
Symplectic Adjoint Method for Exact Gradient of
Neural ODE with Minimal Memory

Takashi Matsubara
Osaka University

Osaka, Japan 560–8531
matsubara@sys.es.osaka-u.ac.jp

Yuto Miyatake
Osaka University

Osaka, Japan 560–0043
miyatake@cas.cmc.osaka-u.ac.jp

Takaharu Yaguchi
Kobe University

Kobe, Japan 657–8501
yaguchi@pearl.kobe-u.ac.jp

Abstract

A neural network model of a differential equation, namely neural ODE, has enabled
the learning of continuous-time dynamical systems and probabilistic distributions
with high accuracy. The neural ODE uses the same network repeatedly during a
numerical integration. The memory consumption of the backpropagation algorithm
is proportional to the number of uses times the network size. This is true even if a
checkpointing scheme divides the computation graph into sub-graphs. Otherwise,
the adjoint method obtains a gradient by a numerical integration backward in time.
Although this method consumes memory only for a single network use, it requires
high computational cost to suppress numerical errors. This study proposes the
symplectic adjoint method, which is an adjoint method solved by a symplectic
integrator. The symplectic adjoint method obtains the exact gradient (up to rounding
error) with memory proportional to the number of uses plus the network size. The
experimental results demonstrate that the symplectic adjoint method consumes
much less memory than the naive backpropagation algorithm and checkpointing
schemes, performs faster than the adjoint method, and is more robust to rounding
errors.

1 Introduction

Deep neural networks offer remarkable methods for various tasks, such as image recognition [18]
and natural language processing [4]. These methods employ a residual architecture [21, 34], in
which the output xn+1 of the n-th operation is defined as the sum of a subroutine fn and the input
xn as xn+1 = fn(xn) + xn. The residual architecture can be regarded as a numerical integration
applied to an ordinary differential equation (ODE) [30]. Accordingly, a neural network model
of the differential equation dx/dt = f(x), namely, neural ODE, was proposed in [2]. Given an
initial condition x(0) = x as an input, the neural ODE solves an initial value problem by numerical
integration, obtaining the final value as an output y = x(T). The neural ODE can model continuous-
time dynamics such as irregularly sampled time series [24], stable dynamical systems [37, 42], and
physical phenomena associated with geometric structures [3, 13, 31]. Further, because the neural
ODE approximates a diffeomorphism [43], it can model probabilistic distributions of real-world data
by a change of variables [12, 23, 25, 45].

For an accurate integration, the neural ODE must employ a small step size and a high-order numerical
integrator composed of many internal stages. A neural network f is used at each stage of each

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Table 1: Comparison of the proposed method with existing methods

Methods Gradient Calculation Exact Checkpoints Memory Consumption Computational Cost

checkpoint backprop.

NODE [2] adjoint method no xN M L M(N+2Ñ)sL

NODE [2] backpropagation yes — — MNsL 2MNsL
baseline scheme backpropagation yes x0 M NsL 3MNsL
ACA [46] backpropagation yes {xn}N−1

n=0 MN sL 3MNsL
MALI [47]∗ backpropagation yes xN M sL 4MNsL

proposed∗∗ symplectic adjoint method yes {xn}N−1
n=0, {Xn,i}si=1 MN+s L 4MNsL

∗Available only for the asynchronous leapfrog integrator. ∗∗Available for any Runge–Kutta methods.

time step. Thus, the backpropagation algorithm consumes exorbitant memory to retain the whole
computation graph [39, 2, 10, 46]. The neural ODE employs the adjoint method to reduce memory
consumption—this method obtains a gradient by a backward integration along with the state x,
without consuming memory for retaining the computation graph over time [8, 17, 41, 44]. However,
this method incurs high computational costs to suppress numerical errors. Several previous works
employed a checkpointing scheme [10, 46, 47]. This scheme only sparsely retains the state x as
checkpoints and recalculates a computation graph from each checkpoint to obtain the gradient.
However, this scheme still consumes a significant amount of memory to retain the computation graph
between checkpoints.

To address the above limitations, this study proposes the symplectic adjoint method. The main
advantages of the proposed method are presented as follows.

Exact Gradient and Fast Computation: In discrete time, the adjoint method suffers from numerical
errors or needs a smaller step size. The proposed method uses a specially designed integrator that
obtains the exact gradient in discrete time. It works with the same step size as the forward integration
and is thus faster than the adjoint method in practice.

Minimal Memory Consumption: Excepting the adjoint method, existing methods apply the back-
propagation algorithm to the computation graph of the whole or a subset of numerical integra-
tion [10, 46, 47]. The memory consumption is proportional to the number of steps/stages in the graph
times the neural network size. Conversely, the proposed method applies the algorithm only to each
use of the neural network, and thus the memory consumption is only proportional to the number of
steps/stages plus the network size.

Robust to Rounding Error: The backpropagation algorithm accumulates the gradient from each
use of the neural network and tends to suffer from rounding errors. Conversely, the proposed method
obtains the gradient from each step as a numerical integration and is thus more robust to rounding
errors.

2 Background and Related Work

2.1 Neural Ordinary Differential Equation and Adjoint Method

We use the following notation.

M : the number of stacked neural ODE components,
L: the number of layers in a neural network,

N , Ñ : the number of time steps in the forward and backward integrations, respectively, and
s: the number of uses of a neural network f per step.

s is typically equal to the number of internal stages of a numerical integrator [17]. A numerical
integration forward in time requires a computational cost of O(MNsL). It also provides a compu-
tation graph over time steps, which is retained with a memory of O(MNsL); the backpropagation
algorithm is then applied to obtain the gradient. The total computational cost is O(2MNsL), where
we suppose the computational cost of the backpropagation algorithm is equal to that of forward
propagation. The memory consumption and computational cost are summarized in Table 1.

