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Abstract001

Anomaly detection (AD) is an important ma-002
chine learning task with applications in fraud003
detection, content moderation, and user behav-004
ior analysis. However, AD is relatively un-005
derstudied in a natural language processing006
(NLP) context, limiting its effectiveness in de-007
tecting harmful content, phishing attempts, and008
spam reviews. We introduce NLP-ADBench,009
the most comprehensive NLP anomaly detec-010
tion (NLP-AD) benchmark to date, which in-011
cludes eight curated datasets and 19 state-of-012
the-art algorithms. These span 3 end-to-end013
methods and 16 two-step approaches that adapt014
classical, non-AD methods to language embed-015
dings from BERT and OpenAI. Our empiri-016
cal results show that no single model dom-017
inates across all datasets, indicating a need018
for automated model selection. Moreover,019
two-step methods with transformer-based em-020
beddings consistently outperform specialized021
end-to-end approaches, with OpenAI embed-022
dings outperforming those of BERT. We re-023
lease NLP-ADBench at https://anonymous.024
4open.science/r/NLP-ADBench-E84C, pro-025
viding a unified framework for NLP-AD and026
supporting future investigations.027

1 Introduction028

Anomaly detection (AD) is a fundamental area in029

machine learning with diverse applications in web030

systems, such as fraud detection, content modera-031

tion, and user behavior analysis (Chandola et al.,032

2009; Ahmed et al., 2016). Substantial progress033

has been achieved in AD for structured data such034

as tabular, graph, and time series (Chalapathy and035

Chawla, 2019; Han et al., 2022; Lai et al., 2021;036

Liu et al., 2022), but its extension to natural lan-037

guage processing (NLP) remains relatively under-038

explored (Ruff et al., 2021; Yang et al., 2024). This039

gap limits our ability to identify harmful content,040

phishing attempts, and spam reviews.041

For instance, detecting abusive or threatening042

language is crucial for ensuring that social me- 043

dia platforms and online forums remain safe en- 044

vironments for users (Fortuna and Nunes, 2018). 045

Likewise, detecting anomalous product reviews or 046

descriptions in e-commerce is important for pre- 047

serving user trust and platform credibility (Chino 048

et al., 2017). However, many standard AD methods 049

are designed for numeric or categorical data and 050

are not easily adapted to unstructured text (Zhao 051

et al., 2019; Chen et al., 2024). Existing studies on 052

NLP-specific AD are limited in both dataset variety 053

and algorithmic range (Han et al., 2022; Liu et al., 054

2022; Yang et al., 2024), leaving open questions 055

about which approaches work best under different 056

conditions. These gaps lead to a central research 057

question: How can we systematically evaluate and 058

compare diverse AD methods across real-world 059

text datasets, and what insights can be gained to 060

guide future development in NLP-based AD? 061

Our Proposal and Key Contributions. We in- 062

troduce NLP-ADBench, the most comprehensive 063

benchmark for NLP-AD tasks. NLP-ADBench 064

offers four major benefits compared to prior 065

work (Bejan et al., 2023): (i) eight real-world 066

datasets covering a wide range of web use cases; (ii) 067

19 advanced methods that apply standard AD algo- 068

rithms to language embeddings or use end-to-end 069

neural architectures; (iii) detailed empirical find- 070

ings that highlight new directions for NLP-AD; and 071

(iv) fully open-source resources, including datasets, 072

algorithm implementations, and more, aligns with 073

the Resources and Evaluation track. 074

Key Insights/Takeaways (see details in §3). Our 075

comprehensive experiments reveal: (i) No single 076

model dominates across all datasets, showing the 077

need for model selection; (ii) Transformer-based 078

embeddings substantially boost two-step AD meth- 079

ods (e.g., LUNAR (Goodge et al., 2022) and LOF 080

(Breunig et al., 2000)) relative to end-to-end ap- 081

proaches; (iii) High-dimensional embeddings (e.g., 082

from OpenAI) improve detection performance, but 083
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also raise computational overhead; and (iv) Dataset-084

