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Abstract
Despite numerous efforts, achieving adversarial robustness in deep learning remains a critical chal-
lenge. Recent studies have discovered that adversarial training, a widely adopted method for im-
proving model robustness against adversarial perturbations, prevalently suffers from robust overfit-
ting. To better characterize the robust generalization of adversarially trained models, we introduce
the Weight-Curvature Index (WCI), a novel metric that captures the Frobenius norm of layer-wise
weight matrices and the trace of the Hessian matrix with respect to the adversarial loss function. In
particular, we establish a theoretical connection between WCI and robust generalization gap under
a PAC-Bayesian framework. By analyzing the dynamics of these factors, WCI offers a nuanced
understanding of why robust overfitting happens during adversarial training. Experimental results
demonstrate a strong correlation between WCI and traditional robustness measures, suggesting the
effectiveness of WCI in capturing the learning dynamics of adversarial training.

1. Introduction

Building deep learning models to be resilient to adversarial perturbations remains an enduring chal-
lenge. An active line of research [2, 5, 6, 11, 19] has emphasized that adversarial training, where
models are optimized to withstand worst-case perturbations, is essential to bolster model robustness.
While standard deep learning produces models that can generalize to unseen data well, adversarial
training presents a starkly different scenario. In particular, overfitting to the training set severely
harms the robust generalization of adversarial training, resulting in models that perform well on
adversarial examples in the training set but poorly on those in the test set. This phenomenon, known
as robust overfitting [18, 25], underscores a significant gap in our understanding of deep learning
generalization under adversarial settings. To mitigate robust overfitting and improve the generaliza-
tion of adversarial training, various robustness-enhancing techniques have been proposed, such as ℓ2
weight regularization [27], early stopping [25], data augmentation [38, 39], the use of synthetically
generated data [12], adversarial weight perturbation (AWP) [33], sharpness-aware minimization
(SAW) [30], to name a few. Nevertheless, there is a lack of principled explanations on why robust
overfitting happens and what factors are essential for adversarially robust generalization.

A better theoretical indicator of adversarially robust generalization is crucial for pinpointing
the bottleneck of state-of-the-art adversarial training methods and inspiring new insights to further
build more robust models. Traditional measures, such as robust loss and error gaps, predominantly
assess performance degradation under adversarial perturbations but fail to elucidate the underlying
mechanisms driving this vulnerability. These indicators focus on the outcomes of adversarial at-
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tacks without considering the intrinsic characteristics of the model, thereby lacking a theoretical
foundation for the continuous improvement of robust generalization. Moreover, a notable limita-
tion of existing metrics is their reliance on both training and testing datasets to assess robustness.
Few metrics can characterize robust overfitting and generalization solely from the training dataset
[28, 34, 37]. This dependence on additional data impedes a comprehensive understanding of these
phenomena and constrains the development of novel algorithms aimed at mitigating robust overfit-
ting and enhancing robust generalization (see Appendix A for detailed discussions of related works).

Contributions. In this paper, we introduce the Weight-Curvature Index (WCI), a novel metric to
quantify a model’s vulnerability to adversarial perturbations, utilizing the Frobenius norm of weight
matrices and the trace of the Hessian matrix to comprehensively assess the robust generalization
performance of adversarially trained models (Definition 5). Our theoretical foundation, based on
PAC-Bayesian theory and second-order loss function approximations, elucidates the interplay be-
tween robust generalization, model parameters, and loss landscape curvature (Theorem 4). The
WCI enables the evaluation of robust overfitting and generalization using only the training dataset,
simplifying robustness assessment and aiding in the development of more effective algorithms. Our
empirical results validate the WCI’s strong correlation with traditional robustness metrics (Section
2.3). By offering a nuanced understanding of adversarial robustness based on the scale of model
parameters and the curvature of the loss landscape, our work provides crucial insights for designing
more resilient deep learning models, enhancing their reliability and security.

