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Abstract

Can LLM-based agents exhibit emergent intelligence when governed only by sim-
ple, local rules—without predefined workflows or central coordination? We explore
this question by extending the classical Boids framework from physical flocking to
cognitive collaboration, using it to study how multi-agent systems spontaneously
organize around tool creation. Unlike prior work that treats tool building merely as
a vehicle for downstream task improvement, we frame it as a lens for understand-
ing how decentralized interaction gives rise to coordination, specialization, and
long-horizon adaptation. Each agent follows an observe–reflect–build loop within
a shared environment, guided only by three Boids-inspired primitives—separation,
alignment, and cohesion. Through these minimal rules, agents collectively invent,
adopt, and refine tools. Our results show that Boids-style coordination sustains
long-horizon exploration and diversity in open-ended domains, supporting the
continuous accumulation of structural and functional complexity beyond what
uncoordinated baselines achieve. Our contributions are twofold: (1) an end-to-end
infrastructure and metrics for collective tool building as a sandbox for emergent
intelligence; (2) a Boids-inspired algorithm that demonstrates how simple local
rules can trigger complex collaborative dynamics and long-horizon complexity
growth.

1 Introduction

Emergent intelligence in multi-agent systems has been widely explored through communication
protocols, cooperative tasks, and workflow-centric testbeds. Prior work shows how simple agents can
coordinate, negotiate, and divide labor under predefined tasks or social dilemmas [1, 2, 3, 4], and
how large language models (LLMs) can plan and use external tools to accomplish complex goals
[5, 6, 7, 8]. However, testbed construction via tool building itself remains largely absent for swarm
intelligence research. The few existing efforts treat tool construction only as a supporting mechanism
for improving downstream task performance—for instance, by framing LLMs as tool makers [9],
disentangling tool design from execution [10], or unifying actions as executable code [11]—rather
than as a lens for probing emergent intelligence and multi-agent coordination in their own right.

We argue that tool building is a uniquely revealing substrate: tools are structured, composable artifacts
whose collaborative invention and reuse expose modularity, adoption, and ecosystem dynamics in
ways that single-task workflows or pure communication cannot. As LLMs advance in coding and
reasoning ability, and as agent societies scale, tool creation becomes increasingly central—not
only for solving tasks, but also for measuring how decentralized rules give rise to specialization,
composability, and long-horizon adaptation.
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To address this gap, we propose an integrated infrastructure that establishes collaborative tool building
as a first-class arena for systematically studying emergent intelligence and agent communication.
Agents follow an observe–reflect–build loop over a shared registry, automated test suite, and a Tool
Complexity Index (TCI) that quantifies code size, interface richness, and compositional sophistication,
alongside complementary measures of adoption and reliability. This substrate provides both the
medium for collective invention and the instrumentation to measure modularity, specialization, and
ecosystem dynamics.

On top of this substrate, we revisit Reynolds’ foundational insight that simple local rules—separation,
alignment, and cohesion—can generate coherent global structure without centralized control [12,
13, 14]. While originally formulated for spatial coordination in flocks and swarms, these principles
generalize to cognitive collectives where agents share ideas rather than positions. We adapt them into
a minimal model of cognitive coordination: separation promotes creative divergence by encouraging
agents to explore novel tool directions; alignment supports imitation and knowledge transfer across
agents; and cohesion ensures integrability, sustaining coherence within the shared tool ecosystem.
Together, these simple local interactions provide a lens for examining how complex collective
behavior—division of labor, reuse cascades, and cumulative complexity—can arise without predefined
workflows or explicit planning.

Contributions. This paper makes two contributions: (1) We introduce an end-to-end tool-building
infrastructure—from system design to metrics—that establishes a sandbox for collective invention
and reveals emergent dynamics. (2) We develop a Boids-inspired algorithm for multi-agent collabora-
tion, showing how simple local rules can trigger complex forms of coordination and long-horizon
complexity growth.

2 Tool-Building Infrastructure for Emergent Intelligence

2.1 Agent Substrate and Execution Loop

To study emergent intelligence, we first construct a substrate where tools authored by one agent can
be safely adopted and composed by others. The minimal design supports decentralized creation,
refinement, and sharing while preserving safety and observability.