specific biases and human-centered anomaly defi-085

nitions remain challenging for building robust and086

widely applicable NLP-AD systems.087

2 NLP-ADBench: AD Benchmark for088

NLP Tasks089

2.1 Preliminaries and Problem Definition090

Anomaly Detection in Natural Language Process-091

ing (NLP-AD) focuses on identifying text in-092

stances that deviate significantly from expected093

or typical patterns. Unlike structured data, text094

data is inherently unstructured, high-dimensional,095

and deeply influenced by the nuances of human096

language, including syntax, semantics, and con-097

text (Aggarwal, 2017; Yang et al., 2024). These098

unique properties introduce significant challenges,099

making the development of robust and accurate AD100

methods for NLP a complex and demanding task.101

Formally, let D = x1, x2, . . . , xN denote a cor-102

pus where each xi is a text instance. The goal of103

NLP-AD is to learn an anomaly scoring function104

f : X → R that assigns a real-valued anomaly105

score to each text instance. Higher scores denote106

greater deviations from normal patterns, indicating107

a higher likelihood of an anomalous instance.108

2.2 Curated Benchmark Datasets109

The limited availability of purpose-built datasets110

constrains the development and evaluation of ef-111

fective methods in NLP-AD. To address this gap,112

we curated and transformed 8 existing classifi-113

cation datasets from various NLP domains into114

specialized datasets tailored for NLP-AD tasks,115

ensuring that all data are presented in a standard116

format. These datasets, collectively called the NL-117

PAD datasets, provide a foundational resource for118

advancing research.119

Each transformed dataset is named by adding120

the prefix “NLPAD-" to the original dataset’s name121

(e.g., NLPAD-AGNews, NLPAD-BBCNews), dis-122

tinguishing them from the original datasets. The123

NLPAD datasets are provided in a unified JSON124

Lines format for compatibility and ease of use.125

Each line is a JSON object with four fields: text126

(the text used for anomaly detection), label (the127

anomaly detection label, where 1 represents an128

anomaly and 0 represents normal), original_task129

(the task of the original dataset), and original_label130

(the category label from the original dataset).131

To transform each dataset for NLP-AD, we es-132

tablished a text selection process based on the data133

Table 1: Statistical information of the NLPAD dataset.
NLPAD Dataset # Samples #Normal #Anomaly %Anomaly
NLPAD-AGNews 98, 207 94, 427 3, 780 3.85%
NLPAD-BBCNews 1, 785 1, 723 62 3.47%
NLPAD-EmailSpam 3, 578 3, 432 146 4.08%
NLPAD-Emotion 361, 980 350, 166 11, 814 3.26%
NLPAD-MovieReview 26, 369 24, 882 1, 487 5.64%
NLPAD-N24News 59, 822 57, 994 1, 828 3.06%
NLPAD-SMSSpam 4, 672 4, 518 154 3.30%
NLPAD-YelpReview 316, 924 298, 986 17, 938 5.66%

