
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RESPLAT: DEGRADATION-AGNOSTIC FEED-
FORWARD GAUSSIAN SPLATTING VIA SELF-GUIDED
RESIDUAL DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in novel view synthesis (NVS) have predominantly focused on
ideal, clear input settings, limiting their applicability in real-world environments
with common degradations such as blur, low-light, haze, rain, and snow. While
some approaches address NVS under specific degradation types, they are often tai-
lored to narrow cases, lacking the generalizability needed for broader scenarios.
To address this issue, we propose Restoration-based feed-forward Gaussian Splat-
ting, named ReSplat, a novel framework capable of handling degraded multi-view
inputs. Our model jointly estimates restored images and gaussians to represent the
clear scene for NVS. We enable multi-view consistent universal image restoration
by utilizing the 3d gaussians generated during the diffusion sampling process as
self-guidance. This results in sharper and more reliable novel views. Notably, our
framework adapts to various degradations without prior knowledge of their spe-
cific types. Extensive experiments demonstrate that ReSplat significantly outper-
forms existing methods across challenging conditions, including blur, low-light,
haze, rain, and snow, delivering superior quality and robust NVS performance.

1 INTRODUCTION

Novel View Synthesis (NVS) is a task aimed at generating novel views of a scene from a known
set of views. NVS strives to accurately estimate the geometry and appearance of a scene, enabling
the rendering of realistic images from unseen perspectives. In recent years, Neural Radiance Fields
(NeRF) Mildenhall et al. (2021) have revolutionized NVS by utilizing neural networks to repre-
sent scenes in a continuous volumetric format, producing highly realistic results. However, NeRF’s
slow rendering speed has limited its practicality, especially in real-time applications. Solutions like
InstantNGP Müller et al. (2022) and TensoRF Chen et al. (2022) have addressed these speed limita-
tions, and Gaussian Splatting Kerbl et al. (2023), introduced later, further accelerated the rendering
process. By representing scenes with Gaussian ellipsoids instead of dense point samples like NeRF,
Gaussian Splatting maintains competitive visual quality while enabling faster rendering.

Despite the impressive results of NeRF and Gaussian Splatting, generalizable approaches have be-
come a major focus area. Generalizable NeRF aims to synthesize new views without retraining on
each new scene, enhancing model flexibility across diverse datasets Wang et al. (2021); Yu et al.
(2021b); Wang et al. (2022b); Suhail et al. (2022). Similarly, generalizable Gaussian Splatting ex-
tends this concept, offering a faster and adaptable solution for unseen scenes Charatan et al. (2023);
Chen et al. (2025); Liu et al. (2025); Ziwen et al. (2024). However, these methods have primarily
been developed to work on clean multi-view images captured from controlled environments.

Against this backdrop, scene reconstruction using corrupted images has gained attention. Some
studies Ma et al. (2022); Wang et al. (2022a); Yoon & Yoon (2023); Wang et al. (2023); Chen et al.
(2023b) are designed to handle specific types of corruption. GAURA Gupta et al. (2024), on the
other hand, leverages the capacity of feed-forward NVS models to be pre-trained on large multi-
view datasets, proposing a generalizable NeRF model that operates under a variety of degradations.
However, GAURA excludes the image restoration capabilities developed in the 2D domain, which
limits its performance potential.
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Figure 1: Proposed degradation-agnostic feed-forward Gaussian Splatting (GS) framework. Our
framework achieves high-performance universal image restoration and novel view synthesis results
through mutual information exchange between the universal image restoration model and the gener-
alizable GS model.

Simply adopting an image restoration model does not fully address this limitation. Universal image
restoration is a severely ill-posed problem, with countless possible solutions. This has led to various
methods using denoising diffusion models—prominent examples of stochastic models—to address
image restoration Fei et al. (2023); Özdenizci & Legenstein (2023). Research has shown that training
to predict residual images enables effective image restoration Zhang et al. (2017; 2018); Zamir et al.
(2021); Anwar & Barnes (2020), enhancing performance through diffusion-based residual learning.

In this paper, we propose a new generalizable gaussian splatting framework, ReSplat, aimed at
degradation-agnostic novel view synthesis. At the core of our framework is a method that leverages
the model priors of a diffusion-based unified image restoration network through Gaussian splatting.
Unlike NeRF’s representation, Gaussian splatting uses a point-based representation that enables ex-
plicit scene geometry extraction during training. As shown in Fig. 1, generalizable Gaussian splat-
ting models Charatan et al. (2023); Chen et al. (2025); Liu et al. (2025) inherently estimate Gaussian
centroids (geometry) using multi-view stereo (MVS) and radiance (color) through multi-view image
aggregation. In our framework, a diffusion model iteratively estimates Gaussian centroids, or 3D
geometry, leveraging this information to achieve 3D-consistent image restoration.

