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Abstract

In continual learning, a learner has to keep learning from the data over its whole life time.
A key issue is to decide what knowledge to keep and what knowledge to let go. In a
neural network, this can be implemented by using a step-size vector to scale how much
gradient samples change network weights. Common algorithms, like RMSProp and Adam,
use heuristics, specifically normalization, to adapt this step-size vector. In this paper, we
show that those heuristics ignore the effect of their adaptation on the overall objective
function, for example by moving the step-size vector away from better step-size vectors.
On the other hand, stochastic meta-gradient descent algorithms, like IDBD (Sutton, 1992),
explicitly optimize the step-size vector with respect to the overall objective function. On
simple problems, we show that IDBD is able to consistently improve step-size vectors, where
RMSProp and Adam do not. We explain the differences between the two approaches and
their respective limitations. We conclude by suggesting that combining both approaches
could be a promising future direction to improve the performance of neural networks in
continual learning.

1 The Role of Step-size in Continual Learning

Continual learning is a setting where learning needs to always adapt to the latest data to learn new things or
track moving targets. Continual learning contrasts with other problem settings where the goal is to converge
to some fixed point. A key problem in continual learning is to able to learn from data what needs to be
maintained, for example to avoid catastrophic forgetting (French, 1999), and what needs to be updated to
continue to track the objective function, for example because of limited capacity (Sutton et al., 2007).

A Stochastic Gradient Descent (SGD) method updates a set of weights wt by incrementally accumulating
the product of a step-size1 scalar parameter η and a sample gradient estimate ÿ�∇Jt(wt) given an objective
function Jt(wt):

wt+1 ← wt − ηÿ�∇Jt(wt)

We name this method Classic SGD in the rest of this paper. In Classic SGD, the step-size parameter η is a
key parameter to determine how much the weights of the learner are updated given the latest sample. For
example, in a non-continual learning setting, this step-size parameter is often scheduled to converge to 0,
forcing the changes to the parameters to be smaller over time until further adaptation becomes impossible.
Using the same scalar step-size for all the weights is limited because it does not differentiate across dimensions.

Other conventional step-size adaptation methods include RMSProp (Hinton et al., 2012) and Adam (Kingma
and Ba, 2015). RMSProp and Adam both normalize the gradients before updating the weights. Additionally,
Adam also uses momentum to smooth the gradients. In practice, the weight update is composed of a
component wise product of two parts: first, a step-size vector αt+1 slowly changed and the gradient estimateÿ�∇Jt(wt):

wt+1 ← wt −αt+1 ·ÿ�∇Jt(wt) (1)

1We prefer to use step-size to learning-rate because we think it is more accurate. Indeed, a step-size parameter does not
indicate the rate at which a system learns. A large step-size may or may not be correlated with a high rate of learning.
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Figure 1: With conventional step-size normalization methods like RMSProp, the step-sizes do not go towards
the optimal step-sizes.

Both RMSProp and Adam adapt the step-size vector αt using a heuristic, normalising with an estimate of
the gradient magnitude, irrespective of the effect of such changes on the objective function. To illustrate this,
we used a simplification of a problem introduced in Sutton (1992), that is, a non-stationary 2-dimensional
linear regression problem. On the first dimension, the optimal weight w1 is equals to 0 and constant. On
the second dimension, the optimal weight w2 is non-stationary. Every 20 steps, w2 flips between -1 and 1
with a probability of 0.5. Features for both dimensions are independently sampled from a constant normal
distribution. One would expect that a good method to optimize a step-size vector (α1, α2) would learn a low
step-size α1 for the first dimension to ignore noise, and learn a higher step-size α2 to track the flipping weight.

Figure 1 shows the loss landscape as the average squared error computed by running for 1,000,000 steps using
linear regression as the objective function Jt(wt), given the step-size vector at a point (α1, α2), and using the
update of Equation 1. Thus, Figure 1 is a representation of the step-size space with respect to the loss, and
not the weight space as commonly depicted. In other words, each point represents how well regression is able
to track the target given the fixed step-size vector at that point. Weights are initialized to 0. We can see that
the pair of optimal step-sizes is α1 = 0 and α2 ≈ 0.33, as indicated by the diamond at the bottom of the
plots.