2

To reduce the memory consumption, the original study on the neural ODE introduced the adjoint
method [2, 8, 17, 41, 44]. This method integrates the pair of the system state x and the adjoint variable
λ backward in time. The adjoint variable λ represents the gradient ∂L∂x of some function L, and the
backward integration of the adjoint variable λ works as the backpropagation (or more generally the
reverse-mode automatic differentiation) in continuous time. The memory consumption is O(M) to
retain the final values x(T) of M neural ODE components and O(L) to obtain the gradient of a
neural network f for integrating the adjoint variable λ. The computational cost is at least doubled
because of the re-integration of the system state x backward in time. The adjoint method suffers from
numerical errors [41, 10]. To suppress the numerical errors, the backward integration often requires a
smaller step size than the forward integration (i.e., Ñ > N), leading to an increase in computation
time. Conversely, the proposed symplectic adjoint method uses a specially designed integrator, which
provides the exact gradient with the same step size as the forward integration.

2.2 Checkpointing Scheme

The checkpointing scheme has been investigated to reduce the memory consumption of neural
networks [14, 15], where intermediate states are retained sparsely as checkpoints, and a computation
graph is recomputed from each checkpoint. For example, Gruslys et al. applied this scheme to
recurrent neural networks [15]. When the initial value x(0) of each neural ODE component is
retained as a checkpoint, the initial value problem is solved again before applying the backpropagation
algorithm to obtain the gradient of the component. Then, the memory consumption is O(M) for
checkpoints and O(NsL) for the backpropagation; the memory consumption is O(M + NsL) in
total (see the baseline scheme). ANODE scheme retains each step {xn}N−1n=0 as a checkpoint with
a memory of O(MN) [10]. Form each checkpoint xn, this scheme recalculates the next step xn+1

and obtains the gradient using the backpropagation algorithm with a memory of O(sL); the memory
consumption is O(MN + sL) in total. ACA scheme improves ANODE scheme for methods with
adaptive time-stepping by discarding the computation graph to find an optimal step size. Even with
checkpoints, the memory consumption is still proportional to the number of uses s of a neural network
f per step, which is not negligible for a high-order integrator, e.g., s = 6 for the Dormand–Prince
method [7]. In this context, the proposed method is regarded as a checkpointing scheme inside a
numerical integrator. Note that previous studies did not use the notation s.

Instead of a checkpointing scheme, MALI employs an asynchronous leapfrog (ALF) integrator
after the state x is paired up with the velocity state v [47]. The ALF integrator is time-reversible,
i.e., the backward integration obtains the state x equal to that in the forward integration without
checkpoints [17]. However, the ALF integrator is a second-order integrator, implying that it requires a
small step size and a high computational cost to suppress numerical errors. Higher-order Runge–Kutta
methods cannot be used in place of the ALF integrator because they are implicit or non-time-reversible.
The ALF integrator is inapplicable to physical systems without velocity such as partial differential
equation (PDE) systems. Nonetheless, a similar approach named RevNet was proposed before in [11].
When regarding ResNet as a forward Euler method [2, 18], RevNet has an architecture regarded as
the leapfrog integrator, and it recalculates the intermediate activations in the reverse direction.

3 Adjoint Method

Consider a system
d

dt
x = f(x, t, θ), (1)

where x, t, and θ, respectively, denote the system state, an independent variable (e.g., time), and
parameters of the function f . Given an initial condition x(0) = x0, the solution x(t) is given by

x(t) = x0 +

∫ t

0

f(x(τ), τ, θ)dτ . (2)

The solution x(t) is evaluated at the terminal t = T by a function L as L(x(T)). Our main interest is
in obtaining the gradients of L(x(T)) with respect to the initial condition x0 and the parameters θ.

Now, we introduce the adjoint method [2, 8, 17, 41, 44]. We first focus on the initial condition x0 and
omit the parameters θ. The adjoint method is based on the variational variable δ(t) and the adjoint

3

variable λ(t). The variational and adjoint variables respectively follow the variational system and
adjoint system as follows.

d

dt
δ(t) =

∂f

∂x
(x(t), t)δ(t) for δ(0) = I,

d

dt
λ(t) = −∂f

∂x
(x, t)>λ(t) for λ(T) = λT . (3)

The variational variable δ(t) represents the Jacobian ∂x(t)
∂x0

of the state x(t) with respect to the initial
condition x0; the detailed derivation is summarized in Appendix A.
Remark 1. The quantity λ>δ is time-invariant, i.e., λ(t)>δ(t) = λ(0)>δ(0).

The proofs of most Remarks and Theorems in this paper are summarized in Appendix B.

Remark 2. The adjoint variable λ(t) represents the gradient (∂L(x(T))
∂x(t))> if the final condition λT

of the adjoint variable λ is set to (∂L(x(T))
∂x(T))>.

This is because of the chain rule. Thus, the backward integration of the adjoint variable λ(t) works
as reverse-mode automatic differentiation. The adjoint method has been used for data assimilation,
where the initial condition x0 is optimized by a gradient-based method. For system identification (i.e.,
parameter adjustment), one can consider the parameters θ as a part of the augmented state x̃ = [x θ]>

of the system
d

dt
x̃ = f̃(x̃, t), f̃(x̃, t) =

[
f(x, t, θ)

0

]
, x̃(0) =

[
x0
θ

]
. (4)

The variational and adjoint variables are augmented in the same way. Hereafter, we let x denote the
state or augmented state without loss of generality. See Appendix C for details.

According to the original implementation of the neural ODE [2], the final value x(T) of the system
state x is retained after forward integration, and the pair of the system state x and the adjoint variable
λ is integrated backward in time to obtain the gradients. The right-hand sides of the main system in
Eq. (1) and the adjoint system in Eq. (3) are obtained by the forward and backward propagations of
the neural network f , respectively. Therefore, the computational cost of the adjoint method is twice
that of the ordinary backpropagation algorithm.