Our framework specifically adapts a 3D cross-attention module to the residual diffusion model,
enabling it to utilize the location information of Gaussian centroids. Here, Gaussian centroids are
derived from the point clouds of restored images estimated in the previous time-step. Second, our
model performs multi-view aligned pre-filtering when generating Gaussian ellipsoids. This process
involves calculating a weight map that is applied to the image features used to generate the Gaussian
ellipsoids, helping to achieve artifact-free novel view synthesis. Through these techniques, our
model retains the advantages of a generalizable method that operates without a scene optimization
process, working effectively even in sparse-view settings while remaining degradation-agnostic.
This makes it a more practical NVS model, demonstrating superior NVS and image restoration
performance in multiple degradation settings compared to other approaches.

In summary, our contributions are summarized as follows:

1. We propose ReSplat, a novel framework for multi-view image restoration using 3DGS.
2. We introduce a multi-view aligned denoising diffusion model for universal image restoration.
3. Our method outperforms other methods in novel view synthesis and image restoration tasks.

2 RELATED WORKS

2.1 GENERALIZABLE RADIANCE FIELDS

Generating realistic images has been a central research topic for many years. Neural scene represen-
tations, such as Neural Radiance Fields (NeRF) Mildenhall et al. (2021), have emerged as effective
solutions for view synthesis, achieving remarkable results. Subsequent NeRF-based approaches
have further improved rendering quality Roessle et al. (2022); Wei et al. (2021); Deng et al. (2022),
as well as optimization and rendering speed Sun et al. (2022); Chen et al. (2022); Fridovich-Keil
et al. (2022); Yu et al. (2021a); Müller et al. (2022). However, NeRF still requires optimization for
each new scene to synthesize novel views. To address this, various studies have proposed general-
izable NeRF models Yu et al. (2021b); Wang et al. (2021); Liu et al. (2022); Wang et al. (2022b);
Suhail et al. (2022); Cao et al. (2022), enabling cross-scene generalization by learning a view in-
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terpolation function from source images. In these generalizable NeRFs, a common technique is
to apply volume rendering for aggregating information from images, such as deep features, depth
maps, or cost volumes Wang et al. (2021); Liu et al. (2022); Johari et al. (2022); Chen et al. (2021);
Xu et al. (2023). GPNR Suhail et al. (2022) and GNT Wang et al. (2022b) utilize transformers to
aggregate features, enhancing information interaction along a ray to directly predict RGB values for
each pixel. PixelSplat Charatan et al. (2023) and MVSplat Chen et al. (2025) propose generalizable
volume rendering techniques that utilize scene parameterization with 3D Gaussian primitives Kerbl
et al. (2023). We note that existing generalizable radiance fields have predominantly been studied
on clean images, and we aim to address this limitation by developing a universal model utilizing a
residual diffusion model.

2.2 NOVEL VIEW SYNTHESIS WITH DEGRADATIONS

Some research has advanced novel view synthesis (NVS) by leveraging radiance fields with physics-
based multi-view geometry techniques, targeting cases where train-view images require enhance-
ment. NeRF-W Martin-Brualla et al. (2021) addresses variations in illumination and transient
occlusions by relaxing strict assumptions on consistency across inputs. Deblur-NeRF Ma et al.
(2022) introduces a spatially-varying blur kernel model to handle blurry inputs effectively. RawN-
eRF Mildenhall et al. (2022) facilitates high-dynamic range (HDR) view synthesis by training NeRF
on raw input data and generating raw-format outputs. Similarly, HDR-NeRF Huang et al. (2022)
supports exposure control and HDR image synthesis by learning two distinct implicit functions:
one for the radiance field and another for tone mapping. LLNeRF Wang et al. (2023) and Aleth-
NeRF Cui et al. (2024) conducted research on novel view synthesis under low-light conditions.
More recently, DiET-GS Lee & Lee (2025) and DiSR-NeRF Lee et al. (2024) leverage diffusion
priors to improve 3D representations from degraded inputs, but they are designed for specific cor-
ruption types such as motion blur or low resolution. HQGS Lin et al. and RobustGS Wu et al. (2025)
further study Gaussian Splatting under various degraded conditions and propose task-specific 3DGS
pipelines to boost robustness in these scenarios. Overall, these studies do not explicitly leverage
a pretrained universal image restoration model and remain tailored to specific degradation regimes
or 3D configurations. In contrast, we target a degradation-agnostic framework that actively uses a
pretrained universal restoration prior within a feed-forward 3DGS pipeline, so that a single model
can handle diverse and mixed degradations.

