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Abstract

The emergence of complex intelligence from simple interactions has long fasci-1

nated artificial life and multi-agent research. Foundational work such as Boids2

showed how three local rules—cohesion, separation, and alignment—are sufficient3

to generate lifelike flocking without centralized control. In parallel, evolutionary4

algorithms explored how adaptation arises through variation and selection. Yet5

existing approaches remain limited: swarm models typically lack long-term adap-6

tation, while evolutionary systems often converge prematurely and fail to capture7

emergent tool ecosystems.8

We introduce TF-Boids: Survival of the Useful, a framework that unifies Boids-9

style local coordination with evolutionary selection in survival-driven environments.10

Each agent follows an observe–reflect–build loop to generate and refine tools,11

supported by automated testing, shared registries, and a Tool Complexity Index12

(TCI) that quantifies code, interface, and compositional sophistication. Local rules13

promote modularity and functional specialization, while evolutionary pressure14

retains strategies that enhance ecosystem robustness.15

Our experiments span creative writing, data science, and research assistance do-16

mains, comparing Boids-enabled and baseline societies, and further incorporating17

evolutionary dynamics. Results show that Boids rules consistently reduce redun-18

dancy and favor compact, composable tools, while baseline systems trend toward19

heavier but more integrated pipelines. Evolutionary selection expands the ecosys-20

tem across generations, producing specialized tools with increasing capability.21

This sandbox provides a tractable yet expressive platform for probing emergent22

intelligence through tool creation and refinement, with implications for multi-agent23

alignment, modular versus integrated design trade-offs, and the study of evolving24

ecosystems of intelligent agents.25

1 Introduction26

The quest to understand how complex intelligence emerges from simple interactions has long animated27

both artificial life and artificial intelligence research. Multi-agent systems, in particular, have become28

a central paradigm for exploring these dynamics. Recent advances in multi-agent reinforcement29

learning, communication protocols, and emergent behaviors have shown that agents can spontaneously30

coordinate, share information, and even develop strategies that surpass their individual capabilities.31

Yet much of this progress remains fragmented: agents are often designed for narrow benchmarks, and32

the long-term dynamics of how societies of agents evolve, specialize, and govern themselves remain33

underexplored.34

Foundational work such as Reynolds’ Boids model showed that three local rules—separation, align-35

ment, and cohesion—are sufficient to produce lifelike flocking behaviors without centralized control36
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[1, 2, 3]. This seminal result highlighted a core principle of emergent intelligence: decentralized37

agents, each following simple heuristics, can collectively generate sophisticated global patterns.38

Similar principles have been observed in ant colonies, fish schools, and swarm robotics [4, 5, 6, 7, 8].39

In parallel, evolutionary algorithms explored how adaptive complexity arises through variation and40

selection. Early systems such as Tierra [9] and Avida [10] demonstrated host–parasite coevolution41

and punctuated equilibria, while later methods—novelty search [11], quality-diversity algorithms42

[12, 13], and POET [14, 15]—sought to sustain open-ended innovation through diversity pressure and43

autocurricula. Despite these advances, important gaps remain: swarm models often lack long-term44

adaptation, evolutionary systems stagnate prematurely, and emergent communication or tool use is45

usually constrained to narrow, task-specific contexts [16, 17, 18, 19].46

What is missing is a unified framework that couples local emergent coordination with global evolu-47

tionary adaptation, situated in a survival-driven ecology. A particularly underexplored dimension48

in this space is tool building. While tool usage by LLMs and agents has become a popular research49

focus [20, 21, 22, 23, 24], the process by which agents collaboratively create and refine tools offers a50

richer window into complexity, collaboration, and societal evolution. Tool creation also connects51

naturally to real-world impacts, from research automation to evolving software ecosystems, making52

it an ideal lens for studying emergent intelligence.53

We introduce TF-Boids: Survival of the Useful, a framework that unifies local flocking dynamics54

with evolutionary adaptation in sandbox societies. Our system reinterprets cohesion, separation, and55

alignment as institutional primitives governing interaction. Agents inhabit ecological tasks such as for-56

aging, evacuation, and pursuit, and evolutionary operators act over both agents and rules—preserving57

strategies that enhance collective performance while discarding those that destabilize the society.58

By embedding Boids-style local rules into an evolutionary loop, we obtain a sandbox where coor-59

dination, governance, specialization, and collapse can be studied in controlled environments. This60

perspective bridges decades of work in artificial life, evolutionary algorithms, and multi-agent re-61

inforcement learning, providing a tractable yet expressive platform for probing the dynamics of62

emergent intelligence. Beyond theoretical interest, such sandbox societies offer insight into broader63

challenges of AI alignment, adaptive governance, and evolving ecosystems of intelligent tools.64

2 Related Work65

Local Interaction Rules, Coordination, and Emergent Intelligence. Classical results demonstrate66

that simple local interactions can produce coherent global structure without centralized control.67

Reynolds’ Boids established that separation, alignment, and cohesion suffice for lifelike flocking68

[1], while statistical physics models proved long-range order and nonequilibrium phase transitions69

in self-propelled particles [2, 3]. Biology and crowd dynamics provide convergent evidence that70

decentralized feedbacks and attractive/repulsive “social forces” yield large-scale coordination [4, 5],71

and control-theoretic and swarm-engineering work formalizes distributed flocking with design and72

verification principles [6, 7]. Behavioral ecology further links local cues to collective decisions73

and leadership [8]. We adopt this micro-to-macro lens but recast alignment/cohesion/separation as74

institutional primitives subject to evolutionary pressure in survival-driven ecologies.75