After a numerical integrator discretizes the time, Remark 1 does not hold, and thus the adjoint
variable λ(t) is not equal to the exact gradient [10, 41]. Moreover, in general, the numerical
integration backward in time is not consistent with that forward in time. Although a small step size
(i.e., a small tolerance) suppresses numerical errors, it also leads to a longer computation time. These
facts provide the motivation to obtain the exact gradient with a small memory, in the present study.

4 Symplectic Adjoint Method

4.1 Runge–Kutta Method

We first discretize the main system in Eq. (1). Let tn, hn, and xn denote the n-th time step, step size,
and state, respectively, where hn = tn+1 − tn. Previous studies employed one of the Runge–Kutta
methods, generally expressed as

xn+1 = xn + hn

s∑
i=1

bikn,i,

kn,i := f(Xn,i, tn + cihn),

Xn,i := xn + hn

s∑
j=1

ai,jkn,j .

(5)

The coefficients ai,j , bi, and ci are summarized as the Butcher tableau [16, 17, 41]. If ai,j = 0
for j ≥ i, the intermediate state Xn,i is calculable from i = 1 to i = s sequentially; then, the
Runge–Kutta method is considered explicit. Runge–Kutta methods are not time-reversible in general,
i.e., the numerical integration backward in time is not consistent with that forward in time.
Remark 3 (Bochev and Scovel [1], Hairer et al. [16]). When the system in Eq. (1) is discretized
by the Runge–Kutta method in Eq. (5), the variational system in Eq. (3) is discretized by the same
Runge–Kutta method.

Therefore, it is not necessary to solve the variational variable δ(t) separately.

4

4.2 Symplectic Runge–Kutta Method for Adjoint System

We assume bi 6= 0 for i = 1, . . . , s. We suppose the adjoint system to be solved by another
Runge–Kutta method with the same step size as that used for the system state x, expressed as

λn+1 = λn + hn

s∑
i=1

Biln,i,

ln,i := −∂f
∂x

(Xn,i, tn + Cihn)>Λn,i,

Λn,i := λn + hn

s∑
j=1

Ai,j ln,j .

(6)

The final condition λN is set to (∂L(xN)
∂xN

)>. Because the time evolutions of the variational variable δ
and the adjoint variable λ are expressible by two equations, the combined system is considered as a
partitioned system. A combination of two Runge–Kutta methods for solving a partitioned system
is called a partitioned Runge–Kutta method, where Ci = ci for i = 1, . . . , s. We introduce the
following condition for a partitioned Runge–Kutta method.
Condition 1. biAi,j + Bjaj,i − biBj = 0 for i, j = 1, . . . , s, and Bi = bi 6= 0 and Ci = ci for
i = 1, . . . , s.
Theorem 1 (Sanz-Serna [41]). The partitioned Runge–Kutta method in Eqs. (5) and (6) conserves a
bilinear quantity S(δ, λ) if the continuous-time system conserves the quantity S(δ, λ) and Condition
1 holds.

Because the bilinear quantity S (including λ>δ) is conserved, the adjoint system solved by the
Runge–Kutta method in Eq. (6) under Condition 1 provides the exact gradient as the adjoint variable
λn = (∂L(xN)

∂xn
)>. The Dormand–Prince method, one of the most popular Runge–Kutta methods, has

b2 = 0 [7]. For such methods, the Runge–Kutta method under Condition 1 in Eq. (6) is generalized
as

λn+1 = λn + hn

s∑
i=1

b̃iln,i,

ln,i := −∂f
∂x

(Xn,i, tn + cihn)>Λn,i,

Λn,i :=

{
λn + hn

∑s
j=1 b̃j

(
1− aj,i

bi

)
ln,j if i 6∈ I0

−
∑s
j=1 b̃jaj,iln,j if i ∈ I0,

(7)

where

b̃i =

{
bi if i 6∈ I0
hn if i ∈ I0,

I0 = {i|i = 1, . . . , s, bi = 0}. (8)

Note that this numerical integrator is no longer a Runge–Kutta method and is an alternative expression
for the “fancy” integrator proposed in [41].
Theorem 2. The combination of the integrators in Eqs. (5) and (7) conserves a bilinear quantity
S(δ, λ) if the continuous-time system conserves the quantity S(δ, λ).
Remark 4. The Runge–Kutta method in Eq. (6) under Condition 1 and the numerical integrator in
Eq. (7) are explicit backward in time if the Runge–Kutta method in Eq. (5) is explicit forward in time.

We emphasize that Theorems 1 and 2 hold for any ODE systems even if the systems have disconti-
nuity [19], stochasticity [29], or physics constraints [13]. This is because the Theorems are not the
properties of a system but of Runge–Kutta methods.

A partitioned Runge–Kutta method that satisfies Condition 1 is symplectic [17, 16]. It is known that,
when a symplectic integrator is applied to a Hamiltonian system using a fixed step size, it conserves a
modified Hamiltonian, which is an approximation to the system energy of the Hamiltonian system.
The bilinear quantity S is associated with the symplectic structure but not with a Hamiltonian.
Regardless of the step size, a symplectic integrator conserves the symplectic structure and thereby
conserves the bilinear quantity S. Hence, we named this method the symplectic adjoint method. For
integrators other than Runge–Kutta methods, one can design the integrator for the adjoint system so
that the pair of integrators is symplectic (see [32] for example).

