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Abstract

The emergence of complex intelligence from simple interactions has long fasci-
nated artificial life and multi-agent research. Foundational work such as Boids
showed how three local rules—cohesion, separation, and alignment—are sufficient
to generate lifelike flocking without centralized control. In parallel, evolutionary
algorithms explored how adaptation arises through variation and selection. Yet
existing approaches remain limited: swarm models typically lack long-term adap-
tation, while evolutionary systems often converge prematurely and fail to capture
emergent tool ecosystems.

We introduce TF-Boids: Survival of the Useful, a framework that unifies Boids-
style local coordination with evolutionary selection in survival-driven environments.
Each agent follows an observe—reflect—build loop to generate and refine tools,
supported by automated testing, shared registries, and a Tool Complexity Index
(TClI) that quantifies code, interface, and compositional sophistication. Local rules
promote modularity and functional specialization, while evolutionary pressure
retains strategies that enhance ecosystem robustness.

Our experiments span creative writing, data science, and research assistance do-
mains, comparing Boids-enabled and baseline societies, and further incorporating
evolutionary dynamics. Results show that Boids rules consistently reduce redun-
dancy and favor compact, composable tools, while baseline systems trend toward
heavier but more integrated pipelines. Evolutionary selection expands the ecosys-
tem across generations, producing specialized tools with increasing capability.

This sandbox provides a tractable yet expressive platform for probing emergent
intelligence through tool creation and refinement, with implications for multi-agent
alignment, modular versus integrated design trade-offs, and the study of evolving
ecosystems of intelligent agents.

1 Introduction

The quest to understand how complex intelligence emerges from simple interactions has long animated
both artificial life and artificial intelligence research. Multi-agent systems, in particular, have become
a central paradigm for exploring these dynamics. Recent advances in multi-agent reinforcement
learning, communication protocols, and emergent behaviors have shown that agents can spontaneously
coordinate, share information, and even develop strategies that surpass their individual capabilities.
Yet much of this progress remains fragmented: agents are often designed for narrow benchmarks, and
the long-term dynamics of how societies of agents evolve, specialize, and govern themselves remain
underexplored.

Foundational work such as Reynolds’ Boids model showed that three local rules—separation, align-
ment, and cohesion—are sufficient to produce lifelike flocking behaviors without centralized control
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[LL 2, 13]. This seminal result highlighted a core principle of emergent intelligence: decentralized
agents, each following simple heuristics, can collectively generate sophisticated global patterns.
Similar principles have been observed in ant colonies, fish schools, and swarm robotics [4}, 15} 16} 7} I8]].

In parallel, evolutionary algorithms explored how adaptive complexity arises through variation and
selection. Early systems such as Tierra [9] and Avida [10] demonstrated host—parasite coevolution
and punctuated equilibria, while later methods—novelty search [[11], quality-diversity algorithms
[12}[13]], and POET [14}[15]—sought to sustain open-ended innovation through diversity pressure and
autocurricula. Despite these advances, important gaps remain: swarm models often lack long-term
adaptation, evolutionary systems stagnate prematurely, and emergent communication or tool use is
usually constrained to narrow, task-specific contexts [[16, [17, [18} [19].

What is missing is a unified framework that couples local emergent coordination with global evolu-
tionary adaptation, situated in a survival-driven ecology. A particularly underexplored dimension
in this space is tool building. While tool usage by LLMs and agents has become a popular research
focus 20} 21}, 1221 23] [24]], the process by which agents collaboratively create and refine tools offers a
richer window into complexity, collaboration, and societal evolution. Tool creation also connects
naturally to real-world impacts, from research automation to evolving software ecosystems, making
it an ideal lens for studying emergent intelligence.

We introduce TF-Boids: Survival of the Useful, a framework that unifies local flocking dynamics
with evolutionary adaptation in sandbox societies. Our system reinterprets cohesion, separation, and
alignment as institutional primitives governing interaction. Agents inhabit ecological tasks such as for-
aging, evacuation, and pursuit, and evolutionary operators act over both agents and rules—preserving
strategies that enhance collective performance while discarding those that destabilize the society.

By embedding Boids-style local rules into an evolutionary loop, we obtain a sandbox where coor-
dination, governance, specialization, and collapse can be studied in controlled environments. This
perspective bridges decades of work in artificial life, evolutionary algorithms, and multi-agent re-
inforcement learning, providing a tractable yet expressive platform for probing the dynamics of
emergent intelligence. Beyond theoretical interest, such sandbox societies offer insight into broader
challenges of Al alignment, adaptive governance, and evolving ecosystems of intelligent tools.