2.3 UNIVERSAL IMAGE RESTORATION

Developing a unified model capable of handling multiple degradations has become a growing area of
interest. AiRnet Li et al. (2022) introduces a module to align various distributions into a shared dis-
tribution using contrastive learning, though this approach can be challenging to train and may limit
performance. IDR Zhang et al. (2023) identifies that distinct degradation types can be separated
using singular value decomposition (SVD), allowing for clean image reconstruction through refor-
mulation of singular values and vectors. PromptIR Potlapalli et al. (2024) enhances performance by
employing a prompt block to capture degradation-specific features. multi-task DINO-based restora-
tion Lin et al. (2023) and mask-based blind restoration Qin et al. (2024) exploit strong visual priors
from foundation models. Adair Cui et al. (2025) and Perceive-IR Zhang et al. (2025) further improve
all-in-one restoration by adaptively modeling degradation-specific frequency cues and enhancing
degradation perception, respectively. Methods such as ProRes Ma et al. (2023) and DA-CLIP Luo
et al. (2023) leverage prompt learning to fully utilize the power of large-scale models. Daclip-IR Luo
et al. (2024) incorporates a CLIP-based encoder to identify degradation types, extracting semantic
information from distorted images to guide a diffusion model in generating high-quality outputs.
DiffUIR Zheng et al. (2024) introduces selective hourglass mapping to adapt residual denoising
diffusion models Liu et al. (2024) as a comprehensive image restoration approach.

3 METHODS

In this section, we provide an overview of the residual denoising diffusion model (RDDM), univer-
sal RDDM, and 3D Gaussian splatting as preliminaries. Next, we propose an overall framework for
degradation-agnostic feed-forward Gaussian splatting. Additionally, we detail two modules specifi-
cally designed to enhance NVS performance.
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Figure 2: The overall framework for degaradation-agnostic feed-forward gaussian splatting (GS).
A diffusion-based image restoration model restores the original image by iteratively estimating the
residual image. During this process, feed-forward GS is performed using the original image gener-
ated in the intermediate stages of diffusion sampling. By utilizing the Gaussian points information
obtained in this process, the diffusion model receives multi-view information in the next diffusion
step, enabling more accurate image restoration.

3.1 PRELIMINARIES

3D Gaussian Splatting 3D-GS Kerbl et al. (2023) models a scene using a collection of anisotropic
3D Gaussians, which retain the differential characteristics of volumetric representations while en-
abling efficient rendering through a tile-based rasterization approach. Beginning with points derived
from Structure-from-Motion (SfM), each point serves as the position (mean) µ of a 3D gaussian
elipsoids.

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ) (1)

where x represents a specific point in the 3D scene, and Σ is the covariance matrix of the 3D
Gaussian. Σ is constructed from a scaling matrix S and a rotation matrix R with the equation
Σ = RSSTRT . For performing tile-based rasterization, the 3D Gaussians G(x) are projected onto
the image plane as 2D Gaussians G′(x). The rasterizer then sorts these 2D Gaussians and applies
alpha blending:

C(x′) =
∑
i∈N

ciσi

i−1∏
j=1

(1− σj), σi = αiG
′
i(x

′) (2)

x′ represents the queried pixel position, and N denotes the number of sorted 2D Gaussians associ-
ated with that pixel.

Feed-forward 3D Gaussian Splatting While vanilla 3DGS optimizes Gaussian parameters per
scene, recent feed-forward 3DGS models Liu et al. (2025) predict them in a single forward pass
from a few posed views. Given N input images {Iiin}Ni=1 and their camera poses {Πi}Ni=1, the
network ϕ maps multi-view features to per-pixel Gaussian primitives:

ϕ : {(Iiin,Πi)}Ni=1 7−→ {(µj ,Σj , αj , cj)}H×W×N
j=1 , (3)

where (µj ,Σj , αj , cj) denote the center, covariance, opacity, and color of candidate Gaussians.
These predictions are then pruned and merged into the explicit Gaussian set P 0

ϕ , which is rendered
using the standard splatting formulation above. In addition, the feed-forward 3DGS predicts per-
view aggregation weights W i that are used to combine warped multi-view features at each novel-
view pixel; in Sec. 3.4, we modulate these weights with our degradation-aware pre-filtering module.

