; Eric et al., 2017; Lei et al., 2018; Shu036

et al., 2019) integrate all functionalities required037

to hold a dialogue into neural network models.038

With the advances in pre-trained language mod-039

els (PLMs) (Radford et al., 2019; Devlin et al.,040

1All code and models will be released upon publication.

2019; Raffel et al., 2020), different systems based 041

on PLMs have been proposed (Hosseini-Asl et al., 042

2020; Lin et al., 2020; Peng et al., 2021; Liu et al., 043

2021). Despite their differences, most existing 044

methods formulate task-oriented dialogue as a cas- 045

caded generation problem, that is, the model can 046

only solve latter sub-tasks by conditioning on the 047

outputs of previous ones. For instance, to generate 048

the response (NLG), the model must rely on the 049

outputs of previous sub-tasks (i.e., DST and POL). 050

While impressive results are reported (Hosseini- 051

Asl et al., 2020; Peng et al., 2021), we identify 052

three major limitations in the cascaded formulation 053

of their system design. (1) Firstly, as the model 054

solves all sub-tasks in a sequential order, the errors 055

accumulated from previous steps are propagated to 056

latter steps (Li et al., 2017; Liu and Lane, 2018). (2) 057

Secondly, the training data must be annotated for 058

all sub-tasks. Such annotation requirement signifi- 059

cantly increases the data curation overhead. More 060

importantly, it precludes the model from using the 061

large amount of existing data that is partially anno- 062

tated (e.g., data only annotated with DST or NLG). 063

(3) Thirdly, the results of different sub-tasks must 064

be generated in a cascaded order which inevitably 065

increases the system inference latency. 066

In this study, we propose a novel Plug-and-Play 067

Task-Oriented Dialogue (PPTOD) system. Figure 068

1 depicts an illustration of our approach. As seen, 069

we integrate different dialogue modules (e.g. DST, 070

POL, and NLG) into a unified model. Motivated 071

by the concept of in-context learning (Brown et al., 072

2020), to steer the model to solve different TOD 073

sub-task, we plug a task-specific natural language 074

instruction, termed as prompt, into the dialogue 075

context as the model input. This way, the genera- 076

tions of different sub-tasks are decoupled, leading 077

to a greater flexibility of the model that brings us at 078

least two advantages: (1) As different sub-tasks are 079

solved separately, the model can learn from data 080

that is partially annotated for different sub-tasks 081
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Figure 1: Overview: In the dialogue multi-task pre-training stage, we pre-train our model with four TOD-related
tasks, including natural language understanding (NLU), dialogue state tracking (DST), dialogue policy learning
(POL), and natural language generation (NLG). For each task, the model takes the dialogue context and the task-
specific prompt as input and learns to generate the corresponding target text. Our learning framework allows us to
train the model with partially annotated data across a diverse set of tasks. (best viewed in color)

(e.g., DST and NLG). (2) The outputs of different082

sub-tasks are generated in parallel which alleviates083

the problem of error accumulation and reduces the084

system inference latency.085

Inspired by recent success of dialogue language086

model pre-training (Zhang et al., 2020c; Wu et al.,087

2020; Peng et al., 2021), we propose a dialogue088

multi-task pre-training strategy that equips our089

model with the primary TOD task completion skills.090

Specifically, initialized with T5 (Raffel et al., 2020),091

we pre-train our model on a heterogeneous set of092

dialog corpora that consist of partially-annotated093

data. To build the pre-training corpora, we collect094

and combine eleven human-written multi-turn dia-095

logue corpora. The collected datasets are partially096

annotated for some of the TOD-related tasks, in-097

cluding natural language understanding (NLU), di-098

alogue state tracking (DST), dialogue policy learn-099

ing (POL), and natural language generation (NLG).100

In total, the pre-training corpora contain over 2.3M101

utterances across over 80 domains (see more de-102

tails in Table 1). When applying the pre-trained103

PPTOD to a new task, we fine-tune it using the104

same learning objective as in the pre-training stage.105

We evaluate PPTOD on a wide range of bench-106

mark TOD tasks, including end-to-end dialogue107

modelling, dialogue state tracking, and intent classi-108

fication. Comparisons against previous state-of-the-109

art approaches show that PPTOD achieves better110

performance in both full-training and low-resource111

settings as judged by automatic and human evalua-112

tions. In summary, our contributions are:113

• A novel model, PPTOD, that effectively lever-114

ages pre-trained language models for task-115

oriented dialogue tasks. 116

• A new dialogue multi-task pre-training strat- 117

egy that augments the model’s ability with 118

heterogeneous dialogue corpora. 119

• Extensive evaluations on three benchmark 120

TOD tasks reporting state-of-the-art results in 121

both full-training and low-resource settings. 122

• In-depth analysis that further reveals the mer- 123

its of our model design and the proposed 124

multi-task pre-training strategy. 125

2 Related Work 126

Task-Oriented Dialogue. Task-oriented dia- 127

logue aims at accomplishing user’s goal. Tradi- 128

tional systems (Williams and Young, 2007; Young 129

et al., 2013) adopt a pipelined approach that re- 130

quires dialogue state tracking for understanding 131

user’s goal, dialogue policy learning for deciding 132

which system action to take, and natural language 133

generation for generating dialogue responses. 134

Recently, to simplify the modelling effort, re- 135

searchers have shifted their attention to building 136

neural network models that address the TOD sub- 137

tasks (Wen et al., 2017; Eric et al., 2017; Lei et al., 138

2018; Liang et al., 2020). With the advances in pre- 139

trained language models (PLMs), Budzianowski 140

and Vulić (2019) first applied the GPT-2 model for 141

the NLG task. Lin et al. (2020) and Yang et al. 142

(2021) moved one step forward and utilized pre- 143

trained language models to solve all TOD sub-tasks 144

conditioned on the history of oracle belief states. 145

Based on the GPT-2 model, Hosseini-Asl et al. 146
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(2020) proposed a cascaded model, SimpleTOD,147