2 Related Work

Local Interaction Rules, Coordination, and Emergent Intelligence. Classical results demonstrate
that simple local interactions can produce coherent global structure without centralized control.
Reynolds’ Boids established that separation, alignment, and cohesion suffice for lifelike flocking
[L], while statistical physics models proved long-range order and nonequilibrium phase transitions
in self-propelled particles [2} [3]. Biology and crowd dynamics provide convergent evidence that
decentralized feedbacks and attractive/repulsive “social forces” yield large-scale coordination [4} 5],
and control-theoretic and swarm-engineering work formalizes distributed flocking with design and
verification principles [6, [7]]. Behavioral ecology further links local cues to collective decisions
and leadership [8]]. We adopt this micro-to-macro lens but recast alignment/cohesion/separation as
institutional primitives subject to evolutionary pressure in survival-driven ecologies.

Evolutionary algorithms for open-ended adaptation. Digital evolution showed that variation
and selection can sustain innovation and coevolution in silico [9, [10]. To mitigate deception and
premature convergence, novelty search and quality—diversity (QD) maintain behaviorally diverse,
high-performing repertoires [[11, 112} [13]], with repertoire-based control enabling rapid self-recovery in
robotics [25]. Open-ended approaches co-evolve challenges and solutions via transfer across stepping
stones (POET and variants) [14} [15]], while unsupervised environment design induces curricula that
yield robust zero-shot transfer [26]. We adopt this diversity-first view but define fitness at the societal
level: evolution acts jointly on agent policies and the institutional/tool layer, retaining strategies and
rules that improve collective performance and stability.

Open sandbox simulations with a slice toward tool creation. Open multi-agent sandboxes probe
social generalization and emergent dynamics at scale: self-play yields staged strategies and emergent
tool use [16]; XLand trains generally capable agents across procedurally generated social tasks [[18]];
Melting Pot 2.0 targets novel-partner generalization in mixed-incentive settings [27]; Neural MMO 2.0
offers persistent many-agent worlds with multi-task evaluation [19]; and Overcooked-based setups
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benchmark zero-shot human—AlI coordination and layout generalization [[17,[28]]. Complementary
LLM-agent work studies how fools and skills are acquired and orchestrated: Toolformer learns API
calling [20]; Voyager accumulates persistent embodied skill libraries [21]]; multi-agent scaffolds
(CAMEL, AutoGen) coordinate role-specialized LLMs [22} 23]]; and “generative agents” simulate
long-horizon social behavior [24]. Reviewer-authored systems extend this frontier—Agent LUMOS
(modular training) [29]], OASIS (scaling to one million agents) [30], OWL (hierarchical multi-agent
workforce) [31]], and schema-guided, culture-aware role-play [32]—while CollabUIAgents analyzes
credit re-assignment for collaboration and generalization [33]]. Our contribution is a minimalist,
Boids-style survival-driven sandbox in which agents not only use tools but also create and retain
tools and rules, with evolutionary selection determining which institutions persist or collapse.

3 Methodology

3.1 Baseline System: Self-Reflective Tool-Building Agent Society

Overview and agent loop. Our baseline establishes the minimal viable setting in which decentral-
ized agents generate, refine, and share tools while collective structure emerges. Each agent follows
a simple observe—reflect—build loop grounded in five conceptual components: an Agent Identity
with a light specialization prior; a Shared Tool Registry that records community-visible artifacts and
usage statistics; a Personal Tool Space for private development and testing; a Reflection History
logging observations, choices, and outcomes; and an Environment Manager abstracting resources
and constraints. At each timestep, the agent inspects available tools and their test outcomes, reasons
about unmet needs and ecosystem gaps, and proposes new tools or targeted refinements. Tools
expose a standardized interface that enables composition—simple primitives combine into larger
workflows—executed in a centralized, sandboxed context that enforces safety (e.g., recursion limits)
and accrues usage telemetry. This compositional substrate encourages dependency chains across
agents and provides the basic medium for emergent collaboration.

Assurance and specialization dynamics. Every tool proposal triggers automated quality control
comprising test generation (candidate cases probing functional coverage), execution tracking (pass/fail
rates and error logs), visibility (propagating outcomes to all agents), and persistence (structured
logs for longitudinal study). These mechanisms steer the ecosystem toward reliability rather than
unchecked proliferation. On top of this, we incorporate light biases that promote division of labor:
Meta-Prompt Influence nudges agents toward broad domains (e.g., sorting, parsing) without hard
constraints; Usage-Based Reinforcement increases the visibility and survival of adopted tools; Failure-
Driven Adaptation directs agents to address systemic test failures by proposing complementary
utilities; and Neighbor Awareness reduces redundancy by exposing agents to peer contributions,
encouraging complementary rather than duplicative tool design. Together, assurance and bias produce
a feedback loop in which successful tools persist, unsuccessful ones are pruned or repaired, and
niches of specialization gradually crystallize.