Residual Denoising Diffusion Model RDDM Liu et al. (2024) uses a standard T -step diffusion
model that includes both a forward and a reverse process. In the forward process, one-step noising
is formulated as a Markov chain:

q(It|It−1, Ires) = N (It; It−1 + αtIres, β
2
t I) (4)

where αt and βt are the noise coefficients for Ires and gaussian noise. It is the result at timestep t,
and Ires represents the residual between the degraded image Iin and the clean image I0, with Ires =
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Algorithm 1 Training
Input: Clean image, Degraded image: I0, Iin;

GT novel view image : Inv;
GT residual map: Ires = Iin − I0;
Image Restoration Model: θ(∗);
Feed-forward GS Model: ϕ(∗);

1: repeat
2: I0 ∼ q(I0);
3: Pϕ

0 = ϕ(I0, Iin);
4: t ∼ Uniform(1, . . . , T );
5: ϵ ∼ N (0, I);
6: It = I0 + ᾱtIres + β̄tϵ− δ̄tIin;
7: Take the gradient descent step on

∇θ∥Ires − Iθres(P
ϕ
0 , It, Iin, t)∥1+

∇ϕ∥Inv − Iϕren(Iin − Iθres, Iin)∥1;

8: until converged

Algorithm 2 Sampling
Require: Degraded image: Iin;

Image Restoration Model: θ(∗);
Feed-Forward GS Model: ϕ(∗);

1: ϵ ∼ N (0, I);
2: IT = (1− δ̄T )Iin + β̄T ϵ;
3: Pϕ

0 = None;
4: for t = T, . . . , 1 do
5: if t > 1 then

6:
It−1 = It − αtI

θ
res(P

ϕ
0 , It, Iin, t)

+ δtIin;

7: Pϕ
0 = ϕ(Iin − Iθres, Iin);

8: else
9: It−1 = Iin − Iθres(P

ϕ
0 , It, Iin, t);

10: Inv = Iϕren(Iin − Iθres, Iin);
11: return I0, Inv

Iin − I0. In the reverse process, RDDM approximates the true generative distribution pθ(It−1|It)
by using q(It−1|It, I0, Ires), which is also formulated as a Markov chain when deterministic implicit
sampling using DDIM Song et al. (2020):

pθ(It−1|It) = N
(
It−1; I

θ
0 + αt−1I

θ
res + βt−1ϵ

θ, 0 · I
)

(5)

In summary, the relatios between It and It−1 in both the forward and reverse processes is as follows:

It = It−1 + αtIres + βtϵt−1 (6)

It−1 = It − (ᾱt − ᾱt−1)I
θ
res − (β̄t − β̄t−1)ϵ

θ (7)

Universal Residual Denoising Diffusion Model DiffUIR Zheng et al. (2024) utilizes the condition-
ing mechanism from RDDM and incorporate a shared distribution term (SDT) within the diffusion
algorithm for universal image restoration. They adjust the forward process as follows:

It = It−1 + αtIres + βtϵt−1 − δtIin (8)

where δtIin represents the SDT, and δ is the shared distribution coefficient. The reverse process is
also as follows:

It−1 = It − αtI
θ
res + δtIin − (β2

t /β̄t)ϵ
θ (9)

Finally, in the deterministic implicit sampling process, It−1 and the pseudo clean image Iθ0 can be
derived using the following equation:

It−1 = Iθ0 + αt−1I
θ
res − δt−1Iin s.t. Iθ0 = Iin − Iθres (10)

3.2 OVERALL FRAMEWORK

We aim to develop a novel view synthesis model that can be performed under arbitrary degradation.
Most of the existing novel view synthesis studies have been conducted on clean images without cor-
ruption, and even in the case of studies on situations with corruption, models specialized for specific
degradation types are being developed Ma et al. (2022); Wang et al. (2022a); Yoon & Yoon (2023);
Wang et al. (2023); Chen et al. (2023b). These studies solve the problem by simultaneously opti-
mizing scene optimization and physical characteristics by implementing physical characteristics that
cause specific degradation as a rendering process. Therefore, there is a need for new degradation-
agnostic novel view synthesis (NVS) studies. To address this, we propose a new framework, ReSplat,
the NVS model that leverages the diffusion prior studied in the field of 2D image restoration.

Training stage As shown in Fig. 2, we combine the feed-forward gaussian splatting (GS) model and
the universal image restoration (UIR) model. The GS and UIR models support complementary roles.
Unlike NeRF, feed-forward GS inevitably performs multi-view stereo (MVS) within the model be-
cause it needs to explicitly extract point clouds. This enables acquisition of 3D scene geometry
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Figure 3: GS-guided multi-view alignment.
Module embedded in the residual diffusion
model that shares info between adjacent views
using Gaussian centers.