that addresses all TOD sub-tasks without using the148

oracle information. To improve the system perfor-149

mance, Peng et al. (2021) and Liu et al. (2021) ap-150

plied dialogue pre-training over external dialogue151

corpora. However, both methods require the pre-152

training data to be fully annotated for all TOD153

sub-tasks (i.e., DST, POL, and NLG) which greatly154

limits the amount of data they can use. Addition-155

ally, Liu et al. (2021) achieved better results with156

noisy chanel model that requires two additional157

language models for outputs re-scoring. Unlike158

their approach, we address the task of task-oriented159

dialogue with a single unified model.160

Language Model Pre-training. The research161

community has witnessed remarkable progress of162

pre-training methods in a wide range of NLP tasks,163

including language understanding (Peters et al.,164

2018; Devlin et al., 2019; Liu et al., 2019; Yang165

et al., 2019) and text generation (Radford et al.,166

2019; Lewis et al., 2020; Raffel et al., 2020).167

In the dialogue domain, many models are pre-168

trained on open-domain conversational data like169

Reddit. Based on GPT-2, Transfertransfo (Wolf170

et al., 2019b) achieves good results on ConvAI-2171

competition. As another extension of GPT-2, Di-172

aloGPT (Zhang et al., 2020c) performs well in gen-173

erating open-domain dialogue response. ConveRT174

(Henderson et al., 2020) is a language model with175

dual-encoder built for the task of response selection.176

PLATO (Bao et al., 2020) pre-trains a model with177

discrete latent variable structure for the response178

generation task. Wu et al. (2020) adapts BERT179

with TOD pre-training and achieves strong perfor-180

mances on four dialogue understanding tasks.181

Pre-training on Supplementary Data. Recent182

work (Phang et al., 2018; Aghajanyan et al., 2021)183

found that supplementary training on the tasks184

with intermediate-labelled data improves the perfor-185

mance of the fine-tuned models on GLUE natural186

language understanding benchmark (Wang et al.,187

2018). Our work studies a similar supplementary188

training setup with intermediate-labelled data for189

task-oriented dialogue systems. Unlike previous190

work, we use a single multi-task model for all rele-191

vant sub-tasks in task-oriented dialogue systems.192

3 Methodology193

In this section, we first discuss the datasets and194

learning objective used in the proposed dialogue195

Dataset Data Annotation Utter. Dom.
NLU DST POL NLG

MetaLWOZ × × × X 822,932 47
SNIPS X × × × 25,682 9
CLINC X × × × 45,000 10
ATIS X × × × 10,772 1

KVRET × X × X 31,504 3
WOZ × X × X 15,248 1

CamRest676 × X × X 10,976 1
MSR-E2E × X X X 72,238 3

Frames × X X X 38,316 1
TaskMaster × X X X 540,688 6

Schema-Guided × X X X 757,380 17

Table 1: The summary of data annotations and number
of utterances (Utter.) as well as domains (Dom.) for
all pre-training corpora. All datasets are partially an-
notated for some of the TOD-related tasks, including
natural language understanding (NLU), dialogue state
tracking (DST), dialogue policy learning (POL), and
natural language generation (NLG).

multi-task pre-training. Then we introduce how to 196

apply the pre-trained PPTOD for a new task. 197

3.1 Pre-training Datasets 198

To construct the pre-training corpus, we collect 199

eleven human-written multi-turn task-oriented di- 200

alogue corpora, including MetaLWOZ (Lee et al., 201

2019b), SNIPS (Coucke et al., 2018), CLINC (Lar- 202

son et al., 2019), ATIS (Amin, 2019), KVRET (Eric 203

et al., 2017), WOZ (Mrkšić et al., 2017), MSR- 204

E2E (Li et al., 2018), Frames (El Asri et al., 2017), 205

TaskMaster (Byrne et al., 2019), and Schema- 206

Guided (Rastogi et al., 2020). In total, there are 207

over 2.3M utterances across 80 domains. In Table 208

1, we provide the details of data annotations and 209

utterance/domain statistics of all datasets.2 210

3.2 Dialogue Multi-Task Pre-training 211

Motivated by previous work (McCann et al., 2018; 212

Keskar et al., 2019; Raffel et al., 2020) that unify 213

multiple NLP tasks into a common format, we 214

cast all TOD-related tasks that we consider into 215

the same plug-and-play text generation problem. 216

To specify the target task, we plug a task-specific 217

prompt into the dialogue context as the model input. 218

Figure 1 depicts an illustration of our approach. 219

In the multi-task pre-training stage, each training 220

sample is represented as: 221

d = (zt, x, y), (1) 222

where t denotes the TOD task that the sample d be- 223

longs to, and t ∈ {NLU,DST,POL,NLG}. zt is 224

2More dataset descriptions are provided in Appendix A.
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Algorithm 1: Dialogue Multi-Task Pre-Training

Input :Dataset D = {(zt, x, y)i}|D|
i=1; model trainer

T that takes batches of training data as input
to optimize the model parameters Θ;
maximum number of epochs emax;

1 for epoch e = 1, ..., emax do
2 Shuffle D by mixing data from different tasks;

