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Abstract

Currently, the field of structure-based drug de-
sign is dominated by three main types of algo-
rithms: search-based algorithms, deep generative
models, and reinforcement learning. While ex-
isting works have typically focused on compar-
ing models within a single algorithmic category,
cross-algorithm comparisons remain scarce. In
this paper, to fill the gap, we establish a bench-
mark to evaluate the performance of sixteen mod-
els across these different algorithmic foundations
by assessing the pharmaceutical properties of the
generated molecules and their docking affinities
with specified target proteins. We highlight the
unique advantages of each algorithmic approach
and offer recommendations for the design of fu-
ture SBDD models. We emphasize that 1D/2D
ligand-centric drug design methods can be used
in SBDD by treating the docking function as a
black-box oracle, which is typically neglected.
The empirical results show that 1D/2D methods
achieve competitive performance compared with
3D-based methods that use the 3D structure of
the target protein explicitly. Also, AutoGrow4,
a 2D molecular graph-based genetic algorithm,
dominates SBDD in terms of optimization ability.

1. Introduction

Novel types of safe and effective drugs are needed to meet
the medical needs of billions worldwide and improve the
quality of human life. The process of discovering a new
drug candidate and developing it into an approved drug for
clinical use is known as drug discovery (Sinha & Vohora,
2018). This complex process is fundamental to the develop-
ment of new therapies that can manage, cure, or alleviate
the symptoms of various health conditions.

Structure-based drug design (SBDD) (Bohacek et al., 1996)
represents a core strategy within the drug discovery process,
which utilizes the three-dimensional (3D) structures of pro-
teins associated with diseases to develop drug candidates,
serving as a fundamental method to expedite the drug dis-
covery process through physical simulation and data-driven
modeling. Based on the lock and key model (Tripathi &

Bankaitis, 2017), molecules that bind more effectively to
a disease target tend to inhibit their abnormal activity or
modulate their function in a way that contributes to disease
treatment, a phenomenon that has been confirmed through
experimental studies (Honarparvar et al., 2014; Blundell,
1996; Lu et al., 2022).

Currently, three main algorithmic approaches dominate the
drug design field (Brown et al., 2019; Gao et al., 2022;
Du et al., 2022): search-based algorithms like genetic al-
gorithms (GA) (Jensen, 2019; Spiegel & Durrant, 2020;
Tripp & Herndndez-Lobato, 2023; Fu et al., 2022a), deep
generative models (a.k.a. generative model) like variational
autoencoder (VAE) (Gémez-Bombarelli et al., 2018) and
autoregressive models (Luo et al., 2021; Peng et al., 2022;
Zhang et al., 2023), and reinforcement learning (RL) mod-
els (Olivecrona et al., 2017; Zhou et al., 2018). Also, there is
a trend that represents the target protein in 3D format (Zhang
et al., 2023; Luo et al., 2021; Fu et al., 2022a; Peng et al.,
2022). These models are often regarded as state-of-the-art
due to the high validity, diversity, and synthesizability of
their generated molecules. However, comparisons among
these models remain unclear for several reasons. Firstly,
current benchmarks or survey papers tend to compare mod-
els within the same algorithmic category, with a particular
focus on deep generative models (Du et al., 2022). Sec-
ondly, most existing benchmarks emphasize the properties
of the molecules themselves, neglecting the evaluation of
protein-ligand interactions, which are crucial for real-world
applications (Brown et al., 2019; Gao et al., 2022).

To fill this blank, this paper curates a comprehensive bench-
mark that encompasses sixteen models spanning all three al-
gorithmic approaches. We assess their generated molecules
not only through typical heuristic molecular property oracles
but also by evaluating docking scores that reflect the quality
of interactions between molecules and target proteins (as-
sociated to disease). Our analysis of the top-1/10/50/100
scores from each oracle reveals that search-based algorithms,
particularly genetic algorithms, generally outperform oth-
ers. Also, explicit utilization of 3D structure of the target
protein has not shown significant improvement compared
to 2D methods. While there are some drawbacks in certain
aspects, these could potentially be mitigated by integrating
other algorithmic strategies.
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Table 1. Representative structure-based drug design methods, categorized based on the molecular assembly strategies and the optimization
algorithms. Columns are various molecular assembly strategies while rows are different optimization algorithms.

1D SMILES/SELFIES 2D molecular graph 3D structure-based
. . SMILES-GA (Yoshikawa et al.,  AutoGrow4 (Spiegel & Durrant, -
Genetic Algorithm (GA) ;g 2020), graph GA (Jensen, 2019)
. . SMILES-LSMT-HC (Brown
Hill Climbing etal., 2019) MIMOSA (Fu et al., 2021)
Reinforcement Learning (RL) l;(il;\)IVENT (Olivecrona et al., MolDQN (Zhou et al., 2018)

Gradient Ascent (GRAD) Pasithea (Shen et al., 2021)

DST (Fu et al., 2022b)

SMILES/SELFIES-VAE-
BO (Gémez-Bombarelli et al.,

Generative Models 2018)

3DSBDD(Luo et al., 2021),
Pocket2mol(Peng et al., 2022),
PocketFlow(Jiang et al., 2024),
ResGen(Zhang et al., 2023)

2. Related Work

There has been significant progress in benchmarking ef-
forts for drug design evaluation (Brown et al., 2019;
Tripp et al., 2021; Huang et al., 2021; Gao et al., 2022;
Polykovskiy et al., 2020; Harris et al., 2023). Specifi-
cally, Guacamol (Brown et al., 2019) encompasses five
molecule design algorithms, develops twenty novel ob-
jective functions, and assesses their performance compre-
hensively. Molecular Sets (MOSES) (Polykovskiy et al.,
2020) concentrates on five generative-based models (re-
current neural network (RNN), Adversarial Auto-Encoder
(AAE) (Makhzani et al., 2015), Variational Auto-Encoder
(VAE) (Gémez-Bombarelli et al., 2018)), introducing eleven
oracles that primarily evaluate the novelty and uniqueness of
the generated molecules. Practical Molecule Optimization
(PMO) (Gao et al., 2022) offers a benchmark for twenty-five
molecule design models across twenty-three objectives, pro-
viding a broad evaluation landscape. POSECHECK (Harris
et al., 2023) assesses five generative-based models by em-
ploying four physical oracles to gauge the quality of protein-
ligand interactions, contributing to the nuanced understand-
ing of model efficacy in simulating realistic biochemi-
cal interactions. Recently, (Tripp & Hernandez-Lobato,
2023) designed a simple genetic algorithm on molecules
based on (Jensen, 2019) and compared it with several other
molecule generation algorithms. The results show that ge-
netic algorithms perform at least as well as many more com-
plicated methods in the unconditional molecule generation
task.

1D Molecule Design Methods 1D molecule design meth-
ods use Simplified Molecular-Input Line-Entry System
(SMILES) (Weininger, 1988) or SELF-referencing Embed-
ded Strings (SELFIES) (Krenn et al., 2020) strings as the
representation of molecules. Most 1D methods produce

molecule strings in an autoregressive manner. In this paper,
we discuss several methods that were developed to produce
molecule strings, either SMILES or SELFIES strings, in-
cluding REINVENT (Olivecrona et al., 2017), SMILES and
SELFIES VAE (Gémez-Bombarelli et al., 2018), SMILES
GA (Yoshikawa et al., 2018), SMILES-LSTM-HC (Brown
et al., 2019), and Pasithea (Shen et al., 2021). Although
SELFIES string has the advantage of enforcing chemical
validity rules compared to SMILES, through thorough em-
pirical studies, (Gao et al., 2022) showed that SELFIES
string-based methods do not demonstrate superiority over
SMILES string-based ones.

2D Molecule Design Methods Compared to 1D molecule
design methods, representing molecules using 2D molecu-
lar graphs is a more sophisticated approach. molecular 2D
representation, graphs are used to depict molecules, where
edges represent chemical bonds and nodes represent atoms.
There are two main strategies for constructing these graphs:
atom-based and fragment-based. Atom-based methods op-
erate on one atom or bond at a time, searching the entire
chemical space. On the other hand, fragment-based meth-
ods summarize common molecular fragments and operate
on one fragment at a time, which can be more efficient. In
this paper, we discuss several methods belonging to this
category: MolDQN (Zhou et al., 2018), which uses an
atom-based strategy, and Graph GA (Jiang et al., 2024),
Multi-constraint Molecule Sampling (MIMOSA) (Fu et al.,
2021), Differentiable Scaffolding Tree (DST) (Fu et al.,
2022b), and AutoGrow4 (Spiegel & Durrant, 2020), which
use fragment-based strategies.

3D Molecule Design Methods Both 1D and 2D molecule
design methods are ligand-centric, focusing primarily on de-
signing the molecule itself. In structure-based drug design,
as pointed out in (Huang et al., 2021), these models take the
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docking function as a black box, which inputs a molecule
and outputs the binding affinity score. However, these mod-
els fail to incorporate target protein structure information
and consequently suffer from high computational time (to
find binding pose). In contrast, 3D structure-based drug
design methods take the three-dimensional geometry of the
target protein as input and directly generate pocket-aware
molecules in the pocket of target protein. In this paper, we
cover four cutting-edge structure-based drug design meth-
ods: PocketFlow (Jiang et al., 2024), 3DSBDD (Luo et al.,
2021), Pocket2mol (Peng et al., 2022), and ResGen (Zhang
etal., 2023).

3. Models

In this paper, the models we select for evaluation are based
on one or a combination of the following algorithms. For
ease of comparison, we categorize all the methods based on
optimization algorithm and molecular assembly strategy in
Table 1.