Infrastructure, observables, and study design. All experiments run in isolated, reproducible
executions that emit structured logs of reflections, tool creations, and evaluations; quantitative
traces in JSON for post-hoc analysis; and visualization dashboards for real-time monitoring of
ecosystem dynamics. We track a fixed set of observables that summarize emergent behavior: Tool
Creation Rate (new tools per agent per round), Composition Depth (average dependency-chain
length), Specialization Index (diversity of tool types across agents), Collaboration Events (frequency
with which tools build on others), Test Success Rate (ecosystem reliability), and Usage Propagation
(speed at which effective tools diffuse). This instrumentation provides clear experimental control
and comparability across conditions, furnishing a quantitative baseline against which we later
layer communication protocols and evolutionary pressures to test their impact on coordination,
specialization, and long-horizon performance.

3.2 Computational Framework for Boids-Inspired Cognitive Coordination

Our framework adapts the classical boids model from spatial coordination to the cognitive domain
of multi-agent tool creation. The core of an agent’s decision-making process is governed by three
rules—separation, alignment, and cohesion—which are mathematically formulated to guide behavior
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based on local information within the agent’s neighborhood. These rules generate preference scores
for potential actions, which are then synthesized to produce a final, stochastic action choice.

3.2.1 Mathematical Formulation of Boids Rules

Let the set of possible actions for an agent be A, which includes building tools of various types
(@build,¢) and using existing tools (ays.). Each boids rule produces a preference function P(-) over this
action space.

3.2.2 Separation: Functional Niche Specialization

The separation rule enforces functional diversity and encourages niche specialization by discouraging
the creation of tools that are redundant within an agent’s local neighborhood. We model this through
two distinct mechanisms.

Saturation-Based Model. This model calculates the saturation S(t) of a given tool type ¢ within
the recent history of an agent ¢’s neighborhood N;. Let T} recent be the set of recently created tools by
a neighbor j. The saturation is:

St) =Y {7 € Tjrecent | type(r) = t}] (1
JEN;

The preference for building a tool of type ¢, Piep(@buila,¢ ), is modulated by a penalty function fep (S(2))
that decreases preference as saturation increases:

0.1 ifS(t)>2
Psep(abuﬂdvt) o fsep(S(t)) = 0.5 if S(t) =1
1.0 if S(t) =0

@

Semantic Similarity Model. For a more nuanced differentiation, this model leverages natural
language processing. Each tool 7 is represented by a TF-IDF vector v(7) derived from its name and
functional description. The semantic similarity between a proposed tool 7, and an existing tool 7, is
their cosine similarity:
. v(7p) - v(7e)
sim(7,, 7e) = ———————— 3)
P v v )l

The separation preference for a new tool proposal is inversely proportional to its maximum similarity
to any tool in the local neighborhood, sharply penalizing proposals that exceed a similarity threshold
Osep (empirically set to 0.3).

3.2.3 Alignment: Propagation of Successful Strategies

The alignment rule facilitates the propagation of effective behaviors by encouraging agents to mimic
the strategies of their most successful neighbors. Success of a neighbor agent j relative to the current
agent 7 is defined by a productivity function, IsSuccessful(j, ), where success is correlated with the
number of tools created (|T;| > |T;]).

Lt [Ty] > |T)

IsSuccessful(j,¢) = {O otherwise

“

Let Aj; recent be the set of recent actions performed by agent j. The alignment preference for a given
action a, Palign(a), is increased if that action has been recently taken by successful neighbors. This is
modeled as a preference boost A Py, applied to the baseline preference for action a:

Palign(a) = Pbase(a) + Ajt)align : ?é‘;i\;( (IsSuccessful(j, Z) . I[(CL € -Aj,recent)) 5)

where () is the indicator function. This mechanism ensures that proven strategies are dynamically
adopted and disseminated throughout the agent population.
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3.2.4 Cohesion: Fostering Collaborative Tool Use

The cohesion rule promotes the development of an integrated tool ecosystem by incentivizing agents
to use and build upon their neighbors’ existing tools. The preference for using tools, Peop(@use ), 18
conditioned on the availability of tools in the local environment. Let N = >, 1~ [T} be the total

number of tools held by all neighbors. The cohesion preference is formulated as:
Pcoh(ause) X 1+ dyge - H(NT > 0) 6)

where dy is a constant representing the preference amplification for tool usage when a local ecosys-
tem exists. A similar, smaller boost dpy1q is applied to the action of building new tools, encouraging
the creation of complementary, rather than isolated, functionalities.

3.2.5 Decision Synthesis and Action Selection

The outputs of the three rule-based preference functions are integrated into a single utility score for
each potential action. The final preference, Pjya(a), is a linear combination of the individual rule
preferences, weighted by coefficients that determine the overall character of the agent society:

Pﬁnal(a) = wsepPsep(a) + walignPalign(a) + wcohPcoh(a) @)

where the weights are normalized, Y w; = 1. Our experiments utilize a default configuration of
{wsep = 0.4, Walign = 0.3, weon = 0.3}, prioritizing diversity while balancing strategy alignment and
collaboration.