for B in D do
3 Invoke trainer T , using one batch of training

data B = {(zt, x, y)k}|B|
k=1 as input to

optimize the model using LΘ (Eq. (2)).
4 end
5 end

Output :Trained Model Θ

the task-specific prompt of the form “translate225

dialogue to A:”, with A corresponding to226

“user intent”, “belief state”, “dialogue act”, and227

“system response” for the tasks of NLU, DST, POL,228

and NLG, respectively. x denotes the input dia-229

logue context which is a concatenation of all previ-230

ous utterances in the dialogue - both system’s and231

user’s. And y denotes the target output text.232

As an example presented in Figure 1, to perform233

the user intent classification task (i.e., NLU), the234

model is fed with the sequence “translate dialogue235

to user intent: [user] Tell me the weather forecast236

for Lecanto, Georgia.” and is trained to generate237

the user intent label text “[get_weather]”.238

Learning. The model is trained with a maximum239

likelihood objective. Given the training sample240

d = (zt, x, y), the objective LΘ is defined as241

LΘ = −
|y|∑
i=1

logPΘ(yi|y<i; zt, x), (2)242

where Θ is the model parameters.243

In the multi-task pre-training stage, the model244

is trained to perform all TOD-related tasks with245

data annotated for different tasks. To optimize246

the model parameters Θ, we use mini-batch based247

optimization approach as shown in Algorithm 1.248

3.3 Fine-Tuning to a New Task249

When applying the pre-trained PPTOD to a new250

downstream task with task-specific labelled data,251

we use the same learning objective Eq. (2) as in252

the dialogue multi-task pre-training stage.253

3.4 Implementation Details254

In this work, we report results of PPTOD with255

three model sizes: PPTODsmall, PPTODbase, and256

PPTODlarge. These three models are initialized257

with T5-small, T5-base, and T5-large models (Raf- 258

fel et al., 2020) that contain ∼60M, ∼220M, and 259

∼770M parameters, respectively. We pre-train the 260

model with different configurations on our col- 261

lected pre-training corpora for 10 epochs. The 262

training samples are truncated to ensure a maximal 263

length of 1024. The models are trained using Adam 264

optimizer (Kingma and Ba, 2015) with a learning 265

rate of 5e-5 and a batch size of 128. Our implemen- 266

tation is based on the Huggingface Library (Wolf 267

et al., 2019a). 268

4 Experiments 269

We test PPTOD on three benchmark TOD tasks: 270

(1) end-to-end dialogue modelling; (2) dialogue 271

state tracking; and (3) user intent classification. 272

4.1 End-to-End Dialogue Modelling 273

End-to-end dialogue modelling aims at evaluating 274

the model in the most realistic, fully end-to-end set- 275

ting, where the generated dialogue states are used 276

for the database search and response generation 277

(Zhang et al., 2020b; Hosseini-Asl et al., 2020). 278

4.1.1 Dataset and Evaluation Metric 279

We conduct experiments on the benchmark Multi- 280

WOZ 2.0 (Budzianowski et al., 2018) and 2.1 (Eric 281

et al., 2020) datasets.3 In MultiWOZ, the genera- 282

tion of response is not only related to the dialogue 283

context, but also grounded on the database (DB) 284

state. The DB state is automatically retrieved from 285

a pre-defined database using the generated dialogue 286

state (DST). Following previous studies, during in- 287

ference, PPTOD first predicts the DST result to 288

retrieve the DB state. Then, based on the retrieved 289

DB state and the dialogue context, the results of 290

POL and NLG are generated in parallel. In Sec- 291

tion 5, we further compare the performance of our 292

model with or without using the DB state as input. 293

For evaluation, we follow the original Multi- 294

WOZ guidance for all individual metrics: Inform, 295

Success, and BLEU (Papineni et al., 2002). An 296

overall measurement, i.e., combined score (Mehri 297

et al., 2019), is also reported which is defined as 298

Combined = (Inform + Success) × 0.5 + BLEU. 299

4.1.2 Baselines 300

We compare PPTOD with several strong base- 301

lines, including Sequicity (Lei et al., 2018), MD- 302

Sequicity (Zhang et al., 2020b), DAMD (Zhang 303

3Note that, there is no overlap between the MultiWOZ dataset
and our dialogue pre-training corpora.
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Model MultiWOZ 2.0 MultiWOZ 2.1

Inform Success BLEU Combined Score Inform Success BLEU Combined Score
Sequicity 66.41 45.32 15.54 71.41 - - - -

MD-Sequicity 75.72 58.32 15.40 82.40 - - - -
DAMD 76.33 60.40 16.60 84.97
MinTL† 84.88 74.91 17.89 97.78 - - - -

HIER-Joint 80.50 71.70 19.74 95.84 - - - -
SOLOIST 85.50 72.90 16.54 95.74 - - - -

TOP§ 85.20 72.90 17.00 96.05 - - - -
TOP+NOD§ 86.90 76.20 20.58 102.13 - - - -
LABES-S2S - - - - 78.07 67.06 18.13 90.69
UBAR†, ‡ 85.10 71.02 16.21 94.27 86.20 70.32 16.48 94.74

SimpleTOD 84.40 70.10 15.01 92.26 85.00 70.50 15.23 92.98
PPTODsmall 87.80 75.30 19.89 101.44 88.89 76.98 18.59 101.52
PPTODbase 89.20 79.40 18.62 102.92 87.09 79.08 19.17 102.26
PPTODlarge 82.60 74.10 19.21 97.56 86.43 74.35 17.89 98.28

Table 2: End-to-end evaluation. †: the models require the history of oracle dialogue states when making predictions
at current turn. ‡: UBAR scores are acquired with the author-released models. §: as the authors did not release
their code, we cite the results of TOP and TOP+NOD on MultiWOZ 2.0 from the original paper (Liu et al., 2021).

Model 1% of training data 5% of training data 10% of training data 20% of training data

Inform Succ. BLEU Comb. Inform Succ. BLEU Comb. Inform Succ. BLEU Comb. Inform Succ. BLEU Comb.
MD-Sequicity‡ - - - - 49.40 19.70 10.30 44.85 58.10 34.70 11.40 57.80 64.40 42.10 13.00 66.25

DAMD† 34.40 9.10 8.10 29.85 52.50 31.80 11.60 53.75 55.30 30.30 13.00 55.80 62.60 44.10 14.90 68.25
SOLOIST† 58.40 35.30 10.58 57.43 69.30 52.30 11.80 72.60 69.90 51.90 14.60 75.50 74.00 60.10 15.25 82.29

MinTL‡ - - - - 75.48 60.96 13.98 82.20 78.08 66.87 15.46 87.94 82.48 68.57 13.00 88.53
PPTODsmall 66.96 50.90 12.51 71.44 76.58 61.60 15.35 84.44 83.50 68.18 15.56 91.01 82.96 69.90 17.02 93.45
PPTODbase 74.42 52.44 12.99 76.41 79.86 63.48 14.89 86.55 84.42 68.36 15.57 91.96 84.94 71.70 17.01 95.32
PPTODlarge 64.38 51.94 11.84 70.01 75.20 61.94 14.17 82.54 80.64 66.74 15.25 88.94 81.74 72.18 15.13 92.09

Table 3: Low-resource evaluation on MultiWOZ 2.0, where Succ. and Comb. denote the Success and Combined
Score metrics, respectively. ‡ and † results are cited from Lin et al. (2020) and Peng et al. (2021).