Screening: Screening (high-throughput screening) is a tra-
ditional drug design approach that searches over a library
of molecules. However, it is only able to search the known
drug molecular space, but is not able to explore unknown
chemical space and identify novel/unknown molecules. The
known chemical space (< 10'%) is only taking a tiny fraction
of the whole drug-like molecular space (around 105%) (Bo-
hacek et al., 1996). In our evaluation, we use screening as
a baseline method, which randomly searches ZINC 250k
library (Irwin et al., 2012).

Genetic Algorithm (GA): Inspired by natural selection,
genetic algorithm is a combinatorial optimization method
that evolves solutions to problems over many generations.
Specifically, in each generation, GA will perform crossover
and mutation over a set of candidates to produce a pool of
offspring and keep the top-k offspring for the next genera-
tion, imitating the natural selection process. In our evalua-
tion, we choose three GA models: SMILES GA (Yoshikawa
et al., 2018) that performs GA over SMILES string-based
space, Graph GA (Jiang et al., 2024) that searches over
atom- and fragment-level by designing their crossover and
mutation rules on graph matching and AutoGrow4 (Spiegel
& Durrant, 2020) which introduce another procedure called
elitism that filtering the candidates by pre-defined rules.
Variational Auto-Encoder (VAE): The aim of variational
autoencoder is to generate new data that is similar to train-
ing data. In the molecule generation area, VAE learns a
bidirectional map between molecule space and continuous
latent space and optimizes the latent space. VAE itself
generated diverse molecules that are learned from the train-
ing set. After training VAE, Bayesian optimization (BO)
is used to navigate latent space efficiently, identify desir-
able molecules, and conduct molecule optimization. In our

evaluation, we select two VAE-based models: SMILES-
VAE-BO (G6mez-Bombarelli et al., 2018) uses SMILES
string as the input to the VAE model, and SELFIES-VAE-
BO uses the same algorithm but uses SELFIES string as the
molecular representation.

Auto-regressive: An auto-regressive model is a type of sta-
tistical model that is based on the idea that past values in
the series can be used to predict future values. In molecule
generation, an auto-regressive model would typically take
the generated atom sequence as input and predict which
atom would be the next. In our evaluation, we choose four
auto-regressive models: PocketFlow (Jiang et al., 2024) is an
autoregressive flow-based generative model. 3DSBDD (Luo
et al., 2021) based on conventional Markov Chain Monte
Carlo (MCMC) algorithms and Pocket2mol (Peng et al.,
2022) choose graph neural networks (GNN) as the backbone.
Inspired by Pocket2mol, ResGen (Zhang et al., 2023) used
a hierarchical autoregression, which consists of a global
autoregression for learning protein-ligand interactions and
atomic component autoregression for learning each atom’s
topology and geometry distributions. Also, note that these
models use 3D representations of target proteins.

Hill Climbing (HC): Hill Climbing (HC) is an optimiza-
tion algorithm that belongs to the family of local search
techniques (Selman & Gomes, 2006). It is used to find the
best solution to a problem among a set of possible solutions.
In molecular design, Hill Climbing would tune the gener-
ative model with the reference of generated high-scored
molecules. In our evaluation, we adopt two HC models:
SMILES-LSTM-HC (Brown et al., 2019) uses an LSTM
model to generate molecules and uses the HC technique
to fine-tune it. Multl-constraint MOlecule SAmpling (MI-
MOSA) (Fuetal., 2021) uses a graph neural network instead
and incorporates it with HC.

Gradient Ascent (GRAD): Similar to gradient descent, gra-
dient ascent also estimates the gradient direction but chooses
the maximum direction. In molecular design, the GRAD
method is often used in molecular property function to op-
timize molecular generation. In our evaluation, we choose
two GRAD-based models: Pasithea (Shen et al., 2021) uses
SELFIES as input and applies GRAD on an MLP-based
molecular property prediction model. Differentiable Scaf-
folding Tree (DST) (Fu et al., 2022b) uses differentiable
molecular graph as input and uses a graph neural network
to estimate objective and the corresponding gradient.
Reinforcement Learning (RL): In molecular generation
context, a reinforcement learning model would take a
partially-generated molecule (either sequence or molecular
graph) as state; action is how to add a token or atom to
the sequence or molecular graph respectively; and reward
is the property score of current molecular sequence. In
our evaluation, we test on two RL-based models: REIN-
VENT (Olivecrona et al., 2017) is a policy-gradient method
that uses RNN to generate molecules and MolDQN (Zhou
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et al., 2018) uses a deep Q-network to generate molecular
graph.

All the methods used in this paper are summarized in Table 1
for ease of comparison.

4. Experiments

In this section, we demonstrate the experimental results.
We start with the description of experimental setup. Then,
we present and analyze the experimental results, including
protein-ligand bindings, pharmaceutical properties of gener-
ated molecules (e.g., drug-likeness and synthetic accessibil-
ity), and other qualities of generated molecules (e.g., diver-
sity, validity). The relevant code is available in https://
github.com/zkysfls/2024-sbdd-benchmark.

4.1. Experimental Setup
4.1.1. ORACLE

In drug discovery, we need to evaluate the pharmaceuti-
cal properties of the generated molecules, such as binding
affinity to certain target proteins, drug-likeness, synthetic ac-
cessibility, and solubility, etc. These property evaluators are
also known as oracle. In this section, we introduce the oracle
we chose to evaluate these models. All our oracle functions
come from Therapeutic Data Commons (TDC) (Huang et al.,
2022; 2021)".

Docking Score: Molecular docking is a measurement of
free energy exchange between a ligand and a target pro-
tein during the binding process. A lower docking score
means the ligand would have a higher potential to pose
higher bioactivity with a given target. Compared with
other heuristic oracles, such as QED (quantitative estimate
of drug-likeness), and LogP (Octanol-water partition co-
efficient), docking reflects the binding affinities between
drug molecule and target (Graff et al., 2021). Our experi-
ments use TDC.Docking oracle function, which is based on
AutoDock Vina (Eberhardt et al., 2021) to test with these
models. We chose seven representative and diverse target
proteins in the TDC docking benchmark, which are selected
from CrossDock (Francoeur et al., 2020b). The PDBIDs
are liep, 3eml, 3ny8, 4rlu, 4unn, Smo4, 7111. These crys-
tallography structures are across different fields, including
virology, immunology, and oncology (Huang et al., 2022;
2021; Lu et al., 2019). They cover various kinds of dis-
eases such as chronic myelogenous leukemia, tuberculosis,
SARS-COVID-2, etc. They represent a breadth of function-
ality, from viral replication mechanisms to cellular signaling
pathways and immune responses.

Heuristic Oracles: Although heuristic oracles are consid-
ered to be “trivial” and too easily optimized, we still incorpo-

"https://tdcommons.ai/functions/oracles/

rate some of them into our evaluation metrics for comprehen-
sive analysis. In our experiments, we utilize Quantitative
Estimate of Drug-likeness (QED), SA, and LogP as our
heuristic oracles. QED evaluates a molecule’s drug-likeness
on a scale from O to 1, where 0 indicates minimal drug-
likeness and 1 signifies maximum drug-likeness, aligning
closely with the physicochemical properties of successful
drugs. SA, or Synthetic Accessibility, assesses the ease of
synthesizing a molecule, with scores ranging from 1 to 10;
a lower score suggests easier synthesis. LogP measures a
compound’s preference for a lipophilic (oil-like) phase over
a hydrophilic (water-like) phase, essentially indicating its
solubility in water, where the optimal range depends on the
type of drug. But mostly the value should be between 0 and
5 (Krenn et al., 2020).

Molecule Generation Oracles: While docking score or-
acles and heuristic oracles focus on evaluating individual
molecules, molecule generation oracles assess the quality of
all generated molecules as a whole. In our experiments, we
choose three metrics to evaluate the generated molecules of
each model: diversity, validity, and uniqueness. Diversity
is measured by the average pairwise Tanimoto distance be-
tween the Morgan fingerprints (Benhenda, 2017). Validity
is determined by checking atoms’ valency and the consis-
tency of bonds in aromatic rings using RDKit’s molecular
structure parser (Polykovskiy et al., 2020). Uniqueness
is measured by the frequency at which a model generates
duplicated molecules, with lower values indicating more
frequent duplicates (Polykovskiy et al., 2020).

4.1.2. MODEL SETUP

For each model, we generate 1,000 molecules for each given
target protein, and each molecule is evaluated by the TDC or-
acle functions (Huang et al., 2021; 2022). Each experiment
is run on one OSC Ascend node (Center, 1987) for 96 hours,
which is the maximum time allowed for a single experiment,
and we only run each model once. Five models (3DSBDD,
PocketFlow, Pocket2mol, ResGen, and AutoGrow4) first
generate a certain number of molecules within the given
time, and then we run oracle functions on each molecule.
All the other models come from the PMO benchmark (Gao
et al., 2022), and our experiment follows its setting, where
each molecule is first generated, then the oracle function is
used to calculate the score, and then the model moves on to
generate the second molecule. None of the tested models
have prior knowledge of these oracle functions. Among
all the models, five of them manage to generate and have
been evaluated by the oracle for 1,000 or more molecules
within the given time across all target proteins (AutoGrow4,
PocketFlow, DST, MIMOSA, and Screening); other models
do not generate enough molecules or have not been evalu-
ated for enough molecules within the given 96 hours, mostly
because the docking oracle function is time-consuming. The
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Average Number of Molecules calculated by oracles across PDBs
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Figure 1. The bar chart of average generated molecules that are calculated by our selected oracles for each model across all target proteins
under given time. 1D methods are colored red, blue is used to indicate 2D methods, and green represents 3D methods.

VAE models and REINVENT only generate 200 and 100
molecules, respectively, because we observe that when they
generate more than this number of molecules, the models
crash. Figure 1 shows the average number of molecules
that has been generated and successfully evaluated by oracle
functions within experiment time.

