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ABSTRACT

Exploration remains a critical issue in deep reinforcement learning for an agent
to attain high returns in unknown environments. Although the prevailing explo-
ration Random Network Distillation (RND) algorithm has been demonstrated to
be effective in numerous environments, it often needs more discriminative power
in bonus allocation. This paper highlights the “bonus inconsistency” issue within
RND, pinpointing its primary limitation. To address this issue, we introduce the
Distributional RND (DRND), a derivative of the RND. DRND enhances the ex-
ploration process by distilling a distribution of random networks and implicitly
incorporates pseudo counts to improve the precision of bonus allocation. This
refinement encourages agents to engage in more extensive exploration. Our method
effectively mitigates the inconsistency issue without introducing significant compu-
tational overhead. Both theoretical analysis and experimental results demonstrate
the superiority of our approach over the original RND algorithm. Our method
excels in challenging online exploration scenarios and effectively serves as an
anti-exploration mechanism in D4RL offline tasks.

1 INTRODUCTION

Exploration is a pivotal consideration in reinforcement learning, especially when dealing with envi-
ronments that offer sparse or intricate reward information. Several methods have been proposed to
promote deep explorationOsband et al. (2016), including count-based and curiosity-driven approaches.
Count-based techniques in environments with constrained state spaces rely on recording state vis-
itation frequencies to allocate exploration bonuses (Strehl & Littman (2008); Azar et al. (2017)).
However, this method encounters challenges in massive or continuous state spaces. In expansive state
spaces, “pseudo counts” have been introduced as an alternative (Bellemare et al. (2016); Lobel et al.
(2023); Ostrovski et al. (2017); Machado et al. (2020)). However, establishing a correlation between
counts and probability density requires rigorous criteria (Ostrovski et al. (2017)), complicating the
implementation of density-based pseudo counts resulting in a significant dependency on network
design and hyperparameters.

Curiosity-driven methods motivate agents to explore and learn by leveraging intrinsic motivation.
This inherent motivation, often called “curiosity”, pushes the agent to explore unfamiliar states
or actions. Certain approaches derive intrinsic rewards from the prediction loss of environmental
dynamics (Achiam & Sastry (2017); Burda et al. (2018a); Pathak et al. (2017)). As states and actions
grow familiar, these methods become more efficient. However, these methods can face difficulties
when essential information is missing, or the target function is inherently stochastic, as highlighted
by the “noisy-TV” problem (Pathak et al. (2017)). The Random Network Distillation (RND) method
uses the matching loss of two networks for a particular state to be the intrinsic motivation (Burda et al.
(2018a)). It leverages a randomly initialized target network to generate a fixed value for specific states
and trains a prediction network to match this output. RND has demonstrated remarkable results in
exploration-demanding environments with sparse rewards, such as Montezuma’s Revenge. However,
RND has its limitations. While its reliance on network loss for intrinsic rewards lacks a robust
mathematical foundation, and its interpretability should be more evident compared to count-based
techniques. Moreover, the RND method grapples with the issue of bonus inconsistency, which
becomes apparent during the initial stages of training when no states have been encountered, leading
to bonuses that exhibit considerable deviations from a random distribution. RND struggles to precisely
represent the dataset’s distribution as training progresses, resulting in indistinguishable bonuses.
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Figure 1: Bonus Heatmap of dataset distribution and RND bonus. The left image illustrates the
dataset distribution, the middle image represents the RND bonus before training, and the right image
represents the RND bonus after training. A more detailed change process is in Appendix E.8. Ideally,
we aim for a uniform bonus distribution before any training and without exposure to the dataset. After
extensive training, the expected bonus should inversely correlate with the dataset distribution. The
bonus distribution of RND is inconsistent with the desired distribution, indicating a problem with
bonus inconsistency. The experiment details can be found in Appendix C

We introduce the Distributional Random Network Distillation (DRND) approach to tackle the
challenge of bonus inconsistency in RND. In contrast to the RND method, our approach employs
a predictor network to distill multiple random target networks. Our findings demonstrate that the
DRND predictor effectively operates as a pseudo-count model. This unique characteristic allows
DRND to seamlessly merge the advantages of count-based techniques with the RND method, thereby
enhancing performance without incurring additional computational and spatial overheads, as the
target networks remain fixed and do not require updates. The curiosity-driven RND method and
the pseudo-count Coin Flip Network (CFN, Lobel et al. (2023)) method are special cases of our
DRND method. Through theoretical analysis and an initial experiment (see Section 5.1), we validate
that, compared to RND, DRND demonstrates improved resilience to variations in initial state values,
provides a more accurate estimate of state transition frequencies, and better discriminates dataset
distributions. As a result, DRND outperforms RND by providing better intrinsic rewards.

In online experiments, we combine the DRND method with Proximal Policy Optimization (PPO,
Schulman et al. (2017)). On the image-based exploration benchmark environments Montezuma’s
Revenge, Gravitar, and Venture, DRND outperform baseline PPO, RND, pseudo-count method
CFN, and curiosity-driven method ICM (Pathak et al. (2017)). In continuous control gym-robotics
environments, our method also outperforms existing approaches. Furthermore, we demonstrate that
DRND can also serve as a good anti-exploration penalty term in the offline setting, confirming its
ability to provide a better bonus based on the dataset distribution. We follow the setting of SAC-RND
(Nikulin et al. (2023)) and propose a novel offline RL algorithm, SAC-DRND. We run experiments
in D4RL (Fu et al. (2020)) offline tasks and find that SAC-DRND outperforms many recent strong
baselines across various D4RL locomotion and Antmaze datasets.

2 RELATED WORK

Count-based exploration. Count-based exploration is a strategy in RL where an agent uses count
information to guide its exploration of unknown environments. By keeping track of counts for
different states or actions, the agent can estimate the level of unknowns associated with each state
or action, prioritizing exploration of those with high unknowns (Bellemare et al. (2016); Machado
et al. (2020); Martin et al. (2017); Tang et al. (2017)). These approaches use rt = N(st)

− 1
2 or

rt = N(st, at)
− 1

2 , aiming to balance exploration and exploitation in stochastic MDPs (Strehl &
Littman (2008)). Various methods, including CTS (Bellemare et al. (2016)), PixelCNN (Ostrovski
et al. (2017)), Successor Counts (Machado et al. (2020)), and CFN (Lobel et al. (2023)), have
explored calculating pseudocounts in large state spaces to approximate N(st). Furthermore, count-
based techniques (Kim & Oh (2023); Hong et al. (2022)) are employed in offline RL to do anti-
exploration. While effective in finite state spaces, these methods heavily rely on the network’s ability
to approximate probability density functions in large state spaces. Accurately estimating density
requires a significant number of samples, which limits the effectiveness of counting methods in
situations with small sample sizes or regions of low probability density.
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Curiosity-driven exploration. In curiosity-driven methods, the agent’s motivation stems from
intrinsic curiosity, often quantified using information-theoretic or novelty-based metrics. One widely
used metric involves employing a dynamic model to predict the difference between the expected and
actual states, serving as the intrinsic reward (Stadie et al. (2015); Achiam & Sastry (2017); Pathak
et al. (2017)), which helps identify unfamiliar patterns, encouraging exploration in less familiar
areas. Alternatively, some approaches use information gain as an intrinsic reward (Still & Precup
(2012); Houthooft et al. (2016)). Still, they demand computationally intensive network fitting and
can struggle in highly stochastic environments due to the “noise TV” problem (Burda et al. (2018b)).

Another curiosity-driven method is RND (Burda et al. (2018b)), which is a prominent RL exploration
baseline. RND employs two neural networks: a static prior and a trainable predictor. Both networks
map states to embeddings, with state novelty assessed based on their prediction error, which serves as
an exploration bonus. This simplicity has bolstered RND’s popularity in exploration algorithms and
demonstrated its potential in supervised settings, even suggesting its use as an ensemble alternative for
estimating epistemic uncertainty (Ciosek et al. (2019); Kuznetsov et al. (2020)). However, common
practices, such as using identical architectures for both networks and estimating novelty solely from
states, can result in substantial inconsistencies in reward bonuses.