et al., 2020b), MinTL (Lin et al., 2020), HIER-304

Joint (Santra et al., 2021), LABES-S2S (Zhang305

et al., 2020a), SimpleTOD (Hosseini-Asl et al.,306

2020), UBAR (Yang et al., 2021), and SOLOIST307

(Peng et al., 2021), TOP and TOP+Noisy Online308

Decoding (TOP+NOD) (Liu et al., 2021).309

4.1.3 Full Training Evaluation310

Table 2 shows the main results. On both Multi-311

WOZ 2.0 and 2.1 datasets, PPTOD performs better312

than previous SOTA methods on seven out of eight313

metrics. In particular, it is worth mentioning that314

our model is a single architecture that does not re-315

quire additional language models for re-ranking the316

outputs as in TOP+NOD (Liu et al., 2021).317

4.1.4 Low-Resource Evaluation318

To investigate the generalization ability of PPTOD,319

we evaluate it in a more challenging low-resource320

scenario. Following previous studies, we train our321

model on MultiWOZ 2.0 by varying the percent-322

age of training data, ranging from 1% (∼80 sam-323

ples) to 20% (∼1600 samples). We compare our324

model with several strong baselines, including MD-325

Sequicity, DAMD, SOLOIST, and MinTL.4 326

In each low-resource setting, we train our model 327

five times with different random seeds and different 328

selection of training data. The average scores over 329

five runs are presented in Table 3.5 As seen, PP- 330

TOD consistently outperforms all baseline models 331

by a large margin. Notably, our performance gain is 332

even larger when fewer samples are used for train- 333

ing. This indicates that PPTOD better leverages 334

the prior knowledge from pre-training therefore 335

achieving better results in the extreme low-resource 336

settings. Furthermore, with 20% of training data, 337

PPTOD can achieve results that are comparable 338

to the scores of systems like SOLOIST that are 339

trained with full dataset as reported in Table 2. 340

4.2 Dialogue State Tracking 341

Next, we evaluate PPTOD for the dialogue state 342

tracking task. The experiments are conducted on 343

the benchmark MultiWOZ 2.0 (Budzianowski et al., 344

2018) and 2.1 (Eric et al., 2020) datasets. For eval- 345

uation, the joint goal accuracy is reported. 346

4We did not compare results with TOP+NOD (Liu et al., 2021)
since the authors did not release their code and models.

5Detailed numerical results can be found in Appendix B.
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Model MWOZ Joint Acc.(%)

2.0 2.1
Classification-based Approaches

GLAD (Zhong et al., 2018) 35.57 -
GCE (Nouri and Hosseini-Asl, 2018) 36.27 -

FJST (Eric et al., 2020) 40.20 38.00
SUMBT (Lee et al., 2019a) 46.65 -

TOD-BERT (Wu et al., 2020) - 48.00
DS-Picklist (Zhang et al., 2019) † 54.39 53.30

SST (Chen et al., 2020) † 51.17 55.23
TripPy (Heck et al., 2020) - 55.29

CHAN (Shan et al., 2020) † 52.68 58.55
FPDSC-turn (Zhou et al., 2021) † 55.03 57.88
FPDSC-dual (Zhou et al., 2021) † 53.17 59.07

Generation-based Approaches
Neural Reading (Gao et al., 2019) 41.10 -

TRADE (Wu et al., 2019) 48.62 46.00
COMER (Ren et al., 2019) 48.79 -

DSTQA (Zhou and Small, 2019) † 51.44 51.17
SOM-DST (Kim et al., 2020) 51.38 52.57

LABES-S2S (Zhang et al., 2020a) - 51.45
MinTL (Lin et al., 2020) 52.10 53.62

SimpleTOD (Hosseini-Asl et al., 2020) - 55.76
Seq2seq-DU (Feng et al., 2021) - 56.10

UBAR (Yang et al., 2021) 52.59 56.20
SOLOIST (Peng et al., 2021) 53.20 56.85

PPTODsmall 51.50 56.47
PPTODbase 53.37 57.10
PPTODlarge 53.89 57.45

Table 4: DST results. †: the models require a full pre-
defined ontology for all possible domain-slot pairs.

4.2.1 Full Training Evaluation347

We compare PPTOD with a wide range of ex-348

isting methods that can be categorized into two349

classes: (1) classification-based approaches and350

(2) generation-based approaches. Table 4 shows351

the DST results. Compared to other generation-352

based approaches, PPTODlarge obtains the highest353

accuracy on both datasets. The performance of354

our model is lower than the SOTA classification-355

based approaches. However, these methods operate356

on a fixed ontology and perform prediction over357

a pre-defined set of slot-value pairs (Zhang et al.,358

2019; Chen et al., 2020; Shan et al., 2020; Zhou359

et al., 2021). This idea of fixed ontology is not360

scalable, as in real world applications, the ontology361

is subject to constant change (Heck et al., 2020).362

In contrast, PPTOD directly generates the outputs,363

making it more adaptive and generalizable to new364

ontology labels in real world applications.365

4.2.2 Low-Resource Evaluation366

To investigate how well PPTOD performs with367

limited training samples on the downstream task,368

we evaluate it in a simulated low-resource setting.369

Specifically, we train the model on MultiWOZ 2.0370

Model Training Size (%)

1 5 10 20
SimpleTOD 7.91±1.07 16.14±1.48 22.37±1.17 31.22±2.32

MinTL 9.25±2.33 21.28±1.94 30.32±2.14 35.96±1.25
SOLOIST 13.21±1.97 26.53±1.62 32.42±1.13 38.68±0.98

PPTODsmall 27.85±0.77 39.07±0.85 42.36±0.29 45.98±0.38
PPTODbase 29.72±0.61 40.20±0.39 43.45±0.64 46.96±0.40
PPTODlarge 31.46±0.41 43.61±0.42 45.96±0.66 48.95±0.13

Table 5: Low-resource DST Evaluation: The means
and standard deviations over five runs are reported.