Evolutionary algorithms for open-ended adaptation. Digital evolution showed that variation76

and selection can sustain innovation and coevolution in silico [9, 10]. To mitigate deception and77

premature convergence, novelty search and quality–diversity (QD) maintain behaviorally diverse,78

high-performing repertoires [11, 12, 13], with repertoire-based control enabling rapid self-recovery in79

robotics [25]. Open-ended approaches co-evolve challenges and solutions via transfer across stepping80

stones (POET and variants) [14, 15], while unsupervised environment design induces curricula that81

yield robust zero-shot transfer [26]. We adopt this diversity-first view but define fitness at the societal82

level: evolution acts jointly on agent policies and the institutional/tool layer, retaining strategies and83

rules that improve collective performance and stability.84

Open sandbox simulations with a slice toward tool creation. Open multi-agent sandboxes probe85

social generalization and emergent dynamics at scale: self-play yields staged strategies and emergent86

tool use [16]; XLand trains generally capable agents across procedurally generated social tasks [18];87

Melting Pot 2.0 targets novel-partner generalization in mixed-incentive settings [27]; Neural MMO 2.088

offers persistent many-agent worlds with multi-task evaluation [19]; and Overcooked-based setups89
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benchmark zero-shot human–AI coordination and layout generalization [17, 28]. Complementary90

LLM-agent work studies how tools and skills are acquired and orchestrated: Toolformer learns API91

calling [20]; Voyager accumulates persistent embodied skill libraries [21]; multi-agent scaffolds92

(CAMEL, AutoGen) coordinate role-specialized LLMs [22, 23]; and “generative agents” simulate93

long-horizon social behavior [24]. Reviewer-authored systems extend this frontier—Agent LUMOS94

(modular training) [29], OASIS (scaling to one million agents) [30], OWL (hierarchical multi-agent95

workforce) [31], and schema-guided, culture-aware role-play [32]—while CollabUIAgents analyzes96

credit re-assignment for collaboration and generalization [33]. Our contribution is a minimalist,97

Boids-style survival-driven sandbox in which agents not only use tools but also create and retain98

tools and rules, with evolutionary selection determining which institutions persist or collapse.99

3 Methodology100

3.1 Baseline System: Self-Reflective Tool-Building Agent Society101

Overview and agent loop. Our baseline establishes the minimal viable setting in which decentral-102

ized agents generate, refine, and share tools while collective structure emerges. Each agent follows103

a simple observe–reflect–build loop grounded in five conceptual components: an Agent Identity104

with a light specialization prior; a Shared Tool Registry that records community-visible artifacts and105

usage statistics; a Personal Tool Space for private development and testing; a Reflection History106

logging observations, choices, and outcomes; and an Environment Manager abstracting resources107

and constraints. At each timestep, the agent inspects available tools and their test outcomes, reasons108

about unmet needs and ecosystem gaps, and proposes new tools or targeted refinements. Tools109

expose a standardized interface that enables composition—simple primitives combine into larger110

workflows—executed in a centralized, sandboxed context that enforces safety (e.g., recursion limits)111

and accrues usage telemetry. This compositional substrate encourages dependency chains across112

agents and provides the basic medium for emergent collaboration.113

Assurance and specialization dynamics. Every tool proposal triggers automated quality control114

comprising test generation (candidate cases probing functional coverage), execution tracking (pass/fail115

rates and error logs), visibility (propagating outcomes to all agents), and persistence (structured116

logs for longitudinal study). These mechanisms steer the ecosystem toward reliability rather than117

unchecked proliferation. On top of this, we incorporate light biases that promote division of labor:118

Meta-Prompt Influence nudges agents toward broad domains (e.g., sorting, parsing) without hard119

constraints; Usage-Based Reinforcement increases the visibility and survival of adopted tools; Failure-120

Driven Adaptation directs agents to address systemic test failures by proposing complementary121

utilities; and Neighbor Awareness reduces redundancy by exposing agents to peer contributions,122

encouraging complementary rather than duplicative tool design. Together, assurance and bias produce123

a feedback loop in which successful tools persist, unsuccessful ones are pruned or repaired, and124

niches of specialization gradually crystallize.125

Infrastructure, observables, and study design. All experiments run in isolated, reproducible126

executions that emit structured logs of reflections, tool creations, and evaluations; quantitative127

traces in JSON for post-hoc analysis; and visualization dashboards for real-time monitoring of128

ecosystem dynamics. We track a fixed set of observables that summarize emergent behavior: Tool129

Creation Rate (new tools per agent per round), Composition Depth (average dependency-chain130

length), Specialization Index (diversity of tool types across agents), Collaboration Events (frequency131

with which tools build on others), Test Success Rate (ecosystem reliability), and Usage Propagation132

(speed at which effective tools diffuse). This instrumentation provides clear experimental control133

and comparability across conditions, furnishing a quantitative baseline against which we later134

layer communication protocols and evolutionary pressures to test their impact on coordination,135

specialization, and long-horizon performance.136

3.2 Computational Framework for Boids-Inspired Cognitive Coordination137

Our framework adapts the classical boids model from spatial coordination to the cognitive domain138

of multi-agent tool creation. The core of an agent’s decision-making process is governed by three139

rules—separation, alignment, and cohesion—which are mathematically formulated to guide behavior140
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based on local information within the agent’s neighborhood. These rules generate preference scores141

for potential actions, which are then synthesized to produce a final, stochastic action choice.142

3.2.1 Mathematical Formulation of Boids Rules143

Let the set of possible actions for an agent be A, which includes building tools of various types144

(abuild,t) and using existing tools (ause). Each boids rule produces a preference function P (·) over this145

action space.146

3.2.2 Separation: Functional Niche Specialization147

The separation rule enforces functional diversity and encourages niche specialization by discouraging148

the creation of tools that are redundant within an agent’s local neighborhood. We model this through149

two distinct mechanisms.150

Saturation-Based Model. This model calculates the saturation S(t) of a given tool type t within151

the recent history of an agent i’s neighborhood Ni. Let Tj,recent be the set of recently created tools by152

a neighbor j. The saturation is:153

S(t) =
∑
j∈Ni

|{τ ∈ Tj,recent | type(τ) = t}| (1)

The preference for building a tool of type t, Psep(abuild,t), is modulated by a penalty function fsep(S(t))154

that decreases preference as saturation increases:155

Psep(abuild,t) ∝ fsep(S(t)) =


0.1 if S(t) ≥ 2

0.5 if S(t) = 1

1.0 if S(t) = 0

(2)