Anti-Exploration in Model-free Offline RL Offline RL addresses the problem of learning policies
from a logged static dataset. Model-free offline algorithms do not require an estimated model and
focus on correcting the extrapolation error (Fujimoto et al. (2019)) in the off-policy algorithms. The
first category emphasizes regularizing the learned policy to align with the behavior policy (Kostrikov
et al. (2021); Wang et al. (2018; 2020); Wu et al. (2019); Xie et al. (2021); Fujimoto & Gu (2021)).
The second category aims to prevent the OOD actions by modifying the value function (Kumar
et al. (2020); Lyu et al. (2023; 2022b); An et al. (2021); Ghasemipour et al. (2022); Yang et al.
(2022)). These methods employ dual penalization techniques in actor-critic algorithms to facilitate
effective offline RL policy learning. These approaches can be further categorized into ensemble-free
methods and ensemble-based methods. The ensemble-based methods quantify the uncertainty with
ensemble techniques to obtain a robust value function, such as SAC-N (An et al. (2021)) and RORL
(Yang et al. (2022)). The ensemble-free methods adapt conservatism to a value function instead
of many value functions (Kumar et al. (2020); Lyu et al. (2022b); Rezaeifar et al. (2022)). These
methods require punishment for states and actions outside of the dataset distribution, which is called
an “anti-exploration” bonus (Rezaeifar et al. (2022)) for the agent. Unlike online RL, where novelty
bonuses incentivize exploration, offline RL leans towards conservatism, aiming to reduce rewards in
uncharted scenarios. In this work, we introduce a distributional random network distillation approach
to serve as a novel anti-exploration method, demonstrating the efficacy of SAC-DRND across various
offline RL datasets.

3 PRELIMINARIES

MDP. We base our framework on the conventional Markov Decision Process (MDP) formulation
as described in (Sutton et al. (1998)). In this setting, an agent perceives an observation o ∈ O and
executes an action a ∈ A. The transition probability function, denoted by P (s′|s, a), governs the
progression from the current state s to the subsequent state s′ upon the agent’s action a. Concurrently,
the agent is awarded a reward r, determined by the reward function r : A × S → R. The agent’s
objective is to ascertain a policy π(a|o) that optimizes the anticipated cumulative discounted returns,
represented as Eπ [

∑∞
t=0 γ

tr (st, at)], where γ ∈ [0, 1) serves as the discount factor.

Intrinsic reward. To enhance exploration, a common approach involves augmenting the agent’s
rewards in the environment with intrinsic rewards as a bonus. These intrinsic rewards, denoted
as bt(st, at), incentivize agents to explore unfamiliar states and take unfamiliar actions. In offline
RL, the intrinsic reward is an anti-exploration penalty term to discourage OOD actions. Upon
incorporating the intrinsic reward b(st, at) to the original target of Q value function, the adjusted
target can be expressed as follows:

yt =

{
rt + λb (st, at) + γmaxa′ Qθ′ (st+1, a

′) , if online
rt + γEa′∼π(·|st+1) [Qθ′ (st+1, a

′)− λb (st+1, a
′)] , if offline

where λ is the scale of the bonus for the update of the value net.
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4 METHOD

The RND method utilizes two neural networks: a fixed, randomly initialized target network f̂ : O →
Rk, and a predictor network f : O → Rk trained on agent-collected data, where O is the observation
space. In this section, we highlight RND’s primary issue and introduce our method, Distributional
Random Network Distillation (DRND).

4.1 BONUS INCONSISTENCIES IN RANDOM NETWORK DISTILLATION

The RND method faces challenges with bonus inconsistency, which can be categorized into initial
and final bonus inconsistencies. The initial bonus inconsistency relates to the uneven distribution of
bonuses of states at the beginning of training. Addressing this issue is crucial to preventing significant
bonus value disparities among states. Conversely, the final bonus inconsistency arises when the
final bonuses do not align with the dataset distribution, making it hard for the agent to effectively
distinguish between frequently visited states and those encountered relatively fewer times. This issue
becomes particularly pronounced after substantial updates to the predictor network, which hinders
the agent’s ability to engage in deep exploration. This issue is depicted in Figure 1.

To tackle this, we introduce a method that distills a random distribution, enhancing performance with
minimal computational overhead and addressing the bonus inconsistency challenges.

4.2 DISTILL THE TARGET NETWORK OF RANDOM DISTRIBUTION

Unlike RND, which only has one target network f̄(s), the DRND algorithm has N target networks
f̄1(s, a), f̄2(s, a), ..., f̄N (s, a), which are from a random distribution with randomly initialized pa-
rameters and do not participate in training. In DRND, we use s as input in the online setting and
(s, a) pair as input in the offline setting. For simplicity, we define x = (s, a) (offline setting) or
x = (s) (online setting). For each state-action pair x, we construct a variable c(x) which satisfies the
distribution:

c(x) ∼
X f̄1(x) f̄2(x) . . . f̄N (x)

P 1
N

1
N . . . 1

N

For simplicity, we use some symbols to record the moments of the distribution:

µ(x) = E[X] =
1

N

N∑
i=1

f̄i(x), B2(x) = E[X2] =
1

N

N∑
i=1

(f̄i(x))
2. (1)

Each time x is occurred, c(x) is sampled from this distribution. We use a predictive network fθ(x) to
learn the variable c(x), although using a fixed network to learn a random variable is impossible. We
use the MSE loss function to force fθ(x) to align with c(x) and the loss is

L(θ) = ∥fθ(x)− c(x)∥22. (2)

By minimizing the loss, the optimal f∗(x) when the state-action pair x appears n times is

f∗(x) =
1

n

n∑
i=1

ci(x), (3)

(a) RND (b) DRND

Figure 2: Diagram of RND and DRND. Compared to the RND method that only distills a fixed target
network, our method distills a randomly distributed target network and utilizes statistical metrics to
assign a bonus to each state.
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where ci(x) is defined as c(x) at the i-th occurrence of state x. For RND, the more times the predictor
network is trained in the same state, the closer the output of the target network is. Therefore, directly
using loss as a bonus encourages agents to explore new states. The bonus of our method is not equal
to the loss since the loss of random variable fitting is unstable. The expected value of the prediction
net is given by

E[fθ∗(x)] = E

[
1

n

n∑
i=1

ci(x)

]
= µ(x), (4)

where n is the count of occurrences of x. After multiple training iterations, this value approaches the
mean of the target network distribution. Hence, to measure the deviation from this mean, the first
bonus of DRND is defined as

b1(x) = ∥fθ(x)− µ(x)∥2. (5)
Compared to predicting the output of one target net, predicting the mean of multiple networks is
equivalent to passing through a high pass filter on the output of multiple networks, which can avoid
the problem of initial bonus inconsistency due to extreme values in one network. Especially if the
network is linear, this bonus inconsistency can be quantitatively calculated.

Lemma 1. Let θ̃ and θ̄i, i = 1, 2, . . . , N be i.i.d. samples from p(θ). Given the linear model
fθ(x) = θTx, the expected mean squared error is

Eθ̃,θ̄1,θ̄2,...θ̄N

∥∥∥∥∥fθ̃(x)− 1

N

N∑
i=1

fθ̄i(x)

∥∥∥∥∥
2
 =

(
1 +

1

N

)
xTΣx, (6)

where Σ is the variance of p(θ).

The complete proof can be seen in Appendix B.1 . Lemma 1 shows that if the predictor parameters
and target parameters are sampled from the same distribution, the expectation of the first bonus is a
function of input x.
Lemma 2. Under the assumptions of Lemma 1, let x1, x2 ∈ Rd, p(θ) ∼ N(µ, σ2). The bonus
difference of x1 and x2 is (1+N)σ2

N (∥x2∥2 − ∥x1∥2).

Proof Sketch. When p(θ) ∼ N(µ, σ2), the variance of p(θ) is a constant σ2. The right side of Eq. (6)
can be rewritten as

(
1 + 1

N

)
σ2∥x∥2. So the bonus difference of x1 and x2 is

(
1 + 1

N

)
σ2(∥x2∥2 −

∥x1∥2).

Lemma 2 suggests that when the input x is confined to a bounded interval, and when Eq. (5) is
utilized to calculate the initial bonus, the expected maximal difference is modulated by the number
of target networks. Importantly, this anticipated discrepancy tends to decrease as N increases. This
observation substantiates that our DRND method, equipped with N target networks, exhibits lower
bonus inconsistency under a uniform distribution than the RND method, which uses only a single
target network.