5

Algorithm 1 Forward Integration
Input: x0
Output: xN ,{xn}N−1

n=0

1: for n = 0 to N − 1 do
2: Retain xn as a checkpoint

According to Eq. (5)
3: for i = 1 to s do
4: Get Xn,i using xn and kn,j for j < i
5: Get kn,i using Xn,i

6: end for
7: Get xn+1 using xn and kn,i

8: end for

Algorithm 2 Backward Integration
Input: xN ,{xn}N−1

n=0

Output: λ0

1: for n = N − 1 to 0 do
2: Load checkpoint xn

According to Eq. (5)
3: for i = 1 to s do
4: Get Xn,i using xn and kn,j for j < i
5: Get kn,i using Xn,i.
6: Retain Xn,i as a checkpoint
7: end for

According to Eq. (7)
8: for i = s to 1 do
9: Get Λn,i using λn+1 and ln,j for j > i

10: Load checkpoint Xn,i

11: Get ln,i using Λn,i and Xn,i.
12: Discard checkpoint Xn,i

13: end for
14: Get λn using λn+1 and ln,i

15: Discard checkpoint xn
16: end for

4.3 Proposed Implementation

The theories given in the last section were mainly
introduced for the numerical analysis in [41]. Be-
cause the original expression includes recalcula-
tions of intermediate variables, we propose the al-
ternative expression in Eq. (7) to reduce the com-
putational cost. The discretized adjoint system in
Eq. (7) depends on the vector–Jacobian product (VJP) Λ> ∂f∂x . To obtain it, the computation graph
from the input Xn,i to the output f(Xn,i, tn + cihn) is required. When the computation graph in the
forward integration is entirely retained, the memory consumption and computational cost are of the
same orders as those for the naive backpropagation algorithm. To reduce the memory consumption,
we propose the following strategy as summarized in Algorithms 1 and 2.

At the forward integration of a neural ODE component, the pairs of system states xn and time points
tn at time steps n = 0, . . . , N − 1 are retained with a memory of O(N) as checkpoints, and all
computation graphs are discarded, as shown in Algorithm 1. For M neural ODE components, the
memory for checkpoints is O(MN). The backward integration is summarized in Algorithm 2. The
below steps are repeated from n = N − 1 to n = 0. From the checkpoint xn, the intermediate
states Xn,i for s stages are obtained following the Runge–Kutta method in Eq. (5) and retained
as checkpoints with a memory of O(s), while all computation graphs are discarded. Then, the
adjoint system is integrated from n + 1 to n using Eq. (7). Because the computation graph of the
neural network f in line 5 is discarded, it is recalculated and the VJP λ> ∂f∂x is obtained using the
backpropagation algorithm one-by-one in line 11, where only a single use of the neural network
is recalculated at a time. This is why the memory consumption is proportional to the number of
checkpoints MN + s plus the neural network size L. By contrast, existing methods apply the
backpropagation algorithm to the computation graph of a single step composed of s stages or
multiple steps. The memory consumption is proportional to the number of uses of the neural network
between two checkpoints (s at least) times the neural network size L, in addition to the memory for
checkpoints (see Table 1). Due to the recalculation, the computational cost of the proposed strategy
is O(4MNsL), whereas those of the adjoint method [2] and ACA [46] are O(M(N + 2Ñ)sL) and
O(3MNsL), respectively. However, the increase in the computation time is much less than that
expected theoretically because of other bottlenecks (as demonstrated later).

5 Experiments

We evaluated the performance of the proposed symplectic adjoint method and existing methods using
PyTorch 1.7.1 [35]. We implemented the proposed symplectic adjoint method by extending the
adjoint method implemented in the package torchdiffeq 0.1.1 [2]. We re-implemented ACA [46]
because the interfaces of the official implementation is incompatible with torchdiffeq. In practice,
the number of checkpoints for an integration can be varied; we implemented a baseline scheme
that retains only a single checkpoint per neural ODE component. The source code is available at
https://github.com/tksmatsubara/symplectic-adjoint-method.

6

https://github.com/tksmatsubara/symplectic-adjoint-method

Table 2: Results obtained for continuous normalizing flows.

MINIBOONE (M = 1) GAS (M = 5) POWER (M = 5)

NLL mem. time NLL mem. time NLL mem. time

adjoint method [2] 10.59±0.17 170 0.74 -10.53±0.25 24 4.82 -0.31±0.01 8.1 6.33
backpropagation [2] 10.54±0.18 4436 0.91 -9.53±0.42 4479 12.00 -0.24±0.05 1710.9 10.64
baseline scheme 10.54±0.18 4457 1.10 -9.53±0.42 1858 5.48 -0.24±0.05 515.2 4.37
ACA [46] 10.57±0.30 306 0.77 -10.65±0.45 73 3.98 -0.31±0.02 29.5 5.08

proposed 10.49±0.11 95 0.84 -10.89±0.11 20 4.39 -0.31±0.02 9.2 5.73

HEPMASS (M = 10) BSDS300 (M = 2) MNIST (M = 6)

NLL mem. time NLL mem. time NLL mem. time

adjoint method [2] 16.49±0.25 40 4.19 -152.04±0.09 577 11.70 0.918±0.011 1086 10.12
backpropagation [2] 17.03±0.22 5254 11.82 — — — — — —
baseline scheme 17.03±0.22 1102 4.40 — — — — — —
ACA [46] 16.41±0.39 88 3.67 -151.27±0.47 757 6.97 0.919±0.003 4332 7.94

proposed 16.48±0.20 35 4.15 -151.17±0.15 283 8.07 0.917±0.002 1079 9.42
Negative log-likelihoods (NLL), peak memory consumption [MiB], and computation time per iteration [s/itr].
See Table A2 in Appendix for standard deviations.

