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Abstract

Anomaly detection (AD) is an important ma-
chine learning task with applications in fraud
detection, content moderation, and user behav-
ior analysis. However, AD is relatively un-
derstudied in a natural language processing
(NLP) context, limiting its effectiveness in de-
tecting harmful content, phishing attempts, and
spam reviews. We introduce NLP-ADBench,
the most comprehensive NLP anomaly detec-
tion (NLP-AD) benchmark to date, which in-
cludes eight curated datasets and 19 state-of-
the-art algorithms. These span 3 end-to-end
methods and 16 two-step approaches that adapt
classical, non-AD methods to language embed-
dings from BERT and OpenAl. Our empiri-
cal results show that no single model dom-
inates across all datasets, indicating a need
for automated model selection. Moreover,
two-step methods with transformer-based em-
beddings consistently outperform specialized
end-to-end approaches, with OpenAl embed-
dings outperforming those of BERT. We re-
lease NLP-ADBench at https://anonymous.
4open.science/r/NLP-ADBench-E84C, pro-
viding a unified framework for NLP-AD and
supporting future investigations.

1 Introduction

Anomaly detection (AD) is a fundamental area in
machine learning with diverse applications in web
systems, such as fraud detection, content modera-
tion, and user behavior analysis (Chandola et al.,
2009; Ahmed et al., 2016). Substantial progress
has been achieved in AD for structured data such
as tabular, graph, and time series (Chalapathy and
Chawla, 2019; Han et al., 2022; Lai et al., 2021;
Liu et al., 2022), but its extension to natural lan-
guage processing (NLP) remains relatively under-
explored (Ruff et al., 2021; Yang et al., 2024). This
gap limits our ability to identify harmful content,
phishing attempts, and spam reviews.

For instance, detecting abusive or threatening

language is crucial for ensuring that social me-
dia platforms and online forums remain safe en-
vironments for users (Fortuna and Nunes, 2018).
Likewise, detecting anomalous product reviews or
descriptions in e-commerce is important for pre-
serving user trust and platform credibility (Chino
et al., 2017). However, many standard AD methods
are designed for numeric or categorical data and
are not easily adapted to unstructured text (Zhao
et al., 2019; Chen et al., 2024). Existing studies on
NLP-specific AD are limited in both dataset variety
and algorithmic range (Han et al., 2022; Liu et al.,
2022; Yang et al., 2024), leaving open questions
about which approaches work best under different
conditions. These gaps lead to a central research
question: How can we systematically evaluate and
compare diverse AD methods across real-world
text datasets, and what insights can be gained to
guide future development in NLP-based AD?

Our Proposal and Key Contributions. We in-
troduce NLP-ADBench, the most comprehensive
benchmark for NLP-AD tasks. NLP-ADBench
offers four major benefits compared to prior
work (Bejan et al., 2023): (i) eight real-world
datasets covering a wide range of web use cases; (if)
19 advanced methods that apply standard AD algo-
rithms to language embeddings or use end-to-end
neural architectures; (iii) detailed empirical find-
ings that highlight new directions for NLP-AD; and
(iv) fully open-source resources, including datasets,
algorithm implementations, and more, aligns with
the Resources and Evaluation track.

Key Insights/Takeaways (see details in §3). Our
comprehensive experiments reveal: (i) No single
model dominates across all datasets, showing the
need for model selection; (if) Transformer-based
embeddings substantially boost two-step AD meth-
ods (e.g., LUNAR (Goodge et al., 2022) and LOF
(Breunig et al., 2000)) relative to end-to-end ap-
proaches; (iii) High-dimensional embeddings (e.g.,
from OpenAl) improve detection performance, but
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also raise computational overhead; and (iv) Dataset-
specific biases and human-centered anomaly defi-
nitions remain challenging for building robust and
widely applicable NLP-AD systems.

