
Recurrent neural networks: vanishing and exploding
gradients are not the end of the story

Nicolas Zucchet
Department of Computer Science

ETH Zürich
nzucchet@ethz.ch

Antonio Orvieto
ELLIS Institute Tübingen

MPI for Intelligent Systems
Tübingen AI Center

antonio@tue.ellis.eu

Abstract

Recurrent neural networks (RNNs) notoriously struggle to learn long-term mem-
ories, primarily due to vanishing and exploding gradients. The recent success of
deep state-space models (SSMs), a subclass of RNNs, to overcome such difficulties
challenges our theoretical understanding. In this paper, we delve into the optimiza-
tion challenges of RNNs and discover that, as the memory of a network increases,
changes in its parameters result in increasingly large output variations, making
gradient-based learning highly sensitive, even without exploding gradients. Our
analysis further reveals the importance of the element-wise recurrence design pat-
tern combined with careful parametrizations in mitigating this effect. This feature
is present in deep SSMs, as well as in other architectures, such as LSTMs. Overall,
our insights provide a new explanation for some of the difficulties in gradient-based
learning of RNNs and why some architectures perform better than others.

Recurrent neural networks [RNNs; 1, 2] have long been the canonical architecture for modeling
temporal data [3, 4]. However, they are notoriously difficult to train on long sequences, as error
signals flowing backward in time tend to either vanish or explode [5–8]. Attention mechanisms [9],
as featured in transformers [10], address these issues by enabling direct token-to-token communi-
cation, considerably simplifying signal propagation across long time intervals. Yet, their superior
performance comes with increased computational and memory costs, due to their quadratic scaling in
the sequence length. This limitation has motivated significant research aimed at making transformers
more efficient [11–15].

A promising line of research in this direction involves a new type of linear recurrent networks known
as deep state-space models [SSMs; 16–22]. These models trade expressivity for faster training speed,
and they have been shown to be particularly effective at capturing long-range dependencies. In
this paper, we wonder whether this effectiveness can be solely attributed to their ability to avoid
vanishing and exploding gradients. The simplicity of such models presents an opportunity for in-depth
theoretical analysis. We focus on signal propagation within these models.

After reviewing classical results on recurrent neural networks in Section 1, we demonstrate that
they can suffer from an understudied problem: as the recurrent network encodes longer memories,
the network’s activity becomes increasingly sensitive to changes in its parameters, even when its
dynamics remains stable. In Section 3, we then show that SSMs, as well as other architectures
such as LSTMs, are well equipped to mitigate this issue. We then analyze a simple teacher-student
task (Section 4). This task already reveals the remarkable complexity underlying the learning of
linear recurrent networks and enables us to verify empirically our theory. Finally, we discuss how
our findings extend to more realistic scenarios (Section 5), both in terms of architectures and data.
Overall, our paper provides theoretical insights into the training of recurrent neural networks, an area
where such analysis is rare. While vanishing and exploding gradients are well-known challenges, our
results demonstrate that this is not the end of the story - there exists an additional layer of complexity
beyond them.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

1 Vanishing and exploding gradients

Let us first introduce the notations we will be using throughout the rest of the paper. We consider
a recurrent neural network with hidden state ht, update function fθ parametrized by θ, and input
sequence (xt). The average performance of the network is measured by a loss L. We have

ht+1 = fθ(ht, xt+1) and L = E

[
T∑

t=1

Lt(ht)

]
. (1)

The gradient of the instantaneous loss Lt with respect to the parameters θ is then equal to

dLt

dθ
=

∂Lt

∂ht

dht

dθ
=

∂Lt

∂ht

∑
t′≤t

dht

dht′

∂fθ
∂θ

(ht′−1, xt′) (2)

In the equation above, we used ∂ to denote partial derivatives and d for total derivatives. Using this
notation enables us to distinguish between ∂htLt, which corresponds to the error backpropagated from
the current loss term to the hidden state through the readout function, and dht

L, which accumulates
the errors that are backpropagated through the future hidden state values. In particular, ∂ht

L = ∂ht
Lt

and dht
L = ∂ht

Lt(ht) +
∑

t′>t dht
Lt′(ht′). When stacking several recurrent layers on top of each

other, ∂ht
L corresponds to the current error being backpropagated to the hidden state ht through the

hierarchy of the network and dht
L to future error signals backpropagated through the recurrence.

Early work [5] highlighted the difficulty for gradient descent to make recurrent neural networks
remember past inputs that will later be useful to produce a desired behavior. This is due to the fact
that error signals flowing backward in time tend to either explode or vanish. The key quantity is

dht

dht′
=

t−1∏
i=t′

∂hi+1

∂hi
=

t−1∏
i=t′

∂fθ
∂h

(hi, xi+1). (3)

One can remark that this quantity exponentially converges to 0 when the spectral radius of the
Jacobian ∂hfθ is upper bounded by a constant strictly smaller than 1, and can exponentially explode
if there exists some component bigger than 1. The error signal at time t backpropagated to time
t′ behaves similarly, as dht′Lt = ∂ht

Lt dh′
t
ht. Gradient-based learning of long-term memories is

thus difficult: the contribution of past hidden states to the current loss becomes either negligible or
predominant as the time span considered increases.

Since then, the analysis has been refined [6–8] and the development of recurrent architectures has
mostly been driven by the desire to solve this pathological issue. Most famously, the LSTM [3]
unit, and later on the GRU [23], solve this problem by using memory neurons that facilitate direct
information storage and retrieval, and thus facilitate error backpropagation. Other approaches to
solving this problem, to name a few, involve gradient clipping [24, 8], activity normalization [25–
27], careful weight initialization [28, 29] or enforcing architectural constraints such as hierarchical
processing [30, 31], orthogonal weight matrices [32–34] and oscillations [35–37].

2 The curse of memory

According to common deep learning wisdom, it is often believed that solving the vanishing and
exploding gradients problem enables recurrent neural networks to learn long-term dependencies. We
challenge this view and question: is solving those issues really enough to ensure well-behaved loss
landscapes? We answer negatively by showing that gradients can explode as the memories of the
network are kept for longer, even when the dynamics of the network remains stable.

2.1 Intuition

Recurrent neural networks have something special: the very same update function fθ is applied over
and over. Therefore, modifying the parameters θ will not only influence one update, as changing the
weights of a given layer in a feedforward neural network would, but all of them. As the memory of
the network gets longer, the hidden states keep a trace of the effects of more updates. Hidden states
thus become increasingly sensitive to parameter changes. This is the curse of memory. We borrow

2

A B C

0 0.99 0.9999

103

107

1011

1015

2n
d

m
om

en
t

variance

0.0
0.9
0.99
0.999
1.0

0.0 0.5 1.0

10 6

10 4

10 2

100

102

Lo
ss

0 *
10 5

10 3

10 1

101 *
0.99
0.98
0.96
0.92
0.84
0.68
0.36

Figure 1: Optimization of recurrent neural networks gets harder as their memory increases.
A. Evolution of the second moment of dλht as a function of the recurrent parameter λ and of the
input x auto-correlation decay rate ρ, when ht+1 = λht + xt. As the memory of the network
increases (λ → 1), ht becomes more sensitive to changes in λ, particularly as the elements in the
input sequence are more correlated (ρ→ 1). The explosion of dλht is faster than the one of ht, as
highlighted with the grey line obtained for ρ = 1. See Section 2.2 for more detail. B, C. Illustration
of the phenomenon on the toy one-dimensional teacher-student task of Section 4.1, in which the
teacher is parametrized by a real number λ∗ and the student by a complex number λ. In B, λ varies on
the real axis, and it varies on the circle of radius λ∗ parametrized by θ in C. The loss becomes sharper
as information is kept longer in memory, making gradient-based optimization nearly impossible.

the term from [38, 39], although we use it in a different context, and note that Martens and Sutskever
[40] hypothesized that such a phenomenon could arise in RNNs and hinder their optimization.

Let us formalize our intuition by considering the sensitivity of the hidden state ht on the parameters
θ:

dht

dθ
=
∑
t′≤t

dht

dht′

∂fθ
∂θ

(ht′−1, xt′). (4)

When information stays in the network’s memory for longer, the number of non-negligible Jacobian
dht′ht terms increases. As a result, the magnitude of this sensitivity increases when the network
encodes longer-term dependencies, and learning θ becomes trickier. It is crucial to observe that this
phenomenon arises even when exploding gradients are removed from the picture by constraining the
eigenvalues of the recurrent Jacobian to be smaller than one and ensuring that the network dynamics
remains stable. The rest of this section will be dedicated to studying this behavior quantitatively.

2.2 Signal propagation in linear diagonal recurrent neural networks

We study how hidden state and gradient magnitudes evolve as the network encodes longer-term
dependencies. Ideally, these quantities do not vanish or explode, as it improves the conditioning of
the loss landscape [41] and eases optimization [42, 43]. We operate under the following assumptions:

a) Linear diagonal recurrent neural networks. We restrict ourselves to update functions of the
form fθ(ht, xt+1) = λ ⊙ ht + xt+1 with λ a vector of the size of ht and ⊙ the element-wise
product. For ease of exposition, we present results for real-valued λ here; see Appendix B.2 for
the complex-valued setting. While this assumption is strong, it allows us to identify some crucial
mechanisms and models like S4 [17], S5 [19] and LRUs [20] satisfy it. We later show that our
analysis can model some features of more sophisticated networks. Note that we do not consider
the input and readout mappings usually featured in recurrent layers as they are feedforward layers
and signal propagation within them is already well understood [e.g., 44, 45].

b) Infinite time horizon. We consider infinite sequences and initialize the network dynamics at
t0 = −∞. It simplifies our calculations while being a reasonable assumption when the sequences
considered are longer than the characteristic timescales of the dependencies we want to learn.

c) Wide-sense stationarity. We assume the different quantities that the network receives, which
include the inputs xt, to be wide-sense stationary (WSS). A random process Xt is said to be
WSS if its auto-correlation function is independent of time, that is, for all t ∈ Z and ∆ ∈ Z,
EX [Xt+∆Xt] =: RX(∆), where EX denotes the expectation over the data. It corresponds to
assuming that the statistics of the data are invariant to time shifts. This is a standard assump-
tion when analyzing stochastic processes [46]. It keeps our calculations concise and does not
qualitatively affect our conclusions (cf. Section 5). We discuss how to relax it in Appendix B.2.4.

3

We are now equipped to analyze signal propagation in one recurrent layer, both in the forward and
backward passes. We show that both hidden states and backpropagated errors explode as |λ| → 1.

Forward pass. Here, we are interested in understanding how the hidden state second moment
E[h2

t] evolves as a function of λ and of the input auto-correlation function Rx. After a calculation
that we defer to Appendix B.2, we obtain

E
[
h2
t

]
=

1

1− λ2

Rx(0) + 2
∑
∆≥1

λ∆Rx(∆)

. (5)

Importantly, this quantity goes to infinity as longer-term dependencies are encoded within the network,
that is |λ| → 1. Additionally, the divergence speed depends on the input data distribution: it increases
as consecutive time steps in the input distribution become more correlated (i.e., less of the Rx(∆)
terms are negligible). This behavior already highlights potential difficulties of gradient-based learning
of deep neural networks containing linear recurrent layers as the variance of neural activity can
become arbitrarily large, hindering learning abilities of deeper layers.

Backward pass. Let us first derive the gradient of the loss with respect to λ. Using the chain rule
we have dλL =

∑
t ∂ht

Ldλht. We thus seek to understand how dλht behaves. We remark that
dλht+1 = λdλht + ht so that dλht is a low pass filtered version of the hidden state, which is itself
a low pass filter version of the inputs. It therefore comes as no surprise that the second moment of
dλht diverges faster than the one of ht when |λ| → 1. More precisely, we get

E

[(
dht

dλ

)2
]
=

1 + λ2

(1− λ2)3

Rx(0) + 2
∑
∆≥1

λ∆Rx(∆)

+
2

(1− λ2)2

∑
∆≥1

∆λ∆Rx(∆)

. (6)

We plot the exact behavior of this quantity when the auto-correlation of x satisfies Rx(∆) = ρ|∆|

on Figure 1 and refer the interested reader to Appendix B.2 for a derivation of Equation 6. More
generally, the hidden state of the network, and thus its final output, becomes increasingly sensitive to
changes in recurrent parameters as the network reaches the edge of dynamical stability (|λ| → 1).

The last quantity we need to consider is the error that is backpropagated to the inputs x of the recurrent
layer. It can be observed that the backward pass is dual to the forward pass in the sense that it is a
recurrent process that receives backpropagated errors ∂htL and it runs in reverse time:

dL

dxt
=

dL

dht

∂ht

∂xt
=

dL

dht+1

∂ht+1

∂ht
+

∂L

∂ht
= λ

dL

dht+1
+

∂L

∂ht
, (7)

in which we made use of ∂xtht = 1. It follows that the analysis we did for the forward pass also holds
here. Crucially, this implies that the explosion behavior will be most significant for the recurrent
parameters rather than for potential input or readout weights.

2.3 Extending the analysis to the non diagonal case

We now generalize our results to fully connected linear recurrent neural networks of the form
ht+1 = Aht + xt. For the sake of the analysis, we assume that A is complex diagonalizable, that is
there exists a complex-valued matrix P and a complex-valued vector λ such that A = Pdiag(λ)P−1.
Note that this occurs with probability one under random initialization of A [20]. In this case,

ht = Phdiag
t with hdiag

t+1 = diag(λ)hdiag
t + P−1xt+1 (8)

and
dht

dA
=

∂ht

∂P

∂P

∂A
+

∂ht

∂hdiag
t

dhdiag
t

dλ

∂λ

∂A
+

∂ht

∂hdiag
t

dhdiag
t

dP−1

∂P−1

∂A
. (9)

From the analysis above, we know that the dominating term in the limit |λ| → 1 among ∂Pht, dλht

and d−1
P ht is dλht, as P and P−1 act as readout and input weights. Given that all other terms do not

directly depend on the magnitude of λ, we have that dAht ≃ ∂hdiag
t

ht dλh
diag
t ∂Aλ; cf. Appendix

B.2.3 for formal statements. This has two consequences: First, the sensitivity of ht on A will explode

4

as longer memories are encoded and this directly comes from the eigenvalues of A. Second, as each
entry of A typically impacts all eigenvalues of the matrix, the explosion behavior will be distributed
across all entries, whereas it was concentrated on the eigenvalues for the diagonal case. We will
later observe that this has significant practical consequences and partly explains why fully connected
linear RNNs are difficult to train. As a side note, we remark that enforcing the matrix A to be
orthogonal solves vanishing and exploding gradient issues but these weights may remain sensitive to
learn because of the curse of memory.