5.1 Continuous Normalizing Flow

Experimental Settings: We evaluated the proposed symplectic adjoint method on training con-
tinuous normalizing flows [12]. A normalizing flow is a neural network that approximates
a bijective map g and obtains the exact likelihood of a sample u by the change of variables
log p(u) = log p(z) + log |det ∂g(u)∂u |, where z = g(u) and p(z) denote the corresponding la-
tent variable and its prior, respectively [5, 6, 38]. A continuous normalizing flow is a normalizing flow
whose map g is modeled by stacked neural ODE components, in particular, u = x(0) and z = x(T)
for the case with M = 1. The log-determinant of the Jacobian is obtained by a numerical integration
together with the system state x as log |det ∂g(u)∂u | = −

∫ T
0

Tr(∂f∂x (x(t), t)dt. The trace operation
Tr is approximated by the Hutchinson estimator [22]. We adopted the experimental settings of the
continuous normalizing flow, FFJORD1 [12], unless stated otherwise.

We examined five real tabular datasets, namely, MiniBooNE, GAS, POWER, HEPMASS, and
BSDS300 datasets [33]. The network architectures were the same as those that achieved the best
results in the original experiments; the number of neural ODE components M varied across datasets.
We employed the Dormand–Prince integrator, which is a fifth-order Runge–Kutta method with
adaptive time-stepping, composed of seven stages [7]. Note that the number of function evaluations
per step is s = 6 because the last stage is reused as the first stage of the next step. We set the absolute
and relative tolerances to atol = 10−8 and rtol = 10−6, respectively. The neural networks were
trained using the Adam optimizer [27] with a learning rate of 10−3. We used a batch-size of 1000
for all datasets to put a mini-batch into a single NVIDIA GeForce RTX 2080Ti GPU with 11 GB of
memory, while the original experiments employed a batch-size of 10 000 for the latter three datasets
on multiple GPUs. When using multiple GPUs, bottlenecks such as data transfer across GPUs may
affect performance, and a fair comparison becomes difficult. Nonetheless, the naive backpropagation
algorithm and baseline scheme consumed the entire memory for BSDS300 dataset.

We also examined the MNIST dataset [28] using a single NVIDIA RTX A6000 GPU with 48 GB of
memory. Following the original study, we employed the multi-scale architecture and set the tolerance
to atol = rtol = 10−5. We set the learning rate to 10−3 and then reduced it to 10−4 at the 250th
epoch. While the original experiments used a batch-size of 900, we set the batch-size to 200 following
the official code1. The naive backpropagation algorithm and baseline scheme consumed the entire
memory.

Performance: The medians ± standard deviations of three runs are summarized in Table 2. In
many cases, all methods achieved negative log-likelihoods (NLLs) with no significant difference

1https://github.com/rtqichen/ffjord (MIT License)

7

https://github.com/rtqichen/ffjord

because all but the adjoint method provide the exact gradients up to rounding error, and the adjoint
method with a small tolerance provides a sufficiently accurate gradient. The naive backpropagation
algorithm and baseline scheme obtained slightly worse results on the GAS, POWER, and HEPMASS
datasets. Due to adaptive time-stepping, the numerical integrator sometimes makes the step size much
smaller, and the backpropagation algorithm over time steps suffered from rounding errors. Conversely,
ACA and the proposed symplectic adjoint method applied the backpropagation algorithm separately
to a subset of the integration, thereby becoming more robust to rounding errors (see Appendix D.1
for details).

After the training procedure, we obtained the peak memory consumption during additional training
iterations (mem. [MiB]), from which we subtracted the memory consumption before training (i.e.,
occupied by the model parameters, loaded data, etc.). The memory consumption still includes the
optimizer’s states and the intermediate results of the multiply–accumulate operation. The results
roughly agree with the theoretical orders shown in Table 1 (see also Table A2 for standard deviations).
The symplectic adjoint method consumed much smaller memory than the naive backpropagation
algorithm and the checkpointing schemes. Owing to the optimized implementation, the symplectic
adjoint method consumed smaller memory than the adjoint method in some cases (see Appendix D.2).

On the other hand, the computation time per iteration (time [s/itr]) during the additional training
iterations does not agree with the theoretical orders. First, the adjoint method was slower in many
cases, especially for the BSDS300 and MNIST datasets. For obtaining the gradients, the adjoint
method integrates the adjoint variable λ, whose size is equal to the sum of the sizes of the parameters
θ and the system state x. With more parameters, the probability that at least one parameter does not
satisfy the tolerance value is increased. An accurate backward integration requires a much smaller
step size than the forward integration (i.e., Ñ much greater than N), leading to a longer computation
time. Second, the naive backpropagation algorithm and baseline scheme were slower than that
expected theoretically, in many cases. A method with high memory consumption may have to wait for
a retained computation graph to be loaded or memory to be freed, leading to an additional bottleneck.
The symplectic adjoint method is free from the above bottlenecks and performs faster in practice; it
was faster than the adjoint method for all but MiniBooNE dataset.

The symplectic adjoint method is superior (or at least competitive) to the adjoint method, naive
backpropagation, and baseline scheme in terms of both memory consumption and computation time.
Between the proposed symplectic adjoint method and ACA, a trade-off exists between memory
consumption and computation time.

0

1

2

ti
m

e
[s

/
it

r] adjoint method

proposed

10−9 10−7 10−5 10−3

tolerance (atol)

10

15

N
L

L

Figure 1: With different tolerances.

Robustness to Tolerance: The adjoint method provides
gradients with numerical errors. To evaluate the robustness
against tolerance, we employed MiniBooNE dataset and
varied the absolute tolerance atol while maintaining the rel-
ative tolerance as rtol = 102×atol. During the training, we
obtained the computation time per iteration, as summarized
in the upper panel of Fig. 1. The computation time reduced
as the tolerance increased. After training, we obtained the
NLLs with atol = 10−8, as summarized in the bottom panel
of Fig. 1. The adjoint method performed well only with
atol < 10−4. With atol = 10−4, the numerical error in
the backward integration was non-negligible, and the per-
formance degraded. With atol > 10−4, the adjoint method
destabilized. The symplectic adjoint method performed well
even with atol = 10−4. Even with 10−4 < atol < 10−2, it
performed to a certain level, while the numerical error in the forward integration was non-negligible.
Because of the exact gradient, the symplectic adjoint method is robust to a large tolerance compared
with the adjoint method, and thus potentially works much faster with an appropriate tolerance.