4.2. Experimental Results
4.2.1. RESULTS OF BINDING AFFINITIES

Overall Performance: Overall, search-based algorithms
(including Screening, Genetic Algorithm [GA], Hill Climb-
ing [HC], and Gradient-based methods [GRAD]) demon-
strate superior performance compared to generative models
(like VAE and Auto-regressive) and reinforcement learning-
based algorithms. Although generative models have good
performance on Top-1 docking score (Table 3), search-based
algorithms take advantages on Top-10/50/100 docking score,
as shown in Table 2 to 5.

Search-based Algorithms: Among all the search-based
algorithms, AutoGrow4 exhibits the best performance. This
superiority is not only reflected in its consistently highest
scores in the Top 1/10/50/100 categories but also in the
outstanding docking scores of the majority of its generated
molecules compared to other methods across every target
protein, as indicated by Table 3 to 5. We believe that the
elitism procedure incorporated in AutoGrow4 enhances its
performance by providing better candidates for crossover

and mutation. While other search-based methods also per-
form well overall, no single algorithm category within this
group distinctly outperforms the others. It appears that nei-
ther the format of the input (such as SMILES/SELFIES or
scaffold graph) nor the specific algorithm employed has a
significant impact on performance.

Generative Models: In our experiments, we evaluated two
categories of generative models: Variational Autoencoders
(VAEs) and Auto-regressive models. Firstly, two VAE-based
models, SMILES-VAE-BO and SELFIES-VAE-BO, demon-
strated consistent performance across all target proteins,
with most of their generated molecules achieving docking
scores between -6 and -9. However, only a few molecules
from these models exceeded a -10 score, and neither model
showed a distinct advantage over the other.

Regarding the autoregressive models, among the four mod-
els we evaluated, Pocket2Mol demonstrates the best overall
performance. This is not only because it achieves the highest
scores in Top-1, Top-10, Top-50, and Top-100 rankings but
also because its average top docking score remains above
-10 across all these rankings. For the remaining models, Res-
Gen ranks second, followed by PocketFlow and 3DSBDD.
We also noticed that some of our selected target pockets
appeared in Crossdeck (Francoeur et al., 2020a), which is
the dataset that our selected autoregressive models used for
training and evaluation. However, our experimental results
show that these autoregressive models do not always have
advantages compared to other models. For example, in tar-
get 3EML, AutoGrow4 has the best performance across Top
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Table 2. The average of each model’s Top-10 Docking score for each target protein.

MODEL 11IEP 3EML 3NY8 4RLU 4UNN 5M04 7L11
3DSBDD -9.05+0.38 -10.02+0.15 -10.10+0.24 -9.80 + 0.55 -8.23 £0.30 -8.71 £0.45 -8.47+0.18
AUTOGROW4 -13.23+0.11  -13.03+0.09 -11.70£0.00 -11.20+0.00 -11.14+0.12 -10.38 +0.27 -8.84 £0.33
POCKET2MOL -10.17 £0.53 -12.254+0.27 -11.89£0.16 -10.57 £0.12 -12.20£0.34 -10.07 £0.62 -9.74 £ 0.38
POCKETFLOW -12.49+£0.70  -9.25+0.29 -8.56 £0.35 -9.65 £0.25 -7.90 £0.78 -7.80 £0.42 -8.35£0.31
RESGEN -10.97 £0.29 -9.25+0.95 -10.96+0.42 -11.75+0.42 -9.41+0.23 -10.34+0.39 -8.74+0.24
DST -10.95+0.57 -10.67 +£0.24 -10.54+0.22 -10.88+0.37 -9.71+£0.19 -10.03+0.36 -8.33 £0.41
GRAPH GA -10.03+0.41 -9.89+0.25 -9.94 £0.15 -10.22+0.39 -9.32+0.51 -9.29 £0.20 -7.75+0.32
MIMOSA -10.96 £ 0.57 -10.69 £0.24 -10.51 £0.23 -10.81 £0.39 -9.66 £0.25 -10.02+0.36 -8.33 £0.41
MoLDQN -6.73 £0.12 -6.51 £0.15 -7.09 £0.16 -6.79 £0.26 -5.92 £0.26 -6.27£0.10 -6.87 £0.20
PASITHEA -10.86 £0.29 -10.314+0.09 -10.69 £0.27 -10.92+£0.35 -9.69 £0.32 -9.77 £0.21 -8.06 +£0.22
REINVENT -9.87 £0.31 -9.48 £0.39 -9.61 £0.36 -9.69 £0.29 -8.70 £0.25 -8.92 £0.38 -7.25£0.21
SCREENING -10.86 £ 0.26 -10.90 +0.54 -10.73 +0.45 -10.86 +0.22 -9.80+0.23 -9.91£0.30 -8.15+0.26
SELFIES-VAE-BO -10.15+0.60 -9.76 £0.12 -9.99 +£0.28 -10.00+0.23 -9.02+£0.33 -9.18 £0.39 -7.75+0.22
SMILES GA -9.56 £0.17 -9.56 £0.37 -10.00+0.26 -9.61 £0.19 -8.80 £ 0.20 -9.21+£0.23 -7.54+0.32
SMILES LSTM HC ~ -10.38 £0.21 -10.30 +£0.15 -10.19+0.12 -1049+0.49 -9.36+0.17 -9.71 £0.43  -7.90+0.26
SMILES-VAE-BO  -9.93 £+ 0.22 -9.78 £0.10 -9.96 £0.29 -10.05+0.20 -9.03 £0.30 -9.18£0.39 -7.74+0.25

1 to Top 100, while in target 4UNN, Pocket2mol has the
advantage.

Reinforcement Learning: We incorporate two reinforce-
ment learning-based models: MolDQN and REINVENT.
Overall, REINVENT demonstrates superior performance
compared to MolDQN. The majority of molecules gener-
ated by REINVENT have docking scores around -8, whereas
those by MoIDQN are mostly around -6. This leads us to sus-
pect that the policy-gradient method might be more suitable
than the deep Q-network approach for the task of molecu-
lar generation. Compared to other models, reinforcement
learning models do not exhibit good performance. These
two reinforcement learning models have the lowest scores
in the docking score oracle. This may suggest that the rein-
forcement learning algorithm may not have a strong ability
to produce molecules with good docking scores.

4.2.2. RESULTS OF PHARMACEUTICAL PROPERTIES

Then, we report and analyze the pharmaceutical properties
of the generated molecules.

SA: Overall, most of the models generate molecules with
scores between 1 to 3. Notably, 3DSBDD, MolDQN, and
REINVENT produce molecules with scores ranging above
3. Additionally, these models exhibit high variance in their
scores. For instance, in the case of 3DSBDD, the lowest
score observed is 1, yet it can also generate molecules
scoring as high as 8 for a specific target protein.

QED: Most of the models generate molecules with scores
between 0.8. However, 3DSBDD and REINVENT tend to
produce molecules with scores primarily in the range of
0.6 to 0.7, while MolIDQN’s generated molecules hover
around 0.4. Overall nearly all models have the same level of
performances except reinforcement learning based models
which has worse performances.

LogP: Overall, nearly all the models tested produced the
majority of their molecules within the O to 3 range, which is

deemed suitable for a drug, with the exception of MolDQN.
The molecules generated by MolDQN often have a LogP
score of less than 0 across all target proteins, indicating a
high solubility in water. Furthermore, generative models,
particularly 3DSBDD, predominantly generate molecules
with scores around O.

4.2.3. MOLECULE GENERATION QUALITY

In the diversity oracle, all models score above 0.8, with one
model from each algorithm category exceeding 0.9: Pocket-
Flow from generative models, Graph GA from search-based
methods, and MoIDQN from reinforcement learning. This
suggests that these three models are particularly effective at
generating diverse sets of molecules. In the validity oracle,
all models achieve a perfect score of 1, except for 3DS-
BDD. Similarly, in the uniqueness oracle, all models score
1, except for 3DSBDD, AutoGrow4, and PocketFlow. It is
unclear why these models have lower scores in validity and
uniqueness, especially when other models from the same
algorithm category perform well. One possible explanation
for 3DSBDD’s low validity and uniqueness scores could be
issues with its molecule generation process, such as produc-
ing invalid molecular structures or duplicates. Despite their
high diversity scores, AutoGrow4 and PocketFlow’s lower
uniqueness scores might indicate a tendency to generate
similar molecules. Further investigation into the specific
architectures and training procedures of these models could
provide insights into their divergent performance. It may
also be valuable to analyze the trade-offs between diversity,
validity, and uniqueness in molecule generation and how dif-
ferent models balance these objectives. Overall, while most
models demonstrate strong performance across the three or-
acles, the lower validity and uniqueness scores of 3DSBDD,
AutoGrow4, and PocketFlow highlight the importance of
evaluating multiple aspects of generated molecules to assess
model performance comprehensively.
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Figure 2. The heatmap based on the average of each model’s Top-10 docking score for each target protein.

4.2.4. KEY OBSERVATIONS

We summarize the following insightful observations drawn
from the experimental results, which benefits design of fu-
ture SBDD models.

* Most structure-based drug design method uses the 3D
structure of the target protein explicitly and grow the
drug molecules in the pocket of the target protein. We
pinpoint another direction that regards the docking
function as a black box and uses 1D/2D ligand-centric
methods to produce drug molecules, which is usually
neglected by the community. In this paper, we empir-
ically prove that this kind of method would achieve
superior performance.

* AutoGrow4, a 2D genetic algorithm, exhibits the best
optimization performance in terms of top-K docking
scores in most target proteins. Also, it owns desirable
synthetic accessibility.

* Generally, 3D SBDD algorithms (using 3D target pro-
tein structure explicitly) do not demonstrate significant
superiority over 2D methods.