2 NLP-ADBench: AD Benchmark for
NLP Tasks
2.1 Preliminaries and Problem Definition

Anomaly Detection in Natural Language Process-
ing (NLP-AD) focuses on identifying text in-
stances that deviate significantly from expected
or typical patterns. Unlike structured data, text
data is inherently unstructured, high-dimensional,
and deeply influenced by the nuances of human
language, including syntax, semantics, and con-
text (Aggarwal, 2017; Yang et al., 2024). These
unique properties introduce significant challenges,
making the development of robust and accurate AD
methods for NLP a complex and demanding task.

Formally, let D = x1, 29, ...,z denote a cor-
pus where each x; is a text instance. The goal of
NLP-AD is to learn an anomaly scoring function
f + & — R that assigns a real-valued anomaly
score to each text instance. Higher scores denote
greater deviations from normal patterns, indicating
a higher likelihood of an anomalous instance.

2.2 Curated Benchmark Datasets

The limited availability of purpose-built datasets
constrains the development and evaluation of ef-
fective methods in NLP-AD. To address this gap,
we curated and transformed 8 existing classifi-
cation datasets from various NLP domains into
specialized datasets tailored for NLP-AD tasks,
ensuring that all data are presented in a standard
format. These datasets, collectively called the NL-
PAD datasets, provide a foundational resource for
advancing research.

Each transformed dataset is named by adding
the prefix “NLPAD-" to the original dataset’s name
(e.g., NLPAD-AGNews, NLPAD-BBCNews), dis-
tinguishing them from the original datasets. The
NLPAD datasets are provided in a unified JSON
Lines format for compatibility and ease of use.
Each line is a JSON object with four fields: text
(the text used for anomaly detection), label (the
anomaly detection label, where 1 represents an
anomaly and O represents normal), original_task
(the task of the original dataset), and original_label
(the category label from the original dataset).

To transform each dataset for NLP-AD, we es-
tablished a text selection process based on the data

Table 1: Statistical information of the NLPAD dataset.

NLPAD Dataset # Samples #Normal #Anomaly % Anomaly
NLPAD-AGNews 98,207 94,427 3,780 3.85%
NLPAD-BBCNews 1,785 1,723 62 3.47%
NLPAD-EmailSpam 3,578 3,432 146 4.08%
NLPAD-Emotion 361,980 350,166 11,814 3.26%
NLPAD-MovieReview| 26,369 24,882 1,487 5.64%
NLPAD-N24News 59,822 57,994 1,828 3.06%
NLPAD-SMSSpam 4,672 4,518 154 3.30%
NLPAD-YelpReview | 316,924 298,986 17,938 5.66%

format. For tabular data, we carefully chose appro-
priate columns as the text source. For document-
based data, we extracted text directly from relevant
documents. The anomalous class for each dataset
was selected based on semantic distinctions within
the dataset categories, ensuring that the identified
anomalies represent meaningful deviations from
the normal data distribution (Emmott et al., 2015;
Han et al., 2022). Once identified, the anomalous
class was downsampled to represent less than 10%
of the total instances.

For details of the dataset sources and construc-
tion processes, see Appx. A.1.1. Table. 1 presents
the statistical information of the NLPAD datasets,
including the total number of samples, the number
of normal and anomalous samples, and the anomaly
ratio for each dataset.

2.3 The Most Comprehensive NLP-AD
Algorithms with Open Implementations

Compared to the existing NLP-AD benchmark by
Bejan et al. (Bejan et al., 2023), NLP-ADBench
provides a broader evaluation by including 19 algo-
rithms, categorized into two groups. The first group
comprises 3 end-to-end algorithms that directly pro-
cess raw text data to produce anomaly detection out-
comes. The second group consists of 16 algorithms
derived by applying 8 traditional anomaly detec-
tion (AD) methods to text embeddings generated
from two models: bert-base-uncased (Devlin et al.,
2019) and OpenAlT’s text-embedding-3-large (Ope-
nAl, 2024). These traditional AD methods do not
operate on raw text directly but instead perform
anomaly detection on embeddings, offering a com-
plementary approach to the end-to-end methods.
This comprehensive algorithm collection enables
a robust evaluation of direct and embedding-based
NLP anomaly detection techniques. Here, we pro-
vide a brief description; see details in Appx. A.2.