Semantic Similarity Model. For a more nuanced differentiation, this model leverages natural156

language processing. Each tool τ is represented by a TF-IDF vector v(τ) derived from its name and157

functional description. The semantic similarity between a proposed tool τp and an existing tool τe is158

their cosine similarity:159

sim(τp, τe) =
v(τp) · v(τe)

∥v(τp)∥∥v(τe)∥
(3)

The separation preference for a new tool proposal is inversely proportional to its maximum similarity160

to any tool in the local neighborhood, sharply penalizing proposals that exceed a similarity threshold161

θsep (empirically set to 0.3).162

3.2.3 Alignment: Propagation of Successful Strategies163

The alignment rule facilitates the propagation of effective behaviors by encouraging agents to mimic164

the strategies of their most successful neighbors. Success of a neighbor agent j relative to the current165

agent i is defined by a productivity function, IsSuccessful(j, i), where success is correlated with the166

number of tools created (|Tj | > |Ti|).167

IsSuccessful(j, i) =
{
1 if |Tj | > |Ti|
0 otherwise

(4)

Let Aj,recent be the set of recent actions performed by agent j. The alignment preference for a given168

action a, Palign(a), is increased if that action has been recently taken by successful neighbors. This is169

modeled as a preference boost ∆Palign applied to the baseline preference for action a:170

Palign(a) = Pbase(a) + ∆Palign ·max
j∈Ni

(IsSuccessful(j, i) · I(a ∈ Aj,recent)) (5)

where I(·) is the indicator function. This mechanism ensures that proven strategies are dynamically171

adopted and disseminated throughout the agent population.172
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3.2.4 Cohesion: Fostering Collaborative Tool Use173

The cohesion rule promotes the development of an integrated tool ecosystem by incentivizing agents174

to use and build upon their neighbors’ existing tools. The preference for using tools, Pcoh(ause), is175

conditioned on the availability of tools in the local environment. Let NT =
∑

j∈Ni
|Tj | be the total176

number of tools held by all neighbors. The cohesion preference is formulated as:177

Pcoh(ause) ∝ 1 + δuse · I(NT > 0) (6)

where δuse is a constant representing the preference amplification for tool usage when a local ecosys-178

tem exists. A similar, smaller boost δbuild is applied to the action of building new tools, encouraging179

the creation of complementary, rather than isolated, functionalities.180

3.2.5 Decision Synthesis and Action Selection181

The outputs of the three rule-based preference functions are integrated into a single utility score for182

each potential action. The final preference, Pfinal(a), is a linear combination of the individual rule183

preferences, weighted by coefficients that determine the overall character of the agent society:184

Pfinal(a) = wsepPsep(a) + walignPalign(a) + wcohPcoh(a) (7)

where the weights are normalized,
∑

wk = 1. Our experiments utilize a default configuration of185

{wsep = 0.4, walign = 0.3, wcoh = 0.3}, prioritizing diversity while balancing strategy alignment and186

collaboration.187

Action selection is a stochastic process governed by a softmax distribution over the final preference188

scores. The probability of selecting a particular action a ∈ A is given by:189

Pr(a) =
exp(β · Pfinal(a))∑

a′∈A exp(β · Pfinal(a′))
(8)

where β is an inverse temperature parameter that controls the level of exploration in the agent’s190

decision-making. This probabilistic selection mechanism allows for emergent behaviors to arise from191

the repeated application of the underlying boids rules.192

3.3 Evolutionary Algorithm Module193

Evolutionary pressure is introduced through periodic selection and reproduction. Every few rounds,194

the bottom-performing agents (based on average Tool Complexity Index, TCI) are eliminated and195

replaced through crossover or mutation of surviving specializations. This mechanism provides a196

Darwinian loop in which strategies that produce complex, reusable tools persist, while redundant or197

unhelpful behaviors fade. By comparing four experimental conditions—boids only, evolution only,198

boids plus evolution, and a no-constraint control—we isolate the contributions of local coordination199

and global selection to societal-level intelligence.200

System performance is evaluated using both correctness and complexity metrics. The TCI measures201

tool sophistication along code structure, interface design, and compositional reuse. Higher-level202

indicators capture emergent phenomena such as diversity, specialization divergence, collaboration203

events, and ecosystem coherence. Experiments are replicated with randomized initialization and204

multiple topologies to ensure internal validity, while external validity is tested across task domains205

and population sizes. This design allows us to systematically probe how simple local rules, when206

combined with evolutionary selection, give rise to collective intelligence in artificial agent societies.207

4 Experiments & Results208

4.1 Tool Complexity Index (TCI)209

TCI = Ccode︸ ︷︷ ︸
[0,3]

+Ciface︸ ︷︷ ︸
[0,2]

+Ccomp︸ ︷︷ ︸
[0,5]

.

where Ccode∈ [0, 3] quantifies code surface, Ciface∈ [0, 2] quantifies caller-facing interface burden,210

and Ccomp∈ [0, 5] quantifies compositional breadth. All quantities are obtained via static analysis of211

the tool’s execute entrypoint and its module directory, without executing code.212
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Figure 1: Schematic illustration of the Boids-inspired decision-making framework. Local interactions
among agents are governed by three rules: Separation (functional niche specialization with penalties
for redundancy), Alignment (propagation of successful strategies through imitation), and Cohesion
(collaborative tool use via a shared registry). These rule-based preferences are integrated in the
Decision Synthesis stage and passed through a stochastic Action Selection process, producing emergent
multi-agent behavior.