Action selection is a stochastic process governed by a softmax distribution over the final preference
scores. The probability of selecting a particular action a € A is given by:

exp(ﬂ : Pﬁnal(a))
Za’GA eXp(B : Pﬁnal(al)>
where  is an inverse temperature parameter that controls the level of exploration in the agent’s

decision-making. This probabilistic selection mechanism allows for emergent behaviors to arise from
the repeated application of the underlying boids rules.

Pr(a) = ®)

3.3 Evolutionary Algorithm Module

Evolutionary pressure is introduced through periodic selection and reproduction. Every few rounds,
the bottom-performing agents (based on average Tool Complexity Index, TCI) are eliminated and
replaced through crossover or mutation of surviving specializations. This mechanism provides a
Darwinian loop in which strategies that produce complex, reusable tools persist, while redundant or
unhelpful behaviors fade. By comparing four experimental conditions—boids only, evolution only,
boids plus evolution, and a no-constraint control—we isolate the contributions of local coordination
and global selection to societal-level intelligence.

System performance is evaluated using both correctness and complexity metrics. The TCI measures
tool sophistication along code structure, interface design, and compositional reuse. Higher-level
indicators capture emergent phenomena such as diversity, specialization divergence, collaboration
events, and ecosystem coherence. Experiments are replicated with randomized initialization and
multiple topologies to ensure internal validity, while external validity is tested across task domains
and population sizes. This design allows us to systematically probe how simple local rules, when
combined with evolutionary selection, give rise to collective intelligence in artificial agent societies.

4 Experiments & Results

4.1 Tool Complexity Index (TCI)

TCI = Ccode + Ciface + Ccomp :
M~ S~ ——
[0,3] [0,2] [0,5]

where Ceode € [0, 3] quantifies code surface, Cigace € [0, 2] quantifies caller-facing interface burden,
and Ceomp € [0, 5] quantifies compositional breadth. All quantities are obtained via static analysis of
the tool’s execute entrypoint and its module directory, without executing code.
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Figure 1: Schematic illustration of the Boids-inspired decision-making framework. Local interactions
among agents are governed by three rules: Separation (functional niche specialization with penalties
for redundancy), Alignment (propagation of successful strategies through imitation), and Cohesion
(collaborative tool use via a shared registry). These rule-based preferences are integrated in the
Decision Synthesis stage and passed through a stochastic Action Selection process, producing emergent
multi-agent behavior.

Code complexity. We map code surface to a capped linear score Ccoqe = 3 min(l, LOC/ 300) R
where LOC denotes effective lines of code aggregated over the tool directory (excluding
blank/comment-only lines). This reflects reading and change costs while preventing size-only
inflation via saturation at 300 lines.

Interface complexity. We combine input arity and output surface using Ciface = min(l, p/ 5) +
min(l, r/ 5), where p is the number of formal parameters of execute and the return proxy is
r= min(57 K+ D+ T). Here K is the average top-level key count across dictionary-literal return
sites, D is the maximum literal nesting depth, and 7' is top-level kind heterogeneity (number of
distinct top-level kinds minus one). This separates caller effort on inputs from downstream decoding
effort while keeping the measure auditable and bounded.

Compositional complexity. We reward modular orchestration using Ccomp = min(4, 0.5 t) +

min(l, 0.1 e) , where ¢ counts distinct tools referenced and e counts distinct non-standard-library im-
ports at top level. Prioritizing breadth over depth encourages decomposition into reusable components
while the import subterm acknowledges ecosystem surface without letting external dependencies
dominate. The bounded, linear caps across all three components ensure interpretability, cross-run sta-
bility, and comparability across codebases, with the caveat that purely static analysis may under-count
dynamic dispatch and reflective import patterns.

4.2 Boids Analysis

Experimental Setup We evaluate six experiments spanning three domains (Creative Writing, Data
Science Suite, Research Assistant), each run in two conditions: Boids-enabled (local neighborhood
rules; k=2 neighbors, separation threshold 0.45) and Baseline (no Boids). Every experiment uses
10 agents over 10 rounds, with a single shared meta-prompt per domain. In each round, every agent
proposes one new tool and a corresponding unit test, yielding 100 tools and 100 tests per run. All
artifacts are stored under the experiment directory (personal and shared tool subfolders), and tests
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are executed to compute pass rates and retained (final) tools. Tool complexity is assessed post hoc
via TCI-Lite v4 (static analysis; Code 0-3 via LOC, Interface 0-2 via parameter/return structure,
Composition 0-5 via inter-tool calls and external imports). To capture modularity and ecosystem
structure, we additionally report median and 75th-percentile LOC, interface simplicity (parameter
CV), redundancy (duplicate-name rate), and functional diversity (Shannon entropy over name-derived
tags). Self-reflection and evolutionary mechanisms are disabled; both conditions otherwise share
identical prompts, agent counts, and rounds.