However, it is essential to note that the network fitting loss determines this bonus. Consequently, it
cannot distinguish between states visited multiple times, which stands in contrast to count-based and
pseudo-count methods, which do not address the issue of final bonus inconsistency.

4.3 THE DRND PREDICTOR IS SECRETLY A PSEUDO-COUNT MODEL

It is essential to track data occurrence frequencies to address inconsistent final bonuses. Traditional
count-based methods use large tables to tally state visitations, while pseudo-count strategies use
neural networks for estimation, providing a scalable insight into state visits. However, these methods
introduce computational and storage complexities, particularly when dealing with high-dimensional
inputs. We constructed a statistic that indirectly estimates state occurrences without extra auxiliary
functions.
Lemma 3. Let f∗(x) be the optimal function which satisfy Eq. (3), the statistic

y(x) =
[f∗(x)]

2 − [µ(x)]2

B2(x)− [µ(x)]2
(7)

is an unbiased estimator of 1/n with consistency.
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Figure 3: Distribution of DRND bonus. The dataset distribution is the same as Figure 1. These
illustrations depict the distribution of the DRND bonus, including the first bonus and the second
bonus. The first bonus is predominant before training, and the second bonus becomes more prominent
after training.

The complete proof can be found in Appendix B.2. Lemma 3 shows that when n is large, this statistic
can effectively recover the number of occurrences of the state n, thus implicitly recording the number
of occurrences of the state like the pseudo-count method. By minimizing Eq. (2) can make fθ(x) and
f∗(x) infinitely close, so we replace f∗(x) in y(x) with fθ(x) and approximately assume that they
are equal. The DRND predictor potentially stores in its weights how much of each state vector is
present in the dataset. To correspond to

√
1/n of the count-based method, the second bonus of the

DRND agent is

b2(x) =

√
[fθ(x)]2 − [µ(x)]2

B2(x)− [µ(x)]2
, (8)

which is the estimation of
√
1/n.

4.4 BONUS OF THE DRND AGENT

In summary, the total bonus, as seen in Eqs. (5) and (8), is

b(st, at) = α∥fθ(x)− µ(x)∥2 + (1− α)

√
[fθ(x)]2 − [µ(x)]2

B2(x)− [µ(x)]2
. (9)

where α represents the scaling factor for the two bonus terms. Figure 2 shows the diagram of our and
RND method. For smaller values of n, the variance of the second bonus estimate is substantial, ren-
dering the first bonus a more dependable measure for states with infrequent occurrences. Conversely,
as n increases, the variance of the second bonus approaches zero, enhancing its reliability. It’s worth
noting that during DRND predictor updates, the first bonus diminishes quicker than the second. This
dynamic permits a constant α to attain the intended behaviour, as illustrated in Figure 3.

The DRND’s target network remains static, and its loss and intrinsic reward calculations do not
introduce new backpropagation, keeping computational time similar to the RND algorithm. With
α = 1 and N = 1, the loss and intrinsic reward simplify to

∥∥fθ(x)− f̄(x)
∥∥2 , aligning with

RND. Unlike count-based and pseudo-count methods, we do not use an extra network or table
for state occurrences but estimate using the prediction network’s statistics. When α = 0 and

c(x) ∼ X −1 1
P 0.5 0.5 , the loss and intrinsic reward simplify to ∥fθ(x)∥2 and ∥fθ(x)∥, aligning

with the pseudo-count approach CFN.
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Figure 4: Inconsistency experiments mentioned in Section 5.1. We plot the intrinsic reward distri-
bution of RND and DRND before and after training on a mini-dataset. Left: the box plot of the
difference between the maximum and minimum intrinsic rewards over 10 independent runs before
training. Right: the intrinsic rewards for each data point after training.

5 EXPERIMENT

In this section, we provide empirical evaluations of DRND. Initially, we demonstrate that DRND
offers a better bonus than RND, both before and after training. Our online experiments reveal that
DRND surpasses numerous baselines, achieving the best results in exploration-intensive environments.
In the offline setting, we use DRND as an anti-exploration penalty term and propose the SAC-DRND
algorithm, which beats strong baselines in many D4RL datasets.

5.1 BONUS PREDICTION COMPARISON

In this sub-section, we introduce our inconsistency experiments to compare bonus prediction for both
RND and DRND. We created a mini-dataset resembling those used in offline RL or online RL replay
buffers in the experiments. This small dataset contains M data categories labeled from 1 to m, with
each data type occurring i times proportional to its label. Each data point is represented as a one-hot
vector with M dimensions, where M is set to 100. We train both the RND and DRND networks on
the dataset and record both the initial intrinsic reward and the final intrinsic reward.

The left panel in Figure 4 illustrates the difference in initial intrinsic rewards between RND and our
approach, with the x-axis representing the number of target networks. As N increases, the y-axis,
representing the range of intrinsic rewards, becomes narrower, resulting in a more uniform reward
distribution. In the right panel of Figure 4, we display the intrinsic reward distribution trained on
the mini-dataset, showing that DRND’s rewards have a stronger correlation with sample count than
RND, as indicated by the regression lines.

5.2 PERFORMANCE ON ONLINE EXPERIMENTS

Like many other exploration methods, we conduct our DRND approach in Atari games, Adroit
environments (Rajeswaran et al. (2017)), and fetch manipulation tasks (Plappert et al. (2018)), which
need deep exploration to get a high score. We integrate our method with the PPO (Schulman et al.
(2017)) algorithm. We compare our approach with the RND method, the pseudo-count method CFN

Figure 5: Mean episodic return of DRND method, RND method, and baseline PPO method on three
hard exploration Atari games. All curves are averaged over 5 runs.
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Figure 6: Learning curves in the Adroit continuous control tasks. All curves are averaged over 5 runs.

(Lobel et al. (2023)), the curiosity-driven method ICM (Pathak et al. (2017)), and the baseline PPO
method. The solid lines in the figures represent the mean of multiple experiments, and the shading
represents the standard deviation interval.

Atari Games. We chose three Atari games — Montezuma’s Revenge, Gravitar, and Venture — to
evaluate our algorithms. These games require deep exploration to achieve high scores, making them
ideal for assessing algorithmic exploratory capabilities. We benchmarked our method against the
RND and PPO algorithms, with results presented in Figure 5. Our DRND method converges faster
and attains the highest final scores in these environments.

Adroit Experiments. We further delve into the Adroit continuous control tasks. In these challenges,
a robot must skillfully manipulate a hand to perform various actions, such as adjusting a pen’s orien-
tation or unlocking a door. Considering the complexity of the tasks and the robot’s high-dimensional
state space, it becomes imperative to explore methods that can facilitate the robot’s learning. Figure 6
illustrates that our DRND method outperforms all the other methods in exploration, especially in
the challenging ‘Hammer’ and ‘Relocate’ environments. However, in the ‘Pen’ environment, our
method does not exhibit a significant improvement compared to other exploration algorithms. This
could be attributed to the relatively simpler nature of this environment, which does not demand deep
exploration.

Fetch Manipulation Tasks. The Fetch manipulation tasks involve various gym-robotics environ-
ments, challenging the Fetch robot arm with complex tasks like reaching, pushing, sliding, and
pick-and-place actions. Due to their complexity, these tasks demand advanced exploration strategies.
Our evaluation of exploration algorithms in this context highlights their effectiveness in handling in-
tricate robotic manipulations. As shown in Figure 7, our DRND approach excels in assisting the robot
in these tasks. Our DRND method effectively combines the strengths of these approaches, outper-
forming results achievable with either pseudo-count or curiosity-driven methods alone. Consequently,
our DRND algorithm performs significantly better than the RND method and other exploration
algorithms.

Figure 7: Results on the Fetch manipulation tasks. All curves are averaged over 5 runs.