Figure 1-left shows the trajectory of the step-size vector αt in Equation 1 when updated by RMSProp using
three different values for the step-size parameter. On this problem, we observe that RMSProp was not able
to learn the best step-size vector to decrease the overall loss. Perhaps more surprisingly, in the two lower
trajectories, the step-size vector ends up at a worse position from the optimal step-size vector compared
to where it started from. Also note how RMSProp mostly moves both step-sizes α1 and α2 similarly, on
a diagonal, and is not really able to distinguish between the different properties—a constant weight and
a flipping weight—of the two dimensions. Although not shown in the figure, Adam behaves similarly to
RMSProp on this problem.

Figure 1-right shows the trajectory of the step-size vector when updated by the Incremental-Delta-Bar-
Delta (IDBD) algorithm (Sutton, 1992). IDBD is an online stochastic meta-gradient descent algorithm
explicitly optimizing the step-size vector with respect to an objective function. More specifically, the IDBD
algorithm learns a step-size vector by accumulating online estimates of the gradient of the objective function
with respect to the step-sizes (IDBD is presented in detail later). Unlike RMSProp, IDBD is able to
consistently update the step-size vector in the direction that is closer to the optimal point at the bottom of
the landscape. Note that IDBD, RMSProp, and Adam all share the same compute and memory complexity.

We now explain this result in more details, highlighting the difference between step-size normalization
algorithms (RMSProp, Adam) and step-size optimization algorithms (IDBD).
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2 Setting

We consider an online learning setting where the learner observes a possibly non-stationary sequence J1, J2, . . .
of loss functions. The learner starts with some initial weight vector w1 at time t = 1. At time t = 1, 2, . . .,
upon observing a new loss function Jt(·), the learner incurs a sample of the loss Jt(wt) and then updates its
weight vector wt to wt+1 via some learning algorithm. The goal of the learner is to minimize the average
lifetime loss.

Given a gradient sample ∇Jt(wt), a learner can use different algorithms to update its weight vector wt.
Perhaps the simplest method is the Classic SGD algorithm introduced in Section 1 and presented below.
Gradient samples ∇Jt(wt) are multiplied by a fixed scalar step-size parameter η before being added to the
current weight vector wt.

Classic Stochastic Gradient Descent (Classic SGD)
Parameter:

η: step-size parameter for the weight update
Initialise weights w1
for t = 1, 2, . . . do

wt+1 ← wt − η∇Jt(wt)
end

Hinton et al. (2012) proposed the SGD algorithm named RMSProp, described below, which normalizes the
gradient samples before they are accumulated in the weight vector. It does so with an additional vector gt

which maintains a component-wise moving average of the square of the gradient, (∇Jt(wt))2. RMSProp
introduces a new scalar step-size parameter γg that sets how fast the average gt tracks the square of the
gradient. The average gt is then used to normalise the update applied to the weight vector by dividing each
component of the gradient by the square root √gt of the average. A small constant ϵ is added to gt for
stability. Thus, the step-size vector αt for RMSProp becomes η√

gt+ϵ
.

RMSProp (Hinton et al., 2012)
Parameters:

η: step-size parameter for the weight update
γg: step-size parameter for normalization
ϵ: constant for numerical stability

Initialise weights w1
g1 ← 1
for t = 1, 2, . . . do

gt+1 ← (1− γg)gt + γg

(
∇Jt(wt)

)2

wt+1 ← wt − η√
gt+1+ϵ

· ∇Jt(wt)

end

The Adam algorithm (Kingma and Ba, 2015), described below, adds two ideas to RMSProp. The first idea is
momentum, where Adam replaces the gradient ∇Jt(wt) in the weight update with a tracking average of the
gradient denoted mt. This tracking average is updated at every step given an additional step-size parameter
denoted γm. Replacing the gradient with its average can be seen as a form of gradient smoothing. Setting
γm = 1 disables momentum. The average of the gradient mt and the squared gradient gt are both initialized
to zero. The second idea is to correct for the bias in the estimates of gt and mt because of that initialization
to zero. Adam adjusts gt and mt to m̂t and ĝt respectively and uses these unbiased estimates in the weight
update. The equivalent step-size vector αt for Adam is η√