Table 1: Boids vs Baseline across domains with modularity/diversity metrics

Metric Creative Writing Data Science Suite | Research Assistant
Boids  Baseline | Boids  Baseline | Boids Baseline
Agents / Rounds 10/ 10 10/10 10/10 10/ 10 10/10 10/ 10
Final / Created 45/100 39/100 | 53/100 55/100 | 45/100 46/100
Test Pass Rate 96.0% 92.0% 87.0% 97.0% 96.0% 100.0%
Mean TCI 1.25 1.55 1.25 1.58 1.27 1.48
Retention Rate 0.45 0.39 0.53 0.55 0.45 0.46
Retained per Fail 11.25 4.88 4.08 18.33 11.25 00
Median LOC 34.0 38.0 37.0 41.0 32.5 40.0
P75 LOC 42.0 47.5 48.25 51.0 40.0 45.25
Median Param 2.0 2.0 2.0 2.0 2.0 2.0
Param CV 0.00 0.00 0.20 0.10 0.00 0.00
Dup-Name Rate 0.531 0.566 0.370 0.412 0.520 0.540
Tag Diversity (H_norm)  0.483 0.476 0.642 0.681 0.575 0.572

Findings Our findings reveal a striking and consistent signature of modularity in Boids-enabled
societies. Across all three domains, Boids agents produce leaner artifacts—evidenced by uniformly
lower median and 75th-percentile lines of code—while, in Creative Writing, they also achieve both
superior retention (final tools per created) and markedly better failure efficiency (retained tools per
failed test). These gains emerge despite identical agent counts, rounds, and prompts, suggesting that
simple local interaction rules (alignment, cohesion, separation) can self-organize development toward
compact, composable units that survive the selection pressures of testing and retention. In short,
Boids societies favor “small pieces, loosely joined,” and those pieces more often persist.

Equally compelling, Boids reduces redundancy while maintaining healthy functional variety.
Duplicate-name rates are consistently lower with Boids, indicating a clearer division of labor and
fewer collisions in the design space, and functional diversity (as measured via tag entropy) is compet-
itive or even higher in Creative Writing and Research Assistant. By contrast, the Baseline condition
achieves higher TCI—Ilargely through heavier interfaces and richer composition—demonstrating
depth of integration, but also the tendency toward bulk and entanglement. In practical terms, the Boids
regime delivers smaller, lower-duplication modules that are easier to compose, test, and maintain—an
architectural advantage that, in the long run, can accelerate recombination, reduce regression risk,
and compound ecosystem robustness.

4.3 Evolution Results

Table 2: Population Evolution Summary

Metric Initial (Round 1) Post-Evolution Change

Population Size 5 agents 6+ agents +1 (+20%)

Agent Composition ~ Agent_01-05 Original + evolved Multiple generations
Tools in Ecosystem  ~8 tools 47+ shared tools +39 tools

Evolution active
Advanced capabilities

Active Generations 0
Specialized Tools Basic functions

>2 completed
LiteratureReviewAutomator, AutoImageOptimizer, RateLimitMonitor

Evolutionary Pressure Successfully Applied The system successfully triggered multiple genera-
tions of evolution, with agents numbered up to Agent_20 observed in the logs, demonstrating that the
complexity-based selection mechanism effectively identified and propagated successful traits. The
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evolved agents (Agent_06 through Agent_20) represent both mutation and crossover variants derived
from top-performing original agents, indicating that the fitness evaluation based on Tool Complexity
Index (TCI) scores successfully guided the evolutionary process beyond simple replacement toward
genuine capability enhancement.

Ecosystem Expansion and Specialization Rather than maintaining a static population, the evo-
lutionary process dramatically expanded the tool ecosystem from approximately 8 initial tools
to over 47 specialized tools, with evolved agents contributing sophisticated capabilities like
LiteratureReviewAutomator, AutoImageOptimizer, and RateLimitMonitor. This progres-
sion from basic data processing functions to domain-specific automation tools demonstrates that
the prompt-level evolution mechanism enables emergent specialization, with each generation of
agents developing increasingly complex and targeted solutions that complement rather than duplicate
existing ecosystem capabilities.

5 Conclusions and Limitations

Conclusions This study provides a principled, measurement-driven comparison of Boids-enabled
agent societies and a baseline without local interaction rules across three domains. The evidence
reveals a robust signature of modularity under Boids: agents systematically produce leaner artifacts
(lower median and 75th-percentile LOC) with consistently lower name redundancy, and—in Creative
Writing—achieve both higher retention and markedly greater failure efficiency (retained tools per
failure). These advantages arise under identical prompts, agent counts, and horizons, indicating that
simple local rules (alignment, cohesion, separation) can steer decentralized development toward
compact, composable, and persistent building blocks. By contrast, the baseline condition attains
higher average TCI via heavier interfaces and richer composition, reflecting deeper integration and
orchestration. Practically, the regimes illuminate complementary strengths: Boids is advantageous
for producing small, re-usable components that are easier to compose, test, and maintain; the baseline
favors integrated pipelines with higher measured structural complexity. Together, these findings
suggest a design space in which “small pieces, loosely joined” (Boids) and “deeply integrated
pipelines” (baseline) are not mutually exclusive but can be purposefully blended depending on
end-user needs for recomposability versus end-to-end throughput.