format. For tabular data, we carefully chose appro- 134

priate columns as the text source. For document- 135

based data, we extracted text directly from relevant 136

documents. The anomalous class for each dataset 137

was selected based on semantic distinctions within 138

the dataset categories, ensuring that the identified 139

anomalies represent meaningful deviations from 140

the normal data distribution (Emmott et al., 2015; 141

Han et al., 2022). Once identified, the anomalous 142

class was downsampled to represent less than 10% 143

of the total instances. 144

For details of the dataset sources and construc- 145

tion processes, see Appx. A.1.1. Table. 1 presents 146

the statistical information of the NLPAD datasets, 147

including the total number of samples, the number 148

of normal and anomalous samples, and the anomaly 149

ratio for each dataset. 150

2.3 The Most Comprehensive NLP-AD 151

Algorithms with Open Implementations 152

Compared to the existing NLP-AD benchmark by 153

Bejan et al. (Bejan et al., 2023), NLP-ADBench 154

provides a broader evaluation by including 19 algo- 155

rithms, categorized into two groups. The first group 156

comprises 3 end-to-end algorithms that directly pro- 157

cess raw text data to produce anomaly detection out- 158

comes. The second group consists of 16 algorithms 159

derived by applying 8 traditional anomaly detec- 160

tion (AD) methods to text embeddings generated 161

from two models: bert-base-uncased (Devlin et al., 162

2019) and OpenAI’s text-embedding-3-large (Ope- 163

nAI, 2024). These traditional AD methods do not 164

operate on raw text directly but instead perform 165

anomaly detection on embeddings, offering a com- 166

plementary approach to the end-to-end methods. 167

This comprehensive algorithm collection enables 168

a robust evaluation of direct and embedding-based 169

NLP anomaly detection techniques. Here, we pro- 170

vide a brief description; see details in Appx. A.2. 171

End-to-end NLP-AD Algorithms. We evaluate 3 172

end-to-end algorithms tailored for NLP-AD. (1) 173

Context Vector Data Description (CVDD) (Ruff 174

et al., 2019) leverages context vectors and 175

pre-trained embeddings with a multi-head self- 176

attention mechanism to project normal instances 177
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close to learned contexts, identifying anomalies178

based on deviations. (2) Detecting Anomalies179

in Text via Self-Supervision of Transformers180

(DATE) (Manolache et al., 2021) trains transform-181

ers using self-supervised tasks like replaced mask182

detection to capture normal text patterns and flag183

anomalies. (3) Few-shot Anomaly Detection in184

Text with Deviation Learning (FATE) (Das et al.,185

2023) uses a few labeled anomalies with deviation186

learning to distinguish anomalies from normal in-187

stances. We adapt it to train solely on normal data,188

referring to the adapted version as FATE*.189

Two-step NLP-AD Algorithms. We evaluate 8 two-190

step algorithms that rely on embeddings generated191

by models such as bert-base-uncased (Devlin et al.,192

2019) and text-embedding-3-large (OpenAI, 2024).193

These algorithms are designed to work with struc-194

tured numerical data and cannot directly process195

raw textual data, requiring text transformation into196

numerical embeddings. (4) LOF (Breunig et al.,197

2000) measures local density deviations, while (5)198

DeepSVDD (Ruff et al., 2018) minimizes the vol-199

ume of a hypersphere enclosing normal represen-200

tations. (6) ECOD (Li et al., 2022) uses empiri-201

cal cumulative distribution functions to estimate202

densities and assumes anomalies lie in distribu-203

tion tails. (7) IForest (Liu et al., 2008) recursively204

isolates anomalies through random splits, and (8)205

SO_GAAL (Liu et al., 2019) generates adversar-206

ial samples to identify anomalies. Reconstruction-207

based approaches include (9) AE (Aggarwal, 2017),208

which flags anomalies based on reconstruction er-209

rors, and (10) VAE (Kingma and Welling, 2013;210

Burgess et al., 2018), which identifies anomalies211

using reconstruction probabilities or latent devia-212

tions. Finally, (11) LUNAR (Goodge et al., 2022)213

enhances traditional local outlier detection with214

graph neural networks.215

3 Experiment Results216

3.1 Experiment Setting217

Datasets, Train/Test Data Split, and Indepen-218

dent Trials. In the NLP-ADBench benchmark, the219

data is divided by allocating 70% of the normal220

data to the training set. The remaining 30% of nor-221

mal data, combined with all anomalous data, forms222

the test set. To ensure the robustness of our find-223

ings, we repeat each experiment three times and224

report the average performance.225

Hyperparameter Settings. For all the algorithms226

in NLP-ADBench, we use their default hyperpa-227

rameter (HP) settings in the original paper for a fair228

comparison, same as ADBench (Han et al., 2022). 229

Evaluation Metrics and Statistical Tests. We 230

evaluate different NLP-AD methods by a widely 231

used metric: AUROC (Area Under Receiver Op- 232

erating Characteristic Curve) and AUPRC (Area 233

Under Precision-Recall Curve) value. 234

Embeddings Definitions: 235

1. BERT refers specifically to the bert-base- 236

uncased model (Devlin et al., 2019). 237

2. OpenAI refers to OpenAI’s text-embedding-3- 238

large model (OpenAI, 2024). 239

3. The term “BERT + AD algorithm” or “OpenAI + 240

AD algorithm” means that we first generate text 241

embeddings using BERT or OpenAI’s model, 242

respectively, and then apply the AD algorithm. 243

3.2 Results, Discussions, and New Directions 244

We analyze the AUROC results presented in Table 2 245

and the average rank summary in Figure 1. For 246

completeness, AUPRC scores and their correspond- 247

ing average ranks are reported in Appendix A.3. 248

Figure 1: Average rank on AUROC of 19 NLPAD meth-
ods across 8 datasets (the lower the better).