3 Mitigating the curse of memory

We have discussed the sensitivity of recurrent networks to parameter updates. Given this problem,
how can it be mitigated? We show that recurrent networks with diagonal connectivity are particularly
well suited for this purpose. Besides enabling control over the Jacobian and avoiding exploding
gradients, they facilitate the mitigation of the curse of memory. We additionally highlight that deep
state-space models and gated RNNs inherently incorporate such mechanisms.

3.1 A solution: normalization and reparametrization

Both forward and backward passes explode as the network encodes longer memories. When ht+1 =
λht + xt+1, we argue that it is relatively straightforward to mitigate this effect. We aim to keep
E[h2

t], E[(dλht)
2] and E[(dxtht)

2] independent of λ, similar to initialization schemes that maintain
the magnitude of neural activity constant in deep networks [44, 45], regardless of the layer width [42,
47, 43].

0.0
0.9
0.99
0.999
1.0

A

B
0 0.99 0.9999

102

105

108

2n
d

m
om

en
t

without

0 0.99 0.9999

10 1

102

105

2n
d

m
om

en
t

without
and exp

Figure 2: Illustration of the effects of
normalization and reparametrization.
It can effectively control the magnitude
of A. E[h2

t] and B. E[(dλht)
2] over all

λ values when the input auto-correlation
satisfies Rx(∆) = ρ|∆| with ρ = 0,
but does not manage do to so for other
type of distributions (ρ ̸= 0). Here,
we use γ(λ) =

√
1− λ2, decouple it

from λ when differentiating, and take
λ = exp(− exp(ν)), as in [20]. The
grey line indicates the value the two
quantities take without any normaliza-
tion and reparametrization, when ρ = 1.

Input normalization. A simple way to enforce E[h2
t]

to stay constant is to introduce a scaling factor γ(λ)
applied to the inputs a neuron receives, that satisfies
γ(λ)2E[h2

t] = Θ(1). Given that the backward propagation
of output errors to inputs is dual to the forward pass, the
role of γ in the backward pass will be similar. The value γ
needs to take therefore both depends on the input distribu-
tion to normalize the forward pass, as well as on the output
error distribution to normalize the backward pass. Perfect
normalization is likely unrealistic, but some normalization
can help, as shown in Figure 2.A.

Eigenvalue reparametrization. We are now left with
keeping the gradient of the loss with respect to λ under
control. Input normalization partly reduces the memory-
induced exploding effect, but not entirely as the variance
of dλht is much larger than the one of ht (cf. Fig.1.A).
Reparametrization can close that gap. Indeed, if λ is
parametrized by ω, we have that dωht = dλhtdωλ. Choos-
ing a parameterization that is more and more granular as
λ goes to 1 thus helps in keeping the magnitude of dωht

constant. Assuming γ is independent of λ for simplicity,
achieving E[(dωht)

2] = Θ(1) requires solving the differ-
ential equation γ(λ)2λ′(ω)2E[(dλht)

2] = 1. While deriv-
ing a universal optimal parametrization is again unrealistic
due to dependency on the input distribution, reparametriza-
tion definitely helps, as shown in Figure 2.B. Figure 6
illustrates how it affects the loss landscape.

The case of complex numbers. We have not yet discussed the case λ ∈ C, relevant for SSMs such
as S4 [17]. We extend our analysis to complex-valued λ in Appendix B.3.2. Briefly, it reveals that
changes in the magnitude of λ have a similar impact as in the real case, but this similarity does not
extend to the angle. To keep the sensitivity on the angle constant, its parametrization must depend
on the magnitude of λ. However, doing so hurts learning, particularly far from optimality, as we
exemplify in Appendix B.3.2. A key implication of this analysis is that the sensitivity of the hidden
state on the angle of λ explodes as its magnitude approaches 1.

5

3.2 Several RNN architectures implicitly alleviate the curse of memory

Deep state-space models, as well as gated RNNs, feature some form of normalization and
reparametrization which help keeping signal propagation under control. We discuss how below.

Deep state-space models. Deep SSMs were originally motivated as discretizations of the dif-
ferential equation ḣ = Ah + Bx [16]. Naïve discretization of the differential equation yields
ht+1 = (Id + dtA)ht + dtBxt+1 which already provides some input normalization. More elaborate
discretization schemes, such as the zero-order hold, effectively reparametrize the A matrix, e.g. with
exp(dtA). Here, diagonalization arises from computational efficiency and simplicity reasons [18].
While such models can approximate any smooth mappings [48, 49], their expressivity remains limited
[50]. The next generation of these models, including Mamba [21], incorporates input-dependent
gates which modulate dt depending on the input xt. The theory we developed above does not strictly
apply to this setting as dt is no longer constant. However, since the recurrence Jacobian remains
diagonal, we expect the qualitative behaviors we analyzed to remain.

Gated RNNs. While the original motivation behind gated RNNs such as LSTMs [3] or GRUs [23]
largely differs from the one of SSMs, they share similar mechanisms. In these networks, the memories
stored in hidden neurons can be erased through a forget gate, and incoming inputs can selectively be
written in memory through an input gate. Mathematically, this corresponds to hidden state updates of
the form ht+1 = ft+1⊙ht+it+1⊙xt+1, with the forget ft+1 and input it+1 gates being independent
non-linear functions of xt+1 and ht. The forget gate is akin to λ and usually involves a sigmoid
non-linearity, which has a similar effect as reparametrizing λ in the backward pass. The input gate
can act as an input normalization depending on the initialization of the network or if is coupled to
the forget gate as in the GRU (ft = 1− it) [29]. Importantly, the gates here depend on the hidden
states and thus make the Jacobian ∂ht

ht+1 non diagonal. Yet, we argue that these architectures still
have a bias towards diagonality. Indeed, the contributions of the hidden state through the forget and
input gates are indirect, and they can be ignored when the weights connecting the hidden states to the
gates are small. Empirically, we find that GRUs lie in this regime at initialization, cf. Section D.2, so
that our theory accurately captures signal propagation in GRUs. We additionally confirm that signal
propagation is well behaved in gated RNNs in Section 5. In regimes in which this approximation
does not hold, studying signal propagation requires a much more sophisticated analysis than the one
we have done here [51].

4 A linear teacher-student analysis

We start our empirical analysis with a teacher-student task using linear recurrent networks [52]. This
is arguably the simplest setting in which one can train recurrent networks. Yet, as we shall see, it is
already remarkably complex and captures some of the differences between different architectures
observed in more realistic settings [20]. It additionally makes it possible to control the characteristic
time constants of the data, which is only possible with synthetic data.

Our investigation starts with the one-dimensional setting to provide an intuitive illustration of the
consequences of the curse of memory on the loss landscape. We then address the general setting
and observe that linear networks indeed suffer from the curse of memory, and that the remedies we
studied in the last section are effective. We additionally find that diagonality greatly modifies the
structure of the loss landscape and helps optimizers with adaptive learning rates to compensate for
eventual increased sensitivities.

4.1 The one-dimensional case

We first consider a student and a teacher following the one-dimensional dynamics ht+1 = λht +
xt+1, with complex-valued parameter λ for the student and λ∗ for the teacher. For simplicity,
we independently draw each xt+1 from a unit normal distribution (its autocorrelation function is
Rx(∆) = δ∆=0) and note that other input distributions do not qualitatively change the results.
The performance of the student is measured by a loss L that averages the per time-step losses
Lt :=

1
2 |ht − h∗

t |2 over the entire sequence.

6

A B

0.32 0.84 0.96 0.99

10 7

10 5

10 3

10 1

Lo
ss

RNN
LRU

RN
N

bl
oc

k
di

ag
on

al
m

or
e

ne
ur

on
s

co
m

pl
ex

nu
m

be
rs

no
rm

.

LR
U

10 5

10 4

10 3

10 2

10 1

Figure 3: LRUs are better at replicating
a teacher’s behavior than linear RNNs.
A. As the teacher encodes longer dependen-
cies (ν0 → 1), the linear RNN struggles to
reproduce it, but not the LRU. B. An ab-
lation study (ν0 = 0.99) reveals that this
gap mainly comes from having a close to
diagonal recurrent connectivity matrix. See
Section 4.2 for more detail.

This simple model already captures two key difficulties of gradient-based learning of recurrent neural
networks. In Figure 1, we plot the resulting loss landscape for different λ∗ values, when λ evolves
on the positive part of the real axis (Fig. 1.B) and when it evolves on the circle of radius |λ∗| in
the complex plane (Fig. 1.C). We restrict λs to have absolute values smaller than one: exploding
gradients are out of the picture. Still, two difficulties for gradient-based learning appear here. On one
side, vanishing gradients lead to flat loss regions that are hard to escape. On the other side, the loss
sharpens as the student encodes longer memories because of the curse of memory. As a consequence,
gradient-based optimization is extremely tedious, already in this simple example.

4.2 Diagonal connectivity simplifies optimization

We now move to the general case in which the teacher evolves according to

ht+1 = Aht +Bxt+1 and yt = Cht +Dxt. (10)

with ht ∈ Rn, xt ∈ R drawn i.i.d. fromN (0, 1), A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n and D ∈ R1×1.
Here both inputs and outputs are scalars.

Given the intuition we have developed so far, we expect fully connected linear recurrent neural
networks to struggle solving the task when the teacher encodes longer memories, not only because
of exploding gradients but also due to the curse of memory. Conversely, diagonality facilitates the
eigenvalue reparametrization needed to avoid exploding gradients and make them better behaved. We
run the following experiment to verify this intuition. We draw random teachers with hidden dimension
n = 10 and transform the complex eigenvalues of the recurrent matrix A to have magnitudes close to
a value ν0 that we control1. The larger ν0 is, the longer the memories encoded by the teacher are. We
train a linear RNN, as well as an LRU [20], with hidden dimension 64 on this task. The students are
therefore largely overparametrized. We chose the LRU architecture to represent deep SSMs due to
its simplicity. This architecture uses input normalization and an exponential reparametrization of
the eigenvalues, similar to what we analyze in Section 3. Both networks are trained using the Adam
optimizer [53] and cosine annealing schedule for 10k steps, on batches of size 128. To ensure that we
are in the infinite sequence length regime, we take the sequences to be of length 300, that is three
times longer than the characteristic time scale of the teacher. Learning rates are tuned separately for
each method and training distribution. The results, which we plot in Figure 3.A, confirm our intuition:
LRUs significantly outperform linear RNNs when long memories have to be learned, despite having
10 times fewer parameters.

Next, we wonder which design choices behind the LRU architecture are crucial to this performance
improvement. To this end, we interpolate between a linear RNN and an LRU in the following way:
First, we restrict the weight matrix of the linear RNN to a block diagonal with blocks of size 2. Each
block can represent a complex number, so the network can represent 32 complex numbers in total.
We additionally double the number of hidden neurons. Second, we change those 2× 2 blocks (and
their input and output weights) to be complex numbers. Finally, we add the γ input normalization
and the exponential parametrization to obtain the final LRU architecture. We report the results of this
experiment in Figure 3.B. Surprisingly, we find the gap comes from making the weight matrix block
diagonal (4× 4 blocks are here enough, cf. Figure 11 in the Appendix). Interestingly, this change
reduces the number of parameters the model has and slightly reduces the model expressivity. An
explanation of this behavior is therefore likely to be related to the optimization properties of those
models. We confirm this hypothesis in the next section.

1We draw each entry of A from N (0, 1/
√
n), complex diagonalize it, and apply the transformation x 7→

ν0 + (1− ν0)tanh(x) to the absolute values of the eigenvalues.

7

A B C D

A

D

B

C

D

Ei
ge

nv
al

ue
H

es
si

an
To

p
10

ei
g.

 v
ec

t.

re

re

im

A B

C

D

Bre Bⁱm Cre Cⁱm D

Bre

Bⁱm

Cre

Cⁱm

D

im

re Bre Bⁱm Cre Cⁱm Dim

A B C D

Eff
ec

tiv
e

LR
Eff

ec
tiv

e
LR 10 3

10 4

10 5

10 4

10 610 6

10 8

10 10

10 7

100

107

106

103

100
0
100

103

106

1

0

1

0 10

D

10 7

100

107

104

102

100

0
100

102

104

1

0

1

0 10 20
Index eigenvalue Index eigenvalue

20

Figure 4: Differences in learning abilities between fully connected and complex diagonal linear
RNNs are due to a better structure of the loss landscape. A, B. Hessian of the loss at optimality,
its 10 eigenvectors with greatest eigenvalues and its eigenspectra for a fully connected RNN (A) and
a complex diagonal one (B). The spectra are almost the same. However, the top eigenvectors are
concentrated on few coordinates for the complex diagonal one but not for the fully connected one. C,
D. This structure makes it possible for Adam to efficiently deal with the extra sensitivity, as shown
with the effective learning rates that it uses at the end of learning. For the fully connected one (C),
Adam uses small learning rates to compensate for the sensitivity, whereas it can use larger ones for
the complex diagonal one without hindering training stability. The horizontal grey line shows the
learning rate used, which is here 10−3.

4.3 On the importance of adaptive learning rates

So far, our results highlight the importance of having a close to diagonal recurrent connectivity matrix.
In this section, we show that this parametrization alone does not mitigate any exploding behavior but
modifies the structure of the loss landscape, making it possible for optimizers with adaptive learning
rates to compensate for these behaviors.

To demonstrate this, we consider the Hessian of the loss:

d2L

dθ2
=
∑
t

Ex

[
dht

dθ

∂2Lt

∂h2
t

dht

dθ

⊤
+

∂Lt

∂ht

d2ht

dθ2

]
. (11)

If the network can perfectly fit the target data, which is the case in the experiments above, the
second term vanishes at optimality. We plot the Hessian at optimality in Figure 4.A and B for a
standard linear recurrent network and one with complex diagonal parametrization, both with 4 hidden
neurons (ν0 = 0.99). We observe that the eigenvalue spectra are similar for the two architectures,
both exhibiting large terms that are characteristic of the curse of memory, which makes learning
with stochastic gradient descent almost impossible2. However, their structures differ. For the fully
connected linear RNN, the top eigenvectors are distributed over many coordinates, whereas they
are concentrated on a few coordinates for the complex diagonal one. This feature aids adaptive
optimization [e.g., 57]: adapting to large curvature is much easier for Adam when the pathological
directions are aligned to the canonical basis. This is what we observe in practice.

