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Abstract

Hopfield networks, originally introduced as associative memory models, have
shown promise in pattern recognition, optimization problems, and tabular datasets.
However, their application to time series data has been limited. We introduce a
temporal version that leverages the associative memory properties of the Hopfield
architecture while accounting for temporal dependencies present in time series data.
Our results suggest that the proposed model demonstrates competitive performance
compared to state-of-the-art probabilistic forecasting models.

1 Introduction

Time series forecasting is a challenging machine learning task given the need to model potentially
intricate, non-linear temporal patterns across extended time horizons. Over time, time series models
have evolved tremendously from classical statistical methods such as ARIMA [3] to deep learning-
based approaches [2]. Such neural forecasting methods are generally comprised of two components:
one that learns representations from the history of a time series and a second that, based on the
representations, learns an emission model, either point-based or probabilistic. Older architectures for
learning such historical representations include Recurrent Neural Networks (RNNs) such as LSTM
[10] or GRU [6] and Causal Convolutional Networks [5]. Recently, methods based on Transformers
[25] have presented state-of-the-art performance, surpassing both classical autoregressive approaches
as well its neural counterparts. This is in large part due to the Transformer’s strong inductive bias [26],
which allows it to look back over the entire context history of a time series, without suffering from
limited temporal field or issues of forgetting [19].

In this work, we investigate an alternative approach for neural time series modeling. Motivated
by the observation that time series data typically display seasonal or trend behavior, incorporating
Associative Memories [15], which can effectively link sets of past features to generate robust
representations for forecasting, can provide a beneficial inductive bias for modeling time series
data. More specifically, we explore the potential of modern Hopfield networks [21] in capturing
past temporal information for probabilistic forecasting tasks. It is worth noting that the attention
mechanism used in Transformers is a specific instance of these models.

2 Probabilistic Forecasting

The task of probabilistic time series forecasting in the univariate setting consists of training on a
dataset of D ≥ 1 time series Dtrain = {xi

1:T i} where i ∈ {1, . . . , D} and at each time point t, we
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have xi
t ∈ R or in N. We are tasked with forecasting the potentially complex distribution of the

next P > 1 time steps into the future, and we are given a test set Dtest = {xi
T i+1:T i+P }. Each

time index t is in reality a date-time value that increments regularly based on the frequency of the
dataset in question and the last training point T i for each time series may or may not be the same
date-time. Autoregressive models like [9, 23] estimate the prediction density by decomposing the
joint distribution of all P points via the chain rule of probability as:

pX (xi
T i+1:T i+P ) ≈ ΠP

t=1p(x
i
T i+t|x

i
1:T i−1+t, c

i
1:T i+P ; θ),

parameterized by some model with trained weights θ. This requires the next time point being
conditioned on all the past and covariates vectors cit (detailed in Section A.3). RNN-based models like
DeepAR [23] typically resort to the seq-to-seq paradigm [24] and considers some context window of
fixed-size C sampled randomly from the complete time series history to learn historical representation,
up to a time point, and use this representation in the decoder to learn the distribution of the subsequent
P time points:

ΠP
t=1p(x

i
C+t|xi

1:C−1+t, c
i
1:C+P ; θ).

Convolutional models, though not autoregressive, can similarly learn some representation from their
temporal receptive fields and the distribution for a fixed P . Finally, attention-based models allow
representation to be learned over the entire context window, which due to the quadratic complexity of
the attention layer, can restrict the size of C. In the case of encoder-decoder architecture, N layers of
an encoder can be used to learn a context-window sized sequence of d_model sized representations
denoted by:

{ht}C−1
t=1 = EncN ◦ · · · ◦ Enc1({proj(concat(xi

t, c
i
t+1); θp)}C−1

t=1 ; θ1).

Afterward, M layers of a causal or masked decoder can be used to model the distribution of the
subsequent P future time points conditioned on the encoding representations and covariates as:

ΠC+P−1
t=C p(xi

t+1|xi
t:C , c

i
t+1:C+1,h1, . . . ,hC−1; θ).

For example, if we assume the data comes from a Gaussian then the outputs from the M decoders’ rep-
resentation can be passed to a layer (Distribution Head) that returns appropriately signed parameters
of a Gaussian whose log-likelihood, given by

C+P−1∑
t=C

log pN (xi
t+1|xi

t:C , c
i
t+1:C+1,h1, . . . ,hC−1; θ),

can be maximized for all i and t from the Dtrain using stochastic gradient descent (SGD). During
inference time we pass the very last context length window for each time series i to the encoder and
the resulting predicted distribution is used to sample predictions for the next time point which together
with the future covariates are autoregressive passed to the decoder P times (greedy decoding). In this
manner, we can obtain our desired empirical probability intervals of interest and evaluation metrics
with respect to the unseen Dtest.