Code complexity. We map code surface to a capped linear score Ccode = 3 min
(
1, LOC/300

)
,213

where LOC denotes effective lines of code aggregated over the tool directory (excluding214

blank/comment-only lines). This reflects reading and change costs while preventing size-only215

inflation via saturation at 300 lines.216

Interface complexity. We combine input arity and output surface using Ciface = min
(
1, p/5

)
+217

min
(
1, r/5

)
, where p is the number of formal parameters of execute and the return proxy is218

r = min
(
5, K+D+T

)
. Here K is the average top-level key count across dictionary-literal return219

sites, D is the maximum literal nesting depth, and T is top-level kind heterogeneity (number of220

distinct top-level kinds minus one). This separates caller effort on inputs from downstream decoding221

effort while keeping the measure auditable and bounded.222

Compositional complexity. We reward modular orchestration using Ccomp = min
(
4, 0.5 t

)
+223

min
(
1, 0.1 e

)
, where t counts distinct tools referenced and e counts distinct non-standard-library im-224

ports at top level. Prioritizing breadth over depth encourages decomposition into reusable components225

while the import subterm acknowledges ecosystem surface without letting external dependencies226

dominate. The bounded, linear caps across all three components ensure interpretability, cross-run sta-227

bility, and comparability across codebases, with the caveat that purely static analysis may under-count228

dynamic dispatch and reflective import patterns.229

4.2 Boids Analysis230

Experimental Setup We evaluate six experiments spanning three domains (Creative Writing, Data231

Science Suite, Research Assistant), each run in two conditions: Boids-enabled (local neighborhood232

rules; k=2 neighbors, separation threshold 0.45) and Baseline (no Boids). Every experiment uses233

10 agents over 10 rounds, with a single shared meta-prompt per domain. In each round, every agent234

proposes one new tool and a corresponding unit test, yielding 100 tools and 100 tests per run. All235

artifacts are stored under the experiment directory (personal and shared tool subfolders), and tests236
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are executed to compute pass rates and retained (final) tools. Tool complexity is assessed post hoc237

via TCI-Lite v4 (static analysis; Code 0–3 via LOC, Interface 0–2 via parameter/return structure,238

Composition 0–5 via inter-tool calls and external imports). To capture modularity and ecosystem239

structure, we additionally report median and 75th-percentile LOC, interface simplicity (parameter240

CV), redundancy (duplicate-name rate), and functional diversity (Shannon entropy over name-derived241

tags). Self-reflection and evolutionary mechanisms are disabled; both conditions otherwise share242

identical prompts, agent counts, and rounds.243

Table 1: Boids vs Baseline across domains with modularity/diversity metrics

Metric Creative Writing Data Science Suite Research Assistant
Boids Baseline Boids Baseline Boids Baseline

Agents / Rounds 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10
Final / Created 45 / 100 39 / 100 53 / 100 55 / 100 45 / 100 46 / 100
Test Pass Rate 96.0% 92.0% 87.0% 97.0% 96.0% 100.0%
Mean TCI 1.25 1.55 1.25 1.58 1.27 1.48

Retention Rate 0.45 0.39 0.53 0.55 0.45 0.46
Retained per Fail 11.25 4.88 4.08 18.33 11.25 ∞
Median LOC 34.0 38.0 37.0 41.0 32.5 40.0
P75 LOC 42.0 47.5 48.25 51.0 40.0 45.25
Median Param 2.0 2.0 2.0 2.0 2.0 2.0
Param CV 0.00 0.00 0.20 0.10 0.00 0.00
Dup-Name Rate 0.531 0.566 0.370 0.412 0.520 0.540
Tag Diversity (H_norm) 0.483 0.476 0.642 0.681 0.575 0.572

Findings Our findings reveal a striking and consistent signature of modularity in Boids-enabled244

societies. Across all three domains, Boids agents produce leaner artifacts—evidenced by uniformly245

lower median and 75th-percentile lines of code—while, in Creative Writing, they also achieve both246

superior retention (final tools per created) and markedly better failure efficiency (retained tools per247

failed test). These gains emerge despite identical agent counts, rounds, and prompts, suggesting that248

simple local interaction rules (alignment, cohesion, separation) can self-organize development toward249

compact, composable units that survive the selection pressures of testing and retention. In short,250

Boids societies favor “small pieces, loosely joined,” and those pieces more often persist.251

Equally compelling, Boids reduces redundancy while maintaining healthy functional variety.252

Duplicate-name rates are consistently lower with Boids, indicating a clearer division of labor and253

fewer collisions in the design space, and functional diversity (as measured via tag entropy) is compet-254

itive or even higher in Creative Writing and Research Assistant. By contrast, the Baseline condition255

achieves higher TCI—largely through heavier interfaces and richer composition—demonstrating256

depth of integration, but also the tendency toward bulk and entanglement. In practical terms, the Boids257

regime delivers smaller, lower-duplication modules that are easier to compose, test, and maintain—an258

architectural advantage that, in the long run, can accelerate recombination, reduce regression risk,259

and compound ecosystem robustness.260

4.3 Evolution Results261

Table 2: Population Evolution Summary

Metric Initial (Round 1) Post-Evolution Change
Population Size 5 agents 6+ agents +1 (+20%)
Agent Composition Agent_01–05 Original + evolved Multiple generations
Tools in Ecosystem ∼8 tools 47+ shared tools +39 tools
Active Generations 0 ≥2 completed Evolution active
Specialized Tools Basic functions LiteratureReviewAutomator, AutoImageOptimizer, RateLimitMonitor Advanced capabilities

Evolutionary Pressure Successfully Applied The system successfully triggered multiple genera-262

tions of evolution, with agents numbered up to Agent_20 observed in the logs, demonstrating that the263

complexity-based selection mechanism effectively identified and propagated successful traits. The264

7



evolved agents (Agent_06 through Agent_20) represent both mutation and crossover variants derived265

from top-performing original agents, indicating that the fitness evaluation based on Tool Complexity266

Index (TCI) scores successfully guided the evolutionary process beyond simple replacement toward267

genuine capability enhancement.268

Ecosystem Expansion and Specialization Rather than maintaining a static population, the evo-269

lutionary process dramatically expanded the tool ecosystem from approximately 8 initial tools270

to over 47 specialized tools, with evolved agents contributing sophisticated capabilities like271