In Figure 4.C and D, we compare the effective learning rate used by Adam, which we compute by
providing a vector of ones to the optimizer. For the dense linear RNN, the adaptive learning rates
cannot compensate for the intricate coupling between components, resulting in small learning rates
overall. Conversely, the sensitive directions of complex diagonal RNNs are concentrated on few

2The gradient Lipschitz constant L of the loss equals the maximum Hessian eigenvalue [54]. This quantity
sets a bound 2/L for the maximum globally stable learning rate. While convergence might happen in a subspace,
it is generally aligned with the top Hessian eigenspace near the solution [55, 56].

8

lay. 1
lay. 4

cRNN

LRU

cRNN

GRU
lay. 1
lay. 4

lay. 1
lay. 4

rest
no norm

rest

layer
norm

rest
GRU

ff
GRU

A B C

0 0.9 0.99

10 5

10 1

103

107

2n
d

m
om

en
t

LRU

rest

0 0.9 0.99

101

103

105

2n
d

m
om

en
t

0 0.9 0.99

10 6

10 1

104

109

2n
d

m
om

en
t

angle
magn.

Figure 5: Signal propagation in deep recurrent networks at initialization is consistent with
our theory. A. E[h2

t] after the first and the fourth layer, as a function of the exponential decay
parameter ν0, for complex-valued diagonal RNN (cRNN), LRU, and GRU recurrent layers. The
input normalization present in the LRU and in the GRU effectively keeps neural activity constant
across ν0 values. B. Comparison of the evolution of the loss gradient E[(dθL)2] for the different
recurrent layers and specific groups of parameters. For the complex diagonal RNN, the gradients
of all parameters explode and in particular the ones of the recurrent parameters, whereas only the
ones of the angle of λ explode for the LRU, consistently with the theory. Error signal propagation
in GRUs is under control: the magnitude of the gradients is independent of ν0. The GRU-specific
parameters exhibit smaller gradients than the feedforward (ff) ones. C. Layer normalization keeps
the overall gradient magnitude under control in cRNNs. Batch normalization yields similar results.

parameters, which adaptive learning rates can compensate for. This leads to more targeted and overall
larger learning rates, significantly speeding up learning. As a side note, the complex eigenvalues of
the teacher come in conjugate pairs. However, during training, the complex values of the complex
RNN are not conjugates of each other, thereby increasing Hessian diagonality. Finally, performing
this analysis for the LRU, we find that the Hessian spectrum is similar to the diagonal setting and
that the exploding dimensions of the Hessian are almost exclusively due to the angle parameter,
consistently with our theoretical analysis; see Figure 9.A and C. The loss landscape for S4 model
[17] can be qualitatively similar to the complex diagonal RNN or to the LRU, depending on which
regime it is in; see Figure 9.B and D.

Before concluding this section, we investigate whether certain eigenvalue distributions can break
the diagonal structure of the Hessian, thereby complicating optimization and increasing the need
for eigenvalue reparametrization. In Appendix C.2, we provide a theoretical quantification of the
intuitive result that more concentrated eigenvalues lead to less diagonal Hessian. Consequently,
the performance gap between complex-valued diagonal networks and LRUs widens, although the
former still greatly outperform their fully-connected counterpart (see Figure 10). An important
corollary is that increasing the number of hidden neurons breaks the diagonal structure of the loss
landscape, thus reducing the effectiveness of optimizers with adaptive learning rates in mitigating the
curse of memory. This observation may explain why Orvieto et al. [20] reported a more substantial
performance improvement from eigenvalue reparametrization than what we observe in our study (cf.
block diagonal vs. LRU in Figure 3.B).

5 Signal propagation in deep recurrent networks at initialization

The ultimate goal of our theoretical quest is to gain insights into the training of practical recurrent
network architectures. Specifically, we aim to verify whether the trends established theoretically
and in controlled experiments hold in practice, by studying signal propagation at initialization on a
realistic next-token prediction natural language processing task.

To that matter, we provide sentences as input to deep recurrent networks that contain four blocks and
use a next-token prediction loss to measure their performance. Each block consists of a recurrent
layer followed by a feedforward gated linear unit [58]. By default, there are no normalization layers
in this architecture. More details can be found in Appendix D.1. We empirically study how E[h2

t]
and E[(dθL)2] evolve when the characteristic time scale of the recurrent layers, controlled through
ν0, increases. We compare three different recurrent layers: a complex-valued diagonal RNN (cRNN),
a LRU and a GRU initialized with the Chrono initialization [29].

The results are consistent with our theory. Complex-valued RNNs suffer from the curse of memory
and recurrent parameters grow faster to infinity than the rest as ν0 goes to 1. Perhaps more surprisingly,

9

a finer grain analysis reveals that the gradient magnitude is independent of the layer; see Figure 13.
LRUs almost perfectly mitigate exploding behaviors in the forward pass (Figure 5.A) as well as
in the backward pass (Figure 5.B), except for the angle parameter, consistently with our previous
analysis. We also wonder whether layer normalization can replace the input normalization and
reparametrization of the LRU. We find that it mitigates the memory-induced gradient explosion at
the macroscopic level (Figure 5.C), but it likely kills any learning signal for the smallest eigenvalues
[20]. Finally, the GRU manages to keep the gradient magnitude constant over different characteristic
time constants, consistently with the intuition we developed in Section 3.2. Preliminary experiments
revealed that same trends also hold for LSTMs.

The results presented above for the GRU align qualitatively with the intuition developed throughout
the paper. We now consider how well our theory can quantitatively explain this behavior. The primary
difference between our simple model and GRUs is that the λ values, referred to as forget gates
in the GRU terminology, depend on both inputs and hidden states, and are therefore not constant.
Interestingly, we find that GRUs almost behave like the diagonal linear RNNs we have focused on in
this paper, particularly for slowly decaying recurrent neurons with high ν0 values (see Appendix D.2).
Consequently, applying our theory as if this context-dependency does not exist only introduces minor
approximation errors, which we confirm empirically in Appendix D.3. Given the similarity of the
Chrono initialization to those used in modern architectures like Mamba [21] and Hawk [22], we
expect our theory to also serve as a good proxy for studying signal propagation in these models at
initialization.

6 Conclusion

Vanishing and exploding gradients complicate the learning of recurrent networks, but solving these
problems is not enough. We uncovered yet another difficulty of training such networks, which is
rooted in their iterative nature and arises at the edge of dynamical stability. Reparametrizations
and adaptive learning rates can effectively mitigate this behavior in practice, and diagonalizing the
recurrence simplifies both. Our analysis additionally reveals the complexity of learning the angle of
complex eigenvalues, which may explain why complex numbers were not found to be useful in most
recent state-space model architectures [21, 22].

A side finding of our study is the symbiosis between independent modules, which are here neurons
and can be more generally small heads, with adaptive learning rate optimizers in linear recurrent
networks. Such a design pattern has promising properties: it facilitates online learning [59] and
compositional generalization [60], allows for high level of parallelization [22], and matches, at a high
level, the modular organization of the cortex in cortical columns [61]. Understanding how to increase
the expressivity of small linear modules while keeping their great optimization properties constitutes
a promising avenue for future research.

Limitations

The theory we introduced, with its focus on signal propagation, only addresses the training dynamics
of recurrent neural networks. Consequently, it does not provide insights into other important questions
such as generalization abilities or memory capacities of these networks. The main assumption
underlying this analysis is that the recurrence is both diagonal and linear. While this approach offers
valuable insights, it can only approximate signal propagation in more sophisticated architectures.
Given the simplicity of the analytical tools employed, there is little hope that this framework can be
extended to more general settings without significant modifications.

Acknowledgments

The authors thank Robert Meier, João Sacramento, Guillaume Lajoie, Ezekiel Williams, Razvan
Pascanu, Imanol Schlag and Bobby He for insightful discussions. Nicolas Zucchet was supported by
an ETH Research Grant (ETH-23 21-1) and Antonio Orvieto acknowledges the financial support of
the Hector Foundation.

10

References
[1] David E Rumelhart, Paul Smolensky, James L McClelland, and G Hinton. Sequential thought processes in

PDP models. Parallel distributed processing: explorations in the microstructures of cognition, 2, 1986.

[2] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2), 1990.

[3] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8), 1997.

[4] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems, 2014.

[5] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Technische
Universität München, 1991.

[6] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2), 1994.

[7] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jurgen Schmidhuber. Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies. In A field guide to dynamical recurrent networks.
IEEE, 2001.

[8] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International Conference on Machine Learning, 2013.

[9] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning
to align and translate. In International Conference on Learning Representations, 2015.

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, 2017.

[11] Quentin Fournier, Gaétan Marceau Caron, and Daniel Aloise. A practical survey on faster and lighter
transformers. ACM Computing Surveys, 55(14s), 2023.

[12] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are RNNs:
fast autoregressive Transformers with linear attention. In International Conference on Machine Learning,
2020.

[13] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: fast and memory-
efficient exact attention with IO-awareness. arXiv preprint arXiv:2205.14135, 2022.

[14] William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: scaling to trillion parameter models
with simple and efficient sparsity. Journal of Machine Learning Research, 2022.

[15] Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong, Ruiping
Wang, Jilong Xue, and Furu Wei. The era of 1-bit LLMs: all Large Language Models are in 1.58 bits.
arXiv preprint arXiv:2402.17764, 2024.

[16] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Combining
recurrent, convolutional, and continuous-time models with linear state-space layers. In Advances in Neural
Information Processing Systems, 2021.

[17] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state
spaces. In International Conference on Learning Representations, 2022.

[18] Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured states
spaces. In Advances in Neural Information Processing Systems, volume 35, 2022.

[19] Jimmy T.H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers for sequence
modeling. In International Conference on Learning Representations, 2023.

[20] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Çağlar Gülçehre, Razvan Pascanu, and
Soham De. Resurrecting recurrent neural networks for long sequences. In International Conference on
Machine Learning, 2023.

[21] Albert Gu and Tri Dao. Mamba: linear-time sequence modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

11

[22] Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert Gu,
Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Desjardins, Arnaud Doucet,
David Budden, Yee Whye Teh, Razvan Pascanu, Nando De Freitas, and Caglar Gulcehre. Griffin: mixing
gated linear recurrences with local attention for efficient language models. arXiv preprint arXiv:2402.19427,
2024.

[23] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of
neural machine translation: encoder-decoder approaches. In Proceedings of SSST-8, Eighth Workshop on
Syntax, Semantics and Structure in Statistical Translation, 2014.

[24] Tomas Mikolov. Statistical language models based on neural networks. PhD thesis, Brno University of
Technology, 2012.

[25] Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, 2015.

[26] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. In Neural Information
Processing Systems - Deep Learning Symposium, 2016.

[27] Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, and Aaron Courville. Recurrent batch
normalization. In International Conference on Learning Representations, 2017.

[28] Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. A simple way to initialize recurrent networks of
rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

[29] Corentin Tallec and Yann Ollivier. Can recurrent neural networks warp time? In International Conference
on Learning Representations, 2018.

[30] Salah El Hihi and Yoshua Bengio. Hierarchical recurrent neural networks for long-term dependencies. In
Neural Information Processing Systems, 1995.

[31] Asier Mujika, Florian Meier, and Angelika Steger. Fast-slow recurrent neural networks. In Neural
Information Processing Systems, 2017.

[32] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International Conference on Machine Learning, 2016.

[33] Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal. On orthogonality and learning
recurrent networks with long term dependencies. In International Conference on Machine Learning, 2017.

[34] Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks with scaled Cayley
transform. In International Conference on Machine Learning, 2018.

[35] T. Konstantin Rusch and Siddhartha Mishra. Coupled oscillatory recurrent neural network (coRNN): an
accurate and (gradient) stable architecture for learning long time dependencies. In International Conference
on Learning Representations, 2021.

[36] T Anderson Keller and Max Welling. Neural wave machines: learning spatiotemporally structured
representations with locally coupled oscillatory recurrent neural networks. In International Conference on
Machine Learning, 2023.

[37] Il Memming Park, Ábel Ságodi, and Piotr Aleksander Sokół. Persistent learning signals and working
memory without continuous attractors. arXiv preprint arXiv:2308.12585, 2023.

[38] Zhong Li, Jiequn Han, Weinan E, and Qianxiao Li. Approximation and optimization theory for linear
continuous-time recurrent neural networks. Journal of Machine Learning Research, 23(42), 2022.

[39] Shida Wang, Zhong Li, and Qianxiao Li. Inverse approximation theory for nonlinear recurrent neural
networks. In International Conference on Learning Representations, 2024.

[40] James Martens and Ilya Sutskever. Learning recurrent neural networks with hessian-free optimization. In
International Conference on Machine Learning, 2011.

[41] Lorenzo Noci, Alexandru Meterez, Thomas Hofmann, and Antonio Orvieto. Why do learning rates
transfer? Reconciling optimization and scaling limits for deep learning. arXiv preprint arXiv:2402.17457,
2024.

[42] Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

12

[43] Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning. arXiv preprint
arXiv:2310.17813, 2023.

[44] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Artificial Intelligence and Statistics, 2010.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. In International Conference on Computer Vision,
2015.

[46] Grigorios A. Pavliotis. Stochastic processes and applications, volume 60 of Texts in Applied Mathematics.
2014.

[47] Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor Programs V: Tuning Large Neural Networks via
Zero-Shot Hyperparameter Transfer. arXiv preprint arXiv:2203.03466, 2022.

[48] S. Boyd and L. Chua. Fading memory and the problem of approximating nonlinear operators with Volterra
series. IEEE Transactions on Circuits and Systems, 32(11), 1985.

[49] Antonio Orvieto, Soham De, Çağlar Gülçehre, Razvan Pascanu, and Samuel L. Smith. Universality of
linear recurrences followed by non-linear projections: finite-width guarantees and benefits of complex
eigenvalues. In International Conference on Machine Learning, 2024.

[50] William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models. In
International Conference on Machine Learning, 2024.

[51] Minmin Chen, Jeffrey Pennington, and Samuel S. Schoenholz. Dynamical isometry and a mean field
theory of RNNs: gating enables signal propagation in recurrent neural networks. 2018.

[52] Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynamical systems. Journal
of Machine Learning Research, 19(29), 2018.

[53] Diederik P. Kingma and Jimmy Ba. Adam: a method for stochastic optimization. In International
Conference on Learning Representations, 2015.

[54] Yurii Nesterov and others. Lectures on convex optimization, volume 137. Springer, 2018.