End-to-end NLP-AD Algorithms. We evaluate 3
end-to-end algorithms tailored for NLP-AD. (1)
Context Vector Data Description (CVDD) (Ruff
et al.,, 2019) leverages context vectors and
pre-trained embeddings with a multi-head self-
attention mechanism to project normal instances



close to learned contexts, identifying anomalies
based on deviations. (2) Detecting Anomalies
in Text via Self-Supervision of Transformers
(DATE) (Manolache et al., 2021) trains transform-
ers using self-supervised tasks like replaced mask
detection to capture normal text patterns and flag
anomalies. (3) Few-shot Anomaly Detection in
Text with Deviation Learning (FATE) (Das et al.,
2023) uses a few labeled anomalies with deviation
learning to distinguish anomalies from normal in-
stances. We adapt it to train solely on normal data,
referring to the adapted version as FATE*.
Two-step NLP-AD Algorithms. We evaluate 8 two-
step algorithms that rely on embeddings generated
by models such as bert-base-uncased (Devlin et al.,
2019) and text-embedding-3-large (OpenAl, 2024).
These algorithms are designed to work with struc-
tured numerical data and cannot directly process
raw textual data, requiring text transformation into
numerical embeddings. (4) LOF (Breunig et al.,
2000) measures local density deviations, while (5)
DeepSVDD (Ruff et al., 2018) minimizes the vol-
ume of a hypersphere enclosing normal represen-
tations. (6) ECOD (Li et al., 2022) uses empiri-
cal cumulative distribution functions to estimate
densities and assumes anomalies lie in distribu-
tion tails. (7) IForest (Liu et al., 2008) recursively
isolates anomalies through random splits, and (8)
SO_GAAL (Liu et al., 2019) generates adversar-
ial samples to identify anomalies. Reconstruction-
based approaches include (9) AE (Aggarwal, 2017),
which flags anomalies based on reconstruction er-
rors, and (10) VAE (Kingma and Welling, 2013;
Burgess et al., 2018), which identifies anomalies
using reconstruction probabilities or latent devia-
tions. Finally, (11) LUNAR (Goodge et al., 2022)
enhances traditional local outlier detection with
graph neural networks.

3 Experiment Results
3.1 Experiment Setting

Datasets, Train/Test Data Split, and Indepen-
dent Trials. In the NLP-ADBench benchmark, the
data is divided by allocating 70% of the normal
data to the training set. The remaining 30% of nor-
mal data, combined with all anomalous data, forms
the test set. To ensure the robustness of our find-
ings, we repeat each experiment three times and
report the average performance.

Hyperparameter Settings. For all the algorithms
in NLP-ADBench, we use their default hyperpa-
rameter (HP) settings in the original paper for a fair

comparison, same as ADBench (Han et al., 2022).
Evaluation Metrics and Statistical Tests. We
evaluate different NLP-AD methods by a widely
used metric: AUROC (Area Under Receiver Op-
erating Characteristic Curve) and AUPRC (Area
Under Precision-Recall Curve) value.
Embeddings Definitions:

1. BERT refers specifically to the bert-base-
uncased model (Devlin et al., 2019).

2. OpenAl refers to OpenAl’s text-embedding-3-
large model (OpenAl, 2024).

3. The term “BERT + AD algorithm” or “OpenAl +
AD algorithm” means that we first generate text
embeddings using BERT or OpenAlI’s model,
respectively, and then apply the AD algorithm.

3.2 Results, Discussions, and New Directions

We analyze the AUROC results presented in Table 2
and the average rank summary in Figure 1. For
completeness, AUPRC scores and their correspond-
ing average ranks are reported in Appendix A.3.
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Figure 1: Average rank on AUROC of 19 NLPAD meth-
ods across 8 datasets (the lower the better).