3 Mordern Hopfield Networks

Associative Memory or Hopfield Networks [11] are networks with memory storage capacity which
is important for machine learning applications. Modern Hopfield Networks (MHN) or Dense
Associative Memories [7] uses an exponential pattern interaction function giving them exponential
storage capacity in the latent dimension. [21] introduces a new energy function to update associate
inputs to their most similar patterns which can be given or learned. These networks generalize the
energy functional to continuous value patterns and maintain the high storage capacity. The attention
mechanism is a special case of these models where the function is given by the softmax. Due to their
continuous nature, these layers are differentiable and can be integrated into deep learning architectures,
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endowing them with associative memories. This extension allows us to learn associations to memories
from temporal vectors given by a sequence of {concat(xi

t, c
i
t+1)}T

i

1 as Dense Associative Memory
models are naturally designed for completing patterns. The key difference between transformers is
that Associative Memories are recurrent networks whereas transformers are not typically considered
a dynamical system.

4 HopfieldTS

The HopfieldTS consists of an encoder-decoder architecture as depicted in Figure 1, where N
unmasked Hopfield [21] encoders are fed the context length sequence of projected inputs and the
subsequent prediction length window is passed to M masked or causal Hopfield decoders. The loss
with respect to the specified log-likelihood is calculated via the by-one-shifted prediction window.
This setup has the advantage that at inference time we only need to run the encoder over some long
context length sequence once and run the decoder at most P times, which is typically a smaller
number. The disadvantage of this approach is that we are throwing away potential learning signals
from the context-length window of training data and back-propagate via a prediction length window
for each SGD step.

log prob

Distribution
Head

prediction window -1context window
encoder input decoder input

Projection

Hopfield
Encoder

Layer

Projection

Causal
Hopfield

Decoder Layer

Figure 1: A depiction of the HopfieldTS model where during training a context-sized sequence of
inputs is projected and passed to N encoder Hopfield layers and the subsequent prediction length
input similarly projected and passed to M causal decoder Hopfield layers.

5 Related Works

The use of MHNs in sequential modeling has been recently explored in the General Sequential
Episodic Memory Model (GSEMM) [13] that encodes memories and their sequential relationships
by leveraging an adiabatic approach on the energy landscape of Hopfield Networks. The Long
Sequence Hopfield Memory [4] works directly with the update rule for the state of the Hopfield
network allowing for an analytical derivation for the sequential capacity of the model and showcasing
its ability to store and recall sequences of correlated patterns. The recent HopCPT [1] leverages a
Hopfield network to forecast using the Conformal Prediction approach of quantifying uncertainty
instead of some chosen parametric distribution.
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6 Experiments

We use the following open datasets: Exchange [16], Solar [16], Electricity1, Traffic2, Taxi3,
and Wikipedia4 preprocessed exactly as in [22] for our probabilistic forecasting experiments. The
dataset properties are listed in Table 2. For real-valued datasets we use a Student-T head, while for
integer-valued datasets we resort to learning the parameters of a Negative-Binomial distribution. We
compare against the following deep learning-based univariate probabilistic models: DeepAR [23],
Transformer, TFT [17] and Informer [26]. We report the mean scale interval score [8] (MSIS5) for
a 95% prediction interval, the 50th and 90th quantile percentile loss (QL50 and QL90, respectively),
as well as the Continuous Ranked Probability Score (CRPS) [8] score. The CRPS is a proper scoring
rule. The point-forecasting performance of models is measured by the normalized root mean square
error (NRMSE), the mean absolute scaled error (MASE) [12], and the symmetric mean absolute
percentage error (sMAPE) [20]. For pointwise metrics, we use sample medians except for NRMSE,
where we report using sample means. Table 1 shows the results.

Table 1: Forecasting-error metrics (lower is better) with Student-T (-t) or Negative Binomial (-nb)
on the open datasets. Best metrics are in bold.