Figure 4: Pre-filtering with warped features.
Warped inputs are self-attended to form pre-
filtering weights for feature aggregation.

information and helps the UIR model find corresponding points for adjacent multi-view images.
Meanwhile, the UIR model performs degradation-agnostic image restoration to help feed-forward
GS perform NVS using images with corruption removed. In addition, we adopt DiffUIR Zheng
et al. (2024), a diffusion model-based UIR model, to perform iterative scene geometry extraction
and iterative image refinement so that the UIR results can be gradually refined. The training process
can be found in Algorithm 1. The first term

∥∥Ires − Iθres(P
ϕ
0 , It, Iin, t)

∥∥
1

corresponds to the universal
restoration loss LUIR, which supervises the residual prediction of the UIR model θ. The second
term

∥∥Inv − Iϕren(Iin − Iθres, Iin)
∥∥
1

defines the novel-view rendering loss LNV, which supervises the
feed-forward GS model ϕ using the ground-truth clean novel view Inv .

Sampling stage The specific sampling process of ReSplat is shown in Algorithm 2. Given N multi-
view input images {Iiin}Ni=1, the tth noise images {Iit}Ni=1 are generated according to the forward
process of the DiffUIR. We generate predicted clean images {Ii0}Ni=1 from predicted {Iires}Ni=1 by
the UIR model. The predicted clean images are used to generate explicit point cloud Pϕ

0 by the MVS
module of the feed-forward GS model. Meanwhile, we generate {Iit−1}Ni=1 to perform the next
diffusion step. After that, we perform a 3d aligned diffusion reverse process using Pϕ

0 (sec. 3.3).
Through this, we regenerate the refined {Ii0}Ni=1 and Pϕ

0 . We repeat the process and perform the
feed-forward GS overall process using the finally generated {Ii0}Ni=1. In this process, we perform a
feature pre-filtering process conditioned on the original corrupted images {Iiin}Ni=1 to remove points
where artifacts exist before the multi-view feature aggregation process, thereby generating a more
robust GS output (sec. 3.4). Through this, we can obtain a rendered output for the novel view point.

3.3 GS GUIDED MULTI-VIEW ALIGNMENT

Since the original UIR model is designed for a single image, it is necessary to design a module
for enabling multi-view image interaction. As shown in Fig. 3, we adapt a module that performs
feature attention in space to UIR by utilizing Pϕ

0 , a pseudo geometry generated during the sampling
process. Multi-view features are projected toward each gaussian center in Pϕ

0 . When there are N

multi-view feature vectors {f j
i }Nj=1 for the ith center point pi, we perform self-attention between

the corresponding vectors. This process is repeated in the encoder of the diffusion model and helps
ensure the 3D consistency of multi-view images. The processed feature vector f j

i,rep is reprojected
to the original pixel coordinates. However, since the reprojected point is located in continuous coor-
dinates, not discrete coordinates, it is necessary to propagate to the surrounding discrete coordinates.
Therefore, we perform a weighted sum by applying 2D interpolation weights {wi} to all reprojected
points existing between adjacent pixels. Each weight is determined by the area of the opposite re-
gion, ensuring that features closer to the query point have a higher influence. Therefore, when there
is a discrete point q, the multi-view feature Fq that q obtains is as follows.

Fq =
∑
i

wif
j
i,rep where i ∈ Q (11)

and Q is the set of the index of all points that exist within the smallest rectangle surrounding the
point q.
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Table 1: Novel View Synthesis (NV) and Image Restoration (IR) results of five corruption types on
LLFF degradation dataset with three multi-view inputs. The best scores and second best scores
are highlighted with their respective colors.

Method Operation Year Corruption Type Novel View Synthesis Multi-View Image Restoration
PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

AiRnet IR → NV 2022

Motion Blur

20.11 0.6896 0.4250 21.99 0.7543 0.3769
PromptIR IR → NV 2023 20.04 0.6872 0.4208 22.14 0.7526 0.3668
GAURA Only NV 2024 21.28 0.7198 0.4343 - - -
DiffUIR IR → NV 2024 22.75 0.7824 0.3209 26.34 0.8640 0.2951
ReSplat IR w/ NV 2025 23.15 0.8049 0.3151 27.14 0.8850 0.2713
AiRnet IR → NV 2022

Snow

20.22 0.6852 0.3026 21.57 0.8184 0.2159
PromptIR IR → NV 2023 20.54 0.7067 0.2737 23.21 0.8578 0.1912
GAURA Only NV 2024 20.48 0.7044 0.3195 - - -
DiffUIR IR → NV 2024 24.24 0.8549 0.1826 31.20 0.9627 0.1019
ReSplat IR w/ NV 2025 24.46 0.8614 0.1677 32.07 0.9685 0.0886
AiRnet IR → NV 2022