25975 OpenAl + VAE

No single model consistently excels across all
datasets due to variability in dataset character-
istics. AD model performance varies significantly
across datasets, complicating the selection of a uni-
versally optimal model. For datasets with more
categories (e.g., NLPAD-AGNews), two-step meth-
ods like OpenAl + LUNAR (0.9226) outperform
end-to-end methods such as CVDD (0.6046) by
52.6%. Similarly, on NLPAD-BBCNews, Ope-
nAl + LOF (0.9558) surpasses CVDD (0.7221) by
32.4%. Conversely, on the binary-class datasets
(e.g., NLPAD-SMSSpam), end-to-end methods per-
form better, with DATE (0.9398) clearly exceeding
OpenAl + LUNAR (0.7189) by 30.7 % .

» Future Direction 1: Automated Model Selection.
These results emphasize the importance of devel-
oping automated approaches to select the most
suitable model. One feasible solution will be
adapting the meta-learning framework from tab-
ular AD settings (Zhao et al., 2021) to NLP-AD.

Transformer-based embeddings boost the per-
formance of two-step AD methods. Two-step



Table 2: Performance comparison of 19 Algorithms on 8 NLPAD datasets using AUROC, with best results

highlighted in bold and shaded .

Methods NLPAD- NLPAD- NLPAD- NLPAD- NLPAD- NLPAD- NLPAD- NLPAD-
AGNews BBCNews EmailSpam  Emotion MovieReview N24News SMSSpam  YelpReview
CVDD 0.6046 0.7221 0.9340 0.4867 0.4895 0.7507 0.4782 0.5345
DATE 0.8120 0.9030 0.9697 0.6291 0.5185 0.7493 0.9398 0.6092
FATE* 0.7756 0.9310 0.9061 0.5035 0.5289 0.8073 0.6262 0.5945
BERT + LOF 0.7432 0.9320 0.7482 0.5435 0.4959 0.6703 0.7190 0.6573
BERT + DeepSVDD 0.6671 0.5683 0.6937 0.5142 0.4287 0.4366 0.5859 0.5871
BERT + ECOD 0.6318 0.6912 0.7052 0.5889 0.4282 0.4969 0.5606 0.6326
BERT + iForest 0.6124 0.6847 0.6779 0.4944 0.4420 0.4724 0.5053 0.5971
BERT + SO-GAAL 0.4489 0.3099 0.4440 0.5031 0.4663 0.4135 0.3328 0.4712
BERT + AE 0.7200 0.8839 0.4739 0.5594 0.4650 0.5749 0.6918 0.6441
BERT + VAE 0.6773 0.7409 0.4737 0.5594 0.4398 0.4949 0.6082 0.6441
BERT + LUNAR 0.7694 0.9260 0.8417 0.5186 0.4687 0.6284 0.6953 0.6522
OpenAl + LOF 0.8905 0.9558 0.9263 0.7304 0.6156 0.7806 0.7862 0.8733
OpenAl + DeepSVDD 0.4680 0.5766 0.4415 0.4816 0.6563 0.6150 0.3491 0.5373
OpenAl + ECOD 0.7638 0.7224 0.9263 0.6206 0.7366 0.7342 0.4317 0.5984
OpenAl + iForest 0.5213 0.6064 0.6937 0.5889 0.5064 0.4944 0.3751 0.5871
OpenAl + SO-GAAL 0.5945 0.2359 0.4440 0.5031 0.6201 0.5043 0.5671 0.5082
OpenAl + AE 0.8326 0.9520 0.7651 0.7067 0.6088 0.7155 0.5511 0.8524
OpenAl + VAE 0.8144 0.7250 0.5273 0.7067 0.4515 0.7418 0.4259 0.6163
OpenAl + LUNAR 0.9226 0.9732 0.9343 0.9328 0.6474 0.8320 0.7189 0.9452