LiteratureReviewAutomator, AutoImageOptimizer, and RateLimitMonitor. This progres-272

sion from basic data processing functions to domain-specific automation tools demonstrates that273

the prompt-level evolution mechanism enables emergent specialization, with each generation of274

agents developing increasingly complex and targeted solutions that complement rather than duplicate275

existing ecosystem capabilities.276

5 Conclusions and Limitations277

Conclusions This study provides a principled, measurement-driven comparison of Boids-enabled278

agent societies and a baseline without local interaction rules across three domains. The evidence279

reveals a robust signature of modularity under Boids: agents systematically produce leaner artifacts280

(lower median and 75th-percentile LOC) with consistently lower name redundancy, and—in Creative281

Writing—achieve both higher retention and markedly greater failure efficiency (retained tools per282

failure). These advantages arise under identical prompts, agent counts, and horizons, indicating that283

simple local rules (alignment, cohesion, separation) can steer decentralized development toward284

compact, composable, and persistent building blocks. By contrast, the baseline condition attains285

higher average TCI via heavier interfaces and richer composition, reflecting deeper integration and286

orchestration. Practically, the regimes illuminate complementary strengths: Boids is advantageous287

for producing small, re-usable components that are easier to compose, test, and maintain; the baseline288

favors integrated pipelines with higher measured structural complexity. Together, these findings289

suggest a design space in which “small pieces, loosely joined” (Boids) and “deeply integrated290

pipelines” (baseline) are not mutually exclusive but can be purposefully blended depending on291

end-user needs for recomposability versus end-to-end throughput.292

Limitations and Threats to Validity Our conclusions are preliminary and bounded by method-293

ological and instrumentation constraints. First, construct validity: TCI-Lite v4 is a static proxy (LOC,294

parameters/returns, imports/tool-calls) that does not capture runtime behavior, data dependencies,295

or emergent semantics; it likely underestimates compositional depth and coordination burden. The296

auxiliary ecosystem metrics—duplicate-name rate and entropy over name-derived tags—are heuristic297

(name-based) and may conflate labeling conventions with true functionality; interface “simplicity” via298

parameter CV similarly abstracts away type and protocol complexity. Second, internal validity: some299

telemetry is incomplete—complexity_over_rounds entries remain zeroed in exported results, and300

Boids cohesion/alignment/separation traces are not logged, limiting causal attribution. Automated301

tests are uniformly generated and may not reflect real acceptance criteria; pass rates thus quantify302

internal consistency rather than downstream utility. Third, external validity: experiments are Python-303

centric, use a single shared meta-prompt per domain, and run with small, fixed populations (10 agents)304

over short horizons (10 rounds) without self-reflection or evolutionary selection enabled; results may305

not generalize to larger, longer, multi-language, or human-in-the-loop settings. Finally, conclusion306

validity is constrained by a limited number of runs and seeds, which reduces statistical power and307

sensitivity to distributional outliers (e.g., infinite retained-per-fail when failures are absent).308

Future Work We will (i) instrument Boids telemetry (separation/alignment/cohesion) and populate309

complexity_over_rounds to enable round-level attribution; (ii) augment TCI with dynamic signals310

(call graphs, dependency depth, runtime composition, and fault localization) and robust code-clone311

detection (AST/fingerprint/embedding) to better quantify redundancy and reuse; (iii) broaden diversity312

measures beyond name tags (topic and embedding clustering), and interface measures beyond arity313

(type/protocol compatibility and stability); (iv) scale agents, horizons, and domains, and combine314

Boids dynamics with self-reflection and evolutionary selection in ablation studies over k-neighborhood315

and separation thresholds; (v) incorporate human evaluations of usefulness and maintainability, and316

operational metrics (latency, cost, reusability in downstream tasks). These steps will strengthen causal317
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claims, improve construct validity, and clarify when to favor modular Boids-style development versus318

deeply integrated baselines—or how to hybridize both for maximal ecosystem performance.319
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A Case Study: Baseline Emergence Across Ten Meta-Prompt Scenarios399

This appendix presents a comprehensive analysis of baseline emergent intelligence across ten distinct400

meta-prompt scenarios. Each experiment was configured identically (20 agents, 15 rounds) and401

executed in parallel, though all terminated prematurely due to persistent API rate-limiting errors.402

Despite incomplete runs, the artifacts generated provide significant insights into domain-specific403

emergence patterns and cross-scenario collaboration behaviors.404
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A.1 Experimental Setup405

The baseline experiments were designed to establish foundational benchmarks for emergent intelli-406

gence without specialized agent roles or complex interaction protocols.407

• Social Structure: Ten parallel societies of 20 agents each were initialized simultaneously.408

• Time Horizon: Each experiment was targeted for 15 rounds of interaction.409

• Domain Diversity: Ten meta-prompt scenarios spanning creative writing, data science, web410

scraping, file organization, image processing, personal finance, research assistance, text411

analysis, code generation, and simulation/modeling.412

• Initial State: All agents began with identical primitive tools and no pre-defined specializa-413

tions.414

• Incentive Structure: The Tool Complexity Index (TCI) was heavily weighted toward415

composition:416

TCI = 0.5 · Ccode + 1.0 · Ciface + 10.0 · Ccomp

This 20:1 ratio between compositional and code complexity created strong selective pressure417

for tool collaboration.418

A.2 Cross-Scenario Analysis419

Analysis of the final tool ecosystems reveals three distinct patterns of emergence across domains.420

A.2.1 Universal Emergence of Domain-Relevant Toolchains421

Across all ten scenarios, agents demonstrated remarkable domain awareness, immediately creating422

tools highly relevant to their assigned meta-prompt. This suggests that the large language model’s423

pre-training provides sufficient domain knowledge to guide initial tool creation, even without explicit424

domain expertise.425

A.2.2 Heterogeneous Collaboration Rates426

The rate of tool composition (tools with Ccomp > 0) varied dramatically across domains:427

• High Collaboration Domains: Creative Writing (25.0%), Text Analysis (24.0%), Simula-428

tion/Modeling (23.8%)429

• Medium Collaboration Domains: Image Processing (17.9%), Research Assistant (18.5%),430

Personal Finance (15.4%)431

• Low Collaboration Domains: Data Science (11.1%), Code Generation (9.7%), File System432