Overview and agent loop. Each agent executes an observe–reflect–build loop over five components:
(i) Agent Identity with a light specialization prior (e.g., cleaning, profiling); (ii) a Shared Tool
Registry recording community-visible artifacts and adoption telemetry; (iii) a Personal Tool Space
for private drafts and tests; (iv) a Reflection History logging observations, choices, and outcomes;
and (v) an Environment Manager abstracting resources/constraints. At each timestep, the agent
scans registry artifacts and test outcomes, reasons about unmet needs and ecosystem gaps, and
proposes either a new tool or a targeted refinement. Tools follow a standardized interface (typed
signature, structured returns) to enable composition. Execution occurs in a centralized, sandboxed
runtime that enforces safety (e.g., recursion/timeout limits) and accrues usage telemetry. This
compositional substrate allows dependency chains to traverse agents, providing the medium for
emergent collaboration.

Assurance and specialization dynamics. Every proposal triggers automated quality control: test
generation (cases probing functional coverage), execution tracking (pass/fail rates and error logs),
visibility (propagating outcomes to all agents), and persistence (structured logs for longitudinal
study). We add light biases to promote division of labor: Meta-Prompt Influence nudges broad
domains without hard constraints; Usage-Based Reinforcement increases visibility and survival of
adopted tools; Failure-Driven Adaptation focuses agents on systemic test failures by proposing
complementary utilities; and Neighbor Awareness reduces redundancy by exposing recent peer
contributions. Together, assurance and bias produce a feedback loop in which successful tools persist,
unsuccessful ones are repaired or pruned, and niches of specialization gradually crystallize.
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Figure 1: Tool Building Infrastructure Overview: A complete round in the emergent intelligence
framework. The diagram shows how an agent observes shared tools, reflects on complementarity and
history, designs new tools, and contributes back to the shared registry and test ecosystem.

2.2 Measurement and Study Design

Tool complexity and reliability. We quantify artifact sophistication with a Tool Complexity Index
(TCI), a five-term linear score that captures structural richness without requiring heavyweight static
analysis:

TCI(t) = wℓ · LOC(t) + wσ · Interface(t) + wρ · Return(t) + wκ · Calls(t) + wι · Imports(t).

Here, LOC(t) counts non-empty, non-comment source lines; Interface(t) records the number of typed
parameters in the exported execute signature; Return(t) scores the cardinality of structured return
fields; Calls(t) counts explicit intra-registry tool invocations; and Imports(t) counts non-standard-
library imports, after deduplication. The weights (wℓ, wσ, wρ, wκ, wι) are fixed across all conditions
and calibrated once on a small validation set to align with human judgments of sophistication.
Because raw complexity can be inflated by unused or unrunnable code, we always report TCI jointly
with adoption rate Adopt(t)—the number of distinct downstream tools that import t—and reliability
Pass(t), the fraction of autogenerated tests that execute without error.

Comparative study design. We evaluate these observables under matched agent counts, horizon
lengths, and meta-prompts across all experimental conditions. The baseline condition employs the
unaugmented observe–reflect–build loop; successive variants introduce Boids-style communication
rules (alignment, separation, cohesion), self-reflection memory, and other coordination scaffolds one
at a time. For each configuration we execute paired runs on both meta-prompts (literary analysis vs.
healthcare analytics) and—where relevant—paired model families (GPT-4.1-nano and GPT-4o-mini).
Metrics are computed per run, averaged across repetitions, and accompanied by confidence intervals
derived from bootstrap resampling of rounds. This matched design ensures that changes in complexity
growth, specialization, or duplication can be attributed to the coordination mechanisms rather than
shifts in task, population size, or randomness.

Core performance metrics. Each experimental run records performance and behavioral indicators
across the multi-agent society, yielding a compact set of comparative metrics summarized in the review
table. These metrics capture both absolute performance and relative changes with respect to baseline

3



Figure 2: Overview of Boids-based coordination for collaborative tool building.

conditions: (1) ∆Avg TCI, the delta in mean Tool Complexity Index relative to baseline, computed as
the difference in average TCI scores across all generated tools between the experimental condition
and the control; (2) ∆Pass Rate (pp), the absolute change in test success rate measured in percentage
points, representing the difference in the proportion of passing unit tests between experimental and
baseline conditions; (3) ∆Category, the net change in the cardinality of distinct functional categories
present in the tool repository, reflecting expansion or contraction of representational task diversity;
(4) Complexity ∆, the aggregate change in ecosystem-wide complexity, quantified as the difference
in cumulative TCI accumulation over the experimental duration; (5) Agent TCI ±σ, the per-agent
mean Tool Complexity Index with standard deviation, characterizing the average sophistication
of tools produced by individual agents and the dispersion across the agent population; (6) Spec
±σ, the degree of agent specialization measured by normalized mutual information NMI(A;C)
between agent identities and task categories, reported with standard deviation to capture variation
in specialization patterns; and (7) Consistency ±σ, operationalized as the inverse coefficient of
variation in per-agent TCI distributions, quantifying the uniformity with which agents produce tools
of comparable complexity, where lower values indicate greater heterogeneity in individual production
profiles.