2. Connecting Robust Generalization with Weight-Curvature Index

In this section, we introduce the definition of the Weight-Curvature Index and provide explanations
on why it can serve as a effective measure of a model’s robustness against adversarial perturbations.

2.1. Adversarial Risk and PAC-Bayesian Bound

Before introducing the Weight-Curvature Index, we first present a lemma, proven in Appendix B.1,
which establishes a PAC-Bayesian adversarial risk bound, inspired by prior work [21, 29].

Lemma 1 (Adversarial Risk with Catoni’s bound [1]) Let λ > 0, ϵ ∈ (0, 1), and let D be any
probability distribution. Consider H as a set of classifiers and P as a prior distribution supported
by H. For each classifier in H, let θ denote the set of parameters that determine the behavior of
the network. For a training set S consisting of n samples (x, y) drawn from D, where x represents
the input data and y is the corresponding target label, let gθ denote the output logits. For any
posterior distribution Q over H, define the expected loss under distribution D for parameters as
Eθ∼QE(x,y)∼D[L((x + δ, y), gθ)] and the empirical estimate of the loss on the training set S as
Eθ∼Q[L((x+ δ, y), gθ)]. Then, the adversarial risk Radv(f) is bounded by:

Radv(f) ≤ E(x,y)∼D[L((x+ δ, y), gθ)]− Eθ∼QE(x,y)∼D[L((x+ δ, y), gθ)]︸ ︷︷ ︸
Perturbation Discrepancy

+
1

λ
KL[Q||P]︸ ︷︷ ︸

KL Divergence

+ Eθ∼Q[L((x+ δ, y), gθ)]− L((x+ δ, y), gθ)︸ ︷︷ ︸
Classifier Variability

+L((x+ δ, y), gθ) +
λC2

8n
− 1

λ
ln ϵ.

(1)
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Recall that our objective is to establish a reliable index of robustness generalization capacity, specif-
ically aiming to establish a linkage with adversarial risk Radv(f). Thus, we only need to focus on
the terms in Eq. 1 that are relevant to adversarial robustness. First, we note that the term λC2

8n − 1
λ ln ϵ

can be detached from robustness metrics. In addition, previous studies has illustrated that the term
L((x+ δ, y), gθ) lacks direct correlation with robustness measures [25], and significantly reducing
the Classifier Variability may also reduce the Perturbation Discrepancy component [4, 7, 10, 20].
Consequently, our analysis in the following discussions predominantly explores the influence of the
KL Divergence and Classifier Variability terms on enhancing the model’s resistance to adversar-
ial inputs. To further simplify the understanding of the aforementioned two terms, we incorporate
hyperprior and second-order loss approximation techniques, which are explained as follows.

Incorporating Hyperprior. We introduce a hyperprior for the standard deviation σP of the param-
eters for each weight matrix, following Kim and Hospedales [15]. To maintain prior variance in-
variant to parameter rescaling, we adopt specialized hyperpriors from Sefidgaran et al. [26]. Specif-
ically, we utilize a uniform hyperprior selected from a finite set of positive real numbers, ensuring
precise representation with floating-point arithmetic [32]. This approach guarantees robust Bayesian
inference and provides a viable framework for parameter standardization across varying scales.

Assumption 1 To adhere to standard practice in Bayesian neural networks, we define the prior
distribution P as a Gaussian with zero mean and a diagonal covariance matrix (σ2

PI), ensuring
σP > 0. Simultaneously, we model the posterior distribution Q as a Gaussian characterized by the
mean vector θ, representing the network parameters, and a covariance matrix (σ2

QI), with σQ > 0.

The following lemma, proven in Appendix B.2, indicates that the KL divergence term is directly
proportional to the squared Frobenius norm of the parameters when the prior variances are constant.

Lemma 2 (Otto’s KL divergence [24]) To minimize the Kullback-Leibler (KL) divergence term
effectively, we equate the prior variance (σ

(l)
P )2 equal to the posterior variance (σ

(l)
Q )2, and denote

both variances as (σ(l))2. Consequently, the KL divergence is given by:

KL[Q||P] =
∑
l

∥W (l)∥2F
2(σ(l))2

+ const, (2)

where W (l) is the weight matrix of the l-th layer and ∥W (l)∥2F denotes its squared Frobenius norm.