[55] Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on neural
networks typically occurs at the edge of stability. In International Conference on Learning Representations,
2020.

[56] Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

[57] Yan Pan and Yuanzhi Li. Toward understanding why Adam converges faster than SGD for transformers.
arXiv preprint arXiv:2306.00204, 2023.

[58] Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International Conference on Machine Learning, 2017.

[59] Nicolas Zucchet, Robert Meier, Simon Schug, Asier Mujika, and João Sacramento. Online learning of
long-range dependencies. In Advances in Neural Information Processing Systems, 2023.

[60] Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and
Bernhard Schölkopf. Recurrent independent mechanisms. In International Conference on Learning
Representations, 2021.

[61] V B Mountcastle. The columnar organization of the neocortex. Brain, 120(4), 1997.

[62] Christoph Boeddeker, Patrick Hanebrink, Lukas Drude, Jahn Heymann, and Reinhold Haeb-Umbach. On
the computation of complex-valued gradients with application to statistically optimum beamforming. arXiv
preprint arXiv:1701.00392, 2017.

[63] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: compos-
able transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

13

http://github.com/google/jax

[64] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas Steiner,
and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2023. URL http://github.
com/google/flax.

[65] Nicolas Zucchet, Robert Meier, and Simon Schug. Minimal LRU, 2023. URL https://github.com/
NicolasZucchet/minimal-LRU.

[66] Wikimedia Foundation. Wikimedia Downloads. URL https://dumps.wikimedia.org.

[67] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Jill Burstein, Christy Doran, and Thamar
Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 2019.

14

http://github.com/google/flax
http://github.com/google/flax
https://github.com/NicolasZucchet/minimal-LRU
https://github.com/NicolasZucchet/minimal-LRU
https://dumps.wikimedia.org

Appendix

Table of contents
A Definition of the recurrent networks we use 16

A.1 Linear recurrent neural network . 16
A.2 Complex-valued RNN and linear recurrent unit (LRU) 16
A.3 S4 . 16
A.4 GRU . 17

B Theory 18
B.1 Useful lemmas . 18
B.2 The curse of memory: signal propagation analysis 18

B.2.1 Forward pass . 19
B.2.2 Backward pass . 19
B.2.3 Extension to fully-connected networks 21
B.2.4 On the wide-sense stationarity assumption 22

B.3 Impact of input normalization and parametrization 22
B.3.1 Real case . 22
B.3.2 On the difficulty of parametrizing complex numbers 23

C Linear teacher-student task 24
C.1 1D setting . 24

C.1.1 Calculation of the loss . 24
C.1.2 Optimal normalization and reparametrization with uncorrelated inputs . . 24
C.1.3 Visualization of the effect of input normalization and reparametrization . 26
C.1.4 Learning the angle is difficult in practice: an example 26

C.2 Structure of the Hessian at optimality . 27
C.2.1 Hessian for complex-valued variables 28
C.2.2 Hessian with respect to the recurrent eigenvalues 29
C.2.3 Hessian for different parametrizations 30

C.3 Experimental details . 32
C.4 Additional analyses . 32

C.4.1 Structure of the loss landscape for LRUs and S4 32
C.4.2 Concentrating eigenvalue distributions 34
C.4.3 Impact of the number of heads in fully connected linear recurrent networks 35

D Signal propagation in randomly initialized deep recurrent neural networks 36
D.1 Experimental setup . 36
D.2 Can gated RNNs be considered diagonal? . 37
D.3 Does our theory apply to gated RNNs? . 39

15

A Definition of the recurrent networks we use

In this section, we rigorously define all the architectures we use in the main text and in the appendix,
as well as precisely describe how we initialize them.

A.1 Linear recurrent neural network

Let us start by introducing the linear recurrent neural network we are using. It satisfies

h0 = 0 (12)
ht+1 = Aht +Bxt+1 (13)

yt = Cht +Dxt (14)

with xt ∈ Rdin , ht ∈ Rn, yt ∈ Rdout , A ∈ Rn×n, B ∈ Rn×din , C ∈ Rdout×n and D ∈ Rdout×din .
We draw the entries of B, C and D from independent truncated normal distributions with fan_in
scaling. We draw each entry of A from N (0, 1/

√
n) independently and then apply the following

postprocessing to it: First we complex diagonalize A, which we can do almost surely. Note λ its
eigenvalues. We then transform them according to

λ← (ν0 + (1− ν0) tanh(|λ|)) exp
(
i
angle(λ)

π
θ0

)
(15)

with ν0 and θ0 two scalars that we control. This transformation has several benefits: we are guaranteed
that the magnitude of λ is within [ν0, 1] (and in [ν0, ν0+(1− ν0) tanh(1)] in the limit n→∞ as the
eigenvalues of A stay within the unit circle in that limit), and conjugate pairs of eigenvalues remain
conjugate. This last point ensures that the resulting matrix remains real without having to change the
eigenvectors. When we split the connectivity matrix A into several independent blocks, we initialize
each block separately with the scheme described above.

A.2 Complex-valued RNN and linear recurrent unit (LRU)

Both architectures have recurrence of the form

h0 = 0 (16)
ht+1 = λ⊙ ht + γ ⊙Bxt (17)

yt = Re[Cht +Dxt] (18)

with ⊙ the element-wise product, xt ∈ Rdin , ht ∈ Cn, yt ∈ Rdout , λ ∈ Cn, B ∈ Cn×din , γ ∈ Rn,
C ∈ Cdout×n and D ∈ Rdout×din .

For the complex-valued linear RNN, we take

λ = λre + iλim (19)
γ = 1 (20)

so that it can be considered as parametrizing the diagonalized version of the linear RNN.

For the LRU [20], we take

λ = exp(− exp(ων)) exp(i exp(ωθ)) (21)
γ = exp(ωγ). (22)

For both architectures, we use the LRU initialization so that λ is uniformly distributed on the ring
between the circles of radii ν0 and 1, with absolute angle restricted to be below θ0. For the LRU, we
initialize γ to

√
1− |λ|2.

A.3 S4

We consider a slightly modified version of S4 here:

∆ = softplus(ω∆) (23)

ht+1 = exp
(
(ωre

A + iωim
A)∆

)
⊙ ht +∆⊙Bxt+1 (24)

yt = Re[Cht +Dxt] (25)

16

with xt ∈ Rdin , ht ∈ Cn, yt ∈ Rdout , ωre
A + iωim

A ∈ Cn, B ∈ Cn×din , ω∆ ∈ Rn, C ∈ Cdout×n and
D ∈ Rdout×din . The main difference with the standard architecture is that we do not consider any
state expansion so that there is no parameter sharing. The makes this architecture closer to the linear
RNN architecture we mostly focus on in this paper, while keeping the kind of parametrization it uses.
In the same spirit, we do not couple the input and the readout matrices in any way.

The initialization we use also differs from existing ones as we initialize ∆ to 1 and
exp

(
∆(ωre

A + iωim
A)
)

in the same way as λ in the LRU.

A.4 GRU

The GRU version we use is the following:

rt+1 = σ(Wrxxt+1 +Wrhht + br) (26)
ft+1 = σ(Wfxx+Wfhht + bf) (27)
nt+1 = tanh(Wnxxt+1 + bnx + r ⊙ (Wnhht + bnh)) (28)
ht+1 = ft+1 ⊙ ht + (1− ft+1)⊙ nt+1 (29)

(30)

with σ the sigmoid function, ht ∈ Rn, xt ∈ Rdin and all the other matrices appropriately sized.
We initialize the parameters with the Chrono initialization [29]: all parameters are initialized using
standard practice (orthogonal initialization for the weights taking h as input, Lecun initialization for
the rest, biases initialized at 0) except for bf , which is initialized as

bf ∼ log (U (Tmin, Tmax)) . (31)

Here, Tmin and Tmax denote the minimum and maximal characteristic time scale. In the experiments
of Section 5 we take

Tmin =
1

1− ν0
(32)

Tmax =
2

1− ν0
(33)

to enable the comparison with other architectures. Indeed, when ignoring the dependence of the
forget gate f on the input x and on the hidden state h, this corresponds to having f ∈

[
ν0,

1+ν0

2

]
.

17

B Theory

This section introduces all the theoretical results we directly or indirectly mention in the main text, as
well as provides a proof for them.

B.1 Useful lemmas

Most, if not all the calculations, that we will be doing in this section involves infinite sums. We state
and prove two useful lemmas to simplify later calculations.
Lemma 1. For α, β ∈ C satisfying |α| < 1 and |β| < 1, and (un)n∈Z a bounded sequence satisfying
u−n = un, we have

∑
n,m≥0

αnβnun−m =
1

1− αβ

u0 +
∑
∆≥1

(α∆ + β∆)u∆

 (34)

Proof. The proof naturally comes from separating the indices n and m in three sets: one in which
the two are equals, one in which n is larger and one in which m is larger. This gives∑

n,m≥0

αnβmun−m =
∑
n=m

αnβmun−m +
∑
n>m

αnβmun−m +
∑
n<m

αnβmun−m (35)

=
∑
n

αnβnu0 +
∑
m

αmβm
∑
∆≥1

α∆u∆ +
∑
n

αnβn
∑
∆≥1

β∆u−∆ (36)

=
∑
n

αnβn

u0 +
∑
∆≥1

(α∆ + β∆)u∆

 (37)

=
1

1− αβ

u0 +
∑
∆≥1

(α∆ + β∆)u∆

 (38)

Lemma 2. In the same conditions as Lemma 1, we have

∑
n,m≥0

nmαn−1βm−1un−m =
d

dα

d

dβ

 1

1− αβ

u0 +
∑
∆≥1

(α∆ + β∆)u∆

 (39)

Proof. This follows from remarking that

d

dα

d

dβ

 ∑
n,m≥0

αnβmun−m

 =
d

dα

 ∑
n,m≥0

mαnβm−1un−m

 (40)

=
∑

n,m≥0

nmαn−1βm−1un−m (41)

and using Lemma 1 to get the final result.

B.2 The curse of memory: signal propagation analysis

We recall the assumptions that we stated in Section 2.2:

a) Linear diagonal recurrent neural networks. We restrict ourselves to networks satisfying
ht+1 = λ⊙ ht + xt+1 with λ, ht and xt complex numbers. Without loss of generality, we focus
on the one dimensional setting. We additionally consider λs with absolute values smaller than 1.

b) Infinite time horizon. We consider infinite sequences and initialize the network dynamics at
t0 = −∞.

18

c) Wide-sense stationarity. We assume the different quantities that the network receives, which
includes the inputs xt, to be wise-sense stationary (WSS). A random process Xt is said to be
WSS if its auto-correlation function is independent of time, that is, for all t ∈ R and ∆ ∈ R,
E
[
Xt+∆X̄t

]
:= RX(∆).

B.2.1 Forward pass

Without loss of generality, we can take t = 0 given the wide-sense stationarity and infinite time
horizon assumptions. Let us first remark that we have

h0 =
∑
n≥0

λnx−n (42)

so that

E[|h0|2] =
∑

n,m≥0

λnλ̄mE [x−nx̄−m] (43)

=
∑

n,m≥0

λnλ̄mRx(n−m) (44)

=
1

1− |λ|2

Rx(0) +
∑
∆≥1

(λ̄∆ + λ∆)Rx(∆)

. (45)

We used Lemma 1 to obtain the last equality. In Section 2.2, we focused on the real case λ̄ = λ,
so this formula becomes Equation 5. If we further assume that the auto-correlation of x decreases
exponentially with decay rate ρ, that is Rx(∆) = ρ|∆|, we can further simplify the last expression:

E[|h0|2] =
1

1− |λ|2

1 +
∑
∆≥1

(λ̄∆ + λ∆)ρ∆

 (46)

=
1

1− |λ|2

(
1 +

λ̄ρ

1− λ̄ρ
+

λρ

1− λρ

)
(47)

=
1− ρ2|λ|2

|1− ρλ|2(1− |λ|2)
(48)

It follows that if the inputs are i.i.d. (ρ = 0), we have E[|h0|2] = (1− |λ|2)−1, and if the inputs are
constant equal to 1 (ρ = 1), we have E[|h0|2] = |1− λ|−2.

B.2.2 Backward pass

Differentiating the update ht+1 = λht + xt+1 with respect to λ gives

dht+1

dλ
= λ

dht

dλ
+ ht (49)

so that
dh0

dλ
=
∑
n≥0

λnh−n−1 (50)

=
∑
n≥0

λn
∑
m≥0

λmx−n−m−1 (51)

=
∑

n,m≥0

λn+mx−(n+m+1) (52)

=
∑
n≥0

nλn−1x−n−1. (53)

Note that some extra technicalities are needed to justify these equations as λ and ht are complex
valued: these formulas hold as they would in the real-valued case as ht is an holomorphic function of
λ.

19

We can now compute the variance of the sensitivity of the hidden state with respect to the parameters.

E

[∣∣∣∣dht

dλ

∣∣∣∣2
]
=
∑
n≥0

∑
m≥0

nmλn−1λ̄m−1Rx(n−m). (54)

Using Lemma 2 gives

E

[∣∣∣∣dht

dλ

∣∣∣∣2
]
=

d

dα

d

dβ

 1

1− αβ

Rx(0) +
∑
∆≥1

(α∆ + β∆)Rx(∆)

α=λ,β=λ̄

. (55)

Differentiating this quantity as a product gives

E

[∣∣∣∣dht

dλ

∣∣∣∣2
]
=

 1 + αβ

(1− αβ)3

Rx(0) +
∑
∆≥1

(α∆ + β∆)Rx(∆)

+ 0

+
α

(1− αβ)2

∑
∆≥1

∆α∆−1Rx(∆)

+
β

(1− αβ)2

∑
∆≥1

∆β∆−1Rx(∆)

α=λ,β=λ̄

, (56)

which then simplifies as

E

[∣∣∣∣dht

dλ

∣∣∣∣2
]
=

1 + |λ|2

(1− |λ|)3

Rx(0) +
∑
∆≥1

(λ∆ + λ̄∆)Rx(∆)

+

1

(1− |λ|2)2

∑
∆≥1

∆(λ∆ + λ̄∆)Rx(∆)

. (57)

Note that Equation 6 in the main text is the real-valued version of that formula.