(12.1%), Web Scraping (17.2%)433

This variation suggests that certain problem domains naturally lend themselves to compositional434

approaches, while others favor monolithic tool architectures.435

A.2.3 Systematic Environmental Adaptation436

Remarkably, agents across multiple scenarios independently created “RateLimitMonitor” tools in437

response to API constraints. This meta-tool appeared in 7 out of 10 scenarios, demonstrating438

consistent environmental problem-solving capabilities that transcend domain boundaries.439

A.3 Quantitative Results440

Table 3 presents a comprehensive comparison of emergence patterns across all ten scenarios.441

A.4 Key Findings442

This comprehensive baseline study provides four critical insights into emergent intelligence in443

decentralized agent societies:444
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Table 3: Cross-Scenario Baseline Emergence Results

Scenario Total Valid Success Avg Max Compositional
Tools Tools Rate (%) TCI TCI Tools (%)

Code Generation Toolkit 31 31 100.0 4.20 14.64 3 (9.7)
Creative Writing Assistant 27 24 88.9 4.69 10.69 6 (25.0)
Data Science Suite 19 18 94.7 4.64 11.33 2 (11.1)
File System Organizer 37 33 89.2 6.97 21.42 4 (12.1)
Image Processing Kit 31 28 90.3 5.73 14.09 5 (17.9)
Personal Finance Manager 27 26 96.3 5.23 21.66 4 (15.4)
Research Assistant Bot 31 27 87.1 4.59 12.80 5 (18.5)
Simulation and Modeling 24 21 87.5 4.99 11.26 5 (23.8)
Text Analysis Tools 27 25 92.6 5.00 17.05 6 (24.0)
Web Scraping Utilities 34 29 85.3 7.60 19.02 5 (17.2)

Overall 288 262 91.0 5.45 21.66 45 (17.2)

1. Domain-Agnostic Emergence: All scenarios demonstrated immediate, relevant tool cre-445

ation, suggesting that emergent specialization is robust across problem domains. The446

91.0% overall success rate indicates that the core emergence mechanisms are reliable and447

generalizable.448

2. Composition as an Advanced Skill: Tool composition occurred in only 17.2% of successful449

tools across all scenarios. However, compositional tools consistently achieved higher450

complexity scores, with the highest TCI scores in each domain typically belonging to451

compositional tools. This confirms that while composition is rare, it produces substantially452

more valuable outputs.453

3. Domain-Dependent Collaboration Propensity: The 2.6x variation in collaboration rates454

between domains (9.7% to 25.0%) suggests that certain problem structures naturally encour-455

age compositional thinking. Creative and analytical domains showed higher collaboration456

rates than technical implementation domains.457

4. Consistent Environmental Problem-Solving: The spontaneous emergence of “RateLimit-458

Monitor” tools across 7 scenarios demonstrates that agent societies can identify and address459

systemic constraints that are orthogonal to their primary objectives. This meta-cognitive460

capability is a strong indicator of robust collective intelligence.461

A.5 Implications for Future Research462

These baseline results establish clear benchmarks for measuring the impact of advanced interaction463

protocols. Future experiments incorporating Boids-inspired dynamics, explicit communication464

mechanisms, or evolutionary selection should be evaluated against these baseline collaboration rates465

and complexity distributions.466

The observed domain-dependent variation in collaboration propensity also suggests that different467

meta-prompt scenarios may serve as more sensitive indicators of emergent collaboration. Creative468

Writing and Text Analysis scenarios, with their high baseline collaboration rates, may be particularly469

valuable for detecting subtle improvements in compositional behavior.470

B Baseline Emergence: Data Science Suite (10 Agents, 5 Rounds)471

This section reports results for experiment exp1_baseline_emergence_data_science_suite_20250902_123439.472

We analyze system-level productivity, test outcomes, and Tool Complexity Index (TCI) dynamics473

over rounds, and distill fine-grained insights from agent reflection histories.474
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Metric Value
Agents 10
Rounds 5
Total tools created 50
Final tools in system 24
Tools per round 10.0
Total tests created 50
Tests passed 41
Tests failed 9
Test pass rate 82.00%
Testing coverage 100.00%
Collaboration events 0
Events per round 0.0

Table 4: Experiment summary for exp1_baseline_emergence_data_science_suite_20250902_123439.

Round Avg TCI Avg Code Avg Interface Avg Compositional Tools
1 5.4081 9.0042 0.9060 0.0000 6
2 6.2170 9.4721 0.8977 0.0583 12
3 6.4830 8.5141 0.9135 0.1313 16
4 6.4295 8.1790 0.9400 0.1400 20
5 5.9879 7.7396 0.9514 0.1167 24

Table 5: Complexity evolution across rounds (Tool Complexity Index and its components).

B.1 Summary Metrics475

B.2 Complexity Dynamics Over Rounds476

Key trends. (1) TCI rises then eases: Avg TCI increases from 5.41 (R1) to 6.48 (R3), then477

softens to 6.43 (R4) and dips to 5.99 (R5). (2) Code complexity declines: Avg code complexity478

steadily decreases after R2 (9.47 → 7.74), consistent with refactoring/simplification as the toolset479

matures. (3) Interface robustness inches up: Avg interface complexity rises (0.906 → 0.951),480

indicating more consistent interfaces and/or improved probe success. (4) Moderate composition:481

Compositional complexity grows to R4 (0.14) and slightly eases (0.117), suggesting increasing but482

not pervasive composition. (5) Strong testing discipline: 100% coverage with 82% pass rate (41/50);483

mid/late-round failures concentrate as scope broadens.484

B.3 Fine-Grained Insights from Agent Reflections485

Agents repeatedly identify an ecosystem gap: deep, end-to-end pipelines that chain cleaning, transfor-486

mation, analysis, and visualization. Sample reflections:487

• Agent_01: “Automated, end-to-end data science workflows. . . a comprehensive, modular488

Deep Data Science Workflow tool is absent.” Proposed: an End-to-End Data Science489

Pipeline integrating cleaning, feature transforms, exploratory analysis, and viz prep.490