3 Boids–Inspired Framework for Collaborative Tool

Building Our framework adapts the classical boids model from spatial coordination to the cognitive
domain of multi-agent tool creation. The core of an agent’s decision-making process is governed by
three rules—separation, alignment, and cohesion—which are mathematically formulated and imple-
mented with prompts to guide behavior based on local information within the agent’s neighborhood.
The three rule outputs are synthesized into textual guidance, which is then incorporated into the
agent’s reflection process to produce its final decision in tool making.
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3.1 Separation: Functional Niche Specialization

The separation rule enforces functional diversity and encourages niche specialization by discouraging
the creation of tools that are redundant within an agent’s local neighborhood. We model this through
calculating redundancy scoring and prompting.

Neighbourhood and textual representations. To encourage niche specialization, each agent inspects
the tools proposed in its local neighbourhood and raises a redundancy warning when neighbours
converge semantically. Neighbourhoods follow a k-regular ring over a population of size n , so each
agent observes its k nearest predecessors and k nearest successors under circular indexing. For every
neighbour tool, we build a short document by concatenating its name and description, apply standard
tokenization with stop-word removal, and compute Tool Term features. The resulting document is
mapped to a nonnegative Tool Term vector and ℓ2-normalized; we denote the unit embedding of the
m-th neighbour tool by vm.

Redundancy scoring. Semantic overlap between two neighbour tools p and q is measured by cosine
similarity,

Spq =
⟨vp,vq⟩
∥vp∥ ∥vq∥

,

where vp and vq are the ℓ2-normalized Tool Term embeddings of their respective documents, ⟨·, ·⟩
denotes the Euclidean inner product, and ∥·∥2 the Euclidean norm. Since the embeddings are
unit-length, Spq = ⟨vp,vq⟩ ∈ [0, 1].

Flagging and guidance. With a similarity threshold θ and quota K = 2, we rank all neighbour
pairs with Spq≥θ and collect up to K unique tools appearing in the top pairs, annotating each with
its maximal observed similarity. The agent receives a concise separation message (names, brief
descriptions, leading code lines) and an explicit instruction to propose a functionally distinct tool
next; no numeric penalties or probabilistic adjustments are applied, and the message is injected into
the reflective prompt conditioning the subsequent proposal.

3.2 Alignment: Exemplar-Guided Propagation of Successful Design Principles

The goal of alignment is to propagate effective design principles by exposing each agent to recent,
high-quality exemplars created by its neighbours. Consider agent i with a pre-defined k-ring neigh-
bourhood Ni and a discrete round index r. A fixed recency horizon of w = 3 rounds defines the
candidate pool Ri(w): the set of all tools produced by any neighbour j ∈ Ni in rounds greater
than or equal to r − w. Each tool τ ∈ Ri(w) is annotated with three signals: a binary test out-
come test_passed(τ) ∈ {0, 1}, a non-negative adoption count adopt(τ) ∈ N0 (number of observed
reuses), and a Tool Complexity Index tci(τ) ∈ [0, 10] that scores architectural sophistication. The
primary (quality) exemplar is selected by maximizing complexity among recent tools that have passed
tests,

q⋆ = arg max
τ∈Ri(w) : test_passed(τ)=1

tci(τ),

where q⋆ denotes the chosen exemplar, Ri(w) is the recency-filtered neighbourhood set defined
above, test_passed(·) is the binary test indicator, and tci(·) is the complexity score. If no recent tool
has passed tests, the same maximization of tci(·) is performed over all τ ∈ Ri(w) and the resulting
tool is used as a fallback quality exemplar. A secondary (adoption) exemplar is provided only when
some recent tool exhibits reuse; in that case, the tool in Ri(w) with the largest adopt(τ) is identified
(and omitted otherwise). The mechanism of influence is purely prompt-level: the system assembles
a concise segment featuring q⋆ and, when available, the adoption exemplar, each with provenance,
strategic commentary, and a code excerpt. The agent is instructed to emulate the highlighted
principles—e.g., modularity, composition, and robust interfaces—without copying. No numeric
action preferences, penalties, or probabilistic selection adjustments are computed; the downstream
proposal is produced solely by conditioning the language model on this narrative guidance.