by varying the percentage of training data (i.e., 1%, 371

5%, 10%, and 20%). We compare PPTOD with 372

three strong generation-based baselines, including 373

SimpleTOD, MinTL, and SOLOIST, using the offi- 374

cial code released by the authors. 375

Table 5 shows the experimental results. As seen, 376

in all settings, PPTOD outperforms other baselines 377

by a large margin. In the extreme scenario, with 378

only 1% of training data, PPTOD surpasses the 379

strongest SOLOIST model by 18 points of accu- 380

racy. This demonstrates that our model is more 381

generalizable and can be better applied to new tasks 382

where the amount of training data is limited. 383

4.3 Intent Classification 384

The goal of intent classification, i.e., NLU, is to 385

classify the user’s intent based on the user’s utter- 386

ance. We conduct experiments on the benchmark 387

Banking77 dataset (Casanueva et al., 2020) that 388

contains data with 77 different intents. Following 389

previous studies (Casanueva et al., 2020; Peng et al., 390

2021), we test our model in both full training and 391

low-resource settings. In the low-resource setting, 392

we vary the number of training samples per intent 393

from 10 to 30. The standard classification accuracy 394

is reported for evaluation. 395

We compare PPTOD with several strong 396

baselines, including BERT-Fixed, BERT-Tuned, 397

USE+ConveRT (Casanueva et al., 2020), USE 398

(Yang et al., 2020), ConveRT (Henderson et al., 399

2020), and SOLOIST (Peng et al., 2021). It is 400

worth mentioning that all compared baselines are 401

classification-based approach that uses classifier 402

with a softmax layer to make the prediction over 403

the pre-defined intent set. In contrast, as described 404

in section §3.2, PPTOD solves the classification 405

task as a generation problem by directly generating 406

the text of intent label. Therefore, when adapting to 407

a new classification task, PPTOD is more flexible 408

and no extra model parameters are required. 409

In the experiments, we train PPTOD for five runs 410

with different selection of training data and random 411
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Model Generation Mode DB End-to-End Dialogue Modelling Inference Measurement

Inform↑ Success↑ BLEU↑ Combined Score↑ Latency (ms)↓ Speedup↑
SOLOIST Cascaded X 85.50 72.90 16.54 95.74 208.69 1.00×

MinTL Cascaded X 84.88 74.91 17.89 97.78 78.82 2.65×

T5-small
Cascaded

× 83.60 71.20 18.09 95.49 38.70 5.39×
X 84.10 73.70 18.03 96.93 39.78 5.25×

Plug-and-Play
× 84.70 72.80 18.52 97.27 14.17 14.73×
X 85.10 75.10 17.82 97.92 19.52 10.69×

Table 6: Comparison between plug-and-play and cascaded generation. ↑: higher is better and ↓: lower is better.

Model # of Training Samples

10 30 full
BERT-Fixed† 67.55 80.07 87.19
BERT-Tuned† 83.42 90.03 93.66

USE† 84.23 89.74 92.81
ConveRT† 83.32 89.37 93.01

USE+ConveRT† 85.19 90.57 93.36
SOLOIST‡ 78.73 89.28 93.80
PPTODsmall 78.87±0.36 87.88±0.26 93.27±0.39
PPTODbase 82.81±0.45 89.64±0.28 93.86±0.22
PPTODlarge 84.12±0.23 90.64±0.29 94.08±0.15

Table 7: Results on Banking77 dataset. † and ‡ are cited
from Casanueva et al. (2020) and Peng et al. (2021).

seeds. The average scores and standard deviations412

are reported in Table 7. We see that PPTOD is com-413

parable with existing methods. On low-resource-30414

and full training settings, PPTODlarge achieves the415

best results. Our performance gains are even more416

remarkable given that PPTOD requires no extra417

parameters when solving the classification task.418

5 Further Analysis419

In this section, we present further discussions and420

empirical analyses of the proposed model.421

5.1 Plug-and-Play vs Cascaded Generation422

First, we compare our plug-and-play generation423

with the cascaded generation that is adopted by424

most existing studies. To this end, we fine-tune a425

T5-small model (without dialogue multi-task pre-426

training) on MultiWOZ 2.0 by either using the plug-427

and-play or the cascaded formulation. Moreover,428

we also examine the effect of DB state on the model429

performance. Specifically, for the plug-and-play430

model, when utilizing DB state, it first predicts the431

dialogue state (DST) to retrieve the DB state from432

the pre-defined database. Then, based on the DB433

state and dialogue context, the output of POL and434

NLG are generated in parallel. When ignoring the435

DB state, the plug-and-play model generates DST,436

POL, and NLG results in a fully paralleled fashion.437

For evaluation, we report the results on end-to- 438

end dialogue modelling task. In addition, we report 439

the average inference latency and relative speedup 440

of each model.6 We compare our ablated models 441

with two strong baselines, SOLOIST and MinTL.7 442

Table 6 presents the results. As seen, the plug- 443

and-play models yield better results than their cas- 444

caded counterparts. One reason is that, for cas- 445

caded models, the previously generated results are 446

explicitly used as model input for latter sub-tasks, 447

which leads to error accumulation. Moreover, we 448

see that using DB state generally improves the 449

model performance for both plug-and-play and cas- 450

caded models as it provides the model with more 451

grounding information. Furthermore, with DB 452

state, our plug-and-play model achieves better over- 453

all score than MinTL with an around 4× speedup. 454

This suggests that the plug-and-play formulation 455

benefits the model both in terms of the generation 456

accuracy as well as the inference latency. 457

5.2 Multi-Task Pre-Training Investigation 458

Next, we provide further analyses on the dialogue 459

multi-task pre-training strategy. To quantify the im- 460

portance of different pre-training data, we pre-train 461

the T5-small model using data that is annotated for 462

individual TOD-related task (i.e., NLU, DST, POL, 463

and NLG). After pre-training, we then evaluate the 464

models on three downstream TOD tasks using Mul- 465

tiWOZ 2.0 and Banking77 datasets. For end-to-end 466

dialogue modelling and dialogue state tracking, we 467

test the model in both 1% and full training settings. 468

For intent classification, we measure the accuracy 469

of models trained with either 10 training samples 470

per intent or full training samples. 471

Table 8 presents the results with the first row 472

showing the performance of vanilla T5-small 473

model. As seen, without any pre-training, the 474

6The latency of each model is measured on a single Nvidia
V100 GPU with a batch size of 1.