AD algorithms paired with transformer-based em-
beddings have consistently outperformed end-to-
end methods in NLP-AD tasks. For instance,
OpenAl + LUNAR achieves 0.9226 on NLPAD-
AGNews, surpassing CVDD by 52.6% and FATE*
by 19.0%. Similarly, OpenAl + LOF reaches
0.9558 on NLPAD-BBCNews, exceeding CVDD
by 32.4% and FATE* by 2.7%. This advantage
arises primarily because two-step methods lever-
age superior contextual embeddings from modern
transformer models (e.g., OpenAl), whereas end-to-
end methods like CVDD rely on older embeddings
(e.g., GloVe). This highlights the need for end-to-
end methods to adopt more advanced embeddings
to enhance performance.
 Future Direction 2: Transformer Embedding In-
tegration for End-to-End AD. Future end-to-end
methods should adopt transformer-based embed-
dings over static embeddings like GloVe. Re-
search should focus on embedding integration
optimized for end-to-end AD frameworks.
High-dimensional embeddings enhance detec-
tion but require balancing performance and
efficiency. Embedding dimensionality signifi-
cantly impacts both performance and computa-
tional efficiency in AD tasks. Compared to BERT-
base embeddings (768 dimensions), OpenAl’s text-
embedding-3-large embeddings (3072 dimensions,
a 300% increase) consistently achieve superior
results across multiple datasets in NLP-ADBench.
Specifically, OpenAl + LUNAR achieves 0.9452
on NLPAD-YelpReview (outperforming BERT +
LUNAR'’s 0.6522 by 44.9%), 0.9226 on NLPAD-

AGNews (exceeding BERT + LUNAR’s 0.7694 by
19.9%), and 0.8320 on NLPAD-N24News (sur-
passing BERT + LUNAR’s 0.6284 by 32.4%).
These results clearly demonstrate the advantage
of higher-dimensional embeddings for enhancing
AD performance. However, higher dimensional-
ity also introduces greater computational costs and
potential information redundancy.
 Future Direction 3: Optimizing Embedding Di-
mensionality. Future research should explore
NLP-AD-specific dimensionality reduction tech-
niques to reduce redundancy and computational
costs without compromising performance. Addi-
tionally, adaptive methods that dynamically ad-
just dimensionality based on dataset characteris-
tics could enhance scalability and efficiency.
4 Conclusion
We present NLP-ADBench, the most comprehen-
sive benchmark for contextual NLP anomaly detec-
tion (NLP-AD), evaluating 19 state-of-the-art algo-
rithms across 8 diverse datasets. Our findings estab-
lish the superiority of two-step methods leveraging
transformer-based embeddings, such as OpenAl
+ LUNAR, over end-to-end approaches, demon-
strating the power of hybrid strategies for handling
complex NLP anomaly detection tasks. By com-
bining advanced text embeddings with traditional
anomaly detection methods, NLP-ADBench pro-
vides a robust and flexible framework that sets a
new standard for evaluating NLP-AD systems. Ad-
ditionally, we offer actionable insights into model
performance, dataset variability, and embedding
utilization, paving the way for future research.



Limitations

Despite its contributions, NLP-ADBench has cer-
tain limitations. First, the datasets included in the
benchmark, while diverse, are primarily sourced
from existing classification tasks and may not fully
reflect emerging challenges such as anomalies in
multilingual or multimodal text data. Second, our
evaluations focus on static embeddings, leaving dy-
namic or streaming NLP-AD scenarios unexplored.
Third, the reliance on predefined anomaly labels in
our benchmark limits the ability to assess unsuper-
vised or domain-adaptive approaches. Future work
can expand NLP-ADBench to include more di-
verse datasets, such as multilingual or multimodal
data, and by exploring dynamic anomaly detection
in streaming text scenarios. Incorporating bench-
marks for unsupervised and adaptive models can
also better reflect real-world applications. These ad-
vancements will enhance NLP-ADBench’s utility
as a comprehensive platform for driving progress
in NLP anomaly detection.

Ethics Statement

This work adheres to ethical standards emphasizing
transparency, fairness, and privacy in NLP anomaly
detection research. By openly sharing datasets, al-
gorithms, and experimental results, NLP-ADBench
provides a standardized foundation for advancing
safer and more reliable web-based systems. All
datasets are publicly available and contain no per-
sonally identifiable information, ensuring privacy
compliance. Pre-trained embeddings (such as Ope-
nAl’s text-embedding-3-large) are used in accor-
dance with their terms of service. Additionally,
we used ChatGPT exclusively to improve minor
grammar in the final manuscript text.