* No methods can dominate structure-based drug design

in all the evaluation metrics (docking score, SA, QED,
diversity, validity, and uniqueness), as shown in Fig-
ure 4.

Example of the Generated Molecules Also, we show the
3D poses of molecules that have the best docking score for
each target protein in Figure 12 in Appendix. We find that
the generated molecules could bind tightly to the pocket of
target proteins.

Additional Experimental Results Furthermore, we re-
port the numerical values of top-K docking, QED, SA,
LogP score for all the methods across different target pro-
teins in Appendix, as well as their relative ranking on all the
metrics.

5. Conclusion and Future Work

Currently, the landscape of structure-based drug design mod-
els is vast, featuring various algorithmic backbones, yet
comparative analyses across them are scarce. In this study,
we design experiments to evaluate the quality of molecules
generated by each model. Our experiments extend beyond
conventional heuristic oracles related to molecular prop-
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Figure 3. The bar chart is based on the average of each model’s Top-10 docking score. On the left, 1D methods are colored red, blue is
used to indicate 2D methods, and green represents 3D methods. On the right, generative models are in blue, search-based methods are in

green, and reinforcement learning methods are in red.

erties, also examining the affinity between molecules and
selected target proteins. Our findings indicate that models
based on genetic algorithms exhibit a higher potential for
producing molecules that dock effectively with given target
proteins. Also, representing target molecules in 3D format
does not significantly improve both the molecular quality
and blinding affinity. Although we observed that there is
no single method that could excel both our two metrics,
we suggest that when developing new structure-based drug
discovery models in the future, it would be advantageous
to integrate genetic algorithms with other computational
approaches to enhance both docking scores and molecular
properties.
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Figure 4. The radar chart is based on the ranking of each model’s average performance. The outermost circle represents the best ranking
for each metric and vice versa. No methods can dominate structure-based drug design in all the evaluation metrics.
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Figure 5. Model: PocketFlow, PDB: liep, -13.9
kcal/mol

Figure 7. Model: Pocket2mol, PDB: 3nyS, -12.2
kcal/mol

Figure 9. Model: Pocket2mol, PDB: 5mo4, -
11.9 kcal/mol

Figure 8. Model: ResGen, PDB: 4rlu, -12.6
kcal/mol

Figure 10. Model: Pocket2mol, PDB: 4unn, -
12.8 kcal/mol

Figure 11. Model: Pocket2mol, PDB: 7111, -

10.4 kcal/mol

Figure 12. Examples of best generated molecules for each PDB
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Table 3. Top 1 Docking score for each target protein.

MODEL 11EP 3EML 3NY8 4RLU
3DSBDD -10.00 -10.40 -10.60 -11.40
AUTOGROW4 -13.40 -13.30 -11.70 -11.20
POCKET2MOL -11.50 -12.80 -12.20 -10.70
POCKETFLOW -13.90 -9.80 -9.20 -10.10
RESGEN -11.60 -10.80 -11.70 -12.60
DST -12.20  -11.00 -11.00 -11.40
GRAPH GA -10.80 -10.50 -10.20 -11.10
MIMOSA -12.20  -11.10 -11.00 -11.40
MOLDQN -6.90 -6.80 -7.50 -7.50
PASITHEA -11.60 -10.40 -11.20 -11.60
REINVENT -10.40 -10.40 -10.30 -10.10
SCREENING -11.30  -12.20 -11.90 -11.20
SELFIES VAEBO -11.80 -10.00 -10.70 -10.50
SMILES GA -9.90 -10.50 -10.60 -9.90

SMILES LSTM HC -10.70 -10.60 -10.40 -11.30
SMILES-VAE-BO  -10.30 -10.00 -10.70 -10.50

MODEL 4UNN S5Mo04 7L11
3DSBDD -8.90 -9.80 -8.80
AUTOGROW4 -11.20 -10.80 -9.60
POCKET2MOL -12.80 -11.90 -10.40
POCKETFLOW -9.50 -8.70 -8.90
RESGEN -9.90 -11.00 -9.40
DST -9.90 -11.00 -9.30
GRAPH GA -10.60  -9.60 -8.60
MIMOSA -10.00 -11.00 -9.30
MOLDQN -6.40 -6.50 -7.20
PASITHEA -10.40 -10.10 -8.60
REINVENT -9.00 -9.60 -7.70
SCREENING -10.30 -10.50 -8.70
SELFIES VAE BO -9.60 -10.10  -8.20
SMILES GA -9.30 -9.60 -8.10

SMILES LSTM HC  -9.70 -10.60 -8.40
SMILES-VAE-BO -9.60  -10.10  -8.20
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Table 4. Top 50 Docking score for each target protein.

MODEL

11EP

3EML

3NYS8

4RLU

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MoLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES-VAE-BO

-8.43 £0.39
-12.47 £0.70
-9.57£0.40
-11.60 £ 0.57
-10.36 £ 0.40
-10.07 £ 0.55
-9.19 £ 0.53
-10.09 £ 0.55
-6.31 £0.27
-10.10 £ 0.48
-8.53 £0.81
-10.23 £0.40
-9.23 £ 0.63
-8.90 £0.41
-9.61 £0.47
-9.19 £ 0.49

-9.50£0.34
-12.45 £ 0.36
-11.64 £ 0.37
-8.52 £ 0.47
-7.22 £1.14
-10.03 £ 0.37
-9.19+£0.43
-10.01 £ 0.39
-6.14 £0.24
-9.91 £0.25
-8.55+£0.58
-10.11 £ 0.50
-9.24 £0.39
-8.65 £ 0.53
-9.80 £ 0.33
-9.27£0.39

-9.15 £ 0.61
-11.04 £0.38
-11.24 £0.42
-7.97 £0.35
-10.35 £ 0.39
-10.04 £ 0.30
-9.31 £0.40
-10.04 £ 0.30
-6.39 £0.49
-10.10 £ 0.36
-8.70 £ 0.56
-10.12 £ 0.40
-9.35£0.42
-9.13 £0.52
-9.63 £0.36
-9.34 £0.41

-9.10 £ 0.47
-10.92 £ 0.19
-10.18 £ 0.25
-8.96 £0.41
-10.79 £ 0.61
-10.24 £ 0.39
-9.52+£0.45
-10.23 £ 0.37
-6.15 £0.40
-10.25 £ 0.42
-8.69 £ 0.63
-10.24 £ 0.38
-9.30£0.43
-9.05 £0.33
-9.74 £0.49
-9.31£0.45

MODEL

4UNN

S5Mo04

7L11

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES-VAE-BO

-7.45 £0.52
-10.89 £ 0.14
-11.56 £ 0.40
-6.91 £0.63
-8.63 £0.50
-9.13 £0.34
-8.43 £0.54
-9.11 £0.33
-5.47+£0.28
-9.02 £0.41
-7.89 £0.56
-9.17 £0.38
-8.34 £0.44
-8.25 £0.35
-8.87 £0.31
-8.36 £0.43

-7.98 £0.45
-10.20 £ 0.16
-9.55 £0.40
-7.06 £ 0.45
-9.39£0.56
-9.30£0.43
-8.66 £ 0.41
-9.32 £0.41
-5.80 £0.33
-9.24 £0.33
-7.98 £0.58
-9.38 £0.34
-8.59 £0.40
-8.47 £0.45
-9.00 £0.44
-8.60 £ 0.40

-8.08 £ 0.25
-8.44 £0.26
-9.11 £ 0.40
-7.85 +£0.31
-8.28 £0.30
-7.81 £0.35
-7.15 £0.38
-7.83 £0.35
-5.98 £0.52
-7.68 £0.23
-6.64 = 0.40
-7.67 £0.30
-7.15 £0.37
-7.04 £0.30
-7.46 £0.27
-7.14 £0.37
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Table 5. Top 100 Docking score for each target protein.

MODEL

11EP

3EML

3NYS8

4RLU

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MoLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES-VAE-BO

-8.01 £0.52
-11.80 £ 0.84
-9.36 £0.36
-11.20 £ 0.58
-10.03 £ 0.44
-9.72 £ 0.53
-8.67 £ 0.65
-9.74 £ 0.53
-6.03 £0.36
-9.72 £0.52
-7.59 £1.23
-9.84 £0.50
-8.64 £0.75
-8.50 £0.50
-9.14 £ 0.58
-8.64 £0.67

-9.15 £0.42
-12.14 £ 0.40
-11.30 £ 0.44
-8.03 £0.60
-6.43 £1.14
-9.74 £0.40
-8.80 £0.51
-9.73 £0.40
-5.85£0.36
-9.65 £0.32
-7.61 £1.50
-9.76 £0.51
-8.75 £0.59
-8.23 £0.57
-9.44 £0.44
-8.75 £ 0.61

-8.60 £0.72
-10.84 £ 0.34
-10.73 £ 0.60
-7.69 £0.38
-10.04 £ 0.42
-9.77 £ 0.35
-8.85 £0.55
-9.77 £ 0.35
-5.94 £ 0.57
-9.77 £ 0.43
-7.81 £1.16
-9.80 £0.44
-8.86 £0.59
-8.74 £0.54
-9.20£0.52
-8.86 £0.58

-8.71 £0.53
-10.73 £ 0.24
-9.95 £0.30
-8.64 £0.43
-10.27 £ 0.68
-9.91 £0.44
-9.04 £0.60
-9.90 £0.43
-5.82 £0.44
-9.88 £0.48
-7.80 £ 1.16
-9.91+£0.43
-8.87 £0.55
-8.77 £0.38
-9.35+0.53
-8.88 £0.56

MODEL

4UNN

S5Mo04

7L11

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES-VAE-BO

-6.71 £ 0.86
-10.81 £ 0.13
-11.22 +0.45
-6.58 £0.56
-8.13 £ 0.64
-8.83 £0.39
-8.03 £0.56
-8.81 £0.39
-5.22£0.33
-8.72 £0.43
-7.14 £0.97
-8.85 £ 0.43
-7.93 £0.52
-7.97 £0.37
-8.53 £0.42
-7.95 £0.52

-7.50 £0.62
-10.10 £ 0.16
-9.20 £ 0.48
-6.70 £ 0.49
-8.88 £0.66
-9.03 £0.41
-8.22 £0.53
-9.05 £0.41
-5.47 £0.40
-8.94 £0.38
-7.16 £1.06
-9.11 £0.36
-8.19 £0.50
-8.14 £0.47
-8.64 £0.49
-8.20 £0.50

-7.86 +0.29
-8.32 £0.22
-8.78 £ 0.44
-7.62 £0.33
-7.97 £0.39
-7.55 £0.36
-6.87 £ 0.40
-7.56 £0.37
-5.51 £ 0.61
-7.46 £0.29
-6.06 £ 0.75
-7.44 £0.32
-6.81 £ 0.44
-6.83 £0.31
-7.20 £ 0.33
-6.81 £0.43
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Structure-based Drug Design Benchmark: Do 3D Methods Really Dominate?