No single model consistently excels across all 249

datasets due to variability in dataset character- 250

istics. AD model performance varies significantly 251

across datasets, complicating the selection of a uni- 252

versally optimal model. For datasets with more 253

categories (e.g., NLPAD-AGNews), two-step meth- 254

ods like OpenAI + LUNAR (0.9226) outperform 255

end-to-end methods such as CVDD (0.6046) by 256

52.6%. Similarly, on NLPAD-BBCNews, Ope- 257

nAI + LOF (0.9558) surpasses CVDD (0.7221) by 258

32.4%. Conversely, on the binary-class datasets 259

(e.g., NLPAD-SMSSpam), end-to-end methods per- 260

form better, with DATE (0.9398) clearly exceeding 261

OpenAI + LUNAR (0.7189) by 30.7%. 262

• Future Direction 1: Automated Model Selection. 263

These results emphasize the importance of devel- 264

oping automated approaches to select the most 265

suitable model. One feasible solution will be 266

adapting the meta-learning framework from tab- 267

ular AD settings (Zhao et al., 2021) to NLP-AD. 268

Transformer-based embeddings boost the per- 269

formance of two-step AD methods. Two-step 270
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Table 2: Performance comparison of 19 Algorithms on 8 NLPAD datasets using AUROC, with best results
highlighted in bold and shaded .

Methods NLPAD-
AGNews

NLPAD-
BBCNews

NLPAD-
EmailSpam

NLPAD-
Emotion

NLPAD-
MovieReview

NLPAD-
N24News

NLPAD-
SMSSpam

NLPAD-
YelpReview

CVDD 0.6046 0.7221 0.9340 0.4867 0.4895 0.7507 0.4782 0.5345
DATE 0.8120 0.9030 0.9697 0.6291 0.5185 0.7493 0.9398 0.6092
FATE* 0.7756 0.9310 0.9061 0.5035 0.5289 0.8073 0.6262 0.5945

BERT + LOF 0.7432 0.9320 0.7482 0.5435 0.4959 0.6703 0.7190 0.6573
BERT + DeepSVDD 0.6671 0.5683 0.6937 0.5142 0.4287 0.4366 0.5859 0.5871
BERT + ECOD 0.6318 0.6912 0.7052 0.5889 0.4282 0.4969 0.5606 0.6326
BERT + iForest 0.6124 0.6847 0.6779 0.4944 0.4420 0.4724 0.5053 0.5971
BERT + SO-GAAL 0.4489 0.3099 0.4440 0.5031 0.4663 0.4135 0.3328 0.4712
BERT + AE 0.7200 0.8839 0.4739 0.5594 0.4650 0.5749 0.6918 0.6441
BERT + VAE 0.6773 0.7409 0.4737 0.5594 0.4398 0.4949 0.6082 0.6441
BERT + LUNAR 0.7694 0.9260 0.8417 0.5186 0.4687 0.6284 0.6953 0.6522

OpenAI + LOF 0.8905 0.9558 0.9263 0.7304 0.6156 0.7806 0.7862 0.8733
OpenAI + DeepSVDD 0.4680 0.5766 0.4415 0.4816 0.6563 0.6150 0.3491 0.5373
OpenAI + ECOD 0.7638 0.7224 0.9263 0.6206 0.7366 0.7342 0.4317 0.5984
OpenAI + iForest 0.5213 0.6064 0.6937 0.5889 0.5064 0.4944 0.3751 0.5871
OpenAI + SO-GAAL 0.5945 0.2359 0.4440 0.5031 0.6201 0.5043 0.5671 0.5082
OpenAI + AE 0.8326 0.9520 0.7651 0.7067 0.6088 0.7155 0.5511 0.8524
OpenAI + VAE 0.8144 0.7250 0.5273 0.7067 0.4515 0.7418 0.4259 0.6163
OpenAI + LUNAR 0.9226 0.9732 0.9343 0.9328 0.6474 0.8320 0.7189 0.9452