Dataset Method CRPS QL50 QL90 MSIS NRMSE sMAPE MASE

Electricity

DeepAR-t 0.0504 0.0631 0.0338 5.8148 0.5350 0.1007 0.6945
Transformer-t 0.0554 0.0690 0.0398 6.2246 0.6470 0.1076 0.7460
TFT-t 0.0661 0.0819 0.0473 8.2548 0.6763 0.1223 0.9484
Informer-t 0.0503 0.0629 0.0341 5.9355 0.5684 0.1036 0.7020
HopfieldTS-t 0.0503 0.0632 0.0336 6.0535 0.5622 0.1039 0.7152

Exchange

DeepAR-t 0.0183 0.0222 0.0095 53.0098 0.0325 0.0230 4.0972
Transformer-t 0.0345 0.0410 0.0150 84.2023 0.0556 0.0383 6.5162
TFT-t 0.0217 0.0256 0.0087 79.4968 0.0374 0.0281 4.9519
Informer-t 0.0082 0.0103 0.0040 14.0588 0.0168 0.0126 1.7254
HopfieldTS-t 0.0078 0.0100 0.0041 14.3792 0.0152 0.0129 1.8572

Solar

DeepAR-t 0.4386 0.5340 0.3139 12.4606 1.0897 1.3929 1.2536
Transformer-t 0.4261 0.5336 0.3235 9.8072 1.1023 1.4029 1.2545
TFT-t 0.4478 0.5623 0.3590 10.9283 1.1641 1.4342 1.3216
Informer-t 0.4358 0.5465 0.2399 9.0558 1.1297 1.3900 1.2855
HopfieldTS-t 0.4293 0.5410 0.2314 8.2744 1.1161 1.3842 1.2706

Taxi

DeepAR-nb 0.2875 0.3641 0.1944 5.4164 0.5787 0.5706 0.7436
Transformer-nb 0.3037 0.3820 0.2166 6.0592 0.6187 0.5913 0.7761
TFT-nb 0.2969 0.3755 0.2020 5.6185 0.6086 0.5759 0.7644
Informer-nb 0.3046 0.3850 0.2059 5.8538 0.6217 0.5860 0.7822
HopfieldTS-nb 0.3021 0.3815 0.2079 5.8184 0.6135 0.5910 0.7762

Traffic

DeepAR-t 0.1194 0.1423 0.0987 6.7620 0.4121 0.1403 0.5428
Transformer-t 0.1230 0.1471 0.1009 6.7683 0.4242 0.1433 0.5577
TFT-t 0.1320 0.1547 0.1049 7.5259 0.4531 0.1518 0.5910
Informer-t 0.1216 0.1430 0.0996 7.0771 0.4244 0.1571 0.5450
HopfieldTS-t 0.1274 0.1494 0.1020 7.3987 0.4334 0.1713 0.5710

Wikipedia

DeepAR-nb 0.4688 0.4532 0.7826 59.5015 3.1795 0.3385 2.3928
Transformer-nb 0.3204 0.3563 0.3494 26.4558 2.1732 0.3060 1.7312
TFT-nb 0.4163 0.4397 0.5899 43.9931 2.7214 0.3684 2.1223
Informer-nb 0.4740 0.5467 0.5648 50.2443 2.4364 0.6929 2.7806
HopfieldTS-nb 0.4181 0.5228 0.3596 26.6816 2.2919 0.6316 2.6045

From Table 1 we see that model performance varies with data characteristics, in particular with the
size D and frequency. Notably, our Hopfield-TS model stands out for smaller datasets, as suggested
by its performance on the Electricity, Exchange, and Solar datasets. On the other hand, the
vanilla encoder-decoder Transformer [25] shows superior results on the largest dataset, Wikipedia.
Meanwhile, DeepAR [23] performs well for medium to large datasets like Traffic and Taxi.

During our experiments, we further investigated the role of the β parameter within the Hopfield
model. Our results indicate a relationship between the dataset’s size and the influence of the β
parameters on both the encoder and decoder’s performance. Specifically, when β is set to 1, patterns
are predominantly averaged, leading to a decrease in the model’s effectiveness on larger datasets.
Conversely, our Hopfield model demonstrates enhanced performance on larger datasets as β increases.

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2https://github.com/laiguokun/multivariate-time-series-data#traffic-usage
3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
4https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
5http://www.unic.ac.cy/test/wp-content/uploads/sites/2/2018/09/

M4-Competitors-Guide.pdf
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On smaller datasets, such as Solar and Electricity, we observe worse CRPS as we increase β.
Similarly, for datasets with similar temporal patterns like Traffic, we observe the performance
decreasing for larger β. As can be seen from Figure 2 we get SOTA ÇRPS metrics with respect to the
methods compared, on all the datasets except Taxi by tuning the β hyperparameter.