Second-Order Approximation of Loss. To integrate PAC-Bayesian theory with the Hessian matrix
of the loss landscape, we employ a second-order approximation to various surrogate loss functions,
building on insights from recent research [17, 31, 36]. We model the posterior distribution of the
parameters, denoted as Q, as a Gaussian distribution with unit variance.

Assumption 2 The loss function L(θ, x+ δ, y) can be approximated using a second-order approx-
imation. We use the unit-variance Gaussian as the posterior of parameters.

The following lemma, proven in Appendix B.3, shows that the Classifier Vulnerability term under
this framework can be quantified by the expectation of the loss over the distribution of parameters.
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Lemma 3 (Hessian-based Variability [9]) By approximating the loss function L(θ, x + δ, y) us-
ing a second-order expansion, the relationship between the expected variability in the classifier’s
performance and the curvature of the loss landscape is given by:

Eθ∼Q[L((x+ δ, y), gθ)]− L((x+ δ, y), gθ) ≤
∑
l

Tr(H(l)) · (σ(l))2, (3)

where Tr(H(l)) denotes the accumulation of the diagonal elements of the Hessian matrix of the
training loss with respect to the weight matrix W (l), and (σ(l))2 is the variance associated to W (l).

2.2. Defining Weight-Curvature Index

Putting pieces together, the following theorem proves an upper bound on the KL Divergence and
Classifier Vulnerability terms in Eq. 1, which is related to the Frobenius norm of layer-wise model
weights and the trace of the corresponding Hessian matrix with respect to adversarial loss.

Theorem 4 (Adversarial Risk Simplification) Under the same settings as in Lemma 1, we have

1

λ
KL[Q||P] + Eθ∼Q[L((x+ δ, y), gθ)]− L((x+ δ, y), gθ)

≤
√

2

λ

∑
l

√
∥W (l)∥2F · Tr(H(l)) + const,

(4)

where λ is a normal constant, ∥W (l)∥2F is the squared Frobenius norm of the weight matrix W (l),
and Tr(H(l)) denotes the trace of the Hessian matrix of the loss function with respect to W (l).

The proof of Theorem 4 is provided in Appendix B.4. According to Eq. 4, irrespective of the value
of λ that achieves the infimum in the PAC-Bayes bound, a smaller value of the combined metric∑

l

√
∥W (l)∥2F · Tr(H(l)) implies tighter robustness bound, which we formally define as follows:

Definition 5 (Weight Curvature Index) The Weight-Curvature Index is defined as:

WCIadv :=
∑
l

√
∥W (l)∥2F · Tr(H(l)), (5)

where W (l) represents the weight matrix of the l-th layer, ∥W (l)∥F denotes the Frobenius norm of
the weight matrix W (l), H(l) is the Hessian matrix of the loss function with respect to the parameters
of the l-th layer and Tr(H(l)) stands for the trace of the Hessian matrix H(l).

This index quantifies the interaction between the scale of the model’s parameters and the curvature
of the loss landscape. Note that WCIadv is scaled by the magnitude of each weight matrix, en-
suring that the metric is invariant to parameter rescaling [22]. A higher WCIadv indicates higher
vulnerability to adversarial perturbations, while a lower value suggests enhanced robustness.
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(a) (b)

(c) (d)

Figure 1: Learning curves of the Weight-Curvature Index of standard adversarial training on CIFAR-
10 with respect to (a) Robust error and loss, and (b) robust generalization Gaps. (c) and (d) show
WCI curves with various regularization techniques on CIFAR-10 and CIFAR-100 respectively.