Different Runge–Kutta Methods: The Runge–Kutta family includes various integrators charac-
terized by the Butcher tableau [16, 17, 41], such as the Heun–Euler method (a.k.a. adaptive Heun),
Bogacki–Shampine method (a.k.a. bosh3), fifth-order Dormand–Prince method (a.k.a. dopri5), and
eighth-order Dormand–Prince method (a.k.a. dopri8). These methods have the orders of p = 2, 3, 5,
and 8 using s = 2, 3, 6, and 12 function evaluations, respectively. We examined these methods using

8

Table 3: Results obtained for GAS dataset with different Runge–Kutta methods.

p = 2, s = 2 p = 3, s = 3 p = 5, s = 6 p = 8, s = 12

mem. time mem. time mem. time mem. time

adjoint method [2] 21±00 247.47±07.52 22±0 18.32±0.88 24±000 5.34±0.31 28±000 9.77±0.81
backpropagation [2] — — — — 4433±255 11.85±1.10 — —
baseline scheme — — — — 1858±228 5.82±0.28 4108±576 22.76±3.70
ACA [46] 607±30 232.90±13.81 69±2 17.72±1.38 73±000 4.15±0.21 138±000 9.36±0.55

proposed 589±14 262.99±05.19 43±2 18.59±0.75 20±000 4.78±0.32 21±000 11.41±0.23

Peak memory consumption [MiB], and computation time per iteration [s/itr].

GAS dataset, and the results are summarized in Table 3. The naive backpropagation algorithm and
baseline scheme consumed the entire memory in some cases, as denoted by dashes. We omit the
NLLs because all methods used the same tolerance and achieved the same NLLs.

Compared to ACA, the symplectic adjoint method suppresses the memory consumption more
significantly with a higher-order method (i.e., more function evaluations s), as the theory suggests
in Table 1. With the Heun–Euler method, all methods were extremely slow, and all but the adjoint
method consumed larger memory. A lower-order method has to use an extremely small step size to
satisfy the tolerance, thereby increasing the number of steps N , computation time, and memory for
checkpoints. This result indicates the limitations of methods that depend on lower-order integrators,
such as MALI [47]. With the eighth-order Dormand–Prince method, the adjoint method performs
relatively faster. This is because the backward integration easily satisfies the tolerance with a
higher-order method (i.e., Ñ ' N). Nonetheless, in terms of computation time, the fifth-order
Dormand–Prince method is the best choice, for which the symplectic adjoint method greatly reduces
the memory consumption and performs faster than all but ACA.

103

104

m
em

or
y

[M
iB

]

adjoint method

baseline scheme

proposed

backprop.

ACA

101 102 103 104

#steps (MN)

101

103

ti
m

e
[s

/
it

r]

Figure 2: Different number of steps.

Memory for Checkpoints: To evaluate the memory
consumption with varying numbers of checkpoints, we
used the fifth-order Dormand–Prince method and varied
the number of steps N for MNIST by manually varying
the step size. We summarized the results in Fig. 2 on
a log-log scale. Note that, with the adaptive stepping,
FFJORD needs approximately MN = 200 steps for
MNIST and fewer steps for other datasets. Because we
set Ñ = N , but Ñ > N in practice, the adjoint method
is expected to require a longer computation time.

The memory consumption roughly follows the theoret-
ical orders summarized in Table 1. The adjoint method
needs a memory of O(L) for the backpropagation, and
the symplectic adjoint method needs an additional mem-
ory ofO(MN+s) for checkpoints. Until the number of
steps MN exceeds a thousand, the memory for check-
points is negligible compared to that for the backprop-
agation. Compared to the symplectic adjoint method,
ACA needs a memory of O(sL) for the backpropagation
over s stages. The increase in memory is significant until the number of steps MN reaches ten
thousand. For a stiff (non-smooth) ODE for which a numerical integrator needs thousands of steps,
one can employ a higher-order integrator such as the eighth-order Dormand–Prince method and
suppress the number of steps. For a stiffer ODE, implicit integrators are commonly used, which
are out of the scope of this study and the related works in Table 1. Therefore, we conclude that
the symplectic adjoint method needs the memory at the same level as the adjoint method and much
smaller than others in practical ranges.

A possible alternative to the proposed implementation in Algorithms 1 and 2 retains all intermediate
states Xn,i during the forward integration. Its computational cost and memory consumption are
O(3MNsL) and O(MNs+ L), respectively. The memory for checkpoints can be non-negligible
with a practical number of steps.

9

Table 4: Results obtained for continuous-time physical systems.

KdV Equation Cahn–Hilliard System

MSE (×10−3) mem. time MSE (×10−6) mem. time

adjoint method [2] 1.61±3.23 93.7±0.0 276±16 5.58±1.67 93.7±0.0 942±24
backpropagation [2] 1.61±3.40 693.9±0.0 105±04 4.68±1.89 3047.1±0.0 425±13
ACA [46] 1.61±3.40 647.8±0.0 137±05 5.82±2.33 648.0±0.0 484±13

proposed 1.61±4.00 79.8±0.0 162±06 5.47±1.46 80.3±0.0 568±22

Mean-squared errors (MSEs) in long-term predictions, peak memory consumption [MiB],
and computation time per iteration [ms/itr].