• Agent_02: “Combine DataCleaner, DataPreprocessingPipeline, and DataAnalysisPipeline491

into a higher-level, ‘deep’ composite workflow.” Emphasizes chaining reliable modules for492

reusability and scale.493

• Agent_04: “Missing integrated tools for advanced data validation, anomaly detection,494

and systematic error handling.” Proposed: an Automated Data Validation and Anomaly495

Detection Pipeline.496

• Agent_06: “Unified Data Preparation and Modeling Workflow. . . cleans, engineers features,497

fits simple models, and outputs diagnostics.” Reflects gradual shift from basic preprocessing498

to modeling orchestration.499

Interpretation. The rise in interface complexity and modest compositional gains, alongside de-500

clining code complexity, matches the reflection-driven shift from single-purpose utilities to orches-501

trated pipelines. As teams standardize interfaces and compose stable building blocks, average code502
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complexity per tool falls (less bespoke logic), while system capability deepens through composi-503

tion—consistent with the observed R1–R3 TCI rise and later plateau as complexity diversifies across504

many smaller, interoperable tools.505

Reproducibility notes. Results are computed from results.json (per-round complexity506

in complexity_over_rounds) and summarized in summary.txt. Experiment directory:507

experiments/exp1_baseline_emergence_data_science_suite_20250902_123439.508

NeurIPS Paper Checklist509

The checklist is designed to encourage best practices for responsible machine learning research,510

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove511

the checklist: The papers not including the checklist will be desk rejected. The checklist should512

follow the references and follow the (optional) supplemental material. The checklist does NOT count513

towards the page limit.514

Please read the checklist guidelines carefully for information on how to answer these questions. For515

each question in the checklist:516

• You should answer [Yes] , [No] , or [NA] .517

• [NA] means either that the question is Not Applicable for that particular paper or the518

relevant information is Not Available.519

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).520

The checklist answers are an integral part of your paper submission. They are visible to the521

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it522

(after eventual revisions) with the final version of your paper, and its final version will be published523

with the paper.524

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.525

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a526

proper justification is given (e.g., "error bars are not reported because it would be too computationally527

expensive" or "we were unable to find the license for the dataset we used"). In general, answering528

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we529

acknowledge that the true answer is often more nuanced, so please just use your best judgment and530

write a justification to elaborate. All supporting evidence can appear either in the main paper or the531

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification532

please point to the section(s) where related material for the question can be found.533

IMPORTANT, please:534

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",535

• Keep the checklist subsection headings, questions/answers and guidelines below.536

• Do not modify the questions and only use the provided macros for your answers.537

1. Claims538

Question: Do the main claims made in the abstract and introduction accurately reflect the539

paper’s contributions and scope?540

Answer: [Yes]541

Justification: The abstract and introduction claim a framework that unifies Boids style local542

rules with evolutionary adaptation and reports emergent coordination and specialization.543

The methods and results implement this framework and support these claims within the544

stated scope.545

Guidelines:546

• The answer NA means that the abstract and introduction do not include the claims547

made in the paper.548
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• The abstract and/or introduction should clearly state the claims made, including the549

contributions made in the paper and important assumptions and limitations. A No or550

NA answer to this question will not be perceived well by the reviewers.551

• The claims made should match theoretical and experimental results, and reflect how552

much the results can be expected to generalize to other settings.553

• It is fine to include aspirational goals as motivation as long as it is clear that these goals554

are not attained by the paper.555

2. Limitations556

Question: Does the paper discuss the limitations of the work performed by the authors?557

Answer: [Yes]558

Justification: We clearly note short horizons from API limits, small populations,559

Python-centric domains, and single-seed analyses. We also state that TCI needs exter-560

nal validation, which bounds generalization.561

Guidelines:562

• The answer NA means that the paper has no limitation while the answer No means that563

the paper has limitations, but those are not discussed in the paper.564

• The authors are encouraged to create a separate "Limitations" section in their paper.565

• The paper should point out any strong assumptions and how robust the results are to566

violations of these assumptions (e.g., independence assumptions, noiseless settings,567

model well-specification, asymptotic approximations only holding locally). The authors568

should reflect on how these assumptions might be violated in practice and what the569

implications would be.570

• The authors should reflect on the scope of the claims made, e.g., if the approach was571

only tested on a few datasets or with a few runs. In general, empirical results often572

depend on implicit assumptions, which should be articulated.573

• The authors should reflect on the factors that influence the performance of the approach.574

For example, a facial recognition algorithm may perform poorly when image resolution575

is low or images are taken in low lighting. Or a speech-to-text system might not be576

used reliably to provide closed captions for online lectures because it fails to handle577

technical jargon.578

• The authors should discuss the computational efficiency of the proposed algorithms579

and how they scale with dataset size.580

• If applicable, the authors should discuss possible limitations of their approach to581

address problems of privacy and fairness.582

• While the authors might fear that complete honesty about limitations might be used by583

reviewers as grounds for rejection, a worse outcome might be that reviewers discover584

limitations that aren’t acknowledged in the paper. The authors should use their best585

judgment and recognize that individual actions in favor of transparency play an impor-586

tant role in developing norms that preserve the integrity of the community. Reviewers587

will be specifically instructed to not penalize honesty concerning limitations.588

3. Theory assumptions and proofs589

Question: For each theoretical result, does the paper provide the full set of assumptions and590

a complete (and correct) proof?591

Answer: [NA]592

Justification: We provide numbered equations that fully define all constructs and assump-593

tions, plus a brief justification of the convex combinations and max-scaling. There are no594

theorems, but definitions are complete and checkable.595

Guidelines:596

• The answer NA means that the paper does not include theoretical results.597

• All the theorems, formulas, and proofs in the paper should be numbered and cross-598

referenced.599

• All assumptions should be clearly stated or referenced in the statement of any theorems.600
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• The proofs can either appear in the main paper or the supplemental material, but if601

they appear in the supplemental material, the authors are encouraged to provide a short602

proof sketch to provide intuition.603

• Inversely, any informal proof provided in the core of the paper should be complemented604

by formal proofs provided in appendix or supplemental material.605

• Theorems and Lemmas that the proof relies upon should be properly referenced.606