Table 6. Top 1 LogP score for each target protein.

MODEL IIEP  3EML 3NY8 4RLU

3DSBDD 1.23 2.94 2.66 0.60
AUTOGROW4 347 2095 2.63 2.86
POCKET2MOL 2.32 3.83 4.14 3.50
POCKETFLOW 6.10 4.86 2.57 4.38

RESGEN 391 10.72 547 3.50
DST 372 3.72 3.72 3.72
GRAPH GA 3.06 3.32 3.67 3.70
MIMOSA 372 3.72 3.72 3.72
MoLDQN 0.36  0.55 0.36 0.33
PASITHEA 3.22 3.22 3.22 3.22
REINVENT 3.90 3.90 3.90 3.90
SCREENING 3.67 3.67 3.67 3.67
SELFIES VAEBO 3.22 3.22 3.22 3.22
SMILES GA 3.00 3.00 3.40 3.00

SMILES LSTM HC 6.51 6.51 6.51 6.51
SMILES-VAE-BO 3.22 3.22 3.22 3.22

MODEL 4UNN  5M04 7L11
3DSBDD 2.69 2.10 3.36
AUTOGROW4 2.72 2.93 2.81
POCKET2MOL 2.86 3.66 3.92
POCKETFLOW 2.16 2.26 5.21
RESGEN 3.40 3.54 3.23
DST 3.72 3.72 3.72
GRAPH GA 3.13 3.01 3.76
MIMOSA 3.72 3.72 3.72
MOLDQN -0.26 1.00 0.50
PASITHEA 3.22 3.22 3.22
REINVENT 3.90 3.90 3.90
SCREENING 3.67 3.67 3.67
SELFIES VAE BO 3.22 3.22 3.22
SMILES GA 3.40 3.00 3.00

SMILES LSTM HC 6.51 6.51 6.51
SMILES-VAE-BO  3.22 3.22 3.22
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Structure-based Drug Design Benchmark: Do 3D Methods Really Dominate?

Table 7. Top 10 LogP score for each target protein.

MODEL

11EP

3EML

3NYS8

4RLU

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES-VAE-BO

0.16 £0.37
3.36 £0.05
2.10£0.13
5.81 £0.17
3.58 £0.24
3.13£0.21
2.79 £0.20
3.13£0.21
-0.75 £0.49
3.03 £0.09
2.50£0.51
3.30+£0.18
2.68 £0.33
2.32+0.30
4.72 £ 0.85
2.68 £0.33

1.59 £ 0.67
2.72£0.13
3.59£0.15
2.21 £0.92
6.62 = 1.55
3.13£0.21
291 +£0.23
3.13£0.21
-0.52 £0.48
3.03 £0.09
2.47+0.53
3.30£0.18
2.68 £0.33
2.02 +£0.36
4.72 £ 0.85
2.68 £0.33

1.89 £ 0.51
2.63 £0.00
3.66 £0.22
2.01 £0.32
491 +£0.32
3.13£0.21
3.14 £0.28
3.13£0.21
-0.75 £0.50
3.03 £0.09
2.50£0.51
3.30£0.18
2.68 £0.33
2.52£0.43
4.72 £ 0.85
2.68 £0.33

-0.18 £0.60
2.86 £ 0.00
3.15+0.19
3.79 £0.59
3.05+£0.25
3.13+£0.21
3.00 £0.32
3.13+£0.21
-0.35£0.29
3.03 £0.09
2.47+£0.53
3.30£0.18
2.68 £0.33
2.17+£0.29
4.72 £ 0.85
2.68 £0.33

MODEL

4UNN

S5Mo04

7L11

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MoLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES VAE BO

2.02+£0.28
2.68 £0.05
2.56+0.16
1.44 £ 0.28
2.19 £ 0.60
3.13£0.21
2.84 +£0.19
3.13£0.21
-0.95+0.43
3.03 £0.09
2.50£0.51
3.30£0.18
2.68 £0.33
2.48 £0.44
4.72 +£0.85
2.68 £0.33

1.40 £ 0.39
2.86 £0.06
3.23£0.22
1.00 £ 0.47
2.71 £0.49
3.13£0.21
2.71 £0.20
3.13£0.21
-0.12 £ 0.54
3.03 £0.09
2.50£0.51
3.30£0.18
2.68 £0.33
2.34£0.30
4.72 £ 0.85
2.68 £0.33

2.46 +0.59
2.77 £0.02
3.46 £0.19
4.79 £ 0.26
2.74 £0.27
3.13£0.21
2.99+£0.29
3.13£0.21
-0.23 £0.48
3.03 £0.09
2.50£0.51
3.30£0.18
2.68 £0.33
2.14 £0.34
4.72 £ 0.85
2.68 £0.33
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Structure-based Drug Design Benchmark: Do 3D Methods Really Dominate?

Table 8. Top 50 LogP score for each target protein.

MODEL

11EP

3EML

3NYS8

4RLU

3DSBDD

AUTOGROW4
POCKET2MOL
POCKETFLOW

RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING

SELFIES VAE BO

SMILES GA

SMILES LSTM HC
SMILES VAE BO

0.03 £0.18
2.96 £0.22
1.80 £0.18
5.38 £0.29
2.99 +£0.37
2.78 £0.25
2.06 £0.42
2.78 £0.25
-1.73 £ 0.60
2.69 £0.25
1.50 £0.65
2.85+0.27
1.99 £0.42
1.72 £0.39
3.51£0.77
1.99 £ 0.42

0.56 + 0.64
2.56 £0.15
3.12£0.31
1.20 £0.70
5.22£1.02
2.78 £0.25
2.18 £0.44
2.78 £0.25
-1.51 £0.59
2.69 £0.25
1.42 £ 0.69
2.85£0.27
1.99 £0.42
1.25 £0.48
3.51£0.77
1.99 £0.42

0.53 +£0.78
2.49+£0.13
3.20+£0.30
0.98 £ 0.66
3.99 +£0.54
2.78 £0.25
2.22 £0.55
2.78 £0.25
-1.68 £ 0.58
2.69 £0.25
1.46 £ 0.69
2.85+0.27
1.99 £ 0.42
1.81 £0.47
3.51+£0.77
1.99 £0.42

-2.01 £1.00
2.67£0.16
2.76 £0.25
2.19+£0.92
2.20£0.51
2.78 £0.25
2.18 £0.49
2.78 £0.25
-1.20 £ 0.53
2.69 £0.25
1.46 £ 0.66
2.85+0.27
1.99 £0.42
1.73 £0.32
3.51£0.77
1.99 £0.42

MODEL

4UNN

SM04

TL11

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES VAE BO

0.90 &£ 0.77
2.63 £0.04
2.12£0.30
0.61 +£0.53
0.81 £0.91
2.78 £0.25
2.15+£0.44
2.78 £0.25
-1.88 £0.57
2.69 £0.25
1.47 £0.68
2.85£0.27
1.99 £0.42
1.77 £ 0.46
3.51£0.77
1.99 £0.42

0.30 £0.58
2.70 £0.14
2.80 £0.28
0.57£0.31
1.68 £ 0.62
2.78 £0.25
2.09 £0.37
2.78 £0.25
-1.46 £0.79
2.69 £0.25
1.48 £ 0.67
2.85£0.27
1.99 +£0.42
1.70 £ 0.40
3.51£0.77
1.99 £0.42

0.73 £0.98
2.40£0.31
2.96 £0.32
4.06 + 0.44
1.97 £0.47
2.78 £0.25
2.27£0.46
2.78 £0.25
-1.34 £ 0.66
2.69 £0.25
1.49 £ 0.66
2.85+£0.27
1.99 £0.42
1.50 £0.42
3.51£0.77
1.99 £0.42
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Structure-based Drug Design Benchmark: Do 3D Methods Really Dominate?

Table 9. Top 100 LogP score for each target protein.