7We did not include TOP+NOD (Liu et al., 2021) for compar-
ison as the authors did not release their code.
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Pre-training Data Annotation End-to-End Dialogue Modelling Dialogue State Tracking Intent Classification

NLU DST POL NLG
1% training full training 1% training full training 10 samples full training

Inform Success BLEU Inform Success BLEU Accuracy Accuracy Accuracy Accuracy
× × × × 53.28 36.08 11.65 83.10 72.40 18.17 17.44 50.55 75.12 92.91
X × × × 58.58 40.48 11.02 85.20 73.50 16.96 18.47 50.71 78.21 93.37
× X × × 66.10 46.40 11.26 86.30 74.90 18.52 27.91 51.48 75.97 93.03
× × X × 60.60 48.20 11.88 84.40 74.60 18.55 19.32 50.82 75.37 92.95
× × × X 59.38 40.78 12.34 83.60 74.70 19.97 17.82 50.58 75.61 92.97
X X X X 66.96 50.90 12.51 87.80 75.30 19.89 27.85 51.50 78.87 93.27

Table 8: Performance of models pre-trained on data with different annotations. In the low-resource setting of
different tasks, the average scores over five runs are reported. The last row reports the results of PPTODsmall.

vanilla T5-small model performs poorly in the low-475

resource setting of all evaluated tasks. This sug-476

gests that the prior knowledge from pre-training477

is indispensable for the model to achieve strong478

performances in the low-resource scenarios.479

Moreover, we see that pre-training with data an-480

notated for individual TOD-related task helps the481

model to attain better result in the corresponding482

downstream task. For example, pre-training with483

DST data notably improves the model performance484

in the downstream DST task both in low-resource485

and full-training settings. Similarly, pre-training486

with NLG data helps the model to get better BLEU487

score in the end-to-end dialogue modelling task.488

Lastly, we see that the PPTODsmall model attains489

the best results on most of the evaluation metrics.490

This suggests that the pre-training data with differ-491

ent annotations are compatible with each other and492

the joint utilization of all pre-training data helps493

the model to achieve the best overall performance.494

5.3 Human Evaluation495

We also conduct a human evaluation with the help496

of graders proficient in English using an internal497

evaluation platform. For evaluation, we randomly498

selected 50 dialogue sessions from the test set of499

MultiWOZ 2.0 dataset. We compare the results500

generated by the PPTODbase model against the re-501

sults from the SOLOIST model. All generated502

results, plus the reference, are evaluated by five503

graders on a 3-point Likert scale (0, 1, or 2) for504

each of the following features8:505

• Understanding: Whether the system cor-506

rectly understands the user’s goal.507

• Truthfulness: Whether the system’s response508

is factually supported by the reference.9509

• Coherency: Whether the system’s response510

is semantically coherent with the context.511

8More evaluation details are provided in the Appendix C.
9For this metric, we only evaluate the results of PPTOD and
SOLOIST. By definition, the reference gets a score of 2.0.

Understanding Truthfulness Coherency Fluency
Agreement 0.641 0.598 0.668 0.806
Reference 1.92 2.00 1.93 1.98
SOLOIST 1.78 1.29 1.64 1.97
PPTOD 1.86 1.51 1.83 1.99

Table 9: Human Evaluation Results

• Fluency: Whether the system’s response is 512

grammatically fluent and easy to understand. 513

Table 9 lists the results, with the first row show- 514

ing strong inter-annotator agreements as measured 515

by Fleiss′ kappa coefficient (Fleiss et al., 1971). 516

Comparing with SOLOIST, our model achieves bet- 517

ter scores on all metrics. Moreover, on the truthful- 518

ness and coherency metrics, our model significantly 519

outperforms SOLOIST as judged by Sign Test (p- 520

value < 0.05), suggesting that PPTOD generates 521

more factually correct and semantically coherent re- 522

sponses. Finally, we note that on the fluency metric, 523

both systems perform comparably with the refer- 524

ence (p-value > 0.4). This shows that the fluency of 525

such systems is largely guaranteed by the prior syn- 526

tactic knowledge from pre-trained language mod- 527

els, which suggests that future research should fo- 528

cus more on the other aspects of dialog systems. 529

6 Conclusion 530

In this paper, we propose PPTOD, a unified model 531

that supports both task-oriented dialogue under- 532

standing and response generation in a plug-and- 533

play manner. In addition, we introduce a new di- 534

alogue multi-task pre-training strategy to further 535

augment our model’s ability in completing TOD- 536

related tasks. Extensive experiments and analysis 537

are conducted on three benchmark TOD tasks in 538

both high-resource and low-resource settings. The 539

automatic and human evaluations demonstrate that 540

PPTOD outperforms the current SOTA systems in 541

terms of various evaluation metrics. 542
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A Dataset Details1030