5.3 D4RL OFFLINE EXPERIMENTS

We assessed our method using the D4RL (Fu et al. (2020)) offline datasets, integrating the DRND
approach with the SAC algorithm (Haarnoja et al. (2018)). Considering all available datasets in each
domain, we tested SAC-DRND on Gym-MuJoCo and the more intricate AntMaze D4RL tasks. Our
analysis compares against notable algorithms as detailed in (Rezaeifar et al. (2022)), including IQL
(Kostrikov et al. (2021)), CQL (Kumar et al. (2020)), and TD3+BC (Fujimoto & Gu (2021)). It is
worth noting that although our method also has N target networks, they are fixed and not trained,
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Dataset SAC TD3+BC CQL IQL SAC-RND ReBRAC SAC-DRND

hopper-random 9.9 ± 1.5 8.5 ± 0.6 5.3 ± 0.6 10.1 ± 5.9 19.6 ± 12.4 8.1 ± 2.4 32.7 ± 0.4
hopper-medium 0.8 ± 0.0 59.3 ± 4.2 61.9 ± 6.4 65.2 ± 4.2 91.1 ± 10.1 102.0 ± 1.0 98.5 ± 1.1
hopper-expert 0.7 ± 0.0 107.8 ± 7.0 106.5 ± 9.1 108.8 ± 3.1 109.7 ± 0.5 100.1 ± 8.3 109.7 ± 0.3
hopper-medium-expert 0.7 ± 0.0 98.0 ± 9.4 96.9 ± 15.1 85.5 ± 29.7 109.8 ± 0.6 107.0 ± 6.4 108.7 ± 0.5
hopper-medium-replay 7.4 ± 0.5 60.9 ± 18.8 86.3 ± 7.3 89.6 ± 13.2 97.2 ± 9.0 98.1 ± 5.3 100.5 ± 1.0
hopper-full-replay 41.1 ± 17.9 97.9 ± 17.5 101.9 ± 0.6 104.4 ± 10.8 107.4 ± 0.8 107.1 ± 0.4 108.2 ± 0.7
halfcheetah-random 29.7 ± 1.4 11.0 ± 1.1 31.1 ± 3.5 19.5 ± 0.8 27.6 ± 2.1 29.5 ± 1.5 30.4 ± 4.0
halfcheetah-medium 55.2 ± 27.8 48.3 ± 0.3 46.9 ± 0.4 50.0 ± 0.2 66.4 ± 1.4 65.6 ± 1.0 68.3 ± 0.2
halfcheetah-expert -0.8 ± 1.8 96.7 ± 1.1 97.3 ± 1.1 95.5 ± 2.1 102.6 ± 4.2 105.9 ± 1.7 106.2 ± 3.7
halfcheetah-medium-expert 28.4 ± 19.4 90.7 ± 4.3 95.0 ± 1.4 92.7 ± 2.8 107.6 ± 2.8 101.1 ± 5.2 108.5 ± 1.1
halfcheetah-medium-replay 0.8 ± 1.0 44.6 ± 0.5 45.3 ± 0.3 42.1 ± 3.6 51.2 ± 3.2 51.0 ± 0.8 52.1 ± 4.8
halfcheetah-full-replay 86.8 ± 1.0 75.0 ± 2.5 76.9 ± 0.9 75.0 ± 0.7 81.2 ± 1.3 82.1 ± 1.1 81.4 ± 1.7
walker2d-random 0.9 ± 0.8 1.6 ± 1.7 5.1 ± 1.7 11.3 ± 7.0 18.7 ± 6.9 18.1 ± 4.5 21.7 ± 0.1
walker2d-medium -0.3 ± 0.2 83.7 ± 2.1 79.5 ± 3.2 80.7 ± 3.4 91.6 ± 2.8 82.5 ± 3.6 95.2 ± 0.7
walker2d-expert 0.7 ± 0.3 110.2 ± 0.3 109.3 ± 0.1 96.9 ± 32.3 104.5 ± 22.8 112.3 ± 0.2 114.0± 0.5
walker2d-medium-expert 1.9 ± 3.9 110.1 ± 0.5 109.1 ± 0.2 112.1 ± 0.5 104.6 ± 11.2 111.6 ± 0.3 109.6 ± 1.0
walker2d-medium-replay -0.4 ± 0.3 81.8 ± 5.5 76.8 ± 10.0 75.4 ± 9.3 88.7 ± 7.7 77.3 ± 7.9 91.0 ± 2.9
walker2d-full-replay 27.9 ± 47.3 90.3 ± 5.4 94.2 ± 1.9 97.5 ± 1.4 105.3 ± 3.2 102.2 ± 1.7 109.6 ± 0.7
average score 16.2 67.5 73.6 72.9 82.6 81.2 86.0

Dataset SAC TD3+BC CQL IQL SAC-RND ReBRAC SAC-DRND

antmaze-umaze 0.0 78.6 74.0 83.3 ± 4.5 97.0 ± 1.5 97.8 ± 1.0 95.8 ± 2.4
antmaze-umaze-diverse 0.0 71.4 84.0 70.6 ± 3.7 66.0 ± 25.0 88.3 ± 13.0 87.2 ± 3.2
antmaze-medium-play 0.0 10.6 61.2 64.6 ± 4.9 38.5 ± 29.4 84.0 ± 4.2 86.2 ± 5.4
antmaze-medium-diverse 0.0 3.0 53.7 61.7 ± 6.1 74.7 ± 10.7 76.3 ± 13.5 83.0 ±3.8
antmaze-large-play 0.0 0.2 15.8 42.5 ± 6.5 43.9 ± 29.2 60.4 ± 26.1 53.2 ± 4.1
antmaze-large-diverse 0.0 0.0 14.9 27.6 ± 7.8 45.7 ± 28.5 54.4 ± 25.1 50.8 ± 10.5
average score 0.0 27.3 50.6 58.3 60.9 76.8 76.0

Table 1: Average normalized scores of ensemble-free algorithms. The figure shows the scores at the
final gradient step across 10 different random seeds. We evaluate 10 episodes for MuJoCo tasks and
100 episodes for AntMaze tasks. SAC and TD3+BC scores are taken from (An et al. (2021)). CQL,
IQL, SAC-RND, and ReBRAC scores are taken from (Tarasov et al. (2023)). The highest score for
each experiment is bolded.

making it ensemble-free. Our SAC-DRND is ensemble-free and only involves training double critics
networks. We compare our methods against recent strong model-free offline RL algorithms in Table
1. Additionally, we compare SAC-DRND against strong ensemble-based algorithms like SAC-N in
Appendix E.1. Only the results of the ensemble-free methods are shown in the main text. The results
are evaluated at the final gradient step over 10 different seeds.

It can be seen that SAC-DRND excels in the majority of MuJoCo tasks, attaining the best results
among all ensemble-free methods. On Antmaze tasks, DRND also reached a level similar to SOTA.
Compared to SAC-RND, which has comparable computational and storage requirements as our
approach, SAC-DRND more effectively captures the dataset distribution, as reflected in its superior
average scores and decreased variance. We also conducted experiments on Adroit tasks (Appendix
E.2), hyperparameters sensitivity experiments (Appendix E.3) using Expected Online Performance
(EOP)(Kurenkov & Kolesnikov (2022)) and offline-to-online experiments (Appendix E.7).

6 CONCLUSION

Our research highlights the “bonus inconsistency” issue inherent in RND, which hinders its capacity
for deep exploration. We introduce DRND, which distills a random target from a random distribution.
Our approach efficiently records state-action occurrences without substantial time and space overhead
by utilizing specially designed statistics to extract pseudo-counts. Theoretical analysis and empirical
results show our method’s effectiveness in tackling bonus inconsistency. We observe promising
results across Atari games, gym-robotics tasks, and offline D4RL datasets.
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A DRND PSEUDO-CODE

Algorithm 1 PPO-DRND online pseudo-code

Require: Number of training steps M , number of update steps K, number of target networks N ,
scale of intrinsic reward λ

1: Initialize policy parameters ϕ
2: Initialize Q-function parameters φ and target Q-function parameters φ′

3: Initialize predictor network parameters θ and target networks parameters θ1, θ2, ..., θN
4: for i = 1 : N do
5: Initialize replay buffer D
6: d← 0, t← 0
7: s0 = env.reset()
8: while not d do
9: at ∼ π(at|st)

10: Rollout at and get (st+1, rt, d)
11: Compute the mean µ(st, at) and second moment B2(st, at)
12: Compute intrinsic reward b(st+1, at) using Eq. (9)
13: Add transition (st, at, rt, b(st+1, at), st+1) to D
14: t← t+ 1
15: end while
16: Normalize the intrinsic rewards contained in D
17: Calculate returns RI and advantages AI for intrinsic reward
18: Calculate returns RE and advantages RE for extrinsic reward
19: Calculate combined advantages A = RI + RE

20: ϕold ← ϕ
21: for j = 1 : K do
22: Update ϕ with gradient ascent using

∇ϕ
1

|D|
∑

D min
(

πϕ(a|s)
πϕold (a|s)

A, clip
(

πϕ(a|s)
πϕold (a|s)

, 1− ϵ, 1 + ϵ
)
A
)

23: Update φ with gradient descent using

∇φ
1

|D|
∑

D[Qφ − rt + λbθ (st, at) + γmaxa′ Qφ′ (st+1, a
′)]

24: Update θ using Equation Eq. (2)
25: end for
26: Update target networks with φ′ = (1− ρ)φ′ + ρφ
27: end for

B PROOF

In this section, we will provide all the proofs in the main text.