MODEL

11EP

3EML

3NYS8

4RLU

3DSBDD

AUTOGROW4
POCKET2MOL
POCKETFLOW

RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING

SELFIES VAE BO

SMILES GA

SMILES LSTM HC
SMILES VAE BO

0.02 £0.13
2.83 +£0.21
1.61 £0.24
5.02+0.43
2.65+0.44
2.51+0.32
1.69 £0.49
2.51+0.32
-2.21 £0.66
2.42 4+£0.33
0.15+1.82
2.60 +£0.32
1.43 £0.68
1.35 £0.47
2.96 £0.78
1.43 £0.68

0.28 £ 0.53
2.37+£0.23
2.79 £0.40
0.57 £ 0.82
4.52 +£1.05
2.51£0.32
1.78 £0.52
2.51£0.32
-1.97 £0.63
2.42 £0.33
0.02 +1.89
2.60 £0.32
1.43 £0.68
0.80 + 0.57
2.96 £0.78
1.43 £0.68

0.26 £0.61
2.20+0.33
291 +£0.37
0.40 £0.76
3.59 +£0.56
2.51+0.32
1.76 £0.62
2.51+0.32
-2.19 £ 0.67
2.42+0.33
0.05 +£1.90
2.60 +£0.32
1.43 £0.68
1.41 £0.52
2.96 £0.78
1.43 £0.68

-2.58 £0.92
2.31£0.40
2.50£0.32
1.42 £1.02
1.72 £ 0.61
2.51+£0.32
1.76 £0.56
2.51+£0.32
-1.72 £ 0.66
2.42 +£0.33
0.07 & 1.88
2.60 +£0.32
1.43 £0.68
1.35+0.45
2.96 £0.78
1.43 £0.68

MODEL

4UNN

SM04

TL11

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES VAE BO

0.454+0.70
2.46 £0.21
1.80 £ 0.39
0.04 £ 0.69
0.00 &+ 1.05
2.51£0.32
1.70 £ 0.56
2.51£0.32
-2.34 £0.62
2.42 £0.33
0.05+£1.90
2.60 £0.32
1.43 £0.68
1.39 £0.51
2.96 £0.78
1.43 £0.68

0.15+0.44
2.43 £0.30
2.53£0.35
0.19 £0.46
1.20 £ 0.66
2.51+£0.32
1.70 £ 0.48
2.51+£0.32
-2.07 £0.84
2.42 £0.33
0.08 £ 1.89
2.60 £0.32
1.43 £ 0.68
1.37 £0.44
2.96 £0.78
1.43 £0.68

-0.05 £1.22
2.10£0.38
2.50 +£0.54
3.56 £0.62
1.48 £0.61
2.51+0.32
1.84 £ 0.55
2.51+0.32
-1.93 £0.77
2.42 +£0.33
0.09 +1.89
2.60 +£0.32
1.43 £ 0.68
1.10 £0.52
2.96 £0.78
1.43 £0.68
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Structure-based Drug Design Benchmark: Do 3D Methods Really Dominate?

Table 10. Top 1 QED score for each target protein.

MODEL 1IEP  3EML 3NY8 4RLU

3DSBDD 0.81 0.93 0.95 0.85
AUTOGROW4 0.86 0.85 0.92 0.84
POCKET2MOL 0.92 0.91 0.93 0.92
POCKETFLOW 0.92 0.86 0.81 0.88

RESGEN 0.92 0.80 0.93 0.94

DST 0.95 0.95 0.95 0.95
GRAPH GA 0.94 0.94 0.94 0.94
MIMOSA 0.95 0.95 0.95 0.95
MOLDQN 0.52  0.65 0.62 0.67
PASITHEA 0.95 0.95 0.95 0.95
REINVENT 0.95 0.95 0.95 0.95

SCREENING 0.95 0.95 0.95 0.95
SELFIES VAEBO 0.94 0.94 0.94 0.94
SMILES GA 0.93 0.93 0.94 0.94
SMILES LSTM HC 0.94 0.94 0.94 0.94
SMILES VAE BO 0.94 0.94 0.94 0.94

MODEL 4UNN  5M04 7L11

3DSBDD 0.88 0.80 0.90
AUTOGROW4 0.89 0.87 0.84
POCKET2MOL 0.88 0.90 0.94
POCKETFLOW 0.83 0.80 0.91

RESGEN 0.93 0.88 0.95

DST 0.95 0.95 0.95
GRAPH GA 0.94 0.94 0.95
MIMOSA 0.95 0.95 0.95
MOLDQN 0.67 0.52 0.70
PASITHEA 0.95 0.95 0.95
REINVENT 0.95 0.95 0.95

SCREENING 0.95 0.95 0.95
SELFIES VAE BO 0.94 0.94 0.94
SMILES GA 0.93 0.93 0.94
SMILES LSTM HC 0.94 0.94 0.94
SMILES VAE BO 0.94 0.94 0.94
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Structure-based Drug Design Benchmark: Do 3D Methods Really Dominate?

Table 11. Top 10 QED score for each target protein.

MODEL

11EP

3EML

3NYS8

4RLU

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES VAE BO

0.77 £ 0.02
0.83 £ 0.01
0.90 +£ 0.01
0.89 +£0.01
0.91 £ 0.01
0.94 £ 0.00
0.93 £ 0.01
0.94 £ 0.00
0.49 £ 0.02
0.94 £ 0.00
0.91 £ 0.02
0.94 + 0.00
0.91 £ 0.02
0.92 +£0.01
0.92 +£0.01
0.91 +£0.02

0.83 £0.05
0.79 £ 0.04
0.89 £0.01
0.81 £0.03
0.73 £0.03
0.94 £ 0.00
0.93 £0.01
0.94 £ 0.00
0.55 £ 0.04
0.94 £ 0.00
0.91 £0.02
0.94 £+ 0.00
0.91 £0.02
0.93 £0.01
0.92 £0.01
0.91 £0.02

0.88 £0.03
0.92 £ 0.00
0.92 £0.01
0.77 £0.03
0.90 £ 0.02
0.94 £ 0.00
0.93 £0.01
0.94 £ 0.00
0.51 £0.05
0.94 £+ 0.00
0.91 £0.02
0.94 + 0.00
0.91 £0.02
0.93 £ 0.00
0.92 £0.01
0.91 £0.02

0.81 £0.02
0.82 £0.01
0.90 £0.01
0.79 £ 0.03
0.93 +£0.00
0.94 £ 0.00
0.92 £0.01
0.94 £+ 0.00
0.60 = 0.05
0.94 £+ 0.00
0.91 £0.02
0.94 + 0.00
0.91 £0.02
0.93 £0.01
0.92 £ 0.01
0.91 £0.02

MODEL

4UNN

SM04

7L11

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES VAE BO

0.82 £ 0.03
0.87 £0.01
0.84 +£0.02
0.74 £ 0.04
0.85 £ 0.04
0.94 £ 0.00
0.93 £0.01
0.94 £ 0.00
0.57 £ 0.04
0.94 £ 0.00
0.91 +£0.02
0.94 + 0.00
0.91 +£0.02
0.93 £0.00
0.92 +£0.01
0.91 £0.02

0.76 + 0.02
0.83 £0.03
0.88 £0.01
0.74 £ 0.03
0.84 £0.01
0.94 £ 0.00
0.93 £0.01
0.94 £ 0.00
0.48 +£0.02
0.94 £ 0.00
0.91 £0.02
0.94 £+ 0.00
0.91 £0.02
0.93 £ 0.00
0.92 £0.01
0.91 £0.02

0.86 +0.02
0.80 £ 0.02
0.94 £0.01
0.90 £0.01
0.92 +£0.02
0.94 £ 0.00
0.93 £0.01
0.94 £ 0.00
0.54 £0.07
0.94 £ 0.00
0.91 £0.02
0.94 £+ 0.00
0.91 £0.02
0.92 £0.01
0.92 £0.01
0.91 £0.02
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Structure-based Drug Design Benchmark: Do 3D Methods Really Dominate?

Table 12. Top 50 QED score for each target protein.

MODEL

11EP

3EML

3NYS8

4RLU

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES VAE BO

0.69 + 0.05
0.78 £ 0.03
0.87 £ 0.02
0.85+£0.03
0.86 + 0.04
0.92 +£0.01
0.89 £ 0.02
0.92 +£0.01
0.43 +£0.03
0.92 +£0.01
0.84 £ 0.05
0.92 +0.01
0.87 £ 0.03
0.87 £ 0.03
0.88 £ 0.03
0.87 £ 0.03

0.71 £0.07
0.73 £ 0.04
0.85 £ 0.03
0.71 £ 0.06
0.65 £ 0.05
0.92 £0.01
0.89 £0.03
0.92 £0.01
0.48 £ 0.04
0.92 £0.01
0.84 £ 0.05
0.92 £ 0.01
0.87 £0.03
0.87 £0.03
0.88 £0.03
0.87 £0.03

0.79 £ 0.05
0.88 +£0.03
0.88 £0.03
0.69 + 0.04
0.85 £ 0.03
0.92 £0.01
0.89 £0.03
0.92 £0.01
0.44 £ 0.04
0.92 £0.01
0.84 £ 0.05
0.92 £ 0.01
0.87 £0.03
0.89 +£0.02
0.88 £0.03
0.87 £0.03

0.77 £ 0.02
0.76 £ 0.04
0.87 £0.02
0.69 £+ 0.06
0.90 £ 0.02
0.92 £0.01
0.88 £0.03
0.92 £0.01
0.49 £ 0.06
0.92 £0.01
0.84 £ 0.05
0.92 £ 0.01
0.87 £0.03
0.89 +£0.02
0.88 £0.03
0.87 £0.03

MODEL

4UNN

SM04

7L11

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES VAE BO

0.74 £+ 0.06
0.86 £0.01
0.80 +0.03
0.67 £ 0.04
0.76 & 0.06
0.92 £0.01
0.89 +0.03
0.92 £0.01
0.49 +£0.05
0.92 £0.01
0.83 £ 0.06
0.92 £0.01
0.87 £ 0.03
0.90 £ 0.02
0.88 £ 0.03
0.87 £0.03

0.64 +0.08
0.75 £ 0.05
0.84 +£0.03
0.68 = 0.04
0.78 £ 0.04
0.92 £0.01
0.89 +£0.02
0.92 £0.01
0.43 £0.03
0.92 £0.01
0.83 £0.05
0.92 £ 0.01
0.87 £0.03
0.89 £0.02
0.88 £0.03
0.87 £0.03

0.74 £+ 0.07
0.74 £ 0.04
0.91 £0.02
0.85 £ 0.03
0.85 £ 0.04
0.92 £0.01
0.89 +£0.03
0.92 £0.01
0.45 £ 0.06
0.92 £0.01
0.83 £ 0.05
0.92 £ 0.01
0.87 £0.03
0.88 £ 0.03
0.88 £0.03
0.87 £0.03
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Structure-based Drug Design Benchmark: Do 3D Methods Really Dominate?