3.3 Cohesion: Trend Alignment via Global Round Summary

The mechanism promotes coordinated progress by steering each agent toward the ecosystem’s
emerging collective objective inferred from the immediately preceding round. Let r ∈ N denote
the current round index. At the end of round r − 1, we assemble a dataset Ar−1 consisting of one
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descriptor for each successfully built tool in that round; each descriptor records the authoring agent
identifier, the tool’s name, and a succinct design synopsis. An external large language model (the
“senior architect”) operated under a fixed prompting policy πarchitect then produces a one-paragraph
global trend summary and next-step suggestion, denoted Gr−1 ∈ Text, according to

Gr−1 =

{
Summarise(Ar−1; πarchitect), if Ar−1 ̸= ∅,

‘No significant tool-building activity occurred in this round.”, otherwise,
(1)

where Summarise(·; ·) denotes the application of the senior-architect LLM, configured by the fixed
policy πarchitect, to the round-(r − 1) descriptors Ar−1. The sequence (G0, . . . ,Gr−1) is retained as
the centre-history for use in later rounds. Mechanism of influence. At the start of round r, each agent
i receives a cohesion prompt comprising a fixed “Cohesion” tag, the textual artifact Gr−1, and the
instruction: “Contribute to this emerging trend; design a tool that serves the broader goal.” This is
strictly prompt-level guidance: it augments the agent’s reflection context without computing numeric
preference weights, penalties, or probabilistic mixing. The subsequent tool proposal is generated by
the agent’s LLM-conditioned policy using Gr−1; when Gr−1 equals the fallback sentence above, the
agent is explicitly informed that no meaningful trend has yet emerged.

3.4 Decision Synthesis

Prompt-mediated synthesis. For each agent turn, the Boids rules generate natural-language guidance
snippets: alignment and separation derive from neighbours’ tool metadata, while cohesion injects the
previous round’s global summary. These snippets are concatenated into the agent’s reflection prompt
and provided—together with mission context—to the language model.

Implication. Decision-making thus remains conversational: the repeated application of Boids
guidance shapes emergent behaviour via the LLM’s conditional generation rather than via stochastic
policies over engineered utility scores.

4 Experimental Design

Overview. We operationalize a high-throughput, reproducible pipeline for multi-agent tool creation
that systematically spans coordination regimes, model families, and task contexts while holding
ancillary factors fixed. Each run instantiates a cohort of 15 agents for 15 iterative build rounds,
yielding 15 × 15 = 225 tool implementations per configuration. We evaluate six methodological
regimes: (i) the base reflective loop, (ii–iv) single-rule Boids augmentations (alignment, separation,
cohesion), (v) the full Boids triad, and (vi) Boids+recent-reflection memory. Every regime is executed
with two production-grade models (GPT-4.1-nano, GPT-4o-mini), giving

225 tools/run × 6 regimes × 2 models = 2700 tools per meta-prompt.

We run this factorial grid across two orthogonal meta-prompt contexts, totaling 2,700× 2 = 5,400
unique tools in the principal study.

Meta-prompt contexts. To stress divergent reasoning modalities under identical infrastructure, we
use: (1) a literary intelligence brief (Shakespearean sonnet interpretation and stylistic decomposition),
and (2) a healthcare insurance analytics brief (actuarial reasoning over public medical-cost datasets).
Both are curated from public-domain sources to emphasize long-horizon planning and composition
rather than dataset idiosyncrasies. Running the same coordination regimes and models in both
contexts enables cross-domain validation without confounding changes in evaluation protocol.