AD algorithms paired with transformer-based em-271

beddings have consistently outperformed end-to-272

end methods in NLP-AD tasks. For instance,273

OpenAI + LUNAR achieves 0.9226 on NLPAD-274

AGNews, surpassing CVDD by 52.6% and FATE*275

by 19.0%. Similarly, OpenAI + LOF reaches276

0.9558 on NLPAD-BBCNews, exceeding CVDD277

by 32.4% and FATE* by 2.7%. This advantage278

arises primarily because two-step methods lever-279

age superior contextual embeddings from modern280

transformer models (e.g., OpenAI), whereas end-to-281

end methods like CVDD rely on older embeddings282

(e.g., GloVe). This highlights the need for end-to-283

end methods to adopt more advanced embeddings284

to enhance performance.285

• Future Direction 2: Transformer Embedding In-286

tegration for End-to-End AD. Future end-to-end287

methods should adopt transformer-based embed-288

dings over static embeddings like GloVe. Re-289

search should focus on embedding integration290

optimized for end-to-end AD frameworks.291

High-dimensional embeddings enhance detec-292

tion but require balancing performance and293

efficiency. Embedding dimensionality signifi-294

cantly impacts both performance and computa-295

tional efficiency in AD tasks. Compared to BERT-296

base embeddings (768 dimensions), OpenAI’s text-297

embedding-3-large embeddings (3072 dimensions,298

a 300% increase) consistently achieve superior299

results across multiple datasets in NLP-ADBench.300

Specifically, OpenAI + LUNAR achieves 0.9452301

on NLPAD-YelpReview (outperforming BERT +302

LUNAR’s 0.6522 by 44.9%), 0.9226 on NLPAD-303

AGNews (exceeding BERT + LUNAR’s 0.7694 by 304

19.9%), and 0.8320 on NLPAD-N24News (sur- 305

passing BERT + LUNAR’s 0.6284 by 32.4%). 306

These results clearly demonstrate the advantage 307

of higher-dimensional embeddings for enhancing 308

AD performance. However, higher dimensional- 309

ity also introduces greater computational costs and 310

potential information redundancy. 311

• Future Direction 3: Optimizing Embedding Di- 312

mensionality. Future research should explore 313

NLP-AD-specific dimensionality reduction tech- 314

niques to reduce redundancy and computational 315

costs without compromising performance. Addi- 316

tionally, adaptive methods that dynamically ad- 317

just dimensionality based on dataset characteris- 318

tics could enhance scalability and efficiency. 319

4 Conclusion 320

We present NLP-ADBench, the most comprehen- 321

sive benchmark for contextual NLP anomaly detec- 322

tion (NLP-AD), evaluating 19 state-of-the-art algo- 323

rithms across 8 diverse datasets. Our findings estab- 324

lish the superiority of two-step methods leveraging 325

transformer-based embeddings, such as OpenAI 326

+ LUNAR, over end-to-end approaches, demon- 327

strating the power of hybrid strategies for handling 328

complex NLP anomaly detection tasks. By com- 329

bining advanced text embeddings with traditional 330

anomaly detection methods, NLP-ADBench pro- 331

vides a robust and flexible framework that sets a 332

new standard for evaluating NLP-AD systems. Ad- 333

ditionally, we offer actionable insights into model 334

performance, dataset variability, and embedding 335

utilization, paving the way for future research. 336
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Limitations337