ĝt+ϵ
.
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Adam (Kingma and Ba, 2015)
Parameters:

η: step-size parameter for the weight update
γm: step-size parameter for gradient smoothing
γg: step-size parameter for normalization
ϵ: constant for numerical stability

Initialise weights w1
m1 ← 0
g1 ← 0
for t = 1, 2, . . . do

mt+1 ← (1− γm)mt + γm∇Jt(wt)
gt+1 ← (1− γg)gt + γg

(
∇Jt(wt)

)2

m̂t+1 ← mt+1
1−(1−γm)t

ĝt+1 ← gt+1
1−(1−γg)t

wt+1 ← wt − η√
ĝt+1+ϵ

· m̂t+1

end

3 Limitations of Step-size Normalization

This section highlights the limitations of step-size normalization on two simple learning problems, namely
weight-flipping and rate-tracking. For both problems, we examine a simple setting with a linear least mean
squared regression loss function. For t = 1, 2, . . ., the losses J1, J2, . . . are of the form Jt(wt) = (x⊺

t wt − y∗
t )2,

where xt ∈ Rd is the feature vector and y∗
t ∈ R is the label at time t. In such setting, ∇Jt(wt) = δtxt where

δt = x⊺
t wt − y∗

t .

The weight-flipping problem.

The problem was first introduced in Sutton (1992) and is a larger version of the problem introduced in
Section 1. It defines a vector xt of 20 inputs where each input is sampled independently according to a
normal distribution with zero mean and unit variance. The first 15 components of the target weight vector
w∗

t are all zeros. The last 5 components are either +1 or -1. To make it a continual learning problem, one of
the non-zero weights is selected every 20 samples and flipped from +1 to -1 or vice-versa. Finally, the target
prediction y∗ is defined as the linear combination of the weight vector and the input y∗ = w∗

t
⊺xt.

In this problem, a performance close to the optimal performance can be obtained by learning a different but
constant step-size per component; that is, a learning algorithm able to learn a low step-size for the first 15
constant weights and a high step-size for the 5 flipping weights will perform better than an algorithm using
the same step-size for all weights.

The asymptotic performance of Classic SGD, RMSProp, and Adam on the weight-flipping problem as a
function of the step-size parameter is shown in Figure 2. We treated RMSProp as a special case of Adam
where γm = 1 because we considered that the problem is run for long enough to clear any bias due to
initialisation. We did a sweep over γg and η. The performance for the best values of γg and η are reported in
the figure. As an additional baseline, we ran Oracle SGD where the weights and step-sizes for the first 15
constant components are set to an optimal value of 0 and ran a sweep over the step-size for the remaining
non-constant last 5 components. Consequently, Oracle SGD shows the best performance possible with a
constant vector step-sizes in this problem setting. We report the error averaged across all steps after running
for 200,000 steps.

On this problem, Adam/RMSProp performed slightly worse than Classic SGD and much worse than Oracle
SGD. Their poor performance can be explained by looking at the algorithms. Adam/RMSProp maintains an
average of δtx

2
t ; however, because all components of xt are from the same normal distribution, they have the

same variance. Moreover, because the error δt is global, all components end up with the same normalised
step-size estimate η√

gt+ϵ
. Consequently, on such tracking problem, Adam/RMSProp is not able to learn
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Figure 2: On the weight-flipping problem, IDBD performs as well as Oracle SGD and better than conventional
methods.

different step-sizes for each component. We conclude that normalization, as done in Adam/RMSProp, is not
enough to differentiate between weights that should be fixed and weights that should change.

The 1D noisy rate-tracking problem.

In the previous problem, learning constant step-size parameters lead to an optimal solution. Generally, in
a continual learning setting, the optimal step-sizes may not be constant and may need to be adapted over
time. The noisy-tracking problem illustrates such a case. This problem is still a linear regression problem of
a single dimension where the feature xt equals 1, at all times t.