We elaborate the details of the dialogue datasets1031

contained in the pre-training dialogue corpora.1032

• MetaLWOZ (Lee et al., 2019b) is designed1033

for improving models’ ability in generating1034

natural language responses in unseen domains.1035

It contains annotations for natural language1036

generation (NLG) spanning over 47 domains.1037

• SNIPS (Coucke et al., 2018) is designed to1038

help developing models capable of under-1039

standing users’ intent (i.e., natural language1040

understanding (NLU)). Its data consists of1041

users’ utterances gathered by crowdsourcing1042

with over 20 intent labels across 9 domains.1043

• CLINC (Larson et al., 2019) is built for im-1044

proving model’s ability in detecting out-of-1045

scope users’ intents. It contains data with1046

NLU annotations for 150 intents across 101047

different domains.1048

• ATIS (Amin, 2019) is used for building intent1049

classification (NLU) model. It contains data1050

with 22 user intents from the airline travel1051

information domain.1052

• KVRET (Eric et al., 2017) is a in-car personal1053

assistant dataset with dialogues from three do-1054

mains: calendar scheduling, weather informa-1055

tion retrieval, and point-of-interest navigation.1056

It contains annotations for user belief state1057

(DST) and system response (NLG).1058

• WOZ (Mrkšić et al., 2017) and CamRest6761059

(Wen et al., 2017) are collected with Wizard-1060

of-Oz procedure. They contains dialogues1061

with DST and NLG annotations from the1062

restaurant domain.1063

• MSR-E2E (Li et al., 2018) contains dialogues1064

from three domains, including movie-ticket1065

booking, restaurant reservation, and taxi book-1066

ing. The data are annotated for three TOD-1067

related tasks: DST, POL, and NLG.1068

• Frames (El Asri et al., 2017) contains dia-1069

logues from the trip booking domain. Its data1070

are annotated for three TOD-related tasks, in-1071

cluding DST, POL, and NLG.1072

• TaskMaster (Byrne et al., 2019) includes di-1073

alogues from six domains. Its data is col-1074

lected with Wizard-of-Oz and self-dialogue1075

approaches. The dataset is annotated with 1076

DST, POL, and NLG. 1077

• Schema-Guided (Rastogi et al., 2020) is used 1078

for the DSTC8 (Kim et al., 2019) dialogue 1079

competition. It contains dialogues from 17 1080

domains and it supports three TOD-related 1081

tasks, including DST, POL, and NLG. 1082

B Low-Resource MultiWOZ Evaluation 1083

In Table 10, we show the results of our model on 1084

MultiWOZ 2.0 under different low-resource set- 1085

tings. To get more confident results, for each set- 1086

ting, we train our model for five runs with differ- 1087

ent selection of training data and different random 1088

seeds. The complete results along with the mean 1089

and standard deviations are presented in Table 10. 1090

C Human Evaluation Guidelines 1091

Please evaluate the system’s response with respect 1092

to the following features: (1) Understanding; (2) 1093

Truthfulness; (3) Coherency; and (4) Fluency. In 1094

the following, we provide some guidelines regard- 1095

ing how to judge the quality of the system’s re- 1096

sponse in terms of different features. 1097

C.1 Understanding 1098

This metric measures whether the system’s re- 1099

sponse shows that the system is able to understand 1100

the goal and intent of the user. The definition of 1101

different scores are: 1102

• 2: The system completely understands the 1103

user’s goal and intent. 1104

• 1: The system partially understands the user’s 1105

goal and intent. 1106

• 0: The system does not understand the user’s 1107

goal and intent at all. 1108

C.2 Truthfulness 1109

This metric measures whether the system’s re- 1110

sponse is factually supported by the reference re- 1111

sponse. The definition of different scores are: 1112

• 2: The facts in the system’s response are all 1113

supported by or can be inferred from the ref- 1114

erence response. 1115

• 1: The facts in the system’s response are par- 1116

tially supported by the reference response. 1117

• 0: The system’s response is contradicted to 1118

the facts contained in the reference response. 1119
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Model 1% of training data 5% of training data 10% of training data 20% of training data

Inform Succ. BLEU Comb. Inform Succ. BLEU Comb. Inform Succ. BLEU Comb. Inform Succ. BLEU Comb.
PPTODsmall

run-1 68.50 54.90 13.98 75.68 78.40 61.50 14.78 84.73 79.70 68.70 17.10 91.30 83.40 71.10 17.05 94.30
run-2 64.70 50.20 12.19 69.64 75.20 61.30 15.85 84.10 87.00 67.30 13.89 91.04 82.80 68.90 17.03 92.88
run-3 65.30 46.10 10.79 66.49 75.40 60.80 15.99 84.09 84.30 68.10 15.33 91.50 83.20 70.00 17.01 93.61
run-4 64.80 51.00 12.43 70.33 77.20 59.70 15.75 84.20 84.50 71.90 14.51 92.71 82.40 69.40 17.93 93.83
run-5 71.50 52.30 13.14 75.04 76.70 64.70 14.37 85.07 78.00 64.90 16.99 88.44 83.00 70.10 16.10 92.65

average 66.96 50.90 12.51 71.44 76.58 61.60 15.35 84.44 83.50 68.18 15.56 91.01 82.96 69.90 17.02 93.45
std 2.67 2.88 1.06 3.46 1.18 1.67 0.65 0.39 3.33 2.26 1.29 1.40 0.34 0.74 0.58 0.61

PPTODbase

run-1 74.20 55.40 13.08 77.88 80.50 66.10 15.58 88.88 85.10 67.50 16.02 92.32 84.90 72.50 17.16 95.86
run-2 71.20 51.10 13.32 74.47 81.50 63.10 14.32 86.62 84.60 69.00 15.06 91.86 84.00 72.50 16.46 94.71
run-3 76.20 49.70 12.39 75.34 77.50 61.70 14.98 84.58 84.10 69.20 15.49 92.14 85.50 69.60 17.76 95.31
run-4 75.80 52.40 13.21 77.30 79.70 62.30 15.13 86.10 84.40 68.30 15.17 91.52 84.20 70.70 16.88 94.33
run-5 74.70 53.60 12.97 77.05 80.10 64.20 14.44 86.59 83.90 67.80 16.12 91.96 86.10 73.20 16.78 96.43

average 74.42 52.44 12.99 76.41 79.86 63.48 14.89 86.55 84.42 68.36 15.57 91.96 84.94 71.70 17.01 95.32
std 1.76 1.97 0.32 1.29 1.32 1.55 0.46 1.38 0.42 0.66 0.43 0.27 0.79 1.34 0.44 0.75

PPTODlarge

run-1 64.40 51.90 11.30 69.45 75.20 59.80 14.01 81.51 79.30 64.60 14.82 86.77 82.10 69.70 14.68 90.58
run-2 65.50 53.20 12.01 71.36 74.30 64.10 14.98 83.18 80.40 67.80 15.01 89.11 81.70 72.20 15.61 92.56
run-3 66.20 50.80 11.94 70.49 76.90 62.30 14.01 83.61 81.30 69.20 16.23 91.48 80.90 70.80 14.33 90.18
run-4 62.70 52.60 12.20 69.85 76.20 60.70 13.45 81.90 82.30 66.90 14.99 89.59 83.10 73.50 15.83 94.13
run-5 63.10 51.20 11.73 68.88 73.40 62.80 14.42 82.52 79.90 65.20 15.21 87.76 80.90 74.70 15.21 93.01

average 64.38 51.94 11.84 70.01 75.20 61.94 14.17 82.54 80.64 66.74 15.25 88.94 81.74 72.18 15.13 92.09
std 1.34 0.88 0.31 0.85 1.26 1.53 0.51 0.78 1.06 1.68 0.50 1.61 0.82 1.80 0.56 1.49

Table 10: Low-Resource Experiments on MultiWOZ: The average and std rows show the mean and standard devi-
ation of results from five different runs. The Succ. and Comb. denote Success and Combined Score, respectively.