B.1 PROOF OF LEMMA 1

E

[
∥fθ̃(x)−

1

N

N∑
i=1

fθ̄i(x)∥
2

]
= E

[
∥θ̃Tx−

∑N
i=1 θ̄

T
i x

N
∥2
]

= V ar

(
θ̃Tx−

∑N
i=1 θ̄

T
i x

N

)
−

(
E

[
θ̃Tx−

∑N
i=1 θ̄

T
i x

N

])2

= V ar

(
θ̃Tx−

∑N
i=1 θ̄

T
i x

N

)
−

(
E

[
(θ̃ − 1

N

N∑
i=1

θ̄i)
Tx

])2

.
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Algorithm 2 SAC-DRND offline pseudo-code

Require: Number of training steps M , number of DRND update steps K, number of target networks
N , scale of intrinsic reward λactor, λcritic, dataset buffer D

1: Initialize policy parameters ϕ
2: Initialize two Q-function parameters φ1, φ2 and target Q-function parameters φ′

1, φ
′
2

3: Initialize predictor network parameters θ and target networks parameters θ1, θ2, ..., θN
4: for i = 1 : K do
5: Sample minibatch (s, a, r, b, s′) ∼ D
6: Compute the mean µ(st, at) and second moment B2(st, at)
7: Update θ using Equation Eq. (2)
8: end for
9: for j = 1 : N do

10: Sample minibatch (s, a, r, b, s′) ∼ D
11: Update ϕ with gradient ascent using

∇ϕ
1

|B|
∑

B [mini=1,2 Qφi
(s, ãϕ(s))− β log π (ãϕ(s) | s)− λactorbθ (s, ãϕ(s))]

where ãϕ(s) is a sample from πϕ(.|s) by using reparametrization trick
12: Update each Q-function Qφi

with gradient descent using

∇φi

1
|B|
∑

B [Qφi
− rt + γEa′∼π(·|st+1)

[
Qφ′

i
(st+1, a

′)− β log πϕ(a
′|s′)− λcriticbθ (st+1, a

′)
]
]

where a′ ∼ πϕ(.|s′)
13: Update target networks with φ′

i = (1− ρ)φ′
i + ρφi

14: end for

Since θ̃ and θ̄i (i = 1, 2..., N) are i.i.d., E
[
(θ̃ − 1

N

∑N
i=1 θ̄i)

Tx
]
= E[(θ̃ − 1

N

∑N
i=1 θ̄i)]x = 0. So

we have:

E[∥fθ̃(x)−
1

N

N∑
i=1

fθ̄i(x)∥
2]

=V ar

(
θ̃Tx−

∑N
i=1 θ̄

T
i x

N

)
− 0

=V ar(θ̃Tx) +
1

N2

N∑
i=1

V ar(θ̄Ti x)−
2

N
Cov(θ̃Tx, θTi x)

=V ar(θ̃Tx) +
1

N2

N∑
i=1

V ar(θ̄Ti x) (Cov(x, y) = 0 if x and y are i.i.d)

=xTΣx+
1

N
xTΣx

=(1 +
1

N
)xTΣx.

B.2 PROOF PF LEMMA 3

For simplicity, we use some symbols to record the moments of the distribution of c(x)

µ(x) = E[X] =
1

N

N∑
i=1

f̄i(x), B2(x) = E[X2] =
1

N

N∑
i=1

(f̄i(x))
2,

B3(x) = E[X3] =
1

N

N∑
i=1

(f̄i(x))
3, B4(x) = E[X4] =

1

N

N∑
i=1

(f̄i(x))
4.
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The calculation of f∗(x) moment is as follows:

E[f∗(x)] = E[
1

n

n∑
i=1

ci(x)] =
1

n
E[

n∑
i=1

ci(x)] = µ(x).

E[f2
∗ (x)] = E[(

1

n

n∑
i=1

ci(x))
2]

=
1

n2
E[(

n∑
i=1

c2i (x) +

n∑
i=1

n∑
j ̸=i

ci(x)cj(x))]

=
1

n2
E[nc2(x) + n(n− 1)µ2(x)]

=
B2(x)

n
+

n− 1

n
µ2(x).

E[f4
∗ (x)] =

1

n4
E

[
n∑

i=1

ci(x)

]4

=
1

n4

(
E

[∑
i=1

ci(x)
4

]
+ 4E

∑
i̸=j

c3i (x)cj(x)

+ 3E

∑
i ̸=j

c2i (x)c
2
j (x)


+6E

 ∑
i ̸=j ̸=k

ci(x)cj(x)c
2
k(x)

+ E

 ∑
i ̸=j ̸=k ̸=l

ci(x)cj(x)ck(x)cl(x)


=

nB4(x) + 4A2
nµ(x)B3(x) + 3A2

nB
2
2(x) + 6A3

nµ
2(x)B2(x) +A4

nµ
4(x)

n4
.

(Ai
n =

n!

(n− i)!
)

The statistic y(x) is:

y(x) =
f2
∗ (x)− µ2(x)

B2(x)− µ2(x)
,

and its expectation is:

E[y(x)] =
E[f2

∗ (x)]− µ2(x)

B2(x)− µ2(x)
=

1

n
.

This indicates that the statistic y(x) is an unbiased estimator for the reciprocal of the frequency of x.
The variance of y(x) is:

V ar[y(x)] =
V ar[f2

∗ (x)]

(B2(x)− µ2(x))2

=
E[f4

∗ (x)]− E2[f2
∗ (x)]

(B2(x)− µ2(x))2

=
K1B4(x) +K2µ(x)B3(x) +K3B

2
2(x) +K4µ

2(x)B2(x) + µ4(x)

n3(B2(x)− µ2(x))2

where

K1 = 1, K2 = 4n− 4, K3 = 2n− 3,

K4 = 4n2 − 16n+ 12, K5 = −5n2 + 10n− 6.

so we have:
lim
n→∞

V ar[y(x)] = 0.

When n tends to infinity, the variance of the statistic tends to zero, which reflects the stability or
consistency of y(x).
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C IMPLEMENTATION DETAILS AND EXPERIMENTAL SETTINGS

Our experiments were performed by using the following hardware and software:

• GPUs: NVIDIA GeForce RTX 3090

• Python 3.10.8

• Numpy 1.23.4

• Gymnasium 0.28.1

• Gymnasium-robotics 1.2.2

• Pytorch 1.13.0

• MuJoCo-py 2.1.2.14

• MuJoCo 2.3.1

• D4RL 1.1

• Jax 0.4.13

The architecture of predictor networks in Figure 1 and Figure 3 is 3 linear layers, the input dim is 2,
hidden dim and output dim is 16, activate function is ReLU. Target networks’ architecture is 2 linear
layers, the input dim is 2, hidden dim and output dim is 16, activate function is ReLU.

In our experiments, for a fair comparison, all methods employed the same predictor and target
networks. The fundamental parameters of the base algorithm such as learning rate and batch size
were kept identical across all methods. For the hyperparameters of the utilized exploration algorithms,
we utilized the author-recommended hyperparameters from respective papers (e.g., CFN). Since
the CFN method was originally proposed for off-policy strategies, it utilized a trick of importance
sampling for sampling from the replay buffer. However, in our PPO-based approach, there is no
replay buffer, and we consider the use of the importance sampling trick unfair compared to other

methods. Therefore, we only employed the core formula from the paper b(s) =
√

1
d∥fθ(s)∥ as the

intrinsic reward, where d represents the output dimension of the predictor network.