7 Summary

Our temporal Hopfield architecture offers a novel approach to time series modeling, leveraging the
associative memory properties of the Hopfield network while accounting for temporal dependencies.
Our extension opens up new avenues for the application of Hopfield-like networks in time series
analysis, forecasting, and anomaly detection. Future work will explore the scalability of our approach
and its applicability to multivariate time series data.
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A Experimental Setup

This appendix provides additional details on the models, datasets, covariates, as well as hyper-
parameters used during our experiments.

A.1 Models

We compare against the following deep learning-based univariate probabilistic models:

• DeepAR [23]: an RNN-based probabilistic model which learns the parameters of some
chosen distribution for the next time point;

• Transformer [25]: the vanilla encoder-decoder transformer;
• TFT [17]: an auto-regressive attention based Seq-to-Seq model with variable selection

network for selecting relevant inputs;
• Informer [26]: an efficient transformer and full horizon predictor model;

A.2 Dataset

We evaluate the different models on the following commonly used datasets:

• Electricity: hourly time series of the electricity consumption of 371 customers.
• Exchange: daily exchange rate between 8 currencies.
• Solar: hourly photo-voltaic production of 137 stations in Alabama State.
• Taxi: spatio-temporal traffic time series of New York taxi rides taken at 1,214 locations

every 30 minutes.
• Traffic: hourly occupancy rate of 862 San Francisco car lanes.
• Wikipedia: daily page views of 9,535 Wikipedia pages.

Each dataset is divided into training and test sets, where rolling windows are employed for the
evaluation on the test sets. Table 2 gives a description of the characteristics of each dataset.

Table 2: Dataset Description.

Dataset D Domain. Frequency Time Step Prediction Length

Electricity 321 R≥0 hour 15, 782 24
Exchange 8 R≥0 day 6, 071 30
Solar 137 R≥0 hour 7, 009 24
Taxi 1, 214 N≥0 30-min 1, 488 24
Traffic 862 (0, 1) hour 14, 036 24
Wikipedia 9, 535 N≥0 day 762 30

A.3 Covariates

We encode covariates via date-time features with regards to a time series’ frequency, e.g. for a
particular time point t of the time series i, we can create hour-of-day, day-of-week, week-of-month,
etc. features as a vector, which we denote by cit. The covariates have to be known for the time points
we wish to predict. Additional covariates can be constructed by embedding the identity i of each
time series in a dataset via embedding layers, as done in the DeepAR method. Univariate time series
signals can also be vectorized via lag indices designed for the frequency of the data. For example
for hourly time series, the last xt−24, xt−24×7, . . . time steps can be copied into the covariate vector
ct. As time series data can have arbitrary magnitude we can normalize the data based on the mean
and standard deviation of the context window and pass these statistics as static covariates. During
training or inference, we can either transform the distribution or samples back to the original scale
as proposed in [23]. Note that this technique predates the recent related RevIN [14] method and
Non-stationary Transformers [18]. All the methods considered receive the same covariates as input.
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A.4 Hyperparameters

We initialize the different models we consider so that they have approximately the same number of
trainable parameters of around 63K. The main hyperparameters are listed in Table 3.

Table 3: Hyperparmeters used in the experiments and their descriptions.

Parameter Value Description

d_model 64 The latent dim of the Transformer/RNN vector
context_len 2 ∗ P The context length is twice the size prediction length

N 1 The number of encoder layers
M 1 The number of decoder layers

dim_ff 32 The linear layers hidden size
emb_dim 4 Size of the time series i embedding vector
βenc 1 The β parameter of Hopfield encoder’s metastable states
βdec 1 The β parameter of the Hopfield decoder’s metastable states

batch_size 32 The SGD batch size
num_batches_per_epoch 100 The number of batches that constitute an epoch

max_epochs 100 The maximum number of epochs

B Ablation

The β parameters of the Hopfield layers control the size of the metastable states patterns can
converge to. In other words, it controls how many patterns are averaged. As β increases the more
pattern clusters there are. We check the test-set performance of HopfieldTS as we increase the β for
the encoder and decoder and plot the resulting test metrics together with an indication of the best
CRPS metric:

Figure 2: CRPS on test for different datasets according to β with the best CRPS metric (where lower
is better) denoted by the horizontal line.
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