RMSProp

IDBD

Optimal
step-size

Time steps (in millions)

Step-size

1.00.0 0.2 0.80.60.4

0.2

0.6

1.0

Step-size

Figure 3: On the noisy-tracking problem, step-size optimization (IDBD) can accurately track the optimal
step-size on a non-stationary single dimension problem. Step-size normalization, as done by RMSProp, on
the other hand, achieves exactly the opposite—it increases the step-size when it should be decreased and
vice-versa.
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The learner aims to predict the target y that changes at every step as:

yt = zt +N (0, σ2
t )

zt+1 = zt +N (0, 1)

where σt is sampled every 50,000 steps from a uniform distribution from 0 to 3. Sutton (1981) showed that
the optimal step-size α∗

t for this problem can be computed as:

α∗
t = −σ2

t +
√

σ4
t + 4σ2

t

2 . (2)

Figure 3 shows that Classic SGD and RMSProp are not able to track the optimal step-size α∗
t on the 1D

noisy rate-tracking problem. Indeed, because xt is always equals to 1, RMSProp will decrease the step-size
every time the magnitude of the error increases. However, the opposite is needed for this problem. The
increase in the magnitude of the error is due to a faster rate of drift in the target, which requires a larger
step-size. Figure 3 shows that RMSProp does the opposite of what needs to be done: increases the step-size
when it should be decreased and vice-versa.

The experimental protocol is similar to the weight-flipping problem. We ran the experiment for 1 million
steps. The trajectory reported in Figure 3 is for Adam with γm = 1, where momentum is disabled, which is
why we labeled the algorithm RMSProp. As before, we consider the correction of the bias at the start of the
trajectory to be negligible. Results are reported for the best hyper-parameter configuration.

4 Step-size optimization with IDBD

The Increment-Delta-Bar-Delta (IDBD) algorithm (Sutton, 1992), presented next, is a step-size optimization
method. Like RMSProp and Adam, IDBD is a two-level learning process: a base level and a meta level. The
base level learns the weight vector wt used in the loss Jt(wt). The meta level learns meta-parameters, that is
the step-size vector αt in Equation 1, used in the base level to update the weights wt. The key difference
between a step-size optimization method (e.g. IDBD) and a step-size normalization method (e.g. RMSProp)
is that a step-size optimization method has an update rule for the meta level optimizing for the same loss
Jt(·) than the base level, as opposed to a step-size normalization method that uses a heuristic, normalization,
to update the step-size vector αt at the meta level.

Increment-Delta-Bar-Delta (IDBD) (Sutton, 1992)
Parameters:

α0: initial step-size
θ: meta step-size for the step-size update

Initialise weights w1
Initialise step-sizes in log space β1 = log(α0)
Initialise average vector h1 = 0
for t = 1, 2, . . . do

yt ← wt
⊺xt

δt ← y∗
t − yt

βt+1 ← βt + θδtxt · ht

αt+1 ← eβt+1

wt+1 ← wt + αt+1 · δtxt

ht+1 ←
(
1−αt+1 · x2

t

)+ · ht + αt+1 · δtxt

end

To optimize at the meta level for the same loss than the base level, the general idea of meta-gradient
proposes to derive the update rule of the meta level by taking the gradient of the loss with respect to the
meta-parameters used in the update of the base level. In the case of IDBD, the step-size vector is defined as
αt = eβt , that is the exponential of a vector βt. Updating the step-sizes in log-space guarantees that αt
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is always positive, and enables fast geometric updates. Other representation could have been chosen, like
a sigmoid for example. Consequently, the IDBD algorithm is derived by taking the gradient of the linear
least mean squared regression loss Jt(wt) = (x⊺

t wt − y∗
t )2 with respect to the step-size vector βt in log-space.

Additionally, IDBD uses approximations in its derivation to keep the same complexity than Classic-SGD. See
Sutton (1992) for a complete description of that derivation.