Despite its contributions, NLP-ADBench has cer-338

tain limitations. First, the datasets included in the339

benchmark, while diverse, are primarily sourced340

from existing classification tasks and may not fully341

reflect emerging challenges such as anomalies in342

multilingual or multimodal text data. Second, our343

evaluations focus on static embeddings, leaving dy-344

namic or streaming NLP-AD scenarios unexplored.345

Third, the reliance on predefined anomaly labels in346

our benchmark limits the ability to assess unsuper-347

vised or domain-adaptive approaches. Future work348

can expand NLP-ADBench to include more di-349

verse datasets, such as multilingual or multimodal350

data, and by exploring dynamic anomaly detection351

in streaming text scenarios. Incorporating bench-352

marks for unsupervised and adaptive models can353

also better reflect real-world applications. These ad-354

vancements will enhance NLP-ADBench’s utility355

as a comprehensive platform for driving progress356

in NLP anomaly detection.357

Ethics Statement358

This work adheres to ethical standards emphasizing359

transparency, fairness, and privacy in NLP anomaly360

detection research. By openly sharing datasets, al-361

gorithms, and experimental results, NLP-ADBench362

provides a standardized foundation for advancing363

safer and more reliable web-based systems. All364

datasets are publicly available and contain no per-365

sonally identifiable information, ensuring privacy366

compliance. Pre-trained embeddings (such as Ope-367

nAI’s text-embedding-3-large) are used in accor-368

dance with their terms of service. Additionally,369

we used ChatGPT exclusively to improve minor370

grammar in the final manuscript text.371

Broader Impacts372

The NLP-ADBench proposed in this paper pro-373

vides a comprehensive benchmark framework374

for anomaly detection in NLP. By standardizing375

datasets and algorithms, this work supports ad-376

vancements in critical web-based applications, in-377

cluding fraud detection, spam filtering, and con-378

tent moderation. The benchmark promotes trans-379

parency, reproducibility, and facilitates further in-380

novations, ultimately contributing to safer, more381

reliable online environments.382
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Supplementary Material for522