Broader Impacts

The NLP-ADBench proposed in this paper pro-
vides a comprehensive benchmark framework
for anomaly detection in NLP. By standardizing
datasets and algorithms, this work supports ad-
vancements in critical web-based applications, in-
cluding fraud detection, spam filtering, and con-
tent moderation. The benchmark promotes trans-
parency, reproducibility, and facilitates further in-
novations, ultimately contributing to safer, more
reliable online environments.
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Supplementary Material for
NLP-ADBench

A Details on NLP-ADBench
A.1 Additional Details on Benchmark

Datasets

A.1.1 Datasets Sources.
1. NLPAD-AGNews is constructed from the AG

News dataset (Rai, 2023), which was originally
intended for news topic classification tasks. The
AG News dataset contains 127,600 samples cat-
egorized into four classes: World, Sports, Busi-
ness, and Sci/Tech. We selected the text from
the “description” column as NLPAD-AGNews’s
text data source. The “World” category was
designated as the anomaly class and was down-
sampled accordingly.

. NLPAD-BBCNews is constructed from the
BBC News dataset (Greene and Cunningham,
2006), which was originally used for document
classification across various news topics. The
BBC News dataset includes 2,225 articles di-
vided into five categories: Business, Entertain-
ment, Politics, Sport, and Tech. We selected the
full text of the news articles as NLPAD-BBC
News’s text data source. The “Entertainment”
category was designated as the anomaly class
and was downsampled accordingly.

. NLPAD-EmailSpam is constructed from the
Spam Emails dataset (Metsis et al., 2006), origi-
nally used for email spam detection. The Spam
Emails dataset contains 5,171 emails labeled as
either spam or ham (not spam). We selected
the text from the “text” column containing the
email bodies as NLPAD-Emails Spam’s text
data source. The “spam” category was desig-
nated as the anomaly class and was downsam-
pled accordingly.

. NLPAD-Emotion: is constructed from the
Emotion dataset (Saravia et al., 2018) , which
was originally intended for emotion classifica-
tion tasks in textual data. The Emotion dataset
contains 416,809 text samples labeled with six
emotions: anger, fear, joy, love, sadness, and sur-
prise. We selected the text from the “text” col-
umn as NLPAD-Emotion’s text data source. The
“fear” category was designated as the anomaly
class and was downsampled accordingly.

. NLPAD-MovieReview: is constructed from
the Movie Review dataset (Maas et al., 2011) ,
commonly used for sentiment analysis of film

critiques. The Movie Review dataset includes
50,000 reviews labeled as positive or negative.
We selected the full review texts as NLPAD-
MovieReview’s text data source. The “neg”
(negative reviews) category was designated as
the anomaly class and was downsampled accord-
ingly.

6. NLPAD-N24News is constructed from the
N24News dataset (Wang et al., 2022), originally
used for topic classification of news articles.
N24News contains 61,235 articles across vari-
ous categories. We selected the full text of the
news articles as NLPAD-N24News’s text data
source. The “food” category was designated
as the anomaly class and was downsampled ac-
cordingly.

7. NLPAD-SMSSpam is constructed from the
SMS Spam Collection dataset (Almeida et al.,
2011), originally intended for classifying SMS
messages as spam or ham (not spam). The
SMS Spam Collection dataset comprises 5,574
messages labeled accordingly. We selected the
text from the “message text” as NLPAD-SMS
Spam’s text data source. The “spam” category
was designated as the anomaly class and was
downsampled accordingly.

8. NLPAD-YelpReview is constructed from the
Yelp Review Polarity dataset (Putra, 2023), orig-
inally intended for sentiment classification tasks.
The Yelp Review Polarity dataset is created by
considering 1-star and 2-star ratings as nega-
tive, and 3-star and 4-star ratings as positive.
For each polarity, 280,000 training samples and
19,000 testing samples were randomly selected,
resulting in a total of 560,000 training samples
and 38,000 testing samples. Negative polarity is
labeled as class 1, and positive polarity as class
2. We selected the text from the text column
as NLPAD-YelpReview’s text data source. The
label 1 (negative reviews) was designated as the
anomaly class and was downsampled accord-

ingly.