In our D4RL experiments, all experiments use the dataset of the ‘v2’ version. We use specific
hyperparameters for each task due to varying anti-exploration penalties. Because most of the offline
experiment time is spent on gradient calculation of data, we use the faster Jax framework (Bradbury
et al. (2018)) than the Pytorch framework (Paszke et al. (2019)) for the experiments. In the online
experiments, we still use the easier-to-read and more portable Pytorch framework instead of the faster
computing Jax framework because most of the online experiment time is spent interacting with the
environment rather than gradient computing.

We employ the ‘NoFrameskip-v4’ version in our Atari game experiments to execute the environments.
These experiments encompass 128 parallel environments and adhere to the default configurations
and network architecture as delineated in (Burda et al. (2018b)). For Adroit and Fetch manipulation
tasks, we employ the ‘v0’ version for Adroit tasks and the ‘v2’ version for Fetch tasks. In the
‘Relocate’ task, we truncate the episode when the ball leaves the table. These tasks pose a significant
challenge for conventional methods to learn from, primarily due to the dataset consisting of limited
human demonstrations in a sparse-reward, complex, high-dimensional robotic manipulation task
(Lyu et al. (2022a)). We do not include random state restarts, as they may undermine the necessity
for exploration by the observations made by (Lobel et al. (2022)). To set the goal locations for the
non-default versions of the tasks, we follow the setting of (Lobel et al. (2023)).

In the context of the D4RL framework, we make specific architectural choices. Instead of simply
concatenating the state and action dimensions, we employ a bilinear structure in the first layer,
as proposed by (Jayakumar et al. (2020)). Additionally, we apply FiLM (Feature-wise Linear
Modulation) architecture on the penultimate layer before the nonlinearity. This modification is
effective for offline tasks, as indicated by (Nikulin et al. (2023)).

16



Under review as a conference paper at ICLR 2024

D HYPERPARAMETERS

The hyperparameters are shown in Table 4 in online experiments. We employ distinct parameters and
networks for Atari games and continuous control environments because Atari game observations are
images, while observations for Adroit and Fetch tasks consist of states. The hyperparameters we use
in the D4RL offline experiment are shown in Table 2. In D4RL offline datasets, we apply varying
scales in each experiment due to the differing dataset qualities, as illustrated in Table 3.

Table 2: Hyperparameters of D4RL offline experiments

Name Description Value
lractor learning rate of the actor network 1e-3 (1e-4 on Antmaze)
lrcritic learning rate of the critic network 1e-3 (1e-4 on Antmaze)
lrdrnd learning rate of the DRND network 1e-6 (1e-5 on Antmaze)
optimizer type of optimizer Adam
target entropy target entropy of the actor -action dim
τ soft update rate 0.005
γ discount return 0.99 (0.999 on Antmaze)
bs batch size of the dataset 1024
h number of hidden layer dimensions 256
e number of DRND output dimensions 32
n number of hidden layers 4
f activation function ReLU
K number of DRND training epochs 100
M maximum iteration number of SAC 3000
I gradient updates per iteration 1000
N number of DRND target networks 10
α the scale of two intrinsic reward items 0.9

Table 3: Anti-exploration scale of D4RL offline datasets

Dataset Name λactor λcritic
hopper-random 1.0 1.0
hopper-medium 15.0 15.0
hopper-expert 10.0 10.0
hopper-medium-expert 10.0 10.0
hopper-medium-replay 5.0 10.0
hopper-full-replay 2.0 2.0
halfcheetah-random 0.05 0.05
halfcheetah-medium 1.0 0.1
halfcheetah-expert 5.0 5.0
halfcheetah-medium-expert 0.1 0.1
halfcheetah-medium-replay 0.1 0.1
halfcheetah-full-replay 1.0 1.0
walker2d-random 1.0 1.0
walker2d-medium 10.0 10.0
walker2d-expert 5.0 5.0
walker2d-medium-expert 15.0 20.0
walker2d-medium-replay 5.0 10.0
walker2d-full-replay 3.0 3.0
antmaze-umaze 5.0 0.001
antmaze-umaze-diverse 3.0 0.001
antmaze-medium-play 3.0 0.005
antmaze-medium-diverse 2.0 0.001
antmaze-large-play 1.0 0.01
antmaze-large-diverse 0.5 0.01
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Table 4: Hyperparameters of online experiments

Name Description Value
lractor learning rate of the actor network 3e-4 (1e-4 on Atari)
lrcritic learning rate of the critic network 3e-4 (1e-4 on Atari)
lrdrnd learning rate of the DRND network 3e-4 (1e-4 on Atari)
optimizer type of optimizer Adam
τ soft update rate 0.005
γ discount return 0.99
λGAE coefficient of GAE 0.95
ϵ PPO clip coefficient 0.1
M number of environments 128
h number of hidden layer dimensions 64 (512 on Atari)
e number of output dimensions 64 (512 on Atari)
f activation function ReLU
K number of training epochs 4
N number of DRND target networks 10
λ coefficient of intrinsic reward 1
α the scale of two intrinsic reward items 0.9

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 COMPARING TO ENSEMBLE-BASED METHODS

As described in (Osband et al. (2016)), the ensemble method estimates the Q-posterior, leading
to varied predictions and imposing significant penalties in regions with limited data. We add the
results of ensemble-based methods like SAC-N (An et al. (2021)), EDAC (An et al. (2021)), and
RORL (Yang et al. (2022)). Table 5 displays our results in these experiments. An underlined number
represents the peak value for ensemble-free methods, while a bold number denotes each task’s top
score. SAC-DRND outperforms most ensemble-based methods, such as SAC-N and RORL, in total
scores on most MuJoCo tasks. For Antmaze tasks, our method leads among ensemble-free approaches
and holds its own against ensemble-based methods.

E.2 RESULTS ON ADROIT TASKS

In this subsection, we show the scores of SAC-DRND on Adroit tasks in Table 6.

E.3 EXPECTED ONLINE PERFORMANCE

We calculated the EOP on Gym-MuJoCo and AntMaze tasks, as shown in Table 7.

We also show the EOP line for each task, as shown in Figure 8.

E.4 PARAMETER STUDY ON THE NUMBER OF TARGET NETWORK

Our study explored the relationship between the number of different targets and their corresponding
final scores in both online MuJoCo tasks and D4RL offline tasks. In our approach, if α is not equal to
1, then N must satisfy the condition N > 1. In the following charts, we fill in the values of RND at
N = 1 as a reference for the single target network results.

E.4.1 ONLINE TASKS

We conduct the adversarial attack experiments with different numbers of target networks in DRND.
As shown in Figure 9, the robustness of DRND generally improves with an increase in the target
number N . Considering both runtime and performance, we chose N = 10 as the optimal number of
targets for our online experiments.
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Ensemble-free Ensemble-based Ours