NLP-ADBench523

A Details on NLP-ADBench524

A.1 Additional Details on Benchmark525

Datasets526

A.1.1 Datasets Sources.527

1. NLPAD-AGNews is constructed from the AG528

News dataset (Rai, 2023), which was originally529

intended for news topic classification tasks. The530

AG News dataset contains 127,600 samples cat-531

egorized into four classes: World, Sports, Busi-532

ness, and Sci/Tech. We selected the text from533

the “description” column as NLPAD-AGNews’s534

text data source. The “World” category was535

designated as the anomaly class and was down-536

sampled accordingly.537

2. NLPAD-BBCNews is constructed from the538

BBC News dataset (Greene and Cunningham,539

2006), which was originally used for document540

classification across various news topics. The541

BBC News dataset includes 2,225 articles di-542

vided into five categories: Business, Entertain-543

ment, Politics, Sport, and Tech. We selected the544

full text of the news articles as NLPAD-BBC545

News’s text data source. The “Entertainment”546

category was designated as the anomaly class547

and was downsampled accordingly.548

3. NLPAD-EmailSpam is constructed from the549

Spam Emails dataset (Metsis et al., 2006), origi-550

nally used for email spam detection. The Spam551

Emails dataset contains 5,171 emails labeled as552

either spam or ham (not spam). We selected553

the text from the “text” column containing the554

email bodies as NLPAD-Emails Spam’s text555

data source. The “spam” category was desig-556

nated as the anomaly class and was downsam-557

pled accordingly.558

4. NLPAD-Emotion: is constructed from the559

Emotion dataset (Saravia et al., 2018) , which560

was originally intended for emotion classifica-561

tion tasks in textual data. The Emotion dataset562

contains 416,809 text samples labeled with six563

emotions: anger, fear, joy, love, sadness, and sur-564

prise. We selected the text from the “text” col-565

umn as NLPAD-Emotion’s text data source. The566

“fear” category was designated as the anomaly567

class and was downsampled accordingly.568

5. NLPAD-MovieReview: is constructed from569

the Movie Review dataset (Maas et al., 2011) ,570

commonly used for sentiment analysis of film571

critiques. The Movie Review dataset includes 572

50,000 reviews labeled as positive or negative. 573

We selected the full review texts as NLPAD- 574

MovieReview’s text data source. The “neg” 575

(negative reviews) category was designated as 576

the anomaly class and was downsampled accord- 577

ingly. 578

6. NLPAD-N24News is constructed from the 579

N24News dataset (Wang et al., 2022), originally 580

used for topic classification of news articles. 581

N24News contains 61,235 articles across vari- 582

ous categories. We selected the full text of the 583

news articles as NLPAD-N24News’s text data 584

source. The “food” category was designated 585

as the anomaly class and was downsampled ac- 586

cordingly. 587

7. NLPAD-SMSSpam is constructed from the 588

SMS Spam Collection dataset (Almeida et al., 589

2011), originally intended for classifying SMS 590

messages as spam or ham (not spam). The 591

SMS Spam Collection dataset comprises 5,574 592

messages labeled accordingly. We selected the 593

text from the “message text” as NLPAD-SMS 594

Spam’s text data source. The “spam” category 595

was designated as the anomaly class and was 596

downsampled accordingly. 597

8. NLPAD-YelpReview is constructed from the 598

Yelp Review Polarity dataset (Putra, 2023), orig- 599

inally intended for sentiment classification tasks. 600

The Yelp Review Polarity dataset is created by 601

considering 1-star and 2-star ratings as nega- 602

tive, and 3-star and 4-star ratings as positive. 603

For each polarity, 280,000 training samples and 604

19,000 testing samples were randomly selected, 605

resulting in a total of 560,000 training samples 606

and 38,000 testing samples. Negative polarity is 607

labeled as class 1, and positive polarity as class 608

2. We selected the text from the text column 609

as NLPAD-YelpReview’s text data source. The 610

label 1 (negative reviews) was designated as the 611

anomaly class and was downsampled accord- 612

ingly. 613

A.1.2 NLPAD dataset’s text pre-processing 614

On all 8 datasets, we preprocessed the raw text data 615

to ensure consistency and usability by removing 616

URLs and HTML tags, eliminating unnecessary 617

special characters while retaining essential punctua- 618

tion, converting line breaks and consecutive spaces 619

into single spaces, and preserving case sensitivity 620

and stop words to maintain linguistic integrity. Af- 621

ter processing the text, we found that some texts 622
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became duplicates due to the removal of certain623