2.3. Experiments

In this section, we conduct experiments to examine the effectiveness of the Weight-Curvature Index
(WCI) as a metric for assessing the robustness of deep learning models against adversarial attacks.
Our experiments are mainly based on the methodology and findings presented in the work by Rice
et al. [25]. Figure 1(a) shows the relationship between the WCI, robust loss, and robust error over
200 training epochs, while Figure 1(b) compares the generalization gap (robust loss gap and ro-
bust error gap) with WCI. Further analysis in Figures 1(c) and 1(d) compare the WCI curves for
models trained on CIFAR-10 and CIFAR-100 using different regularization and data augmentation
techniques, including basic adversarial training, cutout, mixup, and ℓ2 regularization. More details
of our experiments are provided in Appendix C. The consistent trend of WCI across datasets and
techniques highlights overfitting as a common phenomenon. Our empirical findings demonstrate
a strong correlation between WCI and both robust loss and error gaps across training and testing
datasets, affirming our theoretical results. Higher WCI values correspond to increased robustness
losses and error gaps, especially pronounced during the overfitting periods.
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3. Conclusion

We proposed the WCI as a novel metric for quantifying the susceptibility of deep learning models
to adversarial perturbations. Our theoretical analysis and empirical evidence demonstrated that the
WCI aligns well with traditional measures of robust generalization performance of adversarially
trained models. By integrating the scale of model parameters with the curvature of the loss land-
scape, the WCI provides a more nuanced understanding of adversarial robustness. Our findings
indicate that models with higher WCI values exhibit greater susceptibility to adversarial perturba-
tions, as evidenced by increased robust loss and error gaps. This correlation underscores the utility
of the WCI in identifying and mitigating overfitting in adversarially robust deep learning models.
Moreover, our results suggest that the WCI may serve as a valuable tool for guiding the develop-
ment of more robust models. Future research should focus on designing algorithms that can better
control the model’s WCI during training while exploring its applicability across a broader range of
architectures and adversarial training methods.
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Appendix A. Related Work

The study of overfitting and generalization in deep learning has been a central focus of research for
many years. In adversarial learning, overfitting is a prevalent phenomenon, characterized by models
performing well on the training set but poorly on the test set. Understanding this phenomenon can
significantly enhance the robustness of adversarial learning. Standard deep learning generalization
theory frequently employs PAC-Bayesian frameworks to provide probabilistic guarantees on the
generalization performance of models. This approach has been instrumental in elucidating neural
network behavior and developing methods to enhance their generalization capabilities.

Adversarially Robust Generalization. Robust generalization refers to the capability of models to
perform well on both clean data and data subjected to adversarial perturbations. Rice et al. [25]
highlight the issue of overfitting in adversarially robust deep learning, showing that models tend
to overfit to adversarial examples, thereby reducing their generalization performance on new ad-
versarial attacks. Moreover, the work by Xiao et al. [35] on PAC-Bayesian spectrally-normalized
bounds for adversarially robust generalization provides valuable insights into how spectral normal-
ization can improve the robustness and generalization of neural networks. This research underscores
the effectiveness of integrating spectral norms into the PAC-Bayesian framework to achieve tighter
robustness bounds and enhanced generalization.

Generalization Theory and PAC-Bayesian Frameworks. Dziugaite and Roy [8] applied PAC-
Bayesian bounds to deep networks, demonstrating their utility in providing non-vacuous general-
ization guarantees. Neyshabur et al. [23] further extended these ideas by relating PAC-Bayesian
bounds to the stability and complexity of the learning algorithm. These studies demonstrate the ver-
satility of the PAC-Bayesian approach in providing theoretical guarantees for deep learning models.

Sharpness of the Loss Landscape. Recent works have investigated the impact of the loss land-
scape’s sharpness and flatness on model robustness. Jiang et al. [14] proposed a generalization
metric based on the sharpness of the loss landscape, showing that flatter minima correlate with bet-
ter generalization. Foret et al. [9] introduced Sharpness-Aware Minimization (SAM), a method that
minimizes sharpness to improve generalization. These studies indicate that flatter loss landscapes
are associated with improved generalization and robustness properties.