C.3 Coherency1120

This metric measures whether the system’s re-1121

sponse is logically coherent with the dialogue con-1122

text. The definition of different scores are:1123

• 2: The system’s response is logically coherent1124

with the dialogue context.1125

• 1: The system’s response contains minor in-1126

formation that is off the topic of the dialogue1127

context.1128

• 0: The system’s response is completely irrele-1129

vant to the dialogue context.1130

C.4 Fluency1131

The metrics measures the fluency of the system’s1132

response. The definition of different scores are:1133

• 2: The system’s response is grammatically1134

correct and easy to understand.1135

• 1: The system’s response contains minor er-1136

rors but they do not affect your understanding.1137

• 0: The system’s response does not make sense1138

and it is unreadable.1139

D Case Study1140

Table 11 presents a generated dialogue example1141

from the PPTODbase model. The user starts the1142

conversation by asking for an expensive restaurant1143

that serves Indian food for dinner. PPTOD finds 14 1144

restaurants that satisfy the user’s goal and asks the 1145

user for a preferred location. We can see that, when 1146

the user states no preference on the restaurant lo- 1147

cation, PPTPD correctly updates the dialogue state 1148

by adding the area information which is missed by 1149

the oracle information. Then the user switches the 1150

dialogue topic for booking a hotel. Through the dia- 1151

logue trajectory, we see that PPTOD completes the 1152

dialogue by successfully providing the user the nec- 1153

essary information such as number of hotel choices 1154

(at turn 3) and the booking reference number (at 1155

turn 6). When finding the user’s booking request 1156

cannot be fulfilled (at turn 5), the models asks the 1157

user for an alternative option. Moreover, this exam- 1158

ple also demonstrates that PPTOD is able to deal 1159

with some NLU challenges displayed in the con- 1160

versations. For example, at turn 4, the user already 1161

provides the information about the Gonville Ho- 1162

tel. But only after the user describes the intention 1163

of booking the hotel at turn 5, the model updates 1164

the name of hotel in the dialogue state based on 1165

the co-referenced information from the previous 1166

turn. Interestingly, the hotel name is ignored by 1167

the oracle dialogue state but our model correctly 1168

detects it. The dialogue understanding ability of 1169

PPTOD can also be observed in turn 6, in which it 1170

updates the hotel stay in the belief state from 2 days 1171

to 1 day after the user provides the corresponding 1172

information. 1173
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MUL0113 Dialogue

Turn 1

User Utterance i am in need of an expensive indian restaurant for dinner .
Generated Belief State [restaurant] {food = indian, pricerange = expensive}
Oracle Belief State [restaurant] {food = indian, pricerange = expensive}

Delexicalized Response there are [value_choice] [value_price] [value_food] restaurants in cambridge . what
area would you like to dine in ?

Lexicalized Response there are 14 expensive indian restaurants in cambridge . what area would you like to
dine in ?

Oracle Reference there are 14 such restaurants . do you want to be in a specific part of town ?

Turn 2

User Utterance i don’t care what part of town it is in , i would like a phone number please .
Generated Belief State [restaurant] {food = indian, pricerange = expensive, area = don’t care}
Oracle Belief State [restaurant] {food = indian, pricerange = expensive}

Delexicalized Response [value_name] is a [value_food] restaurant in the [value_area] part of town . their phone
number is [value_phone] .

Lexicalized Response curry garden is a indian restaurant in the center part of town . their phone number is
01223302330 .

Oracle Reference sure , i am sorry . i have curry garden their phone number is 01223302330 . would you
like me to reserve a table for you ?

Turn 3

User Utterance not at this time . i am looking for a 3-star hotel , though . no guest house .
Generated Belief State [hotel] {stars = 3, type = hotel}; [restaurant] {food = indian, pricerange = expensive}
Oracle Belief State [hotel] {stars = 3, type = hotel}; [restaurant] {food = indian, pricerange = expensive}

Delexicalized Response i have [value_choice] [value_stars] star [value_type] in the [value_area] . [value_name]
is a [value_stars] star [value_type] . would you like to book a room ?

Lexicalized Response i have 2 3-star hotel in the center . gonville hotel is a 3-star hotel . would you like to book
a room ?

Oracle Reference i have found the gonville hotel . it is a 3 star hotel . would you like me to book it for you ?

Turn 4

User Utterance not yet . is the gonville hotel in the same price range as the curry garden ?
Generated Belief State [hotel] {stars = 3, type = hotel}; [restaurant] {food = indian, pricerange = expensive}
Oracle Belief State [hotel] {stars = 3, type = hotel}; [restaurant] {food = indian, pricerange = expensive}
Delexicalized Response yes , it is in the [value_price] price range . would you like me to book it for you ?
Lexicalized Response yes , it is in the expensive price range . would you like me to book it for you ?
Oracle Reference yes , it is an expensive hotel .

Turn 5

User Utterance can you book a room for 2 people for 2 nights starting on sunday ?

Generated Belief State [hotel] {stars = 3, type = hotel, name = gonville hotel, people = 2, day = sunday, stay = 2};
[restaurant] {food = indian, pricerange = expensive}

Oracle Belief State [hotel] {stars = 3, type = hotel, people = 2, day = sunday, stay = 2}; [restaurant] {food =
indian, pricerange = expensive}

Delexicalized Response i am sorry , but the [value_name] is not available for that stay . would you like to try a
shorter stay ?

Lexicalized Response i am sorry , but the gonville hotel is not available for that stay . would you like to try a
shorter stay ?

Oracle Reference the booking was unsuccessful . would you like to try for another day or a shorter stay ?

Turn 6

User Utterance could you try it for 1 night ? if that works , please book it and get the reference number .

Generated Belief State [hotel] {stars = 3, type = hotel, name = gonville hotel, people = 2, day = sunday, stay = 1};
[restaurant] {food = indian, pricerange = expensive}

Oracle Belief State [hotel] {stars = 3, type = hotel, people = 2, day = sunday, stay = 1}; [restaurant] {food =
indian, pricerange = expensive}

Delexicalized Response i was able to successfully book your room . your reference number is [value_reference] .
is there anything else i can help you with ?

Lexicalized Response i was able to successfully book your room . your reference number is 7rzme01z . is there
anything else i can help you with ?

Oracle Reference you are all set for 1 night ( sunday ) , reference number is 6wvv053q . would you like to
try another location for monday night ?

Turn 7

User Utterance no . that is all i need , thank you .

Generated Belief State [hotel] {stars = 3, type = hotel, name = gonville hotel, people = 2, day = sunday, stay = 1};
[restaurant] {food = indian, pricerange = expensive}

Oracle Belief State [hotel] {stars = 3, type = hotel, people = 2, day = sunday, stay = 1}; [restaurant] {food =
indian, pricerange = expensive}

Delexicalized Response you are welcome . have a great day !
Lexicalized Response you are welcome . have a great day !
Oracle Reference thank you , and goodbye .

Table 11: An generated dialogue example from the PPTODbase model. (best viewed in color)

16