5 Results

5.1 Data Science Domain: Coordination as Functional Amplifier

Coordination transforms local interaction into functional amplification. In the data-science
domain, Full Boids with GPT-4.1-nano achieves the strongest overall performance, combining
elevated complexity (+4.8%) with the highest test pass rate (+46%). This dual improvement is
non-trivial, as complexity and correctness typically trade off. The Alignment condition produces
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Model Method Avg TCI ↑ Avg LOC ↑ Test Pass %
↑

Category
Diversity ↑

Agent TCI
(+/-)

Spec
(+/-)

Consistency
(+/-)

4.1 Baseline 5.17 75.8 7.6% 8 5.18±0.34 0.58±0.21 0.46±0.16
Full Boids 5.42 90.7 11.1% 15 5.42±0.45 0.46±0.15 0.38±0.10

4O–MINI Baseline 3.73 24.6 0.4% 10 3.72±0.19 0.51±0.20 0.75±0.12
Full Boids 3.87 28.8 1.3% 18 3.87±0.23 0.24±0.06 0.52±0.10

Table 1: An overview of performances to show emergent intelligence over the data science meta
prompt.

Model Method Avg TCI ↑ Avg LOC ↑ Test Pass %
↑

Category
Diversity ↑

Agent TCI
(+/)

Spec
(+/)

Consistency
(+/)

4.1 Baseline 4.00 62.0 10.2% 8 4.00±0.46 0.75±0.11 0.29±0.05
Full Boids 3.90 53.9 7.1% 13 3.91±0.20 0.64±0.12 0.34±0.09

4O–MINI Baseline 2.31 34.3 0.4% 15 2.30±0.39 0.52±0.20 0.65±0.15
Full Boids 3.42 29.1 2.2% 20 3.42±0.21 0.24±0.05 0.48±0.08

Table 2: An overview of performances to show emergent intelligence over the literature meta prompt..

the most striking effect (TCI = 5.47; pass = 15.1%), achieving a 2× improvement over baseline and
demonstrating that alignment-driven coordination yields structured complexity—tools that are both
sophisticated and functionally coherent. In contrast, Separation attains comparable complexity (TCI =
5.26) but catastrophic reliability (0.9% pass, –88%), exemplifying exploratory complexity—novel yet
unstable solutions. This significant reliability gap between Alignment and Separation under similar
complexity levels underscores that coordination mechanisms dictate not just how much complexity
arises, but what kind.

Beyond performance, coordination shapes diversity and specialization dynamics. Full Boids
achieves high category diversity (15, +87.5% vs. baseline 8) with moderate specialization (0.46),
revealing evidence of dynamic role allocation: agents flexibly explore multiple categories across
rounds while maintaining collective coherence through balanced alignment and separation. By
contrast, Cohesion promotes stable but narrow behavior (specialization = 0.64; diversity = 12;
consistency = 0.25±0.04), indicating a collective shift toward exploitation over exploration. A
negative correlation between specialization and consistency supports this tradeoff between adaptability
and stability. Model scaling experiments further reveal parallel but attenuated trends: with GPT-
4o-mini, Full Boids improves complexity (+3.8%) and nearly doubles diversity, yet absolute pass
rates remain low, suggesting a capability threshold below which coordination cannot yield functional
innovation. Alignment provides the greatest relative gain (+17.4% complexity), indicating that weaker
models benefit disproportionately from coordination scaffolds, though their ultimate performance
remains bounded by inherent capacity.

5.2 Literature Domain: Coordination Resistance and Natural Emergence

The literature domain exhibits a paradoxical relationship between coordination and performance.
While structured collaboration enhances outcomes in data science, here it often disrupts natural
emergent organization. Baseline GPT-4.1-nano already shows high specialization (0.75) and strong
reliability (10.2%), whereas Full Boids slightly reduces both complexity (TCI ≈ 3.9) and functional
success (≈7%), suggesting that coordination can constrain creative divergence. Intriguingly, the
No-Reflection variant achieves the highest complexity (≈4.8) under moderate reliability, indicating
that suppressing metacognition can preserve exploratory freedom beneficial for open-ended synthesis.
Separation amplifies this effect—producing the most complex yet least reliable artifacts, with
sustained growth over time—implying that continuous exploration, not convergence, is optimal in
this domain. Notably, GPT-4o-mini reverses the trend: its performance improves markedly under
Full Boids (+48%), supporting a broader principle of capability–coordination complementarity,
where weaker agents rely on coordination scaffolds for coherence, while stronger ones thrive on
autonomous emergence.
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Model Method Avg TCI ↑ Avg LOC ↑ Test Pass
% ↑

Category
Diversity ↑

Agent TCI
(+/-)

Spec
(+/-)

Consistency
(+/-)