Limitations and Threats to Validity Our conclusions are preliminary and bounded by method-
ological and instrumentation constraints. First, construct validity: TCI-Lite v4 is a static proxy (LOC,
parameters/returns, imports/tool-calls) that does not capture runtime behavior, data dependencies,
or emergent semantics; it likely underestimates compositional depth and coordination burden. The
auxiliary ecosystem metrics—duplicate-name rate and entropy over name-derived tags—are heuristic
(name-based) and may conflate labeling conventions with true functionality; interface “simplicity” via
parameter CV similarly abstracts away type and protocol complexity. Second, internal validity: some
telemetry is incomplete—complexity_over_rounds entries remain zeroed in exported results, and
Boids cohesion/alignment/separation traces are not logged, limiting causal attribution. Automated
tests are uniformly generated and may not reflect real acceptance criteria; pass rates thus quantify
internal consistency rather than downstream utility. Third, external validity: experiments are Python-
centric, use a single shared meta-prompt per domain, and run with small, fixed populations (10 agents)
over short horizons (10 rounds) without self-reflection or evolutionary selection enabled; results may
not generalize to larger, longer, multi-language, or human-in-the-loop settings. Finally, conclusion
validity is constrained by a limited number of runs and seeds, which reduces statistical power and
sensitivity to distributional outliers (e.g., infinite retained-per-fail when failures are absent).

Future Work We will (i) instrument Boids telemetry (separation/alignment/cohesion) and populate
complexity_over_rounds to enable round-level attribution; (ii) augment TCI with dynamic signals
(call graphs, dependency depth, runtime composition, and fault localization) and robust code-clone
detection (AST/fingerprint/embedding) to better quantify redundancy and reuse; (iii) broaden diversity
measures beyond name tags (topic and embedding clustering), and interface measures beyond arity
(type/protocol compatibility and stability); (iv) scale agents, horizons, and domains, and combine
Boids dynamics with self-reflection and evolutionary selection in ablation studies over k-neighborhood
and separation thresholds; (v) incorporate human evaluations of usefulness and maintainability, and
operational metrics (latency, cost, reusability in downstream tasks). These steps will strengthen causal
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claims, improve construct validity, and clarify when to favor modular Boids-style development versus
deeply integrated baselines—or how to hybridize both for maximal ecosystem performance.
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A Case Study: Baseline Emergence Across Ten Meta-Prompt Scenarios

This appendix presents a comprehensive analysis of baseline emergent intelligence across ten distinct
meta-prompt scenarios. Each experiment was configured identically (20 agents, 15 rounds) and
executed in parallel, though all terminated prematurely due to persistent API rate-limiting errors.
Despite incomplete runs, the artifacts generated provide significant insights into domain-specific
emergence patterns and cross-scenario collaboration behaviors.
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A.1 Experimental Setup

The baseline experiments were designed to establish foundational benchmarks for emergent intelli-
gence without specialized agent roles or complex interaction protocols.
* Social Structure: Ten parallel societies of 20 agents each were initialized simultaneously.
* Time Horizon: Each experiment was targeted for 15 rounds of interaction.

* Domain Diversity: Ten meta-prompt scenarios spanning creative writing, data science, web
scraping, file organization, image processing, personal finance, research assistance, text
analysis, code generation, and simulation/modeling.

« Initial State: All agents began with identical primitive tools and no pre-defined specializa-
tions.

* Incentive Structure: The Tool Complexity Index (TCI) was heavily weighted toward
composition:
TCI = 0.5 - Ceodge + 1.0 - Cigace + 10.0 - Ccomp

This 20:1 ratio between compositional and code complexity created strong selective pressure
for tool collaboration.

A.2 Cross-Scenario Analysis

Analysis of the final tool ecosystems reveals three distinct patterns of emergence across domains.

A.2.1 Universal Emergence of Domain-Relevant Toolchains

Across all ten scenarios, agents demonstrated remarkable domain awareness, immediately creating
tools highly relevant to their assigned meta-prompt. This suggests that the large language model’s
pre-training provides sufficient domain knowledge to guide initial tool creation, even without explicit
domain expertise.

A.2.2 Heterogeneous Collaboration Rates

The rate of tool composition (tools with Ceomp > 0) varied dramatically across domains:

* High Collaboration Domains: Creative Writing (25.0%), Text Analysis (24.0%), Simula-
tion/Modeling (23.8%)

* Medium Collaboration Domains: Image Processing (17.9%), Research Assistant (18.5%),
Personal Finance (15.4%)

* Low Collaboration Domains: Data Science (11.1%), Code Generation (9.7%), File System
(12.1%), Web Scraping (17.2%)

This variation suggests that certain problem domains naturally lend themselves to compositional
approaches, while others favor monolithic tool architectures.