A.1.2 NLPAD dataset’s text pre-processing

On all 8 datasets, we preprocessed the raw text data
to ensure consistency and usability by removing
URLs and HTML tags, eliminating unnecessary
special characters while retaining essential punctua-
tion, converting line breaks and consecutive spaces
into single spaces, and preserving case sensitivity
and stop words to maintain linguistic integrity. Af-
ter processing the text, we found that some texts



became duplicates due to the removal of certain
symbols. Consequently, we removed all duplicate
data to ensure the uniqueness of each text sample.
These preprocessing steps follow established prac-
tices to effectively clean text data while retaining
its syntactic and semantic features, providing a re-
liable foundation for natural language processing
tasks (Chai, 2022).

A.2 Additional Details on Algorithms
A.2.1 End-to-End Algorithms

1. Context Vector Data Description (Ruff et al.,
2019)(CVDD) is an unsupervised anomaly de-
tection method for textual data. It utilizes
pre-trained word embeddings and a multi-head
self-attention mechanism to learn "context vec-
tors" that represent normal patterns in the data.
Anomalies are detected by measuring the co-
sine distance between sequence projections and
context vectors, where larger distances indicate
higher anomaly likelihoods. CVDD also pe-
nalizes overlapping contexts to enhance inter-
pretability.

2. Detecting Anomalies in Text via
Self-Supervision of Transformers
(DATE) (Manolache et al., 2021) detects
anomalies in text by training self-supervised
transformers on tasks like replaced mask
detection, enabling the model to learn normal
language patterns and identify deviations.

3. Few-shot Anomaly Detection in Text with De-
viation Learning (FATE) (Das et al., 2023) is
a deep learning framework that uses a small
number of labeled anomalies to learn anomaly
scores end-to-end. By employing deviation
learning, it ensures normal examples align with
reference scores while anomalies deviate signif-
icantly. Utilizing multi-head self-attention and
multiple instance learning, FATE achieves state-
of-the-art performance on benchmark datasets.
However, as our approach focuses on unsuper-
vised anomaly detection, we adapt FATE into
FATE# by training exclusively on normal data.
This adaptation involves modifying the frame-
work to learn reference scores and deviations
without access to labeled anomalies, enabling
effective detection of anomalous examples in an
entirely unsupervised setting.

A.2.2 Traditional Algorithms

1. Local Outlier Factor (LOF) (Breunig et al.,
2000) calculates the local density deviation of a

data point relative to its neighbors. This metric
identifies points that have substantially lower
density than their neighbors, marking them as
outliers.

2. Deep Support Vector Data Description
(DeepSVDD) (Ruff et al., 2018) minimizes the
volume of a hypersphere enclosing the data rep-
resentations learned by a neural network, captur-
ing common patterns while identifying anoma-
lies as points outside the hypersphere.

3. Empirical-Cumulative-distribution-based
Outlier Detection (ECOD) (Li et al., 2022)
estimates the empirical cumulative distribution
function (ECDF) for each feature independently.
It identifies outliers as data points that reside in
the tails of these distributions. This approach is
hyperparameter-free and offers straightforward
interpretability.

4. Isolation Forest (IForest) (Liu et al., 2008)
detects anomalies by isolating observations
through random feature selection and splitting,
with anomalies requiring fewer splits

5. Single-Objective Generative Adversarial Ac-
tive Learning (SO_GAAL) (Liu et al., 2019)
optimizes a single objective function to gener-
ate adversarial samples and effectively identify
anomalies in unsupervised settings.

6. AutoEncoder (AE) (Aggarwal, 2017) detects
anomalies by reconstructing input data, where
higher reconstruction errors signify potential
anomalies.

7. Unifying  Local Outlier
Methods via Graph Neural Net-
works(LUNAR) (Goodge et al., 2022)
uses graph neural networks to integrate and
enhance traditional local outlier detection
methods, unifying them for better anomaly
detection.