Let us now further simplify this equation when Rx(∆) = ρ|∆|. If we use this in the differentiated
quantity before differentiating it, we get

E

[∣∣∣∣dht

dλ

∣∣∣∣2
]
=

d

dα

d

dβ

[
1

1− αβ

(
1− ρ2αβ

(1− ρα)(1− ρβ)

)]
α=λ,β=λ̄

. (58)

Calculating this quantity manually is painful. Instead, we use the following trick. Its denominator
is rather easy to compute, it is equal to (1 − αβ)3(1 − ρα)2(1 − ρβ)2. We thus multiply it to the
derivative of the function we want to compute in order to obtain a polynomial with unknown factors,
and use polynomial regression tools to derive the resulting coefficients. Massaging the obtained
expression to make it easier to compute the closed-form value of this quantity when ρ = 0 and ρ = 1,
we get

E

[∣∣∣∣dht

dλ

∣∣∣∣2
]
=

(1− ρ)(1 + |λ|2) + ρ2(1− |λ|2)3 + ρ(1− ρ)|λ|2(ρ|λ|2(1 + |λ|2)− 2λ− 2λ̄)

(1− |λ|2)3|1− ρλ|4
.

(59)
This is the quantity we plot on Figure 1.A, when λ is real-valued. When ρ = 0, this quantity becomes

E

[∣∣∣∣dht

dλ

∣∣∣∣2
]
=

1 + |λ|2

(1− |λ|2)3
, (60)

and it is equal to

E

[∣∣∣∣dht

dλ

∣∣∣∣2
]
=

1

|1− λ|4
, (61)

when ρ = 1. Additionally, it will diverge whenever |λ| → 1 when ρ < 1, and when λ → 1 when
ρ = 1.

Regarding the backpropagation of errors to the inputs, the analysis we did in the main text also holds
for complex number given that ht is an holomorphic function of xt and it thus behaves as the forward
pass once replacing the input distribution with the one of output errors ∂ht

Lt.

20

B.2.3 Extension to fully-connected networks

We now turn to the non-diagonal case. For the sake of simplicity, we assume that recurrent matrix is
complex diagonalizable and that its eigenvalues are all different. This will enable us to differentiate
the eigenvalues and the eigenvectors. We consider dynamics of the form

ht+1 = Aht + xt+1 (62)
As A is complex diagonalizable, there exists a complex-valued matrix P and a complex-valued vector
λ such that

A = Pdiag(λ)P−1 (63)

P †
:iP:i = 1 ∀i. (64)

The linear recurrent neural network considered above is equivalent to its diagonal version

hdiag
t+1 = λhdiag

t + P−1xt+1 (65)

ht = Phdiag
t . (66)

We now differentiate ht w.r.t. to A using the diagonal parametrization and obtain

dht

dA
=

∂ht

∂P

∂P

∂A
+

∂ht

∂hdiag
t

dhdiag
t

dλ

∂λ

∂A
+

∂ht

∂hdiag
t

dhdiag
t

dP−1

∂P−1

∂A
. (67)

dAP , dAP−1 and dAλ can be considered constant. Intuitively, the eigenvalues and eigenvectors
move smoothly as we restricted ourselves to the case in which eigenvalues are singular. If this is
not the case, math becomes trickier as the eigenvectors are not uniquely defined. We can study the
behavior of those quantities in more detail, following Boeddeker et al. [62]:

∂λ

∂Aij
= diag

(
P−1 ∂A

∂Aij
P

)
(68)

dP

dAij
= P

(
F ⊙

(
P−1 ∂A

∂Aij
P

))
(69)

The F introduced in the last equation is equal to

Fij :=

{
1

λj−λi
if i ̸= j

0 otherwise.
(70)

Importantly, those two quantities do not grow to infinity as the absolute value of the eigenvalues goes
to 1, which means that we can consider those derivatives to be independent of |λ| for the sake of our
analysis. Note that the previous argument assumes that eigenvalues do not collapse.

dλh
diag
t is the dominating term in dAht. We wonder which of the three different terms that appear

in dAht (Equation 67) will be the dominating one as |λ| (or λ) goes to 1. In the previous paragraph,
we have shown that the derivative of P−1, P and λ can be considered constant for the sake of our
analysis. We thus focus on the other terms.

First, we have
∂ht,l

∂Pij
= hdiag

t,i 1j=l (71)

so the magnitude of this quantity is roughly the one of hdiag
t , which corresponds to the low pass

filtering of the inputs with different λ values.

Second, we know that ∂hdiag
t

ht does not change in magnitude as λ changes, as P remains bounded.

So, for the third term of the sum, we are left to study the behavior of dP−1hdiag
t . We can show that it

evolves according to

dhdiag
t+1,k

dP−1
ij

= λi

dhdiag
t+1,k

dP−1
ij

+ xt+1,j if k = i (72)

dhdiag
t+1,k

dP−1
ij

= 0 otherwise. (73)

21

It follows that the third term in the sum also corresponds to a low pass filtering of the inputs.

Finally, we know that the second term, the one in dλh
diag
t will grow faster to infinity as it corresponds

to two consecutive low pass filters with the same λ values (c.f. calculation above). It will thus be the
dominating term in the infinite memory limit.

B.2.4 On the wide-sense stationarity assumption

In our analysis, we make the assumption that the different quantities given to the network are wide-
sense stationary, that is their statistics are invariant to a temporal shift. In practice, this assumption
will likely never be satisfied, as sequences are finite and as parts of the sequence (e.g., the beginning
of a text) can have different statistics than other parts (e.g., the end of a text).

It should be noted that the analysis we have done in the wide-sense stationary case can provide an
upper bound on the different quantity we study. Indeed, if there exists a function U such that

|E[xnx̄m]| ≤ U(|n−m|), (74)

minor modifications to our analysis enable to upper bound the different quantities we study, replacing
Rx by U .

In our experiments of Section 5, we plug the empirical covariance defined as

Rempirical
x (∆) := Ex

 1

T − |∆|+ 1

T−|∆|∑
t=0

xtxt+|∆|

 (75)

into our analytical expressions. It comes with an approximation as it averages the autocorrelation for
all positions, which are not equal when wide-sense stationarity is not met.

B.3 Impact of input normalization and parametrization

In this section, we consider a diagonal linear recurrent neural network of the form

ht+1 = λ(ω)ht + γ(λ)xt+1 (76)

with γ(λ) the input normalization factor and λ parametrized by a vector ω. Next, we study the
effect of input normalization and reparametrization, first in the real-valued setting and then in the
complex-valued one.

B.3.1 Real case

Let us start with the forward pass: as

ht =
∑
n≥0

λnγ(λ)xt−n, (77)

γ rescales the value the hidden state takes. To avoid any explosion behavior, we thus ideally want γ
to be the inverse of value of E[(ht)

2] without normalization, which we have computed in Equation 45.
The same behavior holds for the backpropagation of errors to the inputs as

dL

dxt
= γ(λ)

(
λ

dL

dxt+1
+

∂L

∂ht

)
. (78)

We now move to the impact of the parametrization. To simplify the calculation, we will ignore the
dependency of γ on λ when differentiating it. This can easily be done in automatic differentiation
software by removing this dependency from the computational graph with γ(stop_gradient(λ)). We
then have

dht

dω
=

dht

dλ

dλ

dω
(79)

and dλht which is rescaled by γ compared to the calculation we did above. As a consequence, both
the input normalization and the parametrization can help to mitigate the curse of memory.

22

B.3.2 On the difficulty of parametrizing complex numbers

We now extend the previous analysis to the complex case, and take a polar parametrization of λ:
λ(ω) = ν(ω) exp(iθ(ω)). The effect of the input normalization does not change when moving to
complex numbers. The role of the reparametrization is however a bit more subtle. As ht is an
holomorphic function of λ, we have dλ̄ht = 0 and

dht

dω
=

dht

dλ

dλ

dω
=

dht

dλ

(
1

2

dν

dω
exp(iθ) +

i

2
ν
dθ

dω
exp(iθ)

)
. (80)

It follows that

E

[∣∣∣∣dht

dω

∣∣∣∣2
]
=

1

4
E

[∣∣∣∣dht

dλ

∣∣∣∣2
] ∣∣∣∣ dνdω exp(iθ) + iν

dθ

dω
exp(iθ)

∣∣∣∣2 (81)

=
1

4
E

[∣∣∣∣dht

dλ

∣∣∣∣2
] ∣∣∣∣ dνdω + iν

dθ

dω

∣∣∣∣2 (82)

=
1

4
E

[∣∣∣∣dht

dλ

∣∣∣∣2
](

dν

dω

2

+ ν2
dθ

dω

2)
. (83)

To simplify the analysis, we will further assume that E[|dλht|2] is only a function of ν. This asumption
holds in the case of ρ = 0 and ρ = 1, c.f. Section B.2.2, but not necessarily otherwise. To ensure that
that this quantity does not depend on λ, we thus want dων2E(ν) = Θ(1) and ν2dωθ

2E(ν) = Θ(1).
The second means that the angle parametrization must depend on the value ν takes. Let us take
the ρ = 0 example to get an idea of what the ideal parametrization should be. First, we have
γ(λ) =

√
1− ν2 so that

E(ν) = γ(λ)2
1 + ν2

(1− ν2)3
=

1 + ν2

(1− ν2)2
. (84)

We are left with the differential equation ν′ = Θ(1 − ν2), which is for example solved with
ν = tanh(ων). Now let us look at the parametrization of θ. If we ignore the ν2 term for simplicity,
the approximate differential equation it needs to solve is dωθ = Θ(1 − ν2), which can be solved
by θ = stop_gradient(1− ν2)ωθ. The exact detail of this calculation do not really matter as this is
heavily input distribution dependent. However, the interesting part here is that the angle parameter
must be rescaled by a function of ν. This makes intuitive sense when looking looking at the sharpness
of the loss around optimality in Figure 1.C, but this also makes the loss even flatter further away
from optimality. We will come back to this point in Section C.1.4, showing that in practice, such
a parametrization complicates the learning of the θ. Learning complex numbers is thus difficulty,
because of the angle.

23

C Linear teacher-student task

This section is dedicated to detail the theoretical results behind our analysis of the teacher-student
task, present all the details necessary to reproduce our empirical experiments, and provide additional
analysis.

C.1 1D setting

C.1.1 Calculation of the loss

In this toy example, we are interested in learning a simple 1-dimensional linear recurrent neural
network which follows the dynamics

ht+1 = λht + xt+1 (85)

to reproduce the hidden state h∗
t of a teacher with recurrent parameter λ∗. Note that we here allow all

variables to be complex-valued. We take the loss to be

L(λ, λ∗) :=
1

2T

T∑
t=1

Ex

[
|ht − h∗

t |
2
]

(86)

We assume x to be drawn from a wide-sense stationary distribution so that we can focus on studying
the behavior of one Lt(λ, λ

∗) := 1
2Ex

[
|ht − h∗

t |
2
]

to understand the behavior of the full loss L, in
the limit of infinitely long sequences (T →∞). Moreover, to further simplify the calculations, we
assume that x is real-valued and that Rx(∆) = ρ|∆|.

Let us now proceed with the calculation:

Lt(λ, λ
∗) :=

1

2
Ex

[
hth̄t + h∗

t h̄
∗
t − hth̄∗

t − h̄th
∗
t

]
. (87)

We have shown in Section B.2 that in the limit of t→∞,

Ex

[
hth̄t

]
=

1

1− λλ̄

(
1 +

ρλ

1− ρλ
+

ρλ̄

1− ρλ̄

)
(88)

(89)

Similar derivations hold for the other three terms in the loss. Grouping them gives the exact value
of the loss. We omit the formula as it is not particularly insightful. In the case of constant inputs
(ρ = 1), we have

Lt(λ, λ
∗) =

1

2

∣∣∣∣ 1

1− λ
− 1

1− λ∗

∣∣∣∣2. (90)

In the case of i.i.d. inputs (ρ = 0), we have

Lt(λ, λ
∗) =

1

2

(
1

1− |λ|2
+

1

1− |λ∗|2
− Re

[
2

1− λ̄λ∗

])
. (91)

This is the loss we plot on Figure 1.B and C.

C.1.2 Optimal normalization and reparametrization with uncorrelated inputs

Having a simple closed-form solution for the value the loss takes gives us the possibility to investigate
in more detail what an optimal normalization and parametrization should be. We focus on the case
ρ = 0.

For ρ = 0, the optimal normalization is γ(λ) =
√
1− |λ|2. Given that we now add an input

normalization to the student, we must also add it to the teacher for the student to be able to fit it. The
loss becomes

Lt =
1

2

(
γ(λ)

1− |λ|2
+

γ(λ∗)

1− |λ∗|2
− Re

[
2γ(λ)γ(λ∗)

1− λ̄λ∗

])
(92)

= 1− Re

[
γ(λ)γ(λ∗)

1− λ̄λ∗

]
. (93)

24

Next, we parametrize λ as λ = ν(ων) exp(iθ(ωθ)) and seek to find a parametrization such that, at
optimality, E[(dωνht)

2] = 1 and E[(dωθ
ht)

2] = 1. Given that the student perfectly fit the teacher-
generated data at optimality and that the loss we use is the mean-squared error, this corresponds to
having d2ων

Lt = 1 and d2ωθ
Lt = 1.

Deriving the optimal ν parametrization. We now compute the Hessian of the loss w.r.t. ων . First,
we can simplify our calculations by restricting ourselves to the case θ = θ∗. The loss becomes

Lt = 1− γ(ν)γ(ν∗)

1− νν∗
. (94)

Differentiating this function a first time, we obtain

dLt

dν
= −γ(ν∗)γ′(ν)

1− νν∗
− γ(ν∗)ν∗γ(ν)

(1− νν∗)2
. (95)

Differentiating it a second time gives

d2Lt

dν2
= −γ(ν∗)γ′′(ν)

1− νν∗
− 2γ(ν∗)ν∗γ′(ν)

(1− νν∗)2
− 2γ(ν∗)ν∗2γ(ν)

(1− νν∗)3
. (96)

Leveraging the fact that

γ′(ν) =
−ν
γ(ν)

and γ′′(ν) =
−γ(ν)2 − ν2

γ(ν)3
, (97)

we finally get, when ν = ν∗,
d2Lt

dν2
=

1

(1− ν2)2
. (98)

Given that we are at optimality, we have

d2Lt

dω2
ν

= E
[
dht

dων

d2Lt

dh2
t

dht

dων

]
= ν′(ων)

2E
[
dht

dν

d2Lt

dh2
t

dht

dν

]
= ν′(ων)

2 d
2Lt

dν2
. (99)

To keep that quantity constant, we thus have to solve the differential equation

ν′(ων) = (1− ν2), (100)

which gives ν(ων) = tanh(ων).