We now give a mechanistic description of the IDBD algorithm to explain how it works. As with previous
methods, IDBD first computes the error δt. IDBD also keeps an average ht of the gradient δtxt for each
component of the input xt. For a component i at time t, the absolute value of the average h(t,i) will be high
for a weight w(t,i) if the recent gradients δtx(t,i) always have the same sign (moving in the same direction)
and low if recent gradient oscillates around 0. Then, the step-size in log space β(t,i) is increased if the last
gradient δtx(t,i) correlates with the average h(t,i), and decreased otherwise. Consequently, the step-size
α(t,i) increases if the weight w(t,i) moves in a consistent direction over time (meaning the step-size was too
small) and decreases when the direction oscillates (meaning the step-size was too high). The notation (·)+

guarantees that
(
1−αt+1 · x2

t

)+ is between 0 and 1 to discount the previous value ht.

The performance of IDBD on the weight-flipping and rate-tracking problems is shown on Figure 2 and
Figure 3 respectively. On both cases, IDBD outperformed Classic SGD, RMSProp, and Adam. On the
weight-flipping problem, IDBD learns to decrease the step-sizes for the inputs with constant weights and to
keep the step-size high for inputs with flipping weights. On the 1D noisy rate-tracking problem, IDBD is able
to track the optimal step-size.

5 Limitations of IDBD

The next step would be to use IDBD to learn the step-sizes in deep neural networks. A few open questions
remain to be solved for such an endeavor. The first is how to generalize IDBD such that it be used to optimize
all hyper-parameters (See Section A for a discussion). The second is that the main parameter of IDBD,
the meta-step-size hyper-parameter, is sensitive to the magnitude of the gradients as shown in Figure 4. In
addition to the weights flipping between -1 and +1, labelled “Medium” target weights, we also run a “Small”
target weights and a “Large” target weights variants, respectively flipping from -.1 and +.1 and -10 and +10.
Other parameters are the same. These two variants shifted the best meta-step-size for IDBD by 5 orders of
magnitudes. Classic SGD on the other hand did not shift. Such sensitivity of the meta-step-size parameter to
the variance of the inputs, the gradients, or the updates in general, makes it difficult to use IDBD in many
common settings.

Step-size/Meta-step-size
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6 Existing Extensions of IDBD

IDBD was originally designed for linear regression but the idea of stochastic meta-gradient descent introduced
in the paper is general. Indeed, a general formulation of meta-gradient in online optimization problems has
been derived in Xu et al. (2018) and is detailed in Appendix A. Meta-gradient in general has been used in a
wide variety of settings, see Andrychowicz et al. (2016) or Xu et al. (2020) for examples.

There are different extensions of the IDBD algorithm, more specifically to different learning settings and
problems. For example, Koop (2008) extends IDBD to classification problems over linear regression problems.
Kearney et al. (2019), Thill (2015), and Young et al. (2018) extended the IDBD algorithm for temporal-
difference (TD) learning in a reinforcement learning context. Schraudolph (1999) extends the IDBD algorithm
to multi-layer neural network with the SMD algorithm. SMD has been later applied to areas like independent
component analysis (Schraudolph and Giannakopoulos, 2000) and complex human motion tracking (Kehl
and Van Gool, 2006).

To address the sensitivity of IDBD and SMD to the meta-step-size parameter, Mahmood et al. (2012) proposed
the Autostep algorithm as a tuning-free extension. Sutton (2022) summarizes the history and recent success
of meta-learning algorithms in step-size adaptation methods.

7 Other Step-size Adaptation Algorithms

There are numerous optimization techniques developed for improving convergence or tracking of optimal
parameters in stationary or online optimization problems (Amari et al., 2000; Roux and Fitzgibbon, 2010;
Schaul et al., 2013; Desjardins et al., 2015; Bernacchia et al., 2018). These techniques include (but are not
limited to) second order optimization methods, variance reduction methods, and step-size normalization
techniques. General meta-gradient step-size updates, like IDBD, are conceptually different from the aforemen-
tioned methods. For example, second order optimization methods such as Newton and quasi-Newton methods
leverage information about the curvature of the loss landscape in weights space to obtain an improved direction
(Kochenderfer and Wheeler, 2019). In contrast, meta-gradient algorithms like IDBD perform updates in
hyper parameters space (such as step-sizes) instead of the weight space (as demonstrated in Figure 1). Note
also that in the example problems of Section 3, second order methods have almost no advantage over first
order methods because the average curvature in these problems is independent of the weights and is almost
constant over different dimensions.