Haze

9.159 0.3841 0.3892 8.871 0.4155 0.2949
PromptIR IR → NV 2023 9.784 0.4651 0.3508 9.585 0.5251 0.2280
GAURA Only NV 2024 17.22 0.7205 0.4516 - - -
DiffUIR IR → NV 2024 21.56 0.8392 0.1857 25.57 0.9612 0.0701
ReSplat IR w/ NV 2025 21.99 0.8471 0.1750 26.45 0.9680 0.0619
AiRnet IR → NV 2022

Low-light

9.526 0.1364 0.6041 6.388 0.0859 0.7654
PromptIR IR → NV 2023 6.367 0.0805 0.6240 6.298 0.0805 0.5789
GAURA Only NV 2024 15.28 0.6627 0.5177 - - -
DiffUIR IR → NV 2024 18.87 0.8241 0.2429 21.88 0.9374 0.1647
ReSplat IR w/ NV 2025 19.76 0.8276 0.2433 22.82 0.9452 0.1605
AiRnet IR → NV 2022

Rain

20.49 0.6988 0.3416 23.09 0.8008 0.3018
PromptIR IR → NV 2023 20.71 0.7175 0.2992 24.78 0.8555 0.2499
GAURA Only NV 2024 21.78 0.7578 0.4110 - - -
DiffUIR IR → NV 2024 23.51 0.8313 0.2538 29.69 0.9357 0.1919
ReSplat IR w/ NV 2025 24.11 0.8505 0.2140 31.28 0.9538 0.1533

Table 2: Novel View Synthesis results and multi-view image restoration results of three types
(rain+motion blur, snow+motion blur, and haze+snow) on LLFF mixed degradation dataset with
three multi-view inputs. The best scores are highlighted.

Method Corruption Type Novel View Synthesis Multi-View Image Restoration
PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

DiffUIR Rain+Motion Blur 20.07 0.6910 0.4885 20.41 0.7083 0.4653
ReSplat 20.44 0.7090 0.4555 20.74 0.7220 0.4507
DiffUIR Snow+Motion Blur 21.63 0.7407 0.4076 22.51 0.7757 0.3848
ReSplat 22.00 0.7594 0.3782 22.90 0.7908 0.3661
DiffUIR Haze+Snow 15.38 0.6978 0.3488 15.52 0.7702 0.2843
ReSplat 20.17 0.7730 0.3148 19.92 0.8067 0.2808

3.4 PRE-FILTERING WITH WARPED FEATURES

The final outputs of the UIR, {Iiout}Ni=1, are first depth-warped toward the novel pose using Pϕ
0 . The

feed-forward GS backbone then produces per-view aggregation weights {W i
final}Ni=1 for combining

the N warped multi-view features at each novel-view pixel. Since these weights have a critical
impact on determining the radiance of the final Gaussian ellipsoids, we introduce a pre-filtering
module that is additionally conditioned on the corrupted inputs {Iiin}Ni=1.

As illustrated in Fig. 4, the pre-filtering module takes the warped restored and degraded images
as input and predicts a per-view reliability map {W i

pre}Ni=1, independently of the occlusion-based
weights from the GS model. We then modulate the original GS weights by this reliability map:

W i
final(x) = W i

pre(x) ·W i(x), (12)

and use the updated W i
final in the splatting renderer. In other words, the pre-filtering module acts

as a soft, degradation-aware gate on top of the standard visibility weights: regions where residual
artifacts (e.g., remaining rain streaks, snow blobs, or haze fragments) are strong or inconsistent
across views receive lower W i

pre and are down-weighted, while geometry-consistent, clean structures
are preserved, leading to a more robust radiance field and improved NVS quality. In practice, we
simply replace the original per-view aggregation weights W i with the updated W i

final. These weights
are then used in its standard multi-view feature aggregation and Gaussian rendering pipeline to
determine the contribution of each input view at every novel-view location.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets For training our model, we utilize the synthetic multi-degradation generation pipeline pro-
posed by GAURA Gupta et al. (2024) to construct a multi-view degradation dataset. We use a train-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: Comparsions of novel view synthesis results of five types (motion blur, snow, haze, low-
light, rain) on LLFF degradation dataset.

ing dataset provided by IBRNet Wang et al. (2021), commonly used in novel view synthesis task.
The test sets are divided into synthetic and real-world datasets. The synthetic dataset is generated
using synthetic degradations applied to the LLFF Mildenhall et al. (2019) dataset. For real-world
scenarios, we evaluate our model using the DeblurNeRF Ma et al. (2022) dataset for motion blur,
the REVIDE Zhang et al. (2021) dataset for haze, and the LLNeRF Wang et al. (2023) dataset for
low-light conditions.