Deriving the optimal θ parametrization. We now move to the parametrization of θ. We have

Lt = 1− Re

[
γ(ν)γ(ν∗)

1− λ̄λ∗

]
= 1− γ(ν)γ(ν∗)(1− νν∗ cos(θ − θ∗))

|1− λ̄λ∗|2
. (101)

For notational convenience, we denote

α(θ − θ∗) := |1− λ̄λ∗|2 = (1− νν∗ cos(θ − θ∗))2 + ν2ν∗2 sin(θ − θ∗)2. (102)

We have

dLt

dθ
= γ(ν)γ(ν∗)

(
−νν∗ sin(θ − θ∗)

α(θ − θ∗)
+

(1− νν∗ cos(θ − θ∗))α′(θ − θ∗)

α(θ − θ∗)2

)
(103)

and

d2Lt

dθ2
= γ(ν)γ(ν∗)

(
−νν∗ cos(θ − θ∗)

α(θ − θ∗)
+ 2

νν∗ sin(θ − θ∗)α′(θ − θ∗)

α(θ − θ∗)2

+
(1− νν∗ cos(θ − θ∗))α′′(θ − θ∗)

α(θ − θ∗)2
− 2

(1− νν∗ cos(θ − θ∗))α′(θ − θ∗)2

α(θ − θ∗)3

)
(104)

At optimality (θ = θ∗ and ν = ν∗), we have α(0) = (1− ν2)2, α′(0) = 0 and α′′(0) = 2ν2, so that

d2Lt

dθ2
=

ν2(1 + ν2)

(1− ν2)2
. (105)

25

The optimal parametrization thus has to satisfy

θ′(ωθ) =
1− ν2

ν
√
1 + ν2

, (106)

that is

θ(ωθ) = ωθ
1− ν2

ν
√
1 + ν2

(107)

There are two things we can remark:

– First, the parametrization that we derived for the general case in Section B.3.2, which additionally
ignored the dependence of γ on λ, is relatively accurate. The only difference is the apparition of
the extra ν term, which becomes insignificant in the long memory limit ν → 1.

– Second, the optimal θ parametrization has to be a function of ν, and thus ων , so the differential
equation ν needs to satisfy changes. Yet, this considerably simplifies the calculation and there is
no simple solution to that problem. One could still argue that the initial choice we made, that is
to use a polar parametrization, is the issue. It could be, but most practical models end up using
that choice so highlighting the limitations of this choice has important practical consequences.

In the rest of this section, we ignore the dependency of θ on ν, and consider the optimal parametriza-
tion in this setting to be

ν(ωopt
ν) = tanh(ωopt

ν) (108)

θ(ωopt
θ) = ωopt

θ

1− ν2

ν
√
1 + ν2

. (109)

C.1.3 Visualization of the effect of input normalization and reparametrization

We now visualize the effect of input normalization and reparametrization on the loss landscape. We
focus on two such reparametrizations:

– the one used in the LRU [20, 22] with γ(λ) =
√
1− λ2, ν = exp(− exp(ωexp

ν)) and θ =
exp(ωexp

θ).

– the optimal one we derived in the previous Section (c.f. Equations 108 and 109), which is tailored
to this specific setting.

C.1.4 Learning the angle is difficult in practice: an example

We use this one-dimensional teacher-student setting to test whether having a parametrization that
avoids exploding behaviors at optimality, such as the one we derived in Section C.1.2, facilitates
learning. Figure 6 already hints towards the fact the basin of attraction of the global minima is either
extremely narrow or that their number decreases as longer memories are considered, making learning
more tedious. Figure 7 confirms it. In this figure, we plot the learning dynamics obtained using the
Adam optimizer with a learning rate of 10−3 for 50k steps, starting from λ0 = 0.99 exp(iπ/4). We
consider three different parametrizations of the angle:

θ(ωpolar
θ) = ωpolar

θ (110)

θ(ωexp
θ) = log(ωexp

θ) (111)

θ(ωopt
θ) =

(1− ν2)

ν
√
1 + ν2

ωθ. (112)

The first one does not reparametrize the angle, the second one is the one used in the LRU and the
third one is the optimal one we derived above. We use ν = tanh(ων) to parametrize the magnitude
in the three cases. We set λ∗ to λ∗ = 0.99 exp(iπ/100). The θ landscape when ν is correct therefore
corresponds to the ones plotted in the last two columns of Figure 6. This example shows that efforts
to reduce the sharpness of the loss at optimality, as done in the last parametrization, inevitably make
the loss flatter elsewhere and optimization impossible.

26

| |* 0.99 0.98 0.96 0.92 0.84 0.68 0.36

0.0 0.5 1.0

10 7

10 4

10 1

Lo
ss

0.0 0.5 1.0

10 2

101

104

107

H
es

si
an

1 0 1*
10 5

10 3

10 1

Lo
ss

1 0 1*
10 1

101

103

H
es

si
an

5 0

10 7

10 4

10 1

Lo
ss

5 0
10 3

10 2

10 1

100

H
es

si
an

2 0

10 9

10 6

10 3

100

Lo
ss

2 0

10 4

10 1

102

H
es

si
an

0 5

10 6

10 3

100

Lo
ss

0 5
10 3

10 2

10 1

100

H
es

si
an

5 0 5

10 7

10 4

10 1

Lo
ss

5 0 5

10 2

100

H
es

si
an

Figure 6: Visualization of the loss landscape with input normalization, in the teacher and the
student, for different parametrizations. The teacher satisfies λ∗ = |λ∗| exp(iπ/100), for different
|λ∗| values. The first two columns correspond to students with correct angle θ = θ∗ but wrong
absolute value ν and the last two columns to students with correct absolute value ν = |λ∗| but
wrong angle. When we fix one variable, we ignore how it affects the loss for the Hessian caclulation.
Each line corresponds to a different parametrization: the first line uses a polar parametrization
(λ = ν exp(iθ)), the second line uses the double exponential parametrization used in the LRU (exp)
and the third one is the optimal parametrization for that task (tanh). Overall, both reparametrizations
enable to control the explosion of the Hessian. However, the size of basins of attraction around
optimality, or their number, shrinks as |λ∗| goes to 1 for the angle, but not for the absolute value,
highlighting how difficult learning the angle can be.

C.2 Structure of the Hessian at optimality

In Section 4, we argue that the Hessian at optimality is an important object to understand the learning
dynamics in the linear teacher-student task we consider. We here provide some theoretical analysis of
its structure in the complex diagonal setting, that is we consider a recurrent network of the form

ht+1 = λ⊙ ht + bxt (113)

yt = Re[c⊤ht] + dxt. (114)

with λ, b and c complex vectors of size n, with n the number of hidden neurons, and d a scalar. We
additionally take the loss to be the mean-square error, which is also the one we use in our numerical
experiments. Note that, as in our theoretical analysis of Section 2, we consider infinitely long
sequences and wide-sense stationary inputs.

Recall that the Hessian of the loss is equal to

d2L

dθ2
=
∑
t

Ex

[
dht

dθ

∂2Lt

∂h2
t

dht

dθ

⊤
+

∂Lt

∂ht

d2ht

dθ2

]
. (115)

At optimality, only the first term remains, as ∂htLt is 0 for all data points. Given that we have shown
earlier, e.g. in Section B.2, that the most sensitive parameters to learn are the recurrent ones λ, we
focus on the Hessian with respect to these parameters in the following.

27

1.5 2.0 2.5 3.0

0.00

0.25

0.50

0.75

1.00

1 2 3
5

4

3

2

1

0

1

1
20

0

20

40

60

80

0 20k 40k
Step

10 3

10 1

101

Lo
ss

0 20k 40k
Step

10 3

10 1

101

0 20k

10 3

10 1

101

2

Step

3

40k

10 2

10 1

100

101

102

Lo
ss

A B C

Figure 7: Learning the angle is difficult, even in a simple one-dimensional task. The target λ
value is equal to λ∗ = 0.99 exp(iπ/100) and is plotted in yellow. The black lines correspond to the
Adam learning dynamics. A. When the angle is not reparametrized (θ = ωθ), the loss landscape is
extremely sharp in the ωθ direction, but Adam compensates for it. B. When the angle is parametrized
exponentially (θ = exp(ωθ)), the loss landscape becomes smoother. However, this only hold when
the considered angles are small enough, as the exponential parametrization does not bring extra
granularity elsewhere. C. When reparametrizing the angle to reduce the gradient explosion as |λ| → 1,
the loss becomes extremely tricky to navigate. The parameters are first attracted to a nearby valley,
which is flat on the ωθ direction and only indirectly connected to the global minimum. Such a
reparametrization thus hinders optimization far away from optimality. See Section C.1.4 for more
detail.

C.2.1 Hessian for complex-valued variables

Before delving into more specific calculations, we make a few remarks on how to deal the Hessian
when having complex-valued parameters. We will mostly leverage the fact that the loss L is real-
valued.

Before that, we recall a few facts about Wirtinger derivatives:

– For f(z) a complex-valued function of z, the Wirtinger derivatives are defined as:

df

dz
=

1

2

(
dRe[f]

dRe[z]
− i

dIm[f]

dIm[z]

)
(116)

df

dz̄
=

1

2

(
dRe[f]

dRe[z]
+ i

dIm[f]

dIm[z]

)
. (117)

– We have
df

dz
=

df

dz̄
. (118)

– Leveraging the fact that L is real-valued so that L̄ = L, we have

d2L

dλ2
=

d

dλ

[
dL

dλ

⊤
]

(119)

=
d

dλ

[
dL

dλ̄

⊤
]

(120)

=
d2L

dλ̄2
(121)

28

and, similarly, dλdλ̄L = dλ̄dλL. Second derivatives are symmetric, so we additionally have
dλdλ̄L = dλ̄dλL

⊤, which means that the complex Hessian is a Hermitian matrix.

Taken all together, this shows that the full complex Hessian, which contains all cross derivatives, has
a similar structure to the real case.

C.2.2 Hessian with respect to the recurrent eigenvalues

In this section, we compute the full complex Hessian with respect to the recurrent eigenvalue λ and
defer the analysis of reparametrization to the next section.

First, let us remark that

dLt

dλ
=

∂Lt

∂yt
c⊤

dht

dλ
(122)

(123)

so that

d2Lt

dλ2
=

d

dλ

[
dht

dλ

⊤
c
∂Lt

∂yt

⊤
]

(124)

=
d2ht

dλ2
c
∂Lt

∂yt

⊤
+

dht

dλ

⊤
c
∂2Lt

∂y2t
c⊤

dht

dλ
(125)

We assumed that we are at optimality so that the network perfectly fits the target trajectories and
∂ytLt = 0. Additionally, Lt is the mean-squared error loss so that ∂2

yt
Lt = Id. It follows that(

d2Lt

dλ2

)
ij

=

(
dht

dλ

⊤
cc⊤

dht

dλ

)
ij

(126)

=

(
c⊤

dht

dλ

)
i

(
c⊤

dht

dλ

)
j

(127)

= ci
dht,i

dλi
cj
dht,j

dλj
. (128)

In the last equation, we made use of the fact that the parameter λi only affects the hidden state ht,i

and not the others, so dλj
ht,i = 0 if i ̸= j.

The previous calculation applied to one sequence, we now take the expectation over the data:

d2L

dλ2
= (cc⊤)⊙ Ex,y

[
lim
t→∞

dht

dλ

dht

dλ

⊤
]

(129)

Note that we introduced a slight abuse of notation in the previous equation as dλht is in general a
matrix. However, given that the hidden neurons are independent here due to the diagonal connectivity,
it is effectively a vector, and we treat it that way. Let us now compute the expectation, using similar
calculation techniques to the one we used in Section B.2:

Ex,y

[
lim
t→∞

dht,i

dλi

dht,j

dλj

]
= E

 ∑
n,m≥0

nλn−1
i bix−nmλm−1

j bjx−m

 (130)

= bibjE

 ∑
n,m≥0

nλn−1
i x−nmλm−1

j x−m

 (131)

= bibj
∑

n,m≥0

nmλn−1
i λm−1

j Rx(n−m) (132)

We can now remark that this quantity is very similar to the one we have encountered in Section B.2,
up to the presence of bibj , and can be simplified using Lemma 2. For conciseness, we note S(λi, λj)

29

the right-hand side of the last equation without the bibj factor. Putting this result back in the Hessian,
we get

d2L

dλidλj
= bibjcicjS(λi, λj) (133)

To gain further intuition of the behavior of this quantity, we take Rx(∆) = ρ|∆|, ρ being a real
number. A similar calculation to the one we did in Section B.2 gives

S(λi, λj) =
(1− ρ)(1 + λiλj) + ρ2(1− λiλj)

3 + ρ(1− ρ)λiλj(ρλiλj(1 + λiλj)− 2λi − 2λj)

(1− λiλj)3(1− ρλi)2(1− ρλj)2
.

(134)

Given the complexity of this formula, we visualize the magnitude of S(λi, λj) on Figure 8. Interest-
ingly, we observe this quantity is large when λi and λj are conjugate to each other and inputs are
uncorrelated. However, as elements in the input sequence get more correlated (ρ→ 1), this effect
disappears and |S| increases as one of the two eigenvalue gets closer to 1 in the complex plane. In
both cases, the effect gets amplified as the magnitude of the eigenvalue increases.

1 0 1
Re[]

1

0

1

Im
[]

= .

1 0 1
Re[]

1

0

1

= .

1 0 1
Re[]

1

0

1

= .

1 0 1
Re[]

1

0

1

= .

1 0 1
Re[]

1

0

1

= .

10 1

101

103

105

| (,
,)|

Figure 8: Visualization of λ 7→ |S(λ, λ0)| for λ0 = 0.99 exp(iπ/4). This term measures how
"similar" eigenvalues are in the Hessian. When ρ = 0, eigenvalues are mostly "similar" when they are
conjugate to each other. As ρ increases, this effect decreases and eigenvalues become more "similar"
if one of them gets close to 1.

We also need to compute dλ̄dλL to get the full complex Hessian. Similarly to the previous calculation,
we first have

dLt

dλ̄
=

dL̄t

dλ
=

dLt

dλ
=

∂Lt

∂yt
c̄⊤

dht

dλ
. (135)

It follows that

d2L

dλidλ̄j
= E

[
dht,j

dλj
c̄jci

dht,i

dλi

]
(136)

= cic̄jbib̄jS(λi, λ̄j). (137)

Using the symmetry with the complex Hessian matrix, we now have all its components.