5.2 Continuous-Time Dynamical System

Experimental Settings: We evaluated the symplectic adjoint method on learning continuous-time
dynamical systems [13, 31, 40]. Many physical phenomena can be modeled using the gradient of
system energyH as dx/dt = G∇H(x), whereG is a coefficient matrix that determines the behaviors
of the energy [9]. We followed the experimental settings of HNN++, provided in [31]2. A neural
network composed of one convolution layer and two fully connected layers approximated the energy
function H and learned the time series by interpolating two successive samples. The deterministic
convolution algorithm was enabled (see Appendix D.3 for discussion). We employed two physical
systems described by PDEs, namely the Korteweg–De Vries (KdV) equation and the Cahn–Hilliard
system. We used a batch-size of 100 to put a mini-batch into a single NVIDIA TITAN V GPU instead
of the original batch-size of 200. Moreover, we used the eighth-order Dormand–Prince method [17],
composed of 13 stages, to emphasize the efficiency of the proposed method. We omitted the baseline
scheme because of M = 1. We evaluated the performance using mean squared errors (MSEs) in the
system energy for long-term predictions.

Performance: The medians ± standard deviations of 15 runs are summarized in Table 4. Due to
the accumulated error in the numerical integration, the MSEs had large variances, but all methods
obtained similar MSEs. ACA consumed much more memory than the symplectic adjoint method
because of the large number of stages; the symplectic adjoint method is more beneficial for physical
simulations, which often require extremely higher-order methods. Due to the severe nonlinearity, the
adjoint method had to employ a small step size and thus performed slower than others (i.e., Ñ > N).

6 Conclusion

We proposed the symplectic adjoint method, which solves the adjoint system by a symplectic
integrator with appropriate checkpoints and thereby provides the exact gradient. It only applies the
backpropagation algorithm to each use of the neural network, and thus consumes memory much less
than the backpropagation algorithm and the checkpointing schemes. Its memory consumption is
competitive to that of the adjoint method because the memory consumed by checkpoints is negligible
in most cases. The symplectic adjoint method provides the exact gradient with the same step size
as that used for the forward integration. Therefore, in practice, it performs faster than the adjoint
method, which requires a small step size to suppress numerical errors.

As shown in the experiments, the best integrator and checkpointing scheme may depend on the target
system and computational resources. For example, Kim et al. [26] has demonstrated that quadrature
methods can reduce the computation cost of the adjoint system for a stiff equation in exchange for
the additional memory consumption. Practical packages provide many integrators and can choose the
best ones [20, 36]. In the future, we will provide the proposed symplectic adjoint method as a part of
such packages for appropriate systems.

Acknowledgments and Disclosure of Funding

This study was partially supported by JST CREST (JPMJCR1914), JST PRESTO (JPMJPR21C7),
and JSPS KAKENHI (19K20344).

2https://github.com/tksmatsubara/discrete-autograd (MIT License)

10

https://github.com/tksmatsubara/discrete-autograd

References
[1] Bochev, P. B. and Scovel, C. (1994). On quadratic invariants and symplectic structure. BIT Numerical

Mathematics, 34(3):337–345.

[2] Chen, T. Q., Rubanova, Y., Bettencourt, J., Duvenaud, D., Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and
Duvenaud, D. (2018). Neural Ordinary Differential Equations. In Advances in Neural Information Processing
Systems (NeurIPS).

[3] Chen, Z., Zhang, J., Arjovsky, M., and Bottou, L. (2020). Symplectic Recurrent Neural Networks. In
International Conference on Learning Representations (ICLR).

[4] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. arXiv.

[5] Dinh, L., Krueger, D., and Bengio, Y. (2014). NICE: Non-linear Independent Components Estimation. In
Workshop on International Conference on Learning Representations.

[6] Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using Real NVP. In International
Conference on Learning Representations (ICLR).

[7] Dormand, J. R. and Prince, P. J. (1986). A reconsideration of some embedded Runge-Kutta formulae.
Journal of Computational and Applied Mathematics, 15(2):203–211.

[8] Errico, R. M. (1997). What Is an Adjoint Model? Bulletin of the American Meteorological Society,
78(11):2577–2591.

[9] Furihata, D. and Matsuo, T. (2010). Discrete Variational Derivative Method: A Structure-Preserving
Numerical Method for Partial Differential Equations. Chapman and Hall/CRC.

[10] Gholami, A., Keutzer, K., and Biros, G. (2019). ANODE: Unconditionally accurate memory-efficient
gradients for neural ODEs. In International Joint Conference on Artificial Intelligence (IJCAI).

[11] Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B. (2017). The Reversible Residual Network:
Backpropagation Without Storing Activations. In Advances in Neural Information Processing Systems
(NIPS).

[12] Grathwohl, W., Chen, R. T. Q., Bettencourt, J., Sutskever, I., and Duvenaud, D. (2018). FFJORD: Free-
form Continuous Dynamics for Scalable Reversible Generative Models. In International Conference on
Learning Representations (ICLR).

[13] Greydanus, S., Dzamba, M., and Yosinski, J. (2019). Hamiltonian Neural Networks. In Advances in Neural
Information Processing Systems (NeurIPS).

[14] Griewank, A. and Walther, A. (2000). Algorithm 799: Revolve: An implementation of checkpointing for
the reverse or adjoint mode of computational differentiation. ACM Transactions on Mathematical Software,
26(1):19–45.

[15] Gruslys, A., Munos, R., Danihelka, I., Lanctot, M., and Graves, A. (2016). Memory-efficient backpropaga-
tion through time. Advances in Neural Information Processing Systems (NIPS).

[16] Hairer, E., Lubich, C., and Wanner, G. (2006). Geometric Numerical Integration: Structure-Preserving
Algorithms for Ordinary Differential Equations, volume 31 of Springer Series in Computational Mathematics.
Springer-Verlag, Berlin/Heidelberg.