Dataset SAC TD3+BC CQL IQL SAC-RND ReBRAC SAC-N EDAC RORL SAC-DRND

hopper-random 9.9 ± 1.5 8.5 ± 0.6 5.3 ± 0.6 10.1 ± 5.9 19.6 ± 12.4 8.1 ± 2.4 28.0 ± 0.9 25.3 ± 10.4 31.4 ± 0.1 32.7 ± 0.4
hopper-medium 0.8 ± 0.0 59.3 ± 4.2 61.9 ± 6.4 65.2 ± 4.2 91.1 ± 10.1 102.0 ± 1.0 100.3 ± 0.3 101.6 ± 0.6 104.8 ± 0.1 98.5 ± 1.1
hopper-expert 0.7 ± 0.0 107.8 ± 7.0 106.5 ± 9.1 108.8 ± 3.1 109.7 ± 0.5 100.1 ± 8.3 110.3 ± 0.3 110.1 ± 0.1 112.8 ± 0.2 109.7 ± 0.3
hopper-medium-expert 0.7 ± 0.0 98.0 ± 9.4 96.9 ± 15.1 85.5 ± 29.7 109.8 ± 0.6 107.0 ± 6.4 110.1 ± 0.3 110.7 ± 0.1 112.7 ± 0.2 108.7 ± 0.5
hopper-medium-replay 7.4 ± 0.5 60.9 ± 18.8 86.3 ± 7.3 89.6 ± 13.2 97.2 ± 9.0 98.1 ± 5.3 101.8 ± 0.5 101.0 ± 0.5 102.8 ± 0.5 100.5 ± 1.0
hopper-full-replay 41.1 ± 17.9 97.9 ± 17.5 101.9 ± 0.6 104.4 ± 10.8 107.4 ± 0.8 107.1 ± 0.4 102.9 ± 0.3 105.4 ± 0.7 - 108.2 ± 0.7
halfcheetah-random 29.7 ± 1.4 11.0 ± 1.1 31.1 ± 3.5 19.5 ± 0.8 27.6 ± 2.1 29.5 ± 1.5 28.0 ± 0.9 28.4 ± 1.0 28.5 ± 0.8 30.4 ± 4.0
halfcheetah-medium 55.2 ± 27.8 48.3 ± 0.3 46.9 ± 0.4 50.0 ± 0.2 66.4 ± 1.4 65.6 ± 1.0 67.5 ± 1.2 65.9 ± 0.6 66.8 ± 0.7 68.3 ± 0.2
halfcheetah-expert -0.8 ± 1.8 96.7 ± 1.1 97.3 ± 1.1 95.5 ± 2.1 102.6 ± 4.2 105.9 ± 1.7 105.2 ± 2.6 106.8 ± 3.4 105.2 ± 0.7 106.2 ± 3.7
halfcheetah-medium-expert 28.4 ± 19.4 90.7 ± 4.3 95.0 ± 1.4 92.7 ± 2.8 107.6 ± 2.8 101.1 ± 5.2 107.1 ± 2.0 106.3 ± 1.9 107.8 ± 1.1 108.5 ± 1.1
halfcheetah-medium-replay 0.8 ± 1.0 44.6 ± 0.5 45.3 ± 0.3 42.1 ± 3.6 51.2 ± 3.2 51.0 ± 0.8 63.9 ± 0.8 61.3 ± 1.9 61.9 ± 1.5 52.1 ± 4.8
halfcheetah-full-replay 86.8 ± 1.0 75.0 ± 2.5 76.9 ± 0.9 75.0 ± 0.7 81.2 ± 1.3 82.1 ± 1.1 84.5 ± 1.2 84.6 ± 0.9 - 81.4 ± 1.7
walker2d-random 0.9 ± 0.8 1.6 ± 1.7 5.1 ± 1.7 11.3 ± 7.0 18.7 ± 6.9 18.1 ± 4.5 21.7 ± 0.0 16.6 ± 7.0 21.4 ± 0.2 21.7 ± 0.1
walker2d-medium -0.3 ± 0.2 83.7 ± 2.1 79.5 ± 3.2 80.7 ± 3.4 91.6 ± 2.8 82.5 ± 3.6 87.9 ± 0.2 92.5 ± 0.8 102.4 ± 1.4 95.2 ± 0.7
walker2d-expert 0.7 ± 0.3 110.2 ± 0.3 109.3 ± 0.1 96.9 ± 32.3 104.5 ± 22.8 112.3 ± 0.2 107.4 ± 2.4 115.1 ± 1.9 115.4 ± 0.5 114.0± 0.5
walker2d-medium-expert 1.9 ± 3.9 110.1 ± 0.5 109.1 ± 0.2 112.1 ± 0.5 104.6 ± 11.2 111.6 ± 0.3 116.7 ± 0.4 114.7 ± 0.9 121.2 ± 1.5 109.6 ± 1.0
walker2d-medium-replay -0.4 ± 0.3 81.8 ± 5.5 76.8 ± 10.0 75.4 ± 9.3 88.7 ± 7.7 77.3 ± 7.9 78.7 ± 0.7 87.1 ± 2.4 90.4 ± 0.5 91.0 ± 2.9
walker2d-full-replay 27.9 ± 47.3 90.3 ± 5.4 94.2 ± 1.9 97.5 ± 1.4 105.3 ± 3.2 102.2 ± 1.7 94.6 ± 0.5 99.8 ± 0.7 - 109.6 ± 0.7
average score 16.2 67.5 73.6 72.9 82.6 81.2 84.4 85.2 85.7 86.0

Dataset SAC TD3+BC CQL IQL SAC-RND ReBRAC RORL MSG SAC-DRND

antmaze-umaze 0.0 78.6 74.0 83.3 ± 4.5 97.0 ± 1.5 97.8 ± 1.0 97.7 ± 1.9 97.9 ± 1.3 95.8 ± 2.4
antmaze-umaze-diverse 0.0 71.4 84.0 70.6 ± 3.7 66.0 ± 25.0 88.3 ± 13.0 90.7 ± 2.9 79.3 ± 3.0 87.2 ± 3.2
antmaze-medium-play 0.0 10.6 61.2 64.6 ± 4.9 38.5 ± 29.4 84.0 ± 4.2 76.3 ± 2.5 85.9 ± 3.9 86.2 ± 5.4
antmaze-medium-diverse 0.0 3.0 53.7 61.7 ± 6.1 74.7 ± 10.7 76.3 ± 13.5 69.3 ± 3.3 84.6 ± 5.2 83.0 ±3.8
antmaze-large-play 0.0 0.2 15.8 42.5 ± 6.5 43.9 ± 29.2 60.4 ± 26.1 16.3 ± 11.1 64.3 ± 12.7 53.2 ± 4.1
antmaze-large-diverse 0.0 0.0 14.9 27.6 ± 7.8 45.7 ± 28.5 54.4 ± 25.1 41.0 ± 10.7 71.3 ± 5.3 50.8 ± 10.5
average score 0.0 27.3 50.6 58.3 60.9 76.8 65.2 80.5 76.0

Table 5: Average normalized scores of algorithms. The figure shows the scores of MuJoCo’s final
model evaluated 10 times (AntMaze 100 times) on training seeds and 10 random seeds. SAC, SAC-N,
and EDAC scores are taken from (An et al. (2021)). CQL, IQL, SAC-RND, and ReBRAC scores are
taken from (Tarasov et al. (2023)). RORL scores are taken from (Yang et al. (2022)). MSG scores are
taken from (Ghasemipour et al. (2022)).

Task Name BC TD3+BC IQL CQL SAC-RND ReBRAC SAC-DRND

pen-human 34.4 81.8 ± 14.9 81.5 ± 17.5 37.5 5.6 ± 5.8 103.5 ± 14.1 42.3 ± 11.8
pen-cloned 56.9 61.4 ± 19.3 77.2 ± 17.7 39.2 2.5 ± 6.1 91.8 ± 21.7 39.5 ± 33.4
pen-expert 85.1 146.0 ± 7.3 133.6 ± 16.0 107.0 45.4 ± 22.9 154.1 ± 5.4 65.0 ± 17.1
door-human 0.5 -0.1 ± 0.0 3.1 ± 2.0 9.9 0.0 ± 0.1 0.0 ± 0.0 1.3 ± 0.8
door-cloned -0.1 0.1 ± 0.6 0.8 ± 1.0 0.4 0.2 ± 0.8 1.1 ± 2.6 0.3 ± 0.1
door-expert 34.9 84.6 ± 44.5 105.3 ± 2.8 101.5 73.6 ± 26.7 104.6 ± 2.4 85.3 ± 37.9
hammer-human 1.5 0.4 ± 0.4 2.5 ± 1.9 4.4 -0.1 ± 0.1 0.2 ± 0.2 0.3 ± 0.2
hammer-cloned 0.8 0.8 ± 0.7 1.1 ± 0.5 2.1 0.1 ± 0.4 6.7 ± 3.7 1.1 ± 0.8
hammer-expert 125.6 117.0 ± 30.9 129.6 ± 0.5 86.7 24.8 ± 39.4 133.8 ± 0.7 37.1 ± 47.2
relocate-human 0.0 -0.2 ± 0.0 0.1 ± 0.1 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.1
relocate-cloned -0.1 -0.1 ± 0.1 0.2 ± 0.4 -0.1 0.0 ± 0.0 0.9 ± 1.6 0.0 ± 0.0
relocate-expert 101.3 107.3 ± 1.6 106.5 ± 2.5 95.0 3.4 ± 4.5 106.6 ± 3.2 10.1 ± 7.1
Average w/o expert 11.7 18.0 20.8 11.7 1.0 25.5 10.6
Average 36.7 49.9 53.4 40.3 12.9 58.6 23.5

Table 6: Average normalized scores on Adroit tasks. There is still a significant improvement compared
to SAC-RND, from 12.9 to 23.5. This illustrates the superiority of DRND compared to RND. In
addition, the average score without using the expert dataset has also improved significantly, reaching
a level comparable to CQL(11.7), which benefits from the performance in the Pen environment.