C.2.3 Hessian for different parametrizations

So far, we have computed the complex Hessian, which is not of direct use as we end up optimizing
real numbers in practice. Here, we study the impact of different parametrizations of λ on the Hessian.
Given that this parametrization only affects λ and not the other parameters in the network and that we
only consider the Hessian at optimality here, computing the Hessian of those parameters reduces to
left and right multiplying the Hessian by derivatives of λ and λ̄ with respect to these parameters. For
future reference, we introduce

Hλ
ij :=

(
d2L

dλidλj

d2L
dλidλ̄j

d2L
dλ̄idλj

d2L
dλ̄idλ̄j

)
=

(
Aij Bij

B̄ij Āij .

)
(138)

with Aij := bibjcicjS(λi, λj) and Bij = bib̄jcic̄jS(λi, λ̄j).

30

Real-imaginary parametrization: λ = ωre + ωim. We aim at computing the matrix

HRI
ij :=

(
d2L

dωre,idωre,j

d2L
dωre,idωim,j

d2L
dωim,idωre,j

d2L
dωim,idωim,j

)
, (139)

which is the building block to compute the full Hessian. First, let us remark that dωre,iλi = 1/2,
dωre,i

λ̄i = 1/2, dωim,i
λi = i/2 and dωim,i

λ̄i = −i/2. It follows that

d2L

dωre,idωre,j
= (dωre,jλj dωre,j λ̄j)H

λ
ij(dωre,iλi dωre,i λ̄i)

⊤ (140)

=
1

4
(1 1)Hλ

ij(1 1)⊤ (141)

=
1

2
(Re[Aij] + Re[Bij]) . (142)

Once again we emphasize that the first line only holds as we are at optimality. Similar calculations
give the rest of the elements of HRI

ij :

HRI
ij :=

1

2

(
Re[Aij +Bij] Im[−Aij +Bij]
Im[−Aij −Bij] Re[−Aij +Bij].

)
. (143)

Given the intuition we gained on the structure of S previously, and the fact that Aij ∝ S(λi, λj)
and Bij ∝ S(λi, λ̄j), we know that this block will have large components if the two corresponding
eigenvalues are conjugate of each other or aligned to each other, or if one of them is close to 1.

One other quantity that we can calculate is the trace of the Hessian HRI, which is equal to the sum of
its eigenvalues. Note that this does not correspond to the eigenvalues of the full Hessian matrix, as it
additionally contains entries for other parameters. Yet it already provides some idea of how large the
Hessian will be, as the value of this trace appears in the value of the full trace. We have

Tr[HRI] =
∑
i

1

2
(Re[Aii +Bii] + Re[−Aii +Bii]) (144)

=
∑
i

Re[Bii] (145)

=
∑
i

|bi|2|ci|2S(λi, λ̄i) (146)

where we used that S(λi, λ̄i) is real-valued in the last line. As a side note, this formula partly justifies
why studying the expected squared magnitude of dλht in Section 2 makes general sense, as

E

[∣∣∣∣dht,i

dθ

∣∣∣∣2
]
= |bi|2S(λi, λ̄i). (147)

Magnitude-angle parametrization: λ = ν(ων) exp(iθ(ωθ)). The calculations for this
parametrization are similar to the previous one, with the following differences:

dλ

dων
=

ν′(ων) exp(iθ(ωθ))

2
(148)

dλ̄

dων
=

ν′(ων) exp(−iθ(ωθ))

2
(149)

dλ

dωθ
=

iν(ων)θ
′(ωθ) exp(iθ(ωθ))

2
(150)

dλ̄

dωθ
= − iν(ων)θ

′(ωθ) exp(−iθ(ωθ))

2
. (151)

31

After some calculations we obtain

d2L

dων,i dων,j
=

ν′(ων,i)ν
′(ων,j)

2
Re[ei(θ(ωθ,i)+θ(ωθ,j)Aij + ei(θ(ωθ,i)−θ(ωθ,j))Bij] (152)

d2L

dων,i dωθ,j
=

ν′(ων,i)ν(ων,j)θ
′(ωθ,j)

2
Im[−ei(θ(ωθ,i)+θ(ωθ,j)Aij + ei(θ(ωθ,i)−θ(ωθ,j))Bij] (153)

d2L

dωθ,i dων,j
=

ν(ων,i)θ
′(ωθ,i)ν

′(ων,j)

2
Im[−ei(θ(ωθ,i)−θ(ωθ,j)Aij + ei(θ(ωθ,i)−θ(ωθ,j))Bij] (154)

d2L

dωθ,i dωθ,j
=

ν(ωθ,i)θ
′(ωθ,i)ν(ωθ,j)θ

′(ωθ,j)

2
Re[−ei(θ(ωθ,i)+θ(ωθ,j)Aij + ei(θ(ωθ,i)−θ(ωθ,j))Bij]

(155)

C.3 Experimental details

We use the linear RNN architecture defined in Appendix A.1 as teacher and implement our experi-
ments in JAX [63], using the default Flax [64] implementation of RNNs and the LRU implementation
of Zucchet et al. [65]. Code is available here.

We initialize RNNs in the same way we initialized the teacher, and initialize the eigenvalues of the
LRU and other complex-valued networks with magnitude in [ν0, 1] and angle within [−θ0, θ0].
Given that we are interested in the optimization properties of the different architectures, we only
report training losses and do not perform any cross validation.

Here are additional details related to the different figures:

– Figure 3: see Tables 1 and 2.

– Figure 4 and 9: for panels A and B, we use ν0 = 0.99 and draw A in a slightly different manner
to the one described above (we directly draw the eigenvalues and eigenvectors so that we have
two pairs of complex eigenvalues). We use automatic differentiation to compute the Hessian. For
panels C and D, we use the same setup as described in Table 2, but keep the learning rate constant
over the course of learning. We report the effective learning rate at the end of learning.

– Figure 10: for panels A, B and C, we draw the magnitude and angle of 10 λ values independently,
uniformly in [ν0,

1+ν0

2] and [−θ0, θ0]. Importantly, this means that there are no conjugate pairs,
which leads to more diagonal Hessian matrices at optimality than in Figure 4. For panel D, see
Table 3.

– Figure 11: same setup as for Figure 3.

As a rule of thumb, each LRU (or complex-valued diagonal network) experiment takes 3 minutes on
a consumer-scale GPU (NVIDIA GeForce RTX 3070) and each RNN experiment takes 10 minutes
on a CPU. The scans behind the results reported in the different figures require on the order of few
hundreds run each. Including our preliminary explorations, the results we report in this section
required 30 days of compute, one third of it on GPUs and two thirds on CPUs.

C.4 Additional analyses

C.4.1 Structure of the loss landscape for LRUs and S4

In the main text, we only provide an analysis of the loss landscape for the fully connected linear
recurrent neural network and its complex-valued diagonal counterpart. We here complete this result
by performing the same analysis for the LRU and S4. Given that S4 involves some form of parameter
sharing between the magnitude and the angle of the recurrence complex eigenvalues through ∆,
which is required to avoid the explosion of the angle gradients, we are particularly interested in
observing whether it fully mitigates or not the gradient explosion effect. The results of Figure 9.B and
D do not reveal such benefits: the loss landscape does not have high curvature on the ωim

A direction,
but it is moved in the ω∆ direction. We haven’t investigated whether qualitative changes arise when
changing the input distribution.

32

https://github.com/NicolasZucchet/Vanishing-and-exploding-gradients-are-not-the-end-of-the-story/tree/main

RNN LRU

Batch size 128
Sequence length 300
Hidden neurons (teacher) 10
Input / output dimension 1
ν0 {0.32, 0.68, 0.84, 0.92, 0.96, 0.98, 0.99}
θ0 π

Hidden neurons (student) 64
log learning rate [−5,−4.5,−4,−3.5,−3,−2.5] [−2.5,−2,−1.5,−1,−0.5]
Optimizer (schedule) Adam (cosine)
Initialization [ν0 teacher, ν0 = 0] ν0 teacher

Number iterations 10k
Seeds 10

Table 1: Experimental details for Figure 3.A. We use [· · ·] to denote hyperparameters that were
scanned over with grid search and {· · · } to denote the variables of interest for the figure. We chose
the learning rates for the two architectures on preliminary scans and verified that non of the extreme
learning rates were optimal in the final scan. For the RNN, we found that initializing with ν0 = 0
gave better results than initializing with the same distribution the teacher has, so we included this
choice in the scan.

RNN / BLOCK DIAG. RNN COMPLEX DIAG. RNN / LRU

Batch size 128
Sequence length 300
Hidden neurons (teacher) 10
Input / output dimension 1
ν 0.99
θ0 π

Hidden neurons (student) 64 / 64 and 128 64
log learning rate [−5,−4.5,−4,−3.5,−3,−2.5] [−2.5,−2,−1.5,−1,−0.5]
Optimizer (schedule) Adam (cosine)
Initialization [ν0 teacher, ν0 = 0] ν0 teacher

Number iterations 10k
Seeds 10

Table 2: Experimental details for Figure 3.B. We use [· · ·] to denote hyperparameters that were
scanned over with grid search and {· · · } to denote the variables of interest for the figure. We chose
the learning rates for the two architecture types on preliminary scans and verified that non of the
extreme learning rates were optimal in the final scan. For the RNN, we found that initializing with
ν0 = 0 gave better results than initializing with the same distribution the teacher has, so we included
this choice in the scan. For the RNNs, we used 64 neurons for the "RNN" entry, 64 for the "block
diagonal" one, and 128 for the "more neurons" one.

33

RNN COMPLEX DIAG. RNN / LRU

Batch size 128
Sequence length 300
Hidden neurons (teacher) 10
Input / output dimension 1
ν0 0.99
log(θ0/π) {−2,−1.5,−1,−0.5, 0}
Hidden neurons (student) 64
log learning rate [−4.5,−4,−3.5,−3] [−3.5,−3, · · · ,−0.5, 0]
Optimizer (schedule) Adam (cosine)
Initialization [ν0 teacher, ν0 = 0] + θ0 teacher ν0 teacher + θ0 teacher

Number iterations 10k
Seeds 10

Table 3: Experimental details for Figure 10. We use [· · ·] to denote hyperparameters that were
scanned over with grid search and {· · · } to denote the variables of interest for the figure. We chose
the learning rates for the two architectures on preliminary scans and verified that non of the extreme
learning rates were optimal in the final scan. For the RNN, we found that initializing with ν0 = 0
gave better results than initializing with the same distribution the teacher has, so we included this
choice in the scan.

Ei
ge

nv
al

ue
H

es
si

an
To

p
10

ei
g.

 v
ec

t.

A B

D

0 10 20 30
Index eigenvalue

10 7

100

107

10 7

100

107

106

103

100
0
100

103

106

1

0

1

Bre Bⁱm Cre Cⁱm D

Bre

Bⁱm

Cre

Cⁱm
D

Bre Bⁱm Cre Cⁱm D

Bre

Bⁱm

Cre

Cⁱm
D

10

10

10Eff
ec

tiv
e

LR

10

10

10Eff
ec

tiv
e

LR

Bre Bⁱm Cre Cⁱm D

Bre Bⁱm Cre Cⁱm D

C

D

0 10 20 30
Index eigenvalue

106

103

100
0
100

103

106

1

0

1

Figure 9: Equivalent of Figure 4 for the LRU (A, C) and S4 (B, D). In the LRU, the exponential
parametrization of the magnitude ν = exp(− exp(ων)) efficiently mitigates the Hessian explosion
but not the one of the angle θ = exp(ωθ), consistently with the theoretical and empirical evidence we
have accumulated so far. In B, ∆ is set to 0.01 in the S4 architecture. Setting it to 1 (not plotted here)
leads to an Hessian at optimality that has large entries on all recurrent parameters ωre

A , ωim
A and ω∆,

similarly to the behavior we observed for the complex diagonal RNN studied in the main text. For
panel D, we initialized ∆ at 1 given that this is the initialization that yielded best performance. We
note that we didn’t find qualitative changes in this plot when changing the initialization scheme of S4.

C.4.2 Concentrating eigenvalue distributions

The goal of this experiment is to better understand how the concentration of eigenvalues λ affect
the learning dynamics. For fully connected RNNs, there is no reason to expect a major change
in behavior. However, it is different for diagonal RNNs. The theoretical analysis we have done
in Section C.2 provides us with the following insights. When the elements in the input sequence
are uncorrelated, as it is the case here, the entries in the Hessian corresponding to two different
eigenvalues increase if they are aligned or conjugate to each other, and if their magnitude is large. We
therefore expect that, as the interval on which the angle of the teacher’s eigenvalues shrinks (θ0 → 0),

34

those eigenvalues will be more likely to be "similar" to each other. This results in large non-diagonal
terms, as we confirm in Figure 10.A, B and C. The LRU suffers less from this problem thanks to its
reparametrization, which reduces the overall magnitude of Hessian entries related to the magnitude,
and partly the one of angle parameters (when it is a small positive number). As a consequence, the
performance between these two architectures increases as θ0 → 0, as seen on Figure 10.D.=

D D D

0 10
Index eigenvalue

103

109

Ei
ge

nv
al

ue

0 10
Index eigenvalue

104
105
106

0 10
Index eigenvalue

103

104

108

104

100
0
100

104

108

1

0

1

106

103

100
0
100

103

106

1

0

1

104

102

100

0
100

102

104

1

0

1

= /
re

im

= /
re

im

re im

re

im

re im re im

D

To
p

10
ei

g.
 v

ec
t.

H
es

si
an

RNN
Complex RNN
LRU

10 2 10 1 100

10 5

10 3

10 1

Lo
ss

A

D

B C

Figure 10: Concentrating eigenvalues make the Hessian less diagonal (θ0 → 0) and consequently
increases the gap between the LRU and the complex-valued diagonal RNN. A, B, C. Hessian
of the loss with respect to the λ parameters in the complex-valued diagonal RNN. The Hessian is
computed through the theoretical formula of Equation 143; computing it numerically marginally
affects the results. Consistently with the intuition we developed in Section C.2, concentrating the
eigenvalues affect the structure of the loss landscape. It makes the Hessian at optimality less diagonal
and Adam cannot efficiently compensate it. The LRU does not suffer as much from this problem, and
the gap between the two architecture widens as θ0 → 0.