The Weight-Curvature Index (WCI) proposed in this paper is closely related to the concepts
of PAC-Bayesian frameworks and the sharpness of the loss landscape. PAC-Bayesian frameworks
utilize the Frobenius norm, while sharpness is primarily analyzed through the trace of the Hessian
matrix. Our work builds on these foundations by integrating the PAC-Bayesian framework with
second-order loss function approximations to develop the WCI. By integrating these elements, the
WCI offers a comprehensive measure of model robustness, capturing the interplay between model
parameters and loss landscape curvature.

Appendix B. Detailed Proofs of Main Theoretical Results

B.1. Proof of Lemma 1

To prove Lemma 1, we need to make use of the following definition and lemma. Definition 6 eval-
uates the robustness of a model against adversarial attacks. Lemma 7 characterizes a fundamental
PAC-Bayes bound, known as Catoni’s bound [1] but is adapted for adversarially robust learning.

11
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Definition 6 (Adversarial Risk [3]) Let f refers to the model or classifier being evaluated, E rep-
resents the expected value over the distribution of data points. (x, y) ∼ D indicates that each data
point (x, y) is drawn from a distribution D, where x is a feature vector and y is the corresponding
label. Let L denotes the loss function used to measure the discrepancy between the model’s predic-
tion on the perturbed input (x + δ) and the true label y, and gθ represents the predictive function
of the model, parameterized by θ. δ is the perturbation added to the input x, crafted specifically
to mislead the model f . The goal of δ in this setting is to find the worst-case perturbation that
maximizes the loss, reflecting the model’s vulnerability to adversarial examples.

Radv(f) := E(x,y)∼D[L((x+ δ, y), gθ)]

Lemma 7 Let λ > 0, ϵ ∈ (0, 1), and let D be any distribution. Consider H as a set of classifiers
and P as a prior distribution supported by H. For each classifier in H, define θ as the set of
parameters that determine the behavior of the network. For a training set S of n samples (x, y)
drawn from D, where x is the input data and y is the corresponding target label, let gθ denote the
output logits. For any posterior distribution Q over H, we define:

• The expected loss under distribution D for parameters:

Eθ∼QE(x,y)∼D[L((x+ δ, y), gθ)],

• The empirical estimate of the loss on the training set S:

Eθ∼Q[L((x+ δ, y), gθ)].

The following bound is satisfied with probability at least 1− ϵ:

Eθ∼QE(x,y)∼D[L((x+ δ, y), gθ)] ≤ Eθ∼Q[L((x+ δ, y), gθ)] +
λC2

8n
+

KL[Q ∥ P] + ln 1
ϵ

λ
.

Proof For the sake of completeness, we present the proof of Lemma 7 first, which is based on the
PAC-Bayesian theorem [1]. The bound is derived by applying the PAC-Bayesian theorem to the
expected loss under distribution D and the empirical estimate of the loss on the training set S.

Catoni’s bound shows that for any λ > 0, any ϵ ∈ (0, 1),

PS

(
∀ρ ∈ P(Θ),Eθ∼ρ[R(θ)] ≤ Eθ∼ρ[r(θ)] +

λC2

8n
+

KL(ρ∥π) + log 1
ε

λ

)
≥ 1− ε.

Define the empirical loss Eθ∼Q[L((x + δ, y), gθ)] as the average loss over the training set with
perturbations δ, and the expected loss Eθ∼QE(x,y)∼D[L((x+δ, y), gθ)] as the average loss across the
distribution D considering the same perturbations. Applying Catoni’s bound involves a theoretical
result that relates the true risk R(θ) = E(x,y)∼D[L((x+δ, y), gθ)] of a hypothesis gθ and its empirical
risk r(θ) = L((x + δ, y), gθ) on a finite sample set. The bound states that with probability at least
1 − ϵ, the following inequality holds for all probability distributions ρ on the hypothesis space Θ
induced by Q:

Eθ∼ρ[R(θ)] ≤ Eθ∼ρ[r(θ)] +
λC2

8n
+

KL(ρ∥P) + log 1
ϵ

λ
,

12
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where C is a bound on the loss function L, and KL(ρ∥P) represents the Kullback-Leibler diver-
gence from the posterior ρ to the prior P .