Network We use DiffUIR Zheng et al. (2024), a residual diffusion model, as our baseline for image
restoration. We also use MVSGaussian Liu et al. (2025), one of the state-of-the-art models, as the
feed-forward GS. To accelerate the training process, MVSGaussian is first trained on our training
dataset without image restoration process.

We conduct a comparison of universal image restoration with AiRnet, PromptIR, and DiffUIR. The
goal of our approach is to develop an adapter that transforms a UiR model to handle multi-view
inputs. Therefore, we utilize a network pretrained with a single-view UiR. For a fair comparison, all
models are fine-tuned on our training dataset.

During the inference time, ReSplat uses DDIM sampling strategy with a total of three sampling steps
fixed. The inference process for the three multi-view inputs can be completed within one second.
For more details, please refer to the supplementary material.

4.2 QUANTITATIVE ANALYSIS

Synthetic Degradation As shown in Table 1, we evaluate ReSplat against baselines (AiRnet,
PromptIR, DiffUIR, GAURA) across five corruption types: motion blur, snow, haze, low-light,
and rain, for both novel view synthesis and multi-view image restoration. Performance is measured
using PSNR, SSIM, and LPIPS. For novel view synthesis, ReSplat consistently outperforms other
methods, especially in motion blur, snow, and rain scenarios, producing sharper, more perceptually

8
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Table 3: Novel view synthesis results of
three types (motion blur, haze, low-light)
on real-world degradation datasets.

Method Type Novel View Synthesis
PSNR(↑) SSIM(↑) LPIPS(↓)

AiRnet

Motion Blur

18.59 0.6429 0.4009
PromptIR 18.42 0.6289 0.3959
GAURA 21.54 0.7711 0.3909
DiffUIR 22.76 0.8090 0.2988
ReSplat 22.91 0.8145 0.2922
AiRnet

Haze

15.91 0.7189 0.3290
PromptIR 15.32 0.7106 0.3224
GAURA 16.90 0.8397 0.3920
DiffUIR 17.26 0.8451 0.1900
ReSplat 17.75 0.8511 0.1968
AiRnet

Low-light

9.526 0.1364 0.6040
PromptIR 17.10 0.8322 0.5091
GAURA 19.07 0.8503 0.6301
DiffUIR 22.00 0.8165 0.4958
ReSplat 22.92 0.8578 0.4759

Table 4: Ablation study with Novel View Synthesis re-
sults of 5 types (motion blur, snow, haze, low-light,
rain) on synthetic degradations. Values represent the
average of five degradations. The best scores and
second best scores are highlighted.

Model # Alignment Pre-Filtering Novel View Synthesis
PSNR(↑) SSIM(↑) LPIPS(↓)

1 X X 22.19 0.8264 0.2372
2 X O 22.35 0.8290 0.2368
3 O X 22.46 0.8313 0.2306
4 O O 22.69 0.8383 0.2230

Figure 6: Visual Comparsions of novel view synthesis results of 3 types (motion blur, haze, low-
light) on real-world degradation dataset (DeblurNeRF, REVIDE, and LLNeRF dataset).

accurate views. In multi-view image restoration, ReSplat excels in high-corruption cases, achiev-
ing the best overall visual fidelity and structural similarity. Notably, it handles complex degradations
like heavy rain and motion blur more effectively than competing models, preserving both fine details
and global consistency.

Mixed Degradation Table 2 presents a comparison between our method, ReSplat, and the
strongest baseline, DiffUIR, under various mixed degradation scenarios, including Rain+Motion
Blur, Snow+Motion Blur, and Haze+Snow. ReSplat consistently achieves the best performance
across all conditions, significantly outperforming DiffUIR in both novel view synthesis and multi-
view image restoration. We conduct a direct comparison between the top-performing method (Re-
Splat) and the next best (DiffUIR) to highlight the effectiveness of our approach. Notably, in more
challenging scenarios such as Snow+Motion Blur and Haze+Snow, ReSplat delivers considerably
higher fidelity, as reflected by higher PSNR and SSIM values and lower LPIPS.