symbols. Consequently, we removed all duplicate624

data to ensure the uniqueness of each text sample.625

These preprocessing steps follow established prac-626

tices to effectively clean text data while retaining627

its syntactic and semantic features, providing a re-628

liable foundation for natural language processing629

tasks (Chai, 2022).630

A.2 Additional Details on Algorithms631

A.2.1 End-to-End Algorithms632

1. Context Vector Data Description (Ruff et al.,633

2019)(CVDD) is an unsupervised anomaly de-634

tection method for textual data. It utilizes635

pre-trained word embeddings and a multi-head636

self-attention mechanism to learn "context vec-637

tors" that represent normal patterns in the data.638

Anomalies are detected by measuring the co-639

sine distance between sequence projections and640

context vectors, where larger distances indicate641

higher anomaly likelihoods. CVDD also pe-642

nalizes overlapping contexts to enhance inter-643

pretability.644

2. Detecting Anomalies in Text via645

Self-Supervision of Transformers646

(DATE) (Manolache et al., 2021) detects647

anomalies in text by training self-supervised648

transformers on tasks like replaced mask649

detection, enabling the model to learn normal650

language patterns and identify deviations.651

3. Few-shot Anomaly Detection in Text with De-652

viation Learning (FATE) (Das et al., 2023) is653

a deep learning framework that uses a small654

number of labeled anomalies to learn anomaly655

scores end-to-end. By employing deviation656

learning, it ensures normal examples align with657

reference scores while anomalies deviate signif-658

icantly. Utilizing multi-head self-attention and659

multiple instance learning, FATE achieves state-660

of-the-art performance on benchmark datasets.661

However, as our approach focuses on unsuper-662

vised anomaly detection, we adapt FATE into663

FATE* by training exclusively on normal data.664

This adaptation involves modifying the frame-665

work to learn reference scores and deviations666

without access to labeled anomalies, enabling667

effective detection of anomalous examples in an668

entirely unsupervised setting.669

A.2.2 Traditional Algorithms670

1. Local Outlier Factor (LOF) (Breunig et al.,671

2000) calculates the local density deviation of a672

data point relative to its neighbors. This metric 673

identifies points that have substantially lower 674

density than their neighbors, marking them as 675

outliers. 676

2. Deep Support Vector Data Description 677

(DeepSVDD) (Ruff et al., 2018) minimizes the 678

volume of a hypersphere enclosing the data rep- 679

resentations learned by a neural network, captur- 680

ing common patterns while identifying anoma- 681

lies as points outside the hypersphere. 682

3. Empirical-Cumulative-distribution-based 683

Outlier Detection (ECOD) (Li et al., 2022) 684

estimates the empirical cumulative distribution 685

function (ECDF) for each feature independently. 686

It identifies outliers as data points that reside in 687

the tails of these distributions. This approach is 688

hyperparameter-free and offers straightforward 689

interpretability. 690

4. Isolation Forest (IForest) (Liu et al., 2008) 691

detects anomalies by isolating observations 692

through random feature selection and splitting, 693

with anomalies requiring fewer splits 694

5. Single-Objective Generative Adversarial Ac- 695

tive Learning (SO_GAAL) (Liu et al., 2019) 696

optimizes a single objective function to gener- 697

ate adversarial samples and effectively identify 698

anomalies in unsupervised settings. 699

6. AutoEncoder (AE) (Aggarwal, 2017) detects 700

anomalies by reconstructing input data, where 701

higher reconstruction errors signify potential 702

anomalies. 703

7. Unifying Local Outlier Detection 704

Methods via Graph Neural Net- 705

works(LUNAR) (Goodge et al., 2022) 706

uses graph neural networks to integrate and 707

enhance traditional local outlier detection 708

methods, unifying them for better anomaly 709

detection. 710

8. Variational AutoEncoder (VAE) (Kingma and 711

Welling, 2013; Burgess et al., 2018) uses prob- 712

abilistic latent variables to model data distri- 713

butions, identifying anomalies based on recon- 714

struction probabilities or latent space deviations. 715

A.3 More Experiment Results 716

We also report AUPRC scores (Table. A1) for all 717

19 algorithms across the 8 NLPAD datasets, along 718

with their average AUPRC ranks (Fig. A1), to pro- 719

vide a complementary evaluation perspective be- 720

yond AUROC. 721
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Table A1: Performance comparison of 19 Algorithms on 8 NLPAD datasets using AUPRC, with best results
highlighted in bold and shaded .

Methods NLPAD-
AGNews

NLPAD-
BBCNews

NLPAD-
EmailSpam

NLPAD-
Emotion

NLPAD-
MovieReview

NLPAD-
N24News

NLPAD-
SMSSpam

NLPAD-
YelpReview

CVDD 0.1296 0.2976 0.5353 0.0955 0.1576 0.2886 0.0712 0.1711
DATE 0.3996 0.5764 0.8885 0.1619 0.1682 0.2794 0.6112 0.2149
FATE* 0.2787 0.5805 0.5529 0.1026 0.1752 0.2777 0.1257 0.2112

BERT + LOF 0.2549 0.6029 0.2370 0.1170 0.1621 0.1678 0.1837 0.2629
BERT + DeepSVDD 0.2160 0.1328 0.2117 0.0986 0.1387 0.0798 0.1178 0.2174
BERT + ECOD 0.1616 0.2037 0.2077 0.1024 0.1374 0.0928 0.1156 0.2197
BERT + iForest 0.1559 0.2131 0.1894 0.1007 0.1412 0.0872 0.0994 0.2203
BERT + SO-GAAL 0.1033 0.0849 0.1130 0.1036 0.1486 0.0837 0.0714 0.2440
BERT + AE 0.2232 0.4274 0.2937 0.1037 0.1479 0.1255 0.1914 0.2525
BERT + VAE 0.1878 0.2559 0.2247 0.1019 0.1405 0.0957 0.1360 0.2331
BERT + LUNAR 0.2717 0.5943 0.3571 0.1053 0.1497 0.1436 0.1817 0.2609

OpenAI + LOF 0.5443 0.7714 0.5967 0.2290 0.2133 0.2248 0.2450 0.5710
OpenAI + DeepSVDD 0.1062 0.1288 0.1195 0.1040 0.3278 0.1297 0.0721 0.1893
OpenAI + ECOD 0.3294 0.2424 0.5597 0.7443 0.5165 0.2238 0.0821 0.8639
OpenAI + iForest 0.1278 0.1376 0.3283 0.1311 0.1724 0.0913 0.0772 0.2527
OpenAI + SO-GAAL 0.1538 0.0665 0.1096 0.1291 0.3005 0.0963 0.1213 0.2735
OpenAI + AE 0.4022 0.7485 0.5580 0.8355 0.1969 0.1984 0.1030 0.7063
OpenAI + VAE 0.3659 0.2424 0.5604 0.7744 0.1486 0.2537 0.0812 0.8467
OpenAI + LUNAR 0.6918 0.8653 0.5810 0.3112 0.2193 0.4425 0.1640 0.4524

Figure A1: Average rank on AUPRC of 19 NLPAD methods across 8 datasets (the lower the better).
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