Table 13. Top 100 QED score for each target protein.

MODEL

11EP

3EML

3NYS8

4RLU

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES VAE BO

0.64 + 0.07
0.76 £ 0.03
0.85+0.03
0.80 + 0.05
0.82 +0.05
0.91 £ 0.02
0.85 +0.04
0.91 +£0.02
0.40 £ 0.04
0.90 £ 0.02
0.73 £ 0.14
0.91 + 0.02
0.83 £ 0.05
0.84 + 0.04
0.85 +0.04
0.83 £ 0.05

0.65 £ 0.08
0.67 £0.07
0.82 £0.03
0.65 £ 0.07
0.60 = 0.06
0.91 £0.02
0.85 £ 0.04
0.91 £0.02
0.44 £ 0.05
0.90 £ 0.02
0.73 £0.14
0.91 +£0.02
0.83 £0.05
0.83 £0.05
0.85 £ 0.04
0.83 £0.05

0.73 £0.08
0.84 £ 0.05
0.85 £ 0.04
0.65 £ 0.05
0.83 £ 0.04
0.91 £0.02
0.85 £ 0.04
0.91 £0.02
0.41 £0.05
0.90 £ 0.02
0.73 £0.14
0.91 +0.02
0.83 £0.05
0.86 = 0.04
0.85 £ 0.04
0.83 £0.05

0.75 £ 0.03
0.72 £ 0.05
0.86 +£0.02
0.64 £ 0.07
0.86 = 0.04
0.91 £0.02
0.85 £ 0.04
0.91 £0.02
0.45 £ 0.06
0.90 £ 0.02
0.73 £0.14
0.91 +0.02
0.83 £0.05
0.86 = 0.04
0.85 £ 0.04
0.83 £0.05

MODEL

4UNN

SM04

7L11

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES VAE BO

0.65+0.10
0.84 £0.02
0.77 £ 0.04
0.63 £ 0.05
0.70 £ 0.07
0.91 £0.02
0.85 £ 0.05
0.91 £0.02
0.44 £ 0.06
0.90 £0.02
0.73 +£0.14
0.91 £ 0.02
0.83 £ 0.05
0.88 £0.03
0.85+0.04
0.83 £0.05

0.54+0.12
0.71 £ 0.06
0.81 £ 0.03
0.64 £ 0.05
0.75 £ 0.05
0.91 £0.02
0.86 = 0.04
0.91 £0.02
0.39 £ 0.04
0.90 £ 0.02
0.73 £0.13
0.91 +0.02
0.83 £0.05
0.86 £0.03
0.85 £ 0.04
0.83 £0.05

0.66 +0.10
0.69 £ 0.06
0.88 +£0.03
0.82 £ 0.04
0.81 £0.05
0.91 £0.02
0.85 £ 0.04
0.91 £0.02
0.41 £ 0.06
0.90 £ 0.02
0.73+0.14
0.91 +0.02
0.83 £ 0.05
0.84 £ 0.04
0.85 £ 0.04
0.83 £0.05
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Table 14. Top 1 SA score for each target protein.

MODEL 1IEP  3EML 3NY8 4RLU

3DSBDD 1.37  1.00 1.00 1.99
AUTOGROW4 1.00 1.00 1.83 1.00
POCKET2MOL 1.05 1.00 1.90 1.00
POCKETFLOW 1.00 1.00 1.00 1.61

RESGEN 1.00 1.00 1.00 1.16

DST 1.41 1.41 1.41 1.41
GRAPH GA 1.00 1.00 1.00 1.00
MIMOSA 1.41 1.41 1.41 1.41
MOLDQN 1.51 1.65 1.51 1.62
PASITHEA 1.41 1.41 1.41 1.41
REINVENT 1.67 1.67 1.67 1.67

SCREENING 1.51 1.51 1.51 1.51
SELFIES VAE BO 1.75 1.75 1.75 1.75
SMILES GA 1.61 1.61 1.60 1.61
SMILES LSTM HC  1.60 1.60 1.60 1.60
SMILES VAE BO 1.75 1.75 1.75 1.75

MODEL 4UNN  5M04 7L11

3DSBDD 1.00 1.00 1.00
AUTOGROW4 1.74 1.00 1.83
POCKET2MOL 1.00 1.00 1.00
POCKETFLOW 1.11 1.54 1.00

RESGEN 1.00 1.00 1.00
DST 1.41 1.41 1.41
GRAPH GA 1.00 1.00 1.00
MIMOSA 1.41 1.41 1.41
MOLDQN 1.98 2.04 1.51
PASITHEA 1.41 1.41 1.41
REINVENT 1.67 1.67 1.67
SCREENING 1.51 1.51 1.51
SELFIES VAE BO 1.75 1.75 1.75
SMILES GA 1.60 1.61 1.61

SMILES LSTM HC 1.60 1.60 1.60
SMILES VAE BO 1.75 1.75 1.75
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Table 15. Top 10 SA score for each target protein.

MODEL 11EP 3EML 3NYS8 4RLU
3DSBDD 2.204+0.38 1.54+£0.24 1.524+0.34 2.80+0.60
AUTOGROW4 1.04 +£0.13 1.74£0.26 1.914+0.04 1.55+0.31
POCKET2MOL 1.36 £0.14 1.02+0.03 2.07+0.08 1.09+0.08
POCKETFLOW 1.00 £ 0.00 1.46+0.19 1.33£0.18 1.61 +£0.00
RESGEN 1.03+£0.04 1.08£0.08 1.07+0.07 1.40+0.13
DST 1.62+0.09 1.62£0.09 1.62+0.09 1.62+0.09
GRAPH GA 1.374+0.19 1.26+0.17 1.32+0.21 1.13+£0.14
MIMOSA 1.62+0.09 1.62£0.09 1.62+0.09 1.62+0.09
MOLDQN 2.534+0.37 2.39+0.36 2.61+0.37 2.46+0.32
PASITHEA 1.674+0.10 1.67+0.10 1.67+0.10 1.67+£0.10
REINVENT 1.85+0.08 1.88+£0.09 1.86+0.09 1.88+0.09
SCREENING 1.63 +£0.07 1.63£0.07 1.63+0.07 1.63+£0.07
SELFIES VAEBO  1.90 4+ 0.06 1.90+0.06 1.90£+0.06 1.90+0.06
SMILES GA 1.90+0.11 196+0.14 1.86+0.13 1.90£0.11
SMILES LSTM HC 1.77 +£0.09 1.77£0.09 1.77+0.09 1.77 £0.09
SMILES VAE BO 1.904+0.06 1904+0.06 1.90+£0.06 1.90+£0.06

MODEL 4UNN S5M04 7L11

3DSBDD 2.204+£0.38 1.544+0.24 1.52+0.34 2.80+0.60
AUTOGROW4 1.04 +£0.13 1.74£026 1.914+0.04 1.55+0.31
POCKET2MOL 1.36 £ 0.14 1.02+0.03 2.07+0.08 1.09+£0.08
POCKETFLOW 1.00 £ 0.00 1.46+0.19 1.33£0.18 1.61 +£0.00
RESGEN 1.03+0.04 1.08+0.08 1.07+0.07 1.40+0.13
DST 1.62+0.09 1.62£0.09 1.62+0.09 1.62+0.09
GRAPH GA 1.374+0.19 1.26+0.17 1.32+0.21 1.13+£0.14
MIMOSA 1.62+0.09 1.62£0.09 1.62+0.09 1.62+0.09
MOLDQN 2.534+£0.37 2394036 2.61+037 246+0.32
PASITHEA 1.67+0.10 1.67+£0.10 1.67+0.10 1.67+£0.10
REINVENT 1.85+£0.08 1.884+£0.09 1.864+0.09 1.8840.09
SCREENING 1.63 £0.07 1.63£0.07 1.63+0.07 1.63+£0.07
SELFIES VAE BO 1.90£0.06 190+£0.06 1.90+0.06 1.9040.06
SMILES GA 1.90+0.11 196+0.14 1.86+0.13 1.90+0.11
SMILES LSTM HC 1.77 £0.09 1.77+£0.09 1.77+£0.09 1.77 £0.09
SMILES VAE BO 1.90 +£0.06 1.90£0.06 1.90+0.06 1.90+£0.06
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Table 16. Top 50 SA score for each target protein.