A.2.3 Systematic Environmental Adaptation

Remarkably, agents across multiple scenarios independently created “RateLimitMonitor” tools in
response to API constraints. This meta-tool appeared in 7 out of 10 scenarios, demonstrating
consistent environmental problem-solving capabilities that transcend domain boundaries.

A.3 Quantitative Results
Table [3| presents a comprehensive comparison of emergence patterns across all ten scenarios.
A.4 Key Findings

This comprehensive baseline study provides four critical insights into emergent intelligence in
decentralized agent societies:
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Table 3: Cross-Scenario Baseline Emergence Results

Scenario Total Valid Success Avg Max Compositional
Tools Tools Rate(%) TCI TCI Tools (%)
Code Generation Toolkit 31 31 100.0 420 14.64 309.7)
Creative Writing Assistant 27 24 88.9 4.69 10.69 6 (25.0)
Data Science Suite 19 18 94.7 464 11.33 2(11.1)
File System Organizer 37 33 89.2 6.97 21.42 4 (12.1)
Image Processing Kit 31 28 90.3 5.73 14.09 5(17.9)
Personal Finance Manager 27 26 96.3 5.23  21.66 4(15.4)
Research Assistant Bot 31 27 87.1 459 12.80 5(18.5)
Simulation and Modeling 24 21 87.5 499 11.26 5(23.8)
Text Analysis Tools 27 25 92.6 5.00 17.05 6 (24.0)
Web Scraping Utilities 34 29 85.3 7.60 19.02 5(17.2)
Overall 288 262 91.0 545 21.66 45 (17.2)

1. Domain-Agnostic Emergence: All scenarios demonstrated immediate, relevant tool cre-
ation, suggesting that emergent specialization is robust across problem domains. The
91.0% overall success rate indicates that the core emergence mechanisms are reliable and
generalizable.

2. Composition as an Advanced Skill: Tool composition occurred in only 17.2% of successful
tools across all scenarios. However, compositional tools consistently achieved higher
complexity scores, with the highest TCI scores in each domain typically belonging to
compositional tools. This confirms that while composition is rare, it produces substantially
more valuable outputs.

3. Domain-Dependent Collaboration Propensity: The 2.6x variation in collaboration rates
between domains (9.7% to 25.0%) suggests that certain problem structures naturally encour-
age compositional thinking. Creative and analytical domains showed higher collaboration
rates than technical implementation domains.

4. Consistent Environmental Problem-Solving: The spontaneous emergence of “RateLimit-
Monitor” tools across 7 scenarios demonstrates that agent societies can identify and address
systemic constraints that are orthogonal to their primary objectives. This meta-cognitive
capability is a strong indicator of robust collective intelligence.

A.5 Implications for Future Research

These baseline results establish clear benchmarks for measuring the impact of advanced interaction
protocols. Future experiments incorporating Boids-inspired dynamics, explicit communication
mechanisms, or evolutionary selection should be evaluated against these baseline collaboration rates
and complexity distributions.

The observed domain-dependent variation in collaboration propensity also suggests that different
meta-prompt scenarios may serve as more sensitive indicators of emergent collaboration. Creative
Writing and Text Analysis scenarios, with their high baseline collaboration rates, may be particularly
valuable for detecting subtle improvements in compositional behavior.

B Baseline Emergence: Data Science Suite (10 Agents, 5 Rounds)

This section reports results for experiment expl_baseline_emergence_data_science_suite_20250902_123439.
We analyze system-level productivity, test outcomes, and Tool Complexity Index (TCI) dynamics
over rounds, and distill fine-grained insights from agent reflection histories.
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Metric Value

Agents 10
Rounds 5
Total tools created 50
Final tools in system 24
Tools per round 10.0
Total tests created 50
Tests passed 41
Tests failed 9
Test pass rate 82.00%
Testing coverage 100.00%
Collaboration events 0
Events per round 0.0

Table 4: Experiment summary for expl_baseline_emergence_data_science_suite_20250902_123439.

Round Avg TCI AvgCode Avg Interface Avg Compositional Tools

1 5.4081 9.0042 0.9060 0.0000 6
2 6.2170 9.4721 0.8977 0.0583 12
3 6.4830 8.5141 0.9135 0.1313 16
4 6.4295 8.1790 0.9400 0.1400 20
5 5.9879 7.7396 0.9514 0.1167 24

Table 5: Complexity evolution across rounds (Tool Complexity Index and its components).

475 B.1 Summary Metrics
476  B.2 Complexity Dynamics Over Rounds

477 Key trends. (1) TCI rises then eases: Avg TCI increases from 5.41 (R1) to 6.48 (R3), then
478 softens to 6.43 (R4) and dips to 5.99 (RS). (2) Code complexity declines: Avg code complexity
479  steadily decreases after R2 (9.47 — 7.74), consistent with refactoring/simplification as the toolset
4s0 matures. (3) Interface robustness inches up: Avg interface complexity rises (0.906 — 0.951),
481 indicating more consistent interfaces and/or improved probe success. (4) Moderate composition:
482 Compositional complexity grows to R4 (0.14) and slightly eases (0.117), suggesting increasing but
483 not pervasive composition. (5) Strong testing discipline: 100% coverage with 82% pass rate (41/50);
484 mid/late-round failures concentrate as scope broadens.