For the adversarial setting, this bound becomes particularly useful in assessing how well a model
that has been trained with adversarial examples (represented by δ) can generalize from its empirical
loss on training data to its expected performance on the overall distribution. The bound provides
a trade-off between the empirical loss and the expected loss, with the KL divergence term and the
classifier variability term contributing to the generalization error. Since Q is a distribution over
classifiers, integrating the Catoni’s bound over Q yields:

Eθ∼QE(x,y)∼D[L((x+ δ, y), gθ)] ≤ Eθ∼Q[L((x+ δ, y), gθ)] +
λC2

8n
+

KL(Q∥P) + log 1
ϵ

λ
.

Therefore, we complete the proof of Lemma 7.

Proof [Proof of Lemma 1] Using Definition 6 and Lemma 7, we can immediately derive the adver-
sarial risk bound:

Radv(f) :=E(x,y)∼D[L((x+ δ, y), gθ)]

=E(x,y)∼D[L((x+ δ, y), gθ)]− Eθ∼QE(x,y)∼D[L((x+ δ, y), gθ)]

+ Eθ∼QE(x,y)∼D[L((x+ δ, y), gθ)]

≤E(x,y)∼D[L((x+ δ, y), gθ)]− Eθ∼QE(x,y)∼D[L((x+ δ, y), gθ)]

+ Eθ∼Q[L((x+ δ, y), gθ)]− L((x+ δ, y), gθ)

+ λ−1KL[Q||P] +
λC2

8n
+ L((x+ δ, y), gθ)− λ−1 ln ϵ,

which completes the proof of Lemma 1.

B.2. Proof of Lemma 2

Proof In the context of adversarial machine learning, the Kullback–Leibler (KL) divergence mea-
sures how a model’s distribution Q, representing the learned classifiers, diverges from a prior dis-
tribution P under adversarial conditions. Specifically, this divergence can be adapted to account for
the added complexity introduced by adversarial perturbations to the input data.

The KL divergence term is adapted for adversarial conditions as follows:

KL[Q||P] =
∑
l

ln(σ
(l)
P

σ
(l)
Q

)
+

∥W (l)∥2F + (σ
(l)
Q )2

2(σ
(l)
P )2

+ const.

Here, W (l) denotes the weights of the l-th layer of the neural network. The terms σ(l)
P and σ

(l)
Q rep-

resent the variances of the prior and posterior distributions of the weights for this layer, respectively.
These variances reflect the spread of the weight values and are key to understanding the network’s
robustness to adversarial attacks; larger variances in the posterior suggest a model that is more sen-
sitive to input perturbations. In the adversarial setting, these variances are particularly crucial as
they directly influence the classifier’s stability.
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The KL divergence is further simplified when the variances of the prior and posterior distribu-
tions are equal, which is a common assumption made to facilitate the calculation. In such cases, the
KL divergence simplifies to:

KL[Q||P] =
∑
l

∥W (l)∥2F
2(σ(l))2

+ const.

In this simplified form, the KL divergence is directly proportional to the Frobenius norm of the
weight matrices, scaled by the variance of the distributions, and offers a computationally tractable
measure for evaluating the divergence in an adversarial machine learning setting.

B.3. Proof of Lemma 3

Proof The adversarial loss approximation in the context of adversarial ML involves considering the
stability of the training loss in the face of adversarial perturbations. We can express the difference
in empirical losses between the perturbed and unperturbed classifier with parameters θ as:

Eθ∼Q[L((x+ δ, y), gθ)]− L((x+ δ, y), gθ) = Eϵ∼N (0,I)E(x,y)∈S [L((x+ δ, y), gθ + ϵ)]

− L((x+ δ, y), gθ),
(6)

which captures the average adversarial loss over perturbations ϵ drawn from a standard Gaussian
distribution. This difference can be approximated using the second-order Taylor series expansion
around θ, yielding:

Eθ∼Q[L((x+ δ, y), gθ)]− L((x+ δ, y), gθ) ≤ Eϵ∼N (0,I)[ϵ
⊤∇2

θE(x,y)∈S [L((x+ δ, y), gθ)]ϵ], (7)

and simplifying this further using the trace of the Hessian, we get:

Eθ∼Q[L((x+ δ, y), gθ)]− L((x+ δ, y), gθ) ≤ Tr(∇2
θE(x,y)∈S [L((x+ δ, y), gθ)]), (8)

which quantifies the effect of adversarial perturbations on the loss landscape’s curvature and pro-
vides a measure for the classifier’s adversarial robustness. Note that the Hessian matrix H(l) for the
l-th layer of the neural network is defined as:

H(l) =
∑
i,j

∂2L((x+ δ, y), gθ)

∂W (l)[i, j]2
, (9)

which encapsulates the second-order partial derivatives of the loss function with the weights of the
layer, indicating how the loss curvature changes in response to perturbations in the weights. There-
fore, we can approximate the Classifier Variability Component by the trace of the Hessian. This
approximation provides a computationally efficient method to evaluate the classifier’s sensitivity to
adversarial perturbations, offering insights into the model’s robust generalization capabilities:

Eθ∼Q[L((x+ δ, y), gθ)]− L((x+ δ, y), gθ) ≤
∑
l

Tr(H(l)) · (σ(l))2, (10)

which completes the proof.
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B.4. Proof of Theorem 4

Proof According to Lemma 2 and Lemma 3, we obtain

λ−1KL[Q||P] + Eθ∼Q[L((x+ δ, y), gθ)]− L((x+ δ, y), gθ)

≤λ−1

(∑
l

∥W (l)∥2F
2(σ(l))2

+ const

)
+
∑
l

Tr(H(l)) · (σ(l))2

=
∑
l

(
∥W (l)∥2F
2λ(σ(l))2

+Tr(H(l)) · (σ(l))2

)
+ const

≤2
∑
l

√
∥W (l)∥2F
2λ(σ(l))2

· Tr(H(l)) · (σ(l))2 + const

=

√
2

λ

∑
l

√
∥W (l)∥2F · Tr(H(l)) + const,

where the last inequality holds because of the Cauchy-Schwarz inequality, and the equality holds if

and only if (σ(l))2 =

√
∥W (l)∥2F

2λTr(H(l))
. Therefore, we complete the proof.

Appendix C. Experimental Details

C.1. Experimental Setup

• Dataset: We utilize the CIFAR-10 and CIFAR-100 datasets [16] for our experiments. Both
datasets consist of 32 × 32 color images. CIFAR-10 is composed of 60,000 images divided
into 10 classes, with 50,000 training images and 10,000 test images. CIFAR-100, while
similar in total number of images and image size, is categorized into 100 classes, presenting
a more granular classification challenge due to finer distinctions among the categories.

• Model Architecture: The PreActResNet18 model architecture [13] is evaluated in our ex-
periments. PreActResNet18 is a pre-activation variant of the ResNet architecture known for
its robustness and performance in various image classification tasks.

• Adversarial Attack Method: We employ the Projected Gradient Descent (PGD) method
[19] to assess the robustness of the models. PGD is a widely used technique for generating
adversarial examples.

• Training Procedure:

– Initial Learning Rate: The model is trained with an initial learning rate 0.1.

– Learning Rate Decay: The learning rate is decayed by a factor of 0.1 at the 100th and
150th epochs.
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C.2. Evaluation Metrics

The primary metrics used for evaluation are:

• Weight-Curvature Index (WCI): As defined in Definition 5, the WCI measures the interac-
tion between the scale of model parameters and the curvature of the loss landscape, directly
calculated on the training set.

• Robust Loss: The loss calculated on adversarially perturbed inputs.

• Robust Error: The classification error on adversarially perturbed inputs.

• Robust Loss Gap: The difference in robust loss between the training and test sets.

• Robust Error Gap: The difference in robust error between the training and test sets.
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