4.1

Separation 5.26 87.6 0.9% 17 5.25 ±
0.44

0.48 ±
0.15

0.53 ±
0.16

Alignment 5.47 82.9 15.1% 15 5.50 ±
0.42

0.45 ±
0.13

0.40 ±
0.09

Cohesion 4.90 72.5 9.8% 12 4.91 ±
0.49

0.64 ±
0.08

0.25 ±
0.04

No Reflection 5.03 75.1 3.6% 19 5.03 ±
0.37

0.36 ±
0.11

0.40 ±
0.08

4O–MINI

Separation 3.73 28.9 0.0% 22 3.72 ±
0.23

0.36 ±
0.13

0.68 ±
0.07

Alignment 4.38 21.9 0.9% 11 4.39 ±
0.25

0.44 ±
0.12

0.57 ±
0.17

Cohesion 3.25 25.2 1.3% 19 3.25 ±
0.17

0.26 ±
0.07

0.68 ±
0.08

No Reflection 3.97 28.4 2.2% 17 3.96 ±
0.20

0.28 ±
0.07

0.50 ±
0.08

Table 3: Ablations on the Data Science Meta Prompt: Separation/Alignment/Cohesion denote variants
where only the named rule is enabled; No Reflection denotes the setting with all three Boids rules
enabled while agent reflection is disabled.

Model Method Avg TCI ↑ Avg LOC ↑ Test Pass
% ↑

Category
Diversity ↑

Agent TCI
(+/)

Spec
(+/)

Consistency
(+/)

4.1

Separation 5.26 87.6 0.9% 7 5.25 ±
0.44

0.53 ±
0.13

0.53 ±
0.16

Alignment 3.79 85.0 1.3% 9 3.80 ±
0.33

0.62 ±
0.19

0.33 ±
0.08

Cohesion 3.94 64.6 6.7% 7 3.94 ±
0.28

0.58 ±
0.11

0.29 ±
0.09

No Reflection 4.77 65.9 7.6% 15 4.77 ±
0.35

0.60 ±
0.19

0.30 ±
0.07

4O–MINI

Separation 2.56 20.8 1.3% 8 2.56 ±
0.26

0.62 ±
0.17

0.68 ±
0.07

Alignment 2.92 39.4 0.0% 7 2.91 ±
0.37

0.54 ±
0.14

0.54 ±
0.06

Cohesion 2.89 23.3 1.3% 10 2.89 ±
0.14

0.33 ±
0.08

0.61 ±
0.11

No Reflection 3.14 24.6 2.2% 16 3.14 ±
0.34

0.32 ±
0.09

0.50 ±
0.07

Table 4: Ablations on the Literature Meta Prompt: Separation/Alignment/Cohesion denote variants
where only the named rule is enabled; No Reflection denotes the setting with all three Boids rules
enabled while agent reflection is disabled.

5.3 Additional Observations

Coordination shapes not just how agents move—but how complexity grows. As shown in
Fig. 5.3 and Fig. 5.3, the complexity trajectories make the coordination story visible. In the data-
science domain, the uncoordinated baseline steadily bleeds structure away, while Alignment im-
mediately bends the curve upward and keeps climbing, with the No-Reflection variant gradually
catching up. Cohesion and Separation stay flat and never regain lost ground. The literature domain
flips the script: the baseline again slumps, but Full Boids triggers a sharp early rise and sustains it,
closely followed by No-Reflection, while the single-rule modes advance more cautiously. Together,
these patterns show that coordination prevents weaker agents from drifting into low-complexity
equilibria—but the rule mix must match the task: directional pressure (Alignment) drives success in
structured, convergent settings, whereas the full Boids ensemble provides the sustained lift needed for
open-ended, divergent creation. The potential of Boids-style coordination for sustaining long-term
complexity growth is evident.

Functional Complexity vs. Structural Complexity Across domains, we observe a consistent
dissociation between structural complexity and functional correctness: higher Tool Complexity Index
(TCI) does not guarantee better performance. In the data-science domain, Alignment (TCI = 5.47,
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Figure 3: Complexity evolution across coordination mechanisms in two domains: healthcare analytics
(data science) and Shakespeare analysis (literature)

pass = 15.1%) and Full Boids (TCI = 5.42, pass = 11.1%) achieve both high complexity and strong
reliability, whereas Separation produces equally complex artifacts (TCI = 5.26) with catastrophic
correctness (0.9% pass). The same pattern appears in literature (TCI = 5.26, pass = 0.9%), revealing a
17× performance gap between conditions of comparable complexity and indicating that complexity
type matters more than complexity magnitude. We distinguish two regimes: structured complexity,
marked by high internal coherence and coordinated integration that yields functional reliability
(Alignment, Full Boids); and exploratory complexity, characterized by novelty and diversity but poor
compositional stability (Separation).