4s5 B.3 Fine-Grained Insights from Agent Reflections

486 Agents repeatedly identify an ecosystem gap: deep, end-to-end pipelines that chain cleaning, transfor-
487 mation, analysis, and visualization. Sample reflections:

488 e Agent_01: “Automated, end-to-end data science workflows. .. a comprehensive, modular
489 Deep Data Science Workflow tool is absent.” Proposed: an End-to-End Data Science
490 Pipeline integrating cleaning, feature transforms, exploratory analysis, and viz prep.

491 e Agent_02: “Combine DataCleaner, DataPreprocessingPipeline, and DataAnalysisPipeline
492 into a higher-level, ‘deep’ composite workflow.” Emphasizes chaining reliable modules for
493 reusability and scale.

494 * Agent_04: “Missing integrated tools for advanced data validation, anomaly detection,
495 and systematic error handling.” Proposed: an Automated Data Validation and Anomaly
496 Detection Pipeline.

497 * Agent_06: “Unified Data Preparation and Modeling Workflow. .. cleans, engineers features,
498 fits simple models, and outputs diagnostics.” Reflects gradual shift from basic preprocessing
499 to modeling orchestration.

s00 Interpretation. The rise in interface complexity and modest compositional gains, alongside de-
501 clining code complexity, matches the reflection-driven shift from single-purpose utilities to orches-
s02 trated pipelines. As teams standardize interfaces and compose stable building blocks, average code
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complexity per tool falls (less bespoke logic), while system capability deepens through composi-
tion—consistent with the observed R1-R3 TClI rise and later plateau as complexity diversifies across
many smaller, interoperable tools.

Reproducibility notes. Results are computed from results.json (per-round complexity
in complexity_over_rounds) and summarized in summary.txt. Experiment directory:
experiments/expl_baseline_emergence_data_science_suite_20250902_123439.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction claim a framework that unifies Boids style local
rules with evolutionary adaptation and reports emergent coordination and specialization.
The methods and results implement this framework and support these claims within the
stated scope.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We clearly note short horizons from API limits, small populations,
Python-centric domains, and single-seed analyses. We also state that TCI needs exter-
nal validation, which bounds generalization.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We provide numbered equations that fully define all constructs and assump-
tions, plus a brief justification of the convex combinations and max-scaling. There are no
theorems, but definitions are complete and checkable.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the agent loop, observables, default hyperparameters, evaluation
protocol, and implementation notes. We point to per-run logs, JSON traces, and directories
that reproduce tables and figures.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include structured logs, JSON traces, and per-run directories referenced
in the paper with instructions to rebuild figures and tables from these artifacts. These
anonymized materials accompany the submission to enable faithful reproduction.
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Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We  specify agent counts, rounds, topologies, and
default thresholds (k=5, ep = 0.45,, 17 = 2/3,.0h =
0.6).Wealsode finethemetricsandproceduresusedacrossallexperiments.Guidelines :

7. The answer NA means that the paper does not include experiments.

8. The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

9. The full details can be provided either with the code, in appendix, or as supplemen-
tal material.

Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run replicated experiments across randomized initializations and network topologies
and report per-run metrics. The released logs allow computing confidence intervals or error bars if
needed.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).
¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

» It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer re-
sources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We report population sizes and horizons, note LLM API usage and rate-limit effects,
and provide run-time artifacts. These details let readers estimate compute and time requirements.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No human subjects or sensitive data are used. All tools run in a sandbox with safeguards
such as recursion limits and automated testing.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: We discuss positive uses for alignment, governance, and evolving tool ecosystems.
We also note risks such as collapse dynamics and describe mitigations via sandboxing and quality
control.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for moni-
toring misuse, mechanisms to monitor how a system learns from feedback over time, improving
the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [Yes]

Justification: We describe execution safeguards including sandboxing, recursion limits, automated
tests, error logging, and controlled visibility. These measures reduce misuse risk for released artifacts.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite prior works and list external dependencies at the tool level. Any third-party
assets are used under their original licenses and will be credited accordingly.

Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, [paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: We introduce a prompt-executable Boids constraint suite and a TCI analyzer with clear
equations, I/O definitions, and implementation notes. Structured logs and run folders document these
assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

» The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: Not applicable: the work uses autonomous software agents and synthetic artifacts only.
No crowdsourcing or human studies were conducted.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.
Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Not applicable: there were no human subjects or user studies, so no IRB review was
required.

Guidelines:
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» The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

» For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [Yes]

Justification: We describe how LLM agents follow an observe, reflect, build loop and are constrained
by prompt-executable validators. This usage is central to the method and is documented in Methods
with related citations.

Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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