Real-World Degradation As shown in Table 3, we evaluate ReSplat against baselines for novel
view synthesis under real-world corruptions: motion blur (DeblurNeRF Ma et al. (2022)), haze (RE-
VIDE Zhang et al. (2021)), and low-light (LLNeRF Wang et al. (2023)) dataset. ReSplat achieves
the best overall results for motion blur, preserving structural and perceptual quality. In haze, it
yields the lowest LPIPS, indicating superior perceptual quality despite similar PSNR/SSIM scores
with DiffUIR. Under low-light conditions, ReSplat balances structural integrity and perceptual fi-
delity, performing competitively across all metrics. In addition, Table 5 and Table 6 report results on
in-the-wild rain (NTURain Chen et al. (2018)) and snow (RSVD Chen et al. (2023a)) datasets, where
ReSplat consistently outperforms UIR and GS baselines, demonstrating robust generalization.

4.3 QUALITATIVE COMPARISON AND ANALYSIS

Synthetic Degradation Figure 5 shows the results on synthetic degradations including haze, low-
light, snow, rain, and motion blur. Our method consistently outperforms competing methods like
AiRnet, PromptIR, DiffUIR, and GAURA by producing clearer images with better detail preserva-
tion and color balance. Notably, it excels in haze removal, low-light enhancement, and rain streak
removal, closely matching the ground truth.

9
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Table 5: Novel View Synthesis (NV) results
of Rain corruption on the real-world deraining
dataset with three multi-view inputs. The best
scores and second best scores are highlighted.

Method Type PSNR(↑) SSIM(↑) LPIPS(↓)
AiRnet

Rain

24.05 0.8183 0.1955
PromptIR 24.23 0.8230 0.1801
GAURA 19.39 0.6602 0.3987
DiffUIR 23.99 0.8145 0.2094
ReSplat 24.35 0.8232 0.1772

Table 6: Novel View Synthesis (NV) results of
Snow corruption on the real-world desnowing
dataset with three multi-view inputs. The best
scores and second best scores are highlighted.

Method Type PSNR(↑) SSIM(↑) LPIPS(↓)
AiRnet

Snow

20.23 0.7035 0.3103
PromptIR 21.27 0.7192 0.3007
GAURA 20.22 0.7578 0.3647
DiffUIR 22.12 0.8215 0.2277
ReSplat 22.45 0.8263 0.2175

Figure 7: Qualitative comparison of the align-
ment module. The top row shows the restored
RGB outputs, while the bottom row visualizes
the corresponding error maps.

Figure 8: Qualitative comparison of pre-filtering
module. The top row shows the restored RGB
outputs, while the bottom row visualizes the cor-
responding error maps.

Real-World Degradation Figure 6 presents results on real-world degradations such as blur, low-
light scenes, and haze. Our approach effectively reconstructs details and reduces artifacts, outper-
forming other methods which often introduce noise or fail to restore fine structures. The results
demonstrate that our method achieves superior restoration, preserving natural colors and sharpness
in challenging real-world scenarios.

4.4 ABLATION STUDIES

We conduct an ablation study using four model variants: Model 1 as baseline, Model 2 with pre-
filtering, Model 3 with alignment, and Model 4 with both. Metrics are averaged over five LLFF
degradation datasets. As shown in Table 4, each component contributes to improved performance in
novel view synthesis. Adding pre-filtering (Model 2) increases PSNR and reduces LPIPS, indicating
a modest improvement in reconstruction quality. Alignment alone (Model 3) further enhances PSNR
and other quality metrics compared to the baseline. When both alignment and pre-filtering are
applied (Model 4), the model achieves the best overall results, with a PSNR of 22.69, demonstrating
a clear effect across various degradations. Qualitative comparisons in Fig. 7 and Fig. 8 illustrate
that alignment reduces multi-view geometric inconsistencies, while pre-filtering suppresses residual
artifacts without destroying fine structures in the rendered novel views.

5 LIMITATIONS

Although ReSplat performs well across various degradation scenarios, several limitations remain.
The diffusion-based refinement increases computational cost and memory usage compared to purely
feed-forward 3DGS, making efficient high-resolution scaling an important direction for future work.
The method also inherits the representational biases of Gaussian Splatting, showing reduced fidelity
in scenes with strong transparency, specularities, or pronounced view-dependent effects. Finally, Re-
Splat depends on a pretrained universal image restoration model for guidance; while this introduces
a dependency, it also enables the framework to naturally benefit from future advances in universal
restoration without architectural changes.

6 CONCLUSION

We present a feed-forward gaussian splatting framework for degradation-agnostic novel view syn-
thesis. By integrating a residual diffusion model with 3D cross-attention and multi-view pre-
filtering, our method robustly restores images and improves geometry estimation, outperforming
existing approaches in both novel view synthesis and universal multi-view image restoration.
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