6 Conclusions and Limitations

Conclusions. We recast collaborative tool building as a first-class substrate for studying emergent
intelligence, introducing an end-to-end infrastructure with a shared registry, automated testing, and
a Tool Complexity Index (TCI) to quantify structural and compositional sophistication. On this
substrate, we adapt Reynolds’ Boids into cognitive interaction rules—separation, alignment, and
cohesion—that influence agents purely via prompt-level guidance. Across matched populations
and horizons, we observe that simple local coordination mechanisms can amplify both structural
and functional complexity, producing distinct forms of emergent organization: Full Boids sustains
long-horizon exploration and diversity in open-ended domains. These results reveal that coordination
not only regulates how agents interact, but also governs how complexity accumulates, stabilizes, and
transforms over time—suggesting a general framework for understanding, and eventually engineering,
emergent collective intelligence in LLM-based societies.

Limitations. While our framework offers a controlled lens on emergent coordination, several
boundary conditions limit generality. The experiments use fixed team and horizon parameters
(N=15, T=15), leaving scalability and long-horizon dynamics underexplored. Domain coverage
is restricted to two abstracted tasks—data science and literature—excluding embodied, real-time,
or intermediate-structure environments. Model diversity is similarly limited to GPT-4.1-nano and
GPT-4o-mini; other architectures, modalities, or fine-tuned systems may exhibit distinct coordination
signatures. Measurement design also imposes simplifications: the Tool Complexity Index assumes
equal weighting across structural components, the binary test pass rate overlooks partial function-
ality, and category-based specialization metrics may obscure finer semantic variation. Finally, our
setup presumes cooperative, fixed-capability agents operating on symbolic outputs, which narrows
applicability to knowledge-intensive, non-adversarial domains.
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Acknowledgments on Future Work. Future extensions should expand both scope and adaptivity of
the framework. Scaling to larger collectives and longer horizons could reveal phase transitions in co-
ordination dynamics or delayed emergent organization, particularly in creative domains. Introducing
learning or self-improving agents would test whether coordination rules evolve alongside capability.
Incorporating multimodal or embodied tasks could bridge symbolic reasoning with physical coordi-
nation, while adversarial or mixed-motive settings would probe robustness under strategic tension.
Methodologically, refining the Tool Complexity Index with adaptive weighting and richer correctness
measures could yield more nuanced insights into emergent competence. Ultimately, coupling local
coordination principles with dynamic learning, evolutionary selection, and explicit inter-agent com-
munication offers a path toward experimentally grounded theories of collective intelligence in large
language model societies.
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A Additional Related Work

Tool Creation vs. Tool Usage A growing body of work shows that tool usage (planning, retrieving,
and invoking external tools/APIs) is comparatively mature, with large-scale, execution-grounded
benchmarks (ToolLLM/ToolBench, StableToolBench, API-Bank) and realistic task suites (AppWorld,
BrowserGym, AssistantBench, plus OS/web environments above) establishing reliable evaluation
for multi-tool reasoning and long-horizon automation [15, 16, 17, 18, 19]. By contrast, tool cre-
ation—having agents invent reusable functions, wrappers, or skills—has only recently been formal-
ized: LLMs as Tool Makers (LATM) frames closed-loop creation–reuse; CREATOR disentangles
abstract tool design from concrete decision execution; and CodeAct unifies actions as executable code
for compositionality and self-debugging [9, 10, 11].

Local Interaction Rules, Coordination, and Emergent Intelligence. Classical results demonstrate
that simple local interactions can produce coherent global structure without centralized control.
Reynolds’ Boids established that separation, alignment, and cohesion suffice for lifelike flocking
[12], while statistical physics models proved long-range order and nonequilibrium phase transitions
in self-propelled particles [13, 14]. Biology and crowd dynamics provide convergent evidence that
decentralized feedbacks and attractive/repulsive “social forces” yield large-scale coordination [20, 21],
and control-theoretic and swarm-engineering work formalizes distributed flocking with design and
verification principles [22, 23]. Behavioral ecology further links local cues to collective decisions
and leadership [24]. We adopt this micro-to-macro lens but recast alignment/cohesion/separation as
institutional primitives subject to evolutionary pressure in survival-driven ecologies.