E.4.2 OFFLINE TASKS

The results are shown in Table 8. The results indicate that the average score demonstrates an upward
trend as the number of targets increases. At the same time, its variance decreases, which suggests
that a higher number of targets generally leads to improved and more consistent outcomes. However,
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Domain Algorithm 1 policy 2 policies 3 policies 5 policies 10 policies 15 policies 20 policies

Gym-MuJoCo
TD3+BC 49.8 ± 21.4 61.0 ± 14.5 65.3 ± 9.3 67.8 ± 3.9 - - -
IQL 65.0 ± 9.1 69.9 ± 5.6 71.7 ± 3.5 72.9 ± 1.7 73.6 ± 0.8 73.8 ± 0.7 74.0 ± 0.6
ReBRAC 62.0 ± 17.1 70.6 ± 9.9 73.3 ± 5.5 74.8 ± 2.1 75.6 ± 0.8 75.8 ± 0.6 76.0 ± 0.5
SAC-DRND 69.9 ± 30.1 73.2 ± 19.0 79.4 ± 11.9 82.5 ± 7.8 84.0 ± 6.0 84.9 ± 3.1 85.3 ± 2.0

AntMaze
TD3+BC 6.9 ± 7.0 10.7 ± 6.8 13.0 ± 6.0 15.5 ± 4.6 - - -
IQL 29.8 ± 15.5 38.0 ± 15.4 43.1 ± 13.8 48.7 ± 10.2 53.2 ± 4.4 54.3 ± 2.1 54.7 ± 1.2
ReBRAC 67.9 ± 10.0 73.6 ± 7.4 76.1 ± 5.5 78.3 ± 3.4 79.9 ± 1.7 80.4 ± 1.1 -
SAC-DRND 69.3 ± 15.9 75.3 ± 10.1 78.5 ± 7.6 81.5 ± 4.0 83.7 ± 3.1 84.5 ± 1.5 84.9 ± 0.9

Table 7: Expected Online Performance on Gym-MuJoCo and AntMaze tasks. We calculate the mean
value of different domains like the way in ReBRAC. The results show SAC-DRND has the best
performance.

Figure 8: Expected Online Performance lines for Gym-MuJoCo and AntMaze.

it’s worth noting that there are diminishing returns; for instance, the differences between the results
at N = 10 and N = 20 are marginal. Considering these considerations, we chose N = 10 for
our offline experiments. Furthermore, the algorithm exhibits limited sensitivity to variations in the
number of targets in online and offline settings.

Table 8: Parameter study of N in offline tasks

Dataset N 1 3 5 10 20

hopper-medium 92.1 ± 8.4 93.3 ± 3.7 97.8 ± 2.4 98.5 ± 1.1 99.0 ± 0.6
halfcheetah-medium 66.4 ± 1.4 65.8 ± 1.8 66.7 ± 0.6 67.3 ± 0.2 67.4 ± 0.4
walker2d-medium 91.6 ± 2.8 94.5 ± 0.9 94.0 ± 1.6 95.2 ± 1.2 94.7 ± 1.2
average score 83.4 84.5 86.2 87.0 87.0

E.5 RUNTIME COMPARISON

To verify no significant increase in computational overhead between our method and the RND
method, we conducted experiments on the medium datasets in the offline D4RL tasks, comparing the
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Figure 9: Training curves with different N in Adroit tasks. All curves are averaged over 5 runs.

computational costs of both methods, as shown in Figure 10. It can be observed that the runtime of
our method is slightly less than that of the RND method. And it can be seen that as the number of
targets increases, the running time does not significantly improve.

Figure 10: Comparison of updates per second between the RND and DRND methods. We assessed
the execution time on a GPU (RTX 3090 24G) and one CPU (Intel(R) Xeon(R) Gold 6226R CPU)
over 1M standard updates, using a batch size of 256 with the same network structure.

E.6 PARAMETER STUDY ON α

In this subsection, we provide the results of different α with both online and offline tasks. We use
varying α ∈ {0, 0.1, 0.5, 0.9, 1}.

E.6.1 ONLINE TASKS

We study the performance under attacks with different α in online tasks. We chose Adroit continuous
control environments as our experiment environments. In the results shown in Figure 11, We observed
that the performance is excellent when α = 0.5 or α = 0.9 in all four environments. The performance
when α = 1 is not as good as when α = 0.9, which indirectly confirms the effect of the second bonus
term. We chose α = 0.9 as the hyperparameter for our online experiments.

Figure 11: Training curves with different α in Adroit tasks. All curves are averaged over 5 runs.
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E.6.2 OFFLINE TASKS

We examine the influence of α on offline tasks using the D4RL dataset. We employ various values
of α to train an offline agent on the ‘medium’ datasets. The final scores are presented in Table 9,
and the training curves are shown in Figure 12. It is observed that in some cases, when α = 0.9, the
final score is higher, and the training curve exhibits greater stability. Consequently, we consistently
opted for α = 0.9 in our offline experiments. When α = 1, only the first bonus term comes into play,
and the results are not as favorable as when α = 0.9, demonstrating the effectiveness of the second
bonus term. Additionally, when examining the final results, it becomes evident that our first bonus
outperforms the RND.

Also, for ease of comparison, we provide the training curves of SAC-RND on three datasets: hopper-
medium, halfcheetah-medium, and walker2d-medium in Figure 13.

Figure 12: Training curves with different α. All curves are averaged over 5 runs.

Figure 13: Learning curves of SAC-RND. The parameters are the same as in the original paper.

Table 9: The final scores of different α in offline tasks. We also compare the results of SAC-RND
since it is a special case when α = 1 and N = 1.

Dataset α 0.0 0.1 0.5 0.9 1.0 SAC-RND

hopper-medium 54.0 ± 31.1 42.3 ± 4.95 85.5 ± 8.7 98.5 ± 5.6 91.9 ± 4.9 91.1 ± 10.1
halfcheetah-medium 65.3 ± 1.3 67.5 ± 1.2 67.3 ± 0.6 68.6± 0.4 67.1 ± 0.2 66.4 ± 1.4
walker2d-medium -0.0 ± 0.1 3.1 ± 1.7 27.6 ± 31.9 94.7 ± 1.0 93.0 ± 1.8 91.6 ± 2.8
average score 39.8 37.6 60.1 87.2 84.0 83.0

E.7 EVALUATION ON OFFLINE-TO-ONLINE D4RL

We report offline-to-online performance on AntMaze tasks. We followed the methodology outlined
by Tarasov et al. (2022). We report the scores after the offline stage and online tuning in Table 10.
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Task Name TD3+BC IQL ReBRAC SAC-DRND

antmaze-umaze 66.8 → 91.4 77.00 → 96.50 97.8 → 99.8 95.8 → 98.3
antmaze-umaze-diverse 59.1 → 48.4 59.50 → 63.75 85.7 → 98.1 87.2 → 98.0
antmaze-medium-play 59.2 → 94.8 71.75 → 89.75 78.4 → 97.7 86.2 → 98.3
antmaze-medium-diverse 62.6 → 94.1 64.25 → 92.25 78.6 → 98.5 83.0 → 95.9
antmaze-large-play 21.5 → 0.1 38.5 → 64.50 47.0 → 39.5 53.2 → 51.5
antmaze-large-diverse 9.5 → 0.4 26.75 → 64.25 66.7 → 77.6 50.8 → 55.9
Average 46.4 → 54.8(+8.4) 56.29 → 78.50(+22.21) 75.7 → 85.2(+8.5) 76.0 → 83.0(+7.0)

Table 10: Evaluation on Offline-to-online Setting. We compared the TD3+BC, IQL and ReBRAC
algorithms, and their values were copied from Tarasov et al. (2023).

E.8 MORE DETAILED CHANGE PROCESS OF RND BONUS

Figure 14: More Detailed Change Process of RND Bonus.
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