8. Variational AutoEncoder (VAE) (Kingma and
Welling, 2013; Burgess et al., 2018) uses prob-
abilistic latent variables to model data distri-
butions, identifying anomalies based on recon-
struction probabilities or latent space deviations.

Detection

A.3 More Experiment Results

We also report AUPRC scores (Table. A1) for all
19 algorithms across the 8 NLPAD datasets, along
with their average AUPRC ranks (Fig. A1), to pro-
vide a complementary evaluation perspective be-
yond AUROC.



Table Al: Performance comparison of 19 Algorithms on 8 NLPAD datasets using AUPRC, with best results
highlighted in bold and shaded .

Methods NLPAD- NLPAD- NLPAD- NLPAD- NLPAD- NLPAD- NLPAD- NLPAD-
AGNews BBCNews EmailSpam Emotion = MovieReview N24News  SMSSpam YelpReview
CVDD 0.1296 0.2976 0.5353 0.0955 0.1576 0.2886 0.0712 0.1711
DATE 0.3996 0.5764 0.8885 0.1619 0.1682 0.2794 0.6112 0.2149
FATE* 0.2787 0.5805 0.5529 0.1026 0.1752 0.2777 0.1257 0.2112
BERT + LOF 0.2549 0.6029 0.2370 0.1170 0.1621 0.1678 0.1837 0.2629
BERT + DeepSVDD 0.2160 0.1328 0.2117 0.0986 0.1387 0.0798 0.1178 0.2174
BERT + ECOD 0.1616 0.2037 0.2077 0.1024 0.1374 0.0928 0.1156 0.2197
BERT + iForest 0.1559 0.2131 0.1894 0.1007 0.1412 0.0872 0.0994 0.2203
BERT + SO-GAAL 0.1033 0.0849 0.1130 0.1036 0.1486 0.0837 0.0714 0.2440
BERT + AE 0.2232 0.4274 0.2937 0.1037 0.1479 0.1255 0.1914 0.2525
BERT + VAE 0.1878 0.2559 0.2247 0.1019 0.1405 0.0957 0.1360 0.2331
BERT + LUNAR 0.2717 0.5943 0.3571 0.1053 0.1497 0.1436 0.1817 0.2609
OpenAl + LOF 0.5443 0.7714 0.5967 0.2290 0.2133 0.2248 0.2450 0.5710
OpenAl + DeepSVDD 0.1062 0.1288 0.1195 0.1040 0.3278 0.1297 0.0721 0.1893
OpenAl + ECOD 0.3294 0.2424 0.5597 0.7443 0.5165 0.2238 0.0821 0.8639
OpenAl + iForest 0.1278 0.1376 0.3283 0.1311 0.1724 0.0913 0.0772 0.2527
OpenAl + SO-GAAL 0.1538 0.0665 0.1096 0.1291 0.3005 0.0963 0.1213 0.2735
OpenAl + AE 0.4022 0.7485 0.5580 0.8355 0.1969 0.1984 0.1030 0.7063
OpenAl + VAE 0.3659 0.2424 0.5604 0.7744 0.1486 0.2537 0.0812 0.8467
OpenAl + LUNAR 0.6918 0.8653 0.5810 0.3112 0.2193 0.4425 0.1640 0.4524

AUPRC
191817 161514 13121110 9 8 7 6
I

543 21
R TP P T P P I P P I P P P I T |
BERT + SO-GAAL '2:262 Iﬂ OpenAl + LUNAR
BERT + DeepSVDD ™20 | L3300 openAl + LOF
BERT + iForest':&0 | L 53500 OpepAl + AE
BERT + ECOD™2%0 | LS80 pATE
OpenAl + DeepSYDD'382%¢ | L 6085 gpepAl + ECOD
[B] )T L 72%0 OpepAl + VAE
BERT + VAE'28220 | 80000 BERT + LOF
OpenAl +iForest™?2% | 83750 BERT + LUNAR
OpenAl + SO-GAAL ' 87500 FATE
BERT +AE101250

Figure Al: Average rank on AUPRC of 19 NLPAD methods across 8 datasets (the lower the better).
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