[17] Hairer, E., Nørsett, S. P., and Wanner, G. (1993). Solving Ordinary Differential Equations I: Nonstiff
Problems, volume 8 of Springer Series in Computational Mathematics. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[18] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recognition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[19] Herrera, C., Krach, F., and Teichmann, J. (2020). Neural Jump Ordinary Differential Equations: Consistent
Continuous-Time Prediction and Filtering. In International Conference on Learning Representations (ICLR).

[20] Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E., and Woodward,
C. S. (2005). SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Transactions
on Mathematical Software, 31(3):363–396.

11

[21] Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8):1735–
1780.

[22] Hutchinson, M. (1990). A stochastic estimator of the trace of the influence matrix for laplacian smoothing
splines. Communications in Statistics - Simulation and Computation, 19(2):433–450.

[23] Jiang, C. M., Huang, J., Tagliasacchi, A., and Guibas, L. (2020). ShapeFlow: Learnable Deformations
Among 3D Shapes. In Advances in Neural Information Processing Systems (NeurIPS).

[24] Kidger, P., Morrill, J., Foster, J., and Lyons, T. (2020). Neural Controlled Differential Equations for
Irregular Time Series. In Advances in Neural Information Processing Systems (NeurIPS).

[25] Kim, H., Lee, H., Kang, W. H., Cheon, S. J., Choi, B. J., and Kim, N. S. (2020). WaveNODE: A Continuous
Normalizing Flow for Speech Synthesis. In ICML2020 Workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models.

[26] Kim, S., Ji, W., Deng, S., Ma, Y., and Rackauckas, C. (2021). Stiff Neural Ordinary Differential Equations.
arXiv.

[27] Kingma, D. P. and Ba, J. (2015). Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations (ICLR).

[28] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, volume 86, pages 2278–2323.

[29] Li, X., Wong, T.-K. L., Chen, R. T. Q., and Duvenaud, D. (2020). Scalable Gradients for Stochastic
Differential Equations. In Artificial Intelligence and Statistics (AISTATS).

[30] Lu, Y., Zhong, A., Li, Q., and Dong, B. (2018). Beyond finite layer neural networks: Bridging deep
architectures and numerical differential equations. In International Conference on Machine Learning (ICML).

[31] Matsubara, T., Ishikawa, A., and Yaguchi, T. (2020). Deep Energy-Based Modeling of Discrete-Time
Physics. In Advances in Neural Information Processing Systems (NeurIPS).

[32] Matsuda, T. and Miyatake, Y. (2021). Generalization of partitioned Runge–Kutta methods for adjoint
systems. Journal of Computational and Applied Mathematics, 388:113308.

[33] Papamakarios, G., Pavlakou, T., and Murray, I. (2017). Masked Autoregressive Flow for Density Estimation.
In Advances in Neural Information Processing Systems (NIPS).

[34] Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training Recurrent Neural Networks.
In International Conference on Machine Learning (ICML).

[35] Paszke, A., Chanan, G., Lin, Z., Gross, S., Yang, E., Antiga, L., and Devito, Z. (2017). Automatic
differentiation in PyTorch. In Autodiff Workshop on Advances in Neural Information Processing Systems.

[36] Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skinner, D., Ramadhan, A.,
and Edelman, A. (2020). Universal Differential Equations for Scientific Machine Learning. arXiv.

[37] Rana, M. A., Li, A., Fox, D., Boots, B., Ramos, F., and Ratliff, N. (2020). Euclideanizing Flows:
Diffeomorphic Reduction for Learning Stable Dynamical Systems. In Conference on Learning for Dynamics
and Control (L4DC).

[38] Rezende, D. J. and Mohamed, S. (2015). Variational Inference with Normalizing Flows. In International
Conference on Machine Learning (ICML).

[39] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating
errors. Nature, 323(6088):533–536.

[40] Saemundsson, S., Terenin, A., Hofmann, K., Deisenroth, M. P., Sæmundsson, S., Hofmann, K., Terenin,
A., and Deisenroth, M. P. (2020). Variational Integrator Networks for Physically Meaningful Embeddings. In
Artificial Intelligence and Statistics (AISTATS).

[41] Sanz-Serna, J. M. (2016). Symplectic Runge-Kutta schemes for adjoint equations, automatic differentiation,
optimal control, and more. SIAM Review, 58(1):3–33.

[42] Takeishi, N. and Kawahara, Y. (2020). Learning dynamics models with stable invariant sets. AAAI
Conference on Artificial Intelligence (AAAI).

12

[43] Teshima, T., Tojo, K., Ikeda, M., Ishikawa, I., and Oono, K. (2020). Universal Approximation Property
of Neural Ordinary Differential Equations. In NeurIPS Workshop on Differential Geometry meets Deep
Learning (DiffGeo4DL).

[44] Wang, Q. (2013). Forward and adjoint sensitivity computation of chaotic dynamical systems. Journal of
Computational Physics, 235:1–13.

[45] Yang, G., Huang, X., Hao, Z., Liu, M. Y., Belongie, S., and Hariharan, B. (2019). Pointflow: 3D point
cloud generation with continuous normalizing flows. International Conference on Computer Vision (ICCV).

[46] Zhuang, J., Dvornek, N., Li, X., Tatikonda, S., Papademetris, X., and Duncan, J. (2020). Adaptive
Checkpoint Adjoint Method for Gradient Estimation in Neural ODE. In International Conference on Machine
Learning (ICML).

[47] Zhuang, J., Dvornek, N. C., Tatikonda, S., and Duncan, J. S. (2021). MALI: A memory efficient and
reverse accurate integrator for Neural ODEs. In International Conference on Learning Representations
(ICLR).

13