Other approaches include the work of van Erven and Koolen (2016), which introduces an online algorithm that
runs multiple sub-algorithms, each with a different step-size, and learns to use the best step-size for online
convex optimization problems. Wu et al. (2020) proposes to adapt the step-size according to accumulating
gradients for L-Lipschitz continuous objectives. Koolen et al. (2014) proposes to use a grid of step-size and
runs in linear time for prediction problems with expert knowledge. Jacobsen et al. (2019) introduces AdaGain.
AdaGain was designed to work alongside other step-size adaptation methods. To that end, Adagain optimizes
a generic proxy objective function independent of the base objective function: the vector of step-size is
optimized so that the norm of the gradient of the base objective function becomes small. They show that
AdaGain with RMSProp, for example, can outperform other methods in a continual learning setting.

Finally, variance reduction techniques such as SVRG (Johnson and Zhang, 2013) and SAGA (Defazio et al.,
2014) try to smooth out the noise and obtain lower-variance approximations of gradient of expected loss in
stationary problems. This limits the application of these methods to online learning problems where such
expected loss function does not exist.

8 A Promising Research Direction: Normalized Step-size Optimization

Adam and RMSProp are step-size normalization methods widely used in deep learning. They use momentum
and normalization techniques to adapt the step-size vectors, often providing more stable updates compared
to Classic SGD. These methods have been successful and are now ubiquitous. This paper has shown that
they may not be enough, in the context of continual learning. On the other hand, meta-gradient algorithms
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like IDBD optimize the step-sizes with respect to the loss, but have other limitations such as stability and
sensitivity to its step-size parameter. Optimizing step-sizes in deep neural-networks in a practical way for
continual learning is still an open research question. Consequently, we see that combining normalization
and optimization seem a promising research direction towards better step-size adaptation methods in deep
networks. The Autostep algorithm (Mahmood et al., 2012) can be seen as a possible attempt towards such
direction.

Finally, it is possible that a good step-size adaptation method will improve learning in the continual learning
setting but also in other setting. For example, a good step-size adaptation method may remove the need for
a manually tuned step-size schedule, having to sweep over constant step-size parameters, or better learning in
long training of large models.
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Generalisation of the IDBD Algorithm for Online Learning Problems
Parameters:

θ: meta step-size for the step-size update

Initialise parameters w1
Initialise step-sizes in log space β1
Initialise average vector ht = 0
for t = 1, 2, . . . do

βt+1 ← βt + θht∇Jt(wt)
αt+1 ← exp(βt+1)
wt+1 ← wt −αt+1∇Jt(wt)
ht+1 ← (1−αt+1gt)+

ht + αt+1∇Jt(wt), where gt is defined in (A)
end

A Generalisation of IDBD

An extension of IDBD for meta-gradient update of hyper parameters has been derived in Xu et al. (2018).
That general method to step-size adaptation can be seen as an extension of IDBD for step-size adaptation in
general online learning problems.

For an objective function Jt, the meta-gradient update of step-sizes is as follows (Xu et al., 2018):

βt+1 ← βt − θHT
t ∇Jt(wt)

At+1 ← diag
(

exp(βt+1)
)
,

wt+1 ← wt −At+1∇Jt(wt),
Ht+1 ←

(
I −At+1∇2Jt(wt)

)
Ht − diag

(
At+1∇Jt(wt)

)
,

where diag(xt) stands for a diagonal matrix with diagonal entries equal to the entries of vector xt, and
∇2Jt(wt) is the Hessian matrix of Jt at wt. As opposed to the average vector ht in the IDBD algorithm, here
the average Ht is a square matrix, and its update requires Θ(d2) computations. To obtain an O(n)-complexity
algorithm, we can consider a diagonal approximation of ∇2Jt(wt). In particular, at time t, we let gt be a
d-dimensional vector with entries

g(t,i) = d2

dw2
i

Jt(w)
∣∣
w=wt

, for i = 1, . . . , d.

The resulting generalized IDBD algorithm with a linear-complexity is in the pseudo-code. It is then easy to
check that in the linear regression problem, this algorithm simplifies to the IDBD described in Section 4 of
the paper.
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