MODEL

11EP

3EML

3NYS8

4RLU

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES VAE BO

3.49£0.78
1.53 £0.26
1.68 £0.19
1.00 £ 0.00
1.36 £ 0.21
1.82 +£0.13
1.80 £ 0.26
1.82 +£0.13
3.11 £0.42
1.85+0.12
2.32£0.35
1.83 £0.12
2.15£0.18
2.27+£0.24
2.00£0.14
2.15+£0.18

2.28 £0.48
2.00 £0.20
1.32 +£0.19
1.88 £0.25
1.71 £ 0.41
1.82 £0.13
1.77 £ 0.30
1.82 +£0.13
3.07 £0.45
1.85+0.12
2.37£0.35
1.83 £0.12
2.15+£0.18
2.45+0.30
2.00£0.14
2.15+0.18

2.95 £ 1.00
2.07£0.13
2.30£0.15
1.73 £0.28
1.39 £0.21
1.82 +£0.13
1.83 £0.30
1.82 +£0.13
3.18 £0.41
1.85+0.12
2.35+0.36
1.83 £0.12
2.15+0.18
2.24 £0.25
2.00+0.14
2.15+0.18

4.06 +0.73
1.93 £0.25
1.30 £0.13
1.67 £ 0.09
1.77 £ 0.24
1.82 £0.13
1.65 +£0.32
1.82 +£0.13
2.95+0.33
1.85+0.12
2.38 £0.35
1.83 £0.12
2.15+0.18
2.23 +£0.22
2.00+0.14
2.15+0.18

MODEL

4UNN

SM04

7L11

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES VAE BO

2.14£0.73
2.00£0.14
1.60 £ 0.17
1.92 £0.27
2.34 £ 0.46
1.82 £0.13
1.95 +£0.37
1.82 £0.13
3.24 £0.38
1.85+0.12
2.37+£0.35
1.83 £0.12
2.15+0.18
2.23 £0.24
2.00£0.14
2.15+£0.18

3.18 £0.87
1.94 £0.22
1.26 £0.14
1.72 £ 0.15
1.88 £0.32
1.82 £0.13
1.76 £ 0.29
1.82 £0.13
3.16 £ 0.36
1.85+0.12
2.36 £0.34
1.83 £0.12
2.15+0.18
2.30+£0.23
2.00+0.14
2.15+0.18

2.524+0.90
2.06 £0.10
1.92 +£0.26
1.43 £0.20
1.57 £ 0.31
1.82 £0.13
1.79 £ 0.35
1.82 +£0.13
3.06 £0.39
1.85+0.12
2.36 £0.34
1.83 £0.12
2.15+0.18
2.39+£0.27
2.00+0.14
2.15+0.18
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Table 17. Top 100 SA score for each target protein.

MODEL

11EP

3EML

3NYS8

4RLU

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES VAE BO

4.05+0.79
1.72 £0.28
1.86 +0.23
1.10 £ 0.16
1.64 +0.33
1.93 £0.14
2.03 £0.30
1.93 £0.14
3.53£0.52
1.97 £0.15
2.96 £ 0.80
1.94 £0.14
2.42 £0.31
2.52£0.31
2.14 £0.18
2.42 £0.31

2.85 +0.69
2.17£0.23
1.49 £0.22
2.11 £0.30
2.24 £ 0.65
1.93 £0.14
2.02 £0.33
1.93 £0.14
3.49£0.53
1.97 £0.15
3.03 £0.85
1.94 £0.14
2.42+£0.31
2.76 £0.38
2.14 £0.18
2.42 £0.31

3.76 £ 1.09
2.29 £0.26
2.50+0.23
2.06 £0.40
1.66 £ 0.32
1.93 £0.14
2.09 £0.34
1.93 £0.14
3.59£0.51
1.97 £0.15
3.02+0.86
1.94 £0.14
2.42 +£0.31
2.54 £0.35
2.14 £0.18
2.42 £0.31

4.46 + 0.66
2.11 £0.25
1.44 £0.17
1.87 £0.24
2.10+£0.38
1.93 £0.14
1.95+0.38
1.93 £0.14
3.30+0.44
1.97 £0.15
3.03 £0.84
1.94 £0.14
2.42+£0.31
2.51+£0.33
2.14£0.18
2.42 £0.31

MODEL

4UNN

S5Mo04

7L11

3DSBDD
AUTOGROW4
POCKET2MOL
POCKETFLOW
RESGEN
DST
GRAPH GA
MIMOSA
MOLDQN
PASITHEA
REINVENT
SCREENING
SELFIES VAE BO
SMILES GA
SMILES LSTM HC
SMILES VAE BO

3.25+1.29
2.12£0.16
1.76 £ 0.20
2.20£0.35
2.70 £0.49
1.93 £0.14
2.22 £0.38
1.93 £0.14
3.60 £ 0.45
1.97 £0.15
3.03 £0.85
1.94 £0.14
2.42 £0.31
2.49 £0.32
2.14 £0.18
2.42 £0.31

4.28 +1.37
2.11 £0.23
1.40 £0.18
2.04 £0.35
2.20 £0.40
1.93 £0.14
1.99 £0.32
1.93 £0.14
3.56 £0.48
1.97 £0.15
3.01 £0.84
1.94 £0.14
2.42£0.31
2.54 £0.30
2.14 +£0.18
2.42 +£0.31

349 +1.17
2.19+£0.16
2.17£0.31
1.67 £ 0.28
1.97 £0.47
1.93 £0.14
2.05 +£0.36
1.93 £0.14
3.46 +£0.49
1.97 £0.15
3.01 £0.84
1.94 £0.14
2.42+0.31
2.68 £0.36
2.14 +£0.18
2.42 £0.31

Table 18. Model Rankings based on QED

MODEL Tor 1 RANK Tor 10 RANK Topr 100 RANK OVERALL RANK
3DSBDD 13 14 15 14
AUTOGROW4 14 13 12 13
POCKET2MOL 11 11 8 11
POCKETFLOW 15 15 14 15
RESGEN 12 12 11 12
DST 2 2 2 1
GRAPH GA 6 5 6 5
MIMOSA 2 2 2 1
MOLDQN 16 16 16 16
PASITHEA 2 4 4 4
REINVENT 4 10 13 10
SCREENING 5 1 1 3
SELFIES VAE BO 8 8 9 8
SMILES GA 10 6 5 6
SMILES LSTM HC 7 7 7 6
SMILES VAE BO 8 8 9 8
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Table 19. Model Rankings based on SA

MODEL Tor 1 RANK Tor 10 RANK Tor 100 RANK OVERALL RANK
3DSBDD 12 6 1 6
AUTOGROW4 11 9 8 8
POCKET2MOL 14 14 16 16
POCKETFLOW 13 13 15 14
RESGEN 15 16 9 13
DST 9 11 13 11
GRAPH GA 16 15 10 14
MIMOSA 9 11 14 12
MOLDQN 3 1 2 1
PASITHEA 9 8 11 8
REINVENT 4 5 3 5
SCREENING 7 10 12 10
SELFIES VAE BO 1 3 5 2
SMILES GA 5 2 4 4
SMILES LSTM HC 6 7 7 7
SMILES VAE BO 1 3 5 2

Table 20. Model Rankings based on docking score

MODEL Tor 1 RANK Tor 10 RANK Topr 100 RANK OVERALL RANK
3DSBDD 12 12 13 12
AUTOGROW4 2 1 1 1
POCKET2MOL 1 2 2 2
POCKETFLOW 11 14 14 13
RESGEN 3 3 7 4
DST 6 5 4 5
GRAPH GA 9 9 9 9
MIMOSA 5 6 5 6
MOLDQN 16 16 16 16
PASITHEA 7 7 6 7
REINVENT 15 15 15 15
SCREENING 4 4 3 3
SELFIES VAE BO 10 10 11 10
SMILES GA 14 13 12 13
SMILES LSTM HC 8 8 8 8
SMILES VAE BO 13 11 10 11
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Table 21. Model Rankings based on average Molecule Generation Metrics across all target proteins

MODEL DIVERSITY  VALIDITY UNIQUENESS
3DSBDD 0.83 0.63 0.63
AUTOGROW4 0.84 1.00 0.29
POCKET2MOL 0.86 1.00 1.00
POCKETFLOW 0.90 1.00 0.87
RESGEN 0.83 1.00 1.00
DST 0.88 1.00 1.00
GRAPH GA 0.91 1.00 1.00
MIMOSA 0.88 1.00 1.00
MOLDQN 0.91 1.00 1.00
PASITHEA 0.89 1.00 1.00
REINVENT 0.88 1.00 1.00
SCREENING 0.88 1.00 1.00
SELFIES VAE BO 0.88 1.00 1.00
SMILES GA 0.88 1.00 1.00
SMILES LSTM HC 0.89 1.00 1.00
SMILES VAE BO 0.88 1.00 1.00
MODEL DIVERSITY RANK  VALIDITY RANK  UNIQUENESS RANK
3DSBDD 14.00 2.00 3.00
AUTOGROW4 13.00 1.00 4.00
POCKET2MOL 12.00 1.00 1.00
POCKETFLOW 3.00 1.00 2.00
RESGEN 15.00 1.00 1.00
DST 7.00 1.00 1.00
GRAPH GA 2.00 1.00 1.00
MIMOSA 8.00 1.00 1.00
MOLDQN 1.00 1.00 1.00
PASITHEA 4.00 1.00 1.00
REINVENT 10.00 1.00 1.00
SCREENING 9.00 1.00 1.00
SELFIES VAE BO 6.00 1.00 1.00
SMILES GA 11.00 1.00 1.00
SMILES LSTM HC 5.00 1.00 1.00
SMILES VAE BO 6.00 1.00 1.00

Table 22. Number of molecules generated under given 96 hours.

MODEL 1IEp  3EML 3NY8 4RLU 4UNN 5m04 7L11

3DSBDD 1002 715 753 826 900 616 589
AUTOGROW4 1429 1438 1319 1272 1552 1496 1301
POCKET2MOL 1038 1020 900 900 841 900 900
POCKETFLOW 1000 1000 1000 1000 1000 1000 1000

RESGEN 800 800 800 800 322 369 527

DST 1001 1001 1001 1001 1001 1001 1001
GRAPH GA 700 1001 700 700 300 1001 1001
MIMOSA 1001 1001 1001 1001 1001 1001 1001
MoLDQN 501 501 501 501 501 501 501
PASITHEA 800 1000 800 800 1000 1000 1000
REINVENT 100 100 100 100 100 100 100

SCREENING 1000 1000 1000 1000 1000 1000 1000
SELFIES VAE BO 200 200 200 200 200 200 200

SMILES GA 525 441 615 618 808 710 376
SMILES LSTM HC 501 501 501 501 501 501 501
SMILES VAE BO 200 200 200 200 200 200 200
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