Open Sandbox Simulations and Emergent Intelligence Open-ended, reproducible “sandbox”
environments are becoming the de facto way to elicit and measure emergent intelligence—cooperation,
norms, specialization, and division of labor—without hardcoding behaviors. Recent social–simulation
testbeds scale the number of agents and interaction diversity by orders of magnitude (e.g., millions
of agent instances in OASIS) while retaining controlled protocols for evaluation, allowing simple
local rules to compound into population-level dynamics [25, 26]. Complementary platforms focus on
rich multi-agent partial observability and long-horizon incentives, which are critical preconditions
for emergence (e.g., mixed-motive social dilemmas and background populations in Melting Pot
2.0; persistent open worlds and large populations in Neural MMO 2.0) [27, 4]. Beyond synthetic
worlds, “real computer” and realistic web settings (OSWorld, WebArena, VisualWebArena, Mind2Web)
provide execution-based scoring over long, multi-step tasks and heterogeneous interfaces, enabling
emergent coordination and tool-mediated workflows to be measured in environments much closer to
end-user contexts [28, 29, 30, 31]. Finally, open-ended embodied sandboxes such as Voyager and
MineDojo demonstrate how simple exploration, memory, and skill libraries can yield cascades of new
capabilities—an approach that aligns naturally with our Boids hypothesis that minimal local rules can
produce useful global organization. [6].
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B Task Descriptions (Meta Prompts)

B.1 Data Science Task: Healthcare Cost Prediction System

Resource: resources/task_insurance.csv — Medical insurance dataset with 1,338 individuals.

Columns: [’age’, ’sex’, ’bmi’, ’children’, ’smoker’, ’region’, ’charges’]

Description: This dataset contains demographic and medical cost information for 1,338 individuals,
with features such as age, gender, body mass index (BMI), number of children, smoking status,
region, and total healthcare charges (target variable). A sample record is: age = 19, sex = female, bmi
= 27.90, children = 0, smoker = yes, region = southwest, charges = 16,884.92.

Mission: Build analytical tools to predict healthcare costs, identify cost drivers, and uncover hidden
factors influencing medical expenses. The goal is to explore what patterns in healthcare spending are
being missed by traditional insurance pricing models.

Encouraged Directions: Develop a multi-stage cost intelligence pipeline:

1. Demographic Analyzer → identify age-, BMI-, and lifestyle-based cost clusters.
2. Health Risk Predictor → estimate risk factors and expected cost variance.
3. Cost Estimator → generate predictive models for individual healthcare charges.
4. Policy Optimizer → evaluate coverage design and fairness.
5. Affordability Assessor → measure equitable pricing and societal impact.

Analytical Focus: Encourage the use of advanced ensemble methods, statistical modeling, and
feature engineering to understand how increasingly sophisticated healthcare analysis tools enhance
one another for improved insurance decision-making.

Open Question: What hidden healthcare cost patterns could transform insurance pricing?

B.2 Literature Task: Shakespeare Sonnet Linguistic Analysis

Resource: resources/task_sonnets_18.pdf — Shakespeare’s Sonnet 18 (“Shall I compare
thee to a summer’s day?”) with detailed linguistic and literary annotations.

Description: The resource provides an annotated text of Sonnet 18, exploring Shakespeare’s linguistic
choices, rhythmic precision, and metaphorical innovation.

Mission: Build systems capable of analyzing poetic structure, extracting linguistic patterns, and
generating insights into Shakespeare’s creative techniques. Investigate what poetic innovations in this
sonnet could inform modern creative writing and AI-based poetry generation.

Encouraged Directions: Construct a hierarchical poetic analysis pipeline:

1. Structure Analyzer → detect rhyme scheme and stanza form.
2. Linguistic Pattern Extractor → capture syntactic and lexical motifs.
3. Meter Analyzer → identify rhythmic and prosodic regularities.
4. Metaphor Identifier → locate figurative language and conceptual mappings.
5. Style Generator → synthesize new poetic text inspired by discovered patterns.

Analytical Focus: Encourage multi-layered semantic and stylistic modeling—combining linguistic
pattern recognition, prosody detection, and generative style transfer to explore how increasingly
complex poetic tools interact to enhance creative writing systems.

Open Question: What poetic techniques could inspire modern creative writing tools?
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