C.4.3 Impact of the number of heads in fully connected linear recurrent networks

In Figure 3, we have shown that constraining the connectivity matrix to be block diagonal with blocks
of size 2× 2 lead to a critical boost in performance. Further analysis revealed that this arises as the
Hessian becomes more diagonal and Adam can thus better compensate for gradients explosion. Here,
we study this behavior in more detail by interpolating between the fully connected case and the block
diagonal one. This can be achieved by increasing the number of independent heads from 1 (fully
connected case) to 32 (2× 2 block-diagonal connectivity matrix, as we have 64 hidden neurons). In
particular, we are interested in understanding how big heads can be while keeping this performance
boost. We plot the final performance, as well as the evolution of the effective learning rate for the A
matrix over the course of learning on Figure 11. We find that slightly bigger heads, until 4× 4 (which
corresponds to 16 heads), yield similar benefits. Additionally, the learning rate analysis reveals
that the adaptive learning rates of Adam can more selectively compensate for potential gradient
explosion cases as the number of heads increases, allowing for bigger learning rates overall and better
performance.

35

1 2 4 8 16 32
Number of heads

10 4

10 2

100

Lo
ss

0 50 100
Epoch

10 6

10 4

Eff
ec

tiv
e

LR
 (

A) Heads
1
2
4
8
16
32

A B

Figure 11: Evolution of the performance (A) and effective learning rates for the A connectivity matrix
(B) of a linear recurrent neural network as we vary the number of heads, keeping the overall number
of hidden neurons fixed. It should be noted that increasing the number of heads decrease the total
number of parameters, as the matrix A gets sparser.

0 200 400

10 3

10 2

10 1

Au
to

co
rr

el
at

io
n

= . × .

Figure 12: The empirical autocorrelation function (averaged over feature dimensions) of
the BERT embeddings used in Section 5 can be approximated as a sum of two exponen-
tially decaying functions. The blue line represents the autocorrelation function Rempirical

x (∆)
of the BERT embeddings of the Wikipedia dataset. As a first approximation, it is equal to
Rempirical

x (∆) ≈ 0.376δ∆=0. For a more refined approximation, we perform a linear regression of
the log autocorrelation against ∆, shown by the black line. This yields the following approximation:
Rempirical

x (∆) ≈ 0.332δ∆=0 + 0.044× 0.997∆.

D Signal propagation in randomly initialized deep recurrent neural networks

D.1 Experimental setup

We detail the experimental setup used in Section 5. We select the first 512 tokens from 1024
random sequences in the Wikipedia dataset [66] and pass them through the BERT [67] tokenizer
and embedding layer. This yields a dataset of 1024 examples with length 512 and feature dimension
724. Figure 12 shows the autocorrelation function of these inputs, revealing that the i.i.d. assumption
serves (ρ = 0) as a good first order approximation. This validates the relevance of our toy experiments
for studying signal propagation in more realistic settings. To refine this approximation, we can include
a high correlation term (ρ close to 1).

We examine realistic networks comprising 4 blocks with the following structure: a recurrent layer, a
non-linearity, a gated linear unit [58, GLU] and a skip connection. By default, we omit normalization
layers, but when included, as in Figure 5.C, we place one normalization layer before the recurrent layer
and another one before the GLU. All the layers involved contain 256 neurons. We also incorporate a
linear encoder at the beginning of the network and a linear decoder at its end.

The loss that we use is a next-token mean-squared error, defined as

Lt =
1

2
∥x̂t(x1:t−1)− xt∥2 (156)

where x̂t(x1:t−1) represents the prediction of the network. Figure 5 reports the average squared value
of the hidden state or the gradient. This average is computed over sequences, but also over all neurons
/ parameters and over all time steps. We compute gradients using batches of size 8.

In Figure 5 we vary ν0, which controls the magnitude of the eigenvalues of the recurrent Jacobian.
Specifically, we sample those magnitudes in the interval [ν0, (1 + ν0)/2]. For the complex-valued
diagonal RNN and the LRU, we apply the LRU initialization. For the LSTM, we use the Chrono

36

0 0.9 0.99

10 6

100

106

0 0.9 0.99

2n
d

m
om

en
t

0 0.9 0.99

2n
d

m
om

en
t

LRU cRNN GRU

1 2 3 4

1 2 3 4

1 2 3 4rest

angle

magn.

1 2 3 4

1 2 3 4rest

1 2 3 4

1 2 3 4rest

GRU

2n
d

m
om

en
t

Figure 13: Gradient magnitudes are independent of the layer. This figure presents similar plots to
Figure 5.B, except that parameters from different layers are no longer aggregated together. Instead,
each parameter group of each layer has its own line. The indices in the legend correspond to layer
indices.

initialization proposed by Tallec and Ollivier [29]: it initializes the forget gate biases such that, when
the input x and the hidden state h are equal to 0, the time constant associated to f is uniformly
sampled from [1

1−ν0
, 2
1−ν0

] and the input gate i is equal to 1− f .

While Figure 5.B presents aggregated gradients over layers, Figure 13 offers a layer-wise version
of this analysis. It reveals that the layer index does not significantly impact gradient magnitude.
Surpisingly, given that the hidden states of the complex RNN gets larger with depth (c.f. Figure 5.A),
this result might seem unexpected for cRNNs. We can attribute this to the backpropagated error
signals also being amplified during the backward pass, as discussed in Section 2.2. In the first layers,
hidden states are small and errors are large, while in the in last layers, errors are small and hidden
states are large. Consequently, the gradient magnitude remains relatively constant accross layers.
For the GRU, the gradient magnitude reported in Figure 5 for the non-GRU parameters included the
linear encoder and decoder. As the encoder gradients are the dominating ones, this explains why the
gradient magnitude for the non-GRU parameters is smaller in the layer-wise analysis.

D.2 Can gated RNNs be considered diagonal?

In Section 3.2, we argued that the diagonal linear setting we focused our theory on can be a decent
proxy for more general gated RNNs, whose λ values can depend on both the inputs x and the hidden
state h. Here, we assess whether this holds true at initialization. To that end, we study how the
Jacobian dht+∆

dht
of a GRU evolves as ∆ grows. For the linear diagonal regime to be a good proxy, two

necessary conditions must be met: First, all the non-diagonal terms should be negligible compared
to the diagonal ones. Second, the diagonal terms should decay similarly as if their λ values were
independent of x and h.

In Figure 14, we report the evolution of all the diagonal terms of this Jacobian and a random subset of
the non-diagonal ones. Our findigns indicate that the non-diagonal terms are much smaller than the
diagonal ones under the standard initialization, supporting the first necessary condition. Additionally,
input and hidden state-dependent gates do not qualitatively change the decay of the diagonal terms,
particularly when the network is initialized with λ values close to 1 (which correspond to large time
constants). Furthermore, we find that increasing the strength of all the hidden state to gate connections
(Whn, Whr, Whz) breaks the diagonal-like behavior and eventually leads to exploding Jacobians.
However, this only occurs at values that are much larger (3 times more in this case) than the default
initialization of these weights (orthogonal initialization).

In conclusion, those results confirm that the theoretical setting we have considered in this paper is a
good proxy for studying signal propagation in realistic recurrent networks. While we have focused
our analysis on GRUs, we expect these results to hold for other architectures such as LSTMs, Mamba,
or Hawk. For the last two, given that the different gates only depend on the input, we expect the
matching with our theory to be even stronger (c.f. Figure 14.C σh = 0, which captures this regime).

37

0.0

0.5

1.0
En

tr
ie

s
of

[,] [,] [,]

0.0

0.5

1.0

[,] [,] [,]

100 101 102

0.0

0.5

1.0

=

100 101 102

=

100 101 102

=

En
tr

ie
s

of
En

tr
ie

s
of

Diagonal terms Non-diagonal terms

Constant gatesA

Input and hidden state dependent gatesB

Varying strength of hidden state to gates connectionsC

Figure 14: GRUs behave like diagonal linear networks. This figure illustrates the evolution of the
recurrent Jacobian dh∆

dh0
of a GRU, when provided with the BERT embeddings of a sentence extracted

from the Wikipedia dataset. A. In the first row, we take the forget gates to be independent of x and h
and we sample them with the Chrono initialization [29] for different intervals. The resulting network
is linear and diagonal, similar to what we have studied in the theory. These plots therefore serve as
visual reference for comparison with the realistic case. B. The second row shows the same plots as
the previous row, except that the gates are now dependent on the inputs x and on the hidden states h.
As mentioned in A.4, we initialize all the linear layers taking x as input with LeCun initialization and
the layers taking h as input with orthogonal initialization. The recurrent Jacobian evolves similarly
than in the constant case, particularly on slowly decaying dimensions (large T values). C. In the
row, we aim to break the diagonality of the model by increasing the strength σh of the hidden state
to gate connections, for T ∈ [1, 16]. The case σh = 0 corresponds to gates that only depend on x,
similar to architectures like Mamba or Hawk. The plot with σh = 1 is the same as the middle one in
B. For σh = 3 and higher, the diagonality progressively breaks and the recurrent Jacobian eventually
explodes. We note that these plots were obtained from a single example. Yet, we have found the
behavior we report here to be typical of the general behavior.

38

D.3 Does our theory apply to gated RNNs?

Having established that gated RNNs behave similarly to the linear diagonal RNNs considered in our
theoretical investigation, a question arises: How well can our theory describe signal propagation in
gated RNNs on realistic data? To address this, we study a simplified version of the GRU network
(similar to the one studied by Chen et al. [51]), which incorporates a realistic gating mechanism:

ft+1 = σ(Wfxxt+1 +Wfhht + bf) (157)
ht+1 = ft+1 ⊙ ht + (1− ft+1)⊙ xt+1. (158)

As in the rest of this section, we provide BERT embeddings of sentences from the Wikipedia dataset
as inputs.

To apply our theory to this architecture, we must address two main challenges:

1. The gate ft+1 depends on both ht+1 and xt, making it non-constant. Based on our empirical
results from the previous section, we reasonably approximate ft+1 ≈ σ(bf) =: λ, ignoring this
dependency.

2. Our theoretical derivations have overlooked cases where the recurrence strength λ normalizes the
input xt. When considered, we detached the normalization factor from the computational graph
(as in Section B.3.2). However, we can extend our calculations from Section B.2 to accommodate
this setting:

f(α, β) :=
(1− α)(1− β)

1− αβ

Rx(0) +
∑
∆≥1

(α∆ + β∆)Rx(∆)

 (159)

E[h2
t] = f(λ, λ) (160)

E

[(
∂ht

∂λ

)2
]
=

∂2f(α, β)

∂α∂β

∣∣∣∣
α=λ,β=λ

. (161)

Note that we obtain E[(∂
2ht

∂bf 2)2] by multiplying E[(∂ht

∂λ)2] by σ′(bf)
2.

With these adjustments in place, we can now empirically test our theoretical predictions. For
simplicity, we approximate the auto-correlation function Rx (blue line in Figure 12) as Rx(∆) ≈
0.332δ∆=0 + 0.044× 0.997∆. Figure 15 presents our results, which reveal:

• An almost perfect match between theory and practice for constant gates, confirming that our
sample size is large enough.

• A very precise, though not perfect, match for context-dependent gates.

• The variance of ht and ∂ht

∂bf
shows minimal dependence on λ, indicating that the magnitude

of error signals received by bf , Wfh, and Wfx are largely independent of the time constants
encoded in the network.

39

101 102

10 10

10 8

10 6

10 4

10 2

100

2n
d

m
om

en
t

Constant gates

101 102

Input-dependent gates

101 102

Input and hidden-dependent gates

101 102

10 10

10 8

10 6

10 4

10 2

100

2n
d

m
om

en
t

101 102 101 102

Samples Theoretical prediction Empirical mean

Figure 15: The theory developed for linear diagonal recurrent networks captures signal propaga-
tion within gated recurrent neural networks. The different samples were obtained as follows: 100
different randomly initialized networks are given a different input sequence of length 512. The biases
of the forget gates bf are initialized with Chrono initialization for T ∈ [1, 256]. For each of these
models / sequences, we measure h2

512,i and dbf,ih
2
512,i (i being the index of one of the 256 hidden

neurons). We report this measurement as a function of the time constant T encoded by the neuron
(λ = T/1 + T). The empirical mean is obtained with a kernel regression with the Gaussian kernel
K(a, b) := exp(−(a− b)2/100). The theoretical prediction comes from the approach described in
Section D.3.

40

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We provide a detailed analysis of the claims we make in the abstract in the
introduction in a controlled setting and show that our conclusion partly extend to reasonable
setting.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We clearly state the assumptions of our theory and our experiments are performed
in a controlled setting.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: the assumptions of the theory are clearly stated in the main text and all derivations
are included in the appendix.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The appendix provides a thorough description of the experiments we perform.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The appendix provides a thorough description of the experiments we perform.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include error bars for all our learning experiments.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

41

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [NA]
Justification: The nature of this work is highly theoretical, we don’t foresee any negative nor
positive societal impact.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [NA] .

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]

42

	Vanishing and exploding gradients
	The curse of memory
	Intuition
	Signal propagation in linear diagonal recurrent neural networks
	Extending the analysis to the non diagonal case

	Mitigating the curse of memory
	A solution: normalization and reparametrization
	Several RNN architectures implicitly alleviate the curse of memory

	A linear teacher-student analysis
	The one-dimensional case
	Diagonal connectivity simplifies optimization
	On the importance of adaptive learning rates

	Signal propagation in deep recurrent networks at initialization
	Conclusion
	Appendix
	Appendix
	Definition of the recurrent networks we use
	Linear recurrent neural network
	Complex-valued RNN and linear recurrent unit (LRU)
	S4
	GRU

	Theory
	Useful lemmas
	The curse of memory: signal propagation analysis
	Forward pass
	Backward pass
	Extension to fully-connected networks
	On the wide-sense stationarity assumption

	Impact of input normalization and parametrization
	Real case
	On the difficulty of parametrizing complex numbers

	Linear teacher-student task
	1D setting
	Calculation of the loss
	Optimal normalization and reparametrization with uncorrelated inputs
	Visualization of the effect of input normalization and reparametrization
	Learning the angle is difficult in practice: an example

	Structure of the Hessian at optimality
	Hessian for complex-valued variables
	Hessian with respect to the recurrent eigenvalues
	Hessian for different parametrizations

	Experimental details
	Additional analyses
	Structure of the loss landscape for LRUs and S4
	Concentrating eigenvalue distributions
	Impact of the number of heads in fully connected linear recurrent networks

	Signal propagation in randomly initialized deep recurrent neural networks
	Experimental setup
	Can gated RNNs be considered diagonal?
	Does our theory apply to gated RNNs?