4. Experimental result reproducibility607

Question: Does the paper fully disclose all the information needed to reproduce the main ex-608

perimental results of the paper to the extent that it affects the main claims and/or conclusions609

of the paper (regardless of whether the code and data are provided or not)?610

Answer: [Yes]611

Justification: We describe the agent loop, observables, default hyperparameters, evaluation612

protocol, and implementation notes. We point to per-run logs, JSON traces, and directories613

that reproduce tables and figures.614

Guidelines:615

• The answer NA means that the paper does not include experiments.616

• If the paper includes experiments, a No answer to this question will not be perceived617

well by the reviewers: Making the paper reproducible is important, regardless of618

whether the code and data are provided or not.619

• If the contribution is a dataset and/or model, the authors should describe the steps taken620

to make their results reproducible or verifiable.621

• Depending on the contribution, reproducibility can be accomplished in various ways.622

For example, if the contribution is a novel architecture, describing the architecture fully623

might suffice, or if the contribution is a specific model and empirical evaluation, it may624

be necessary to either make it possible for others to replicate the model with the same625

dataset, or provide access to the model. In general. releasing code and data is often626

one good way to accomplish this, but reproducibility can also be provided via detailed627

instructions for how to replicate the results, access to a hosted model (e.g., in the case628

of a large language model), releasing of a model checkpoint, or other means that are629

appropriate to the research performed.630

• While NeurIPS does not require releasing code, the conference does require all submis-631

sions to provide some reasonable avenue for reproducibility, which may depend on the632

nature of the contribution. For example633

(a) If the contribution is primarily a new algorithm, the paper should make it clear how634

to reproduce that algorithm.635

(b) If the contribution is primarily a new model architecture, the paper should describe636

the architecture clearly and fully.637

(c) If the contribution is a new model (e.g., a large language model), then there should638

either be a way to access this model for reproducing the results or a way to reproduce639

the model (e.g., with an open-source dataset or instructions for how to construct640

the dataset).641

(d) We recognize that reproducibility may be tricky in some cases, in which case642

authors are welcome to describe the particular way they provide for reproducibility.643

In the case of closed-source models, it may be that access to the model is limited in644

some way (e.g., to registered users), but it should be possible for other researchers645

to have some path to reproducing or verifying the results.646

5. Open access to data and code647

Question: Does the paper provide open access to the data and code, with sufficient instruc-648

tions to faithfully reproduce the main experimental results, as described in supplemental649

material?650

Answer: [Yes]651

Justification: We include structured logs, JSON traces, and per-run directories referenced652

in the paper with instructions to rebuild figures and tables from these artifacts. These653

anonymized materials accompany the submission to enable faithful reproduction.654
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Guidelines:655

• The answer NA means that paper does not include experiments requiring code.656

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/657

public/guides/CodeSubmissionPolicy) for more details.658

• While we encourage the release of code and data, we understand that this might not be659

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not660

including code, unless this is central to the contribution (e.g., for a new open-source661

benchmark).662

• The instructions should contain the exact command and environment needed to run to663

reproduce the results. See the NeurIPS code and data submission guidelines (https:664

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.665

• The authors should provide instructions on data access and preparation, including how666

to access the raw data, preprocessed data, intermediate data, and generated data, etc.667

• The authors should provide scripts to reproduce all experimental results for the new668

proposed method and baselines. If only a subset of experiments are reproducible, they669

should state which ones are omitted from the script and why.670

• At submission time, to preserve anonymity, the authors should release anonymized671

versions (if applicable).672

• Providing as much information as possible in supplemental material (appended to the673

paper) is recommended, but including URLs to data and code is permitted.674

6. Experimental setting/details675

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-676

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the677

results?678

Answer: [Yes]679

Justification: We specify agent counts, rounds, topologies, and
default thresholds (k=5, sep = 0.45,a li = 2/3,c oh =
0.6).Wealsodefinethemetricsandproceduresusedacrossallexperiments.Guidelines :

7. The answer NA means that the paper does not include experiments.680

8. The experimental setting should be presented in the core of the paper to a level of681

detail that is necessary to appreciate the results and make sense of them.682

9. The full details can be provided either with the code, in appendix, or as supplemen-683

tal material.684

Experiment statistical significance685

Question: Does the paper report error bars suitably and correctly defined or other appropriate686

information about the statistical significance of the experiments?687

Answer: [Yes]688

Justification: We run replicated experiments across randomized initializations and network topologies689

and report per-run metrics. The released logs allow computing confidence intervals or error bars if690

needed.691

Guidelines:692

• The answer NA means that the paper does not include experiments.693

• The authors should answer "Yes" if the results are accompanied by error bars, confidence694

intervals, or statistical significance tests, at least for the experiments that support the main claims695

of the paper.696

• The factors of variability that the error bars are capturing should be clearly stated (for example,697

train/test split, initialization, random drawing of some parameter, or overall run with given698

experimental conditions).699

• The method for calculating the error bars should be explained (closed form formula, call to a700

library function, bootstrap, etc.)701

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).702

• It should be clear whether the error bar is the standard deviation or the standard error of the703

mean.704

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably705

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of706

errors is not verified.707

• For asymmetric distributions, the authors should be careful not to show in tables or figures708

symmetric error bars that would yield results that are out of range (e.g. negative error rates).709

• If error bars are reported in tables or plots, The authors should explain in the text how they were710

calculated and reference the corresponding figures or tables in the text.711

Experiments compute resources712

Question: For each experiment, does the paper provide sufficient information on the computer re-713

sources (type of compute workers, memory, time of execution) needed to reproduce the experiments?714

Answer: [Yes]715

Justification: We report population sizes and horizons, note LLM API usage and rate-limit effects,716

and provide run-time artifacts. These details let readers estimate compute and time requirements.717

Guidelines:718

• The answer NA means that the paper does not include experiments.719

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud720

provider, including relevant memory and storage.721

• The paper should provide the amount of compute required for each of the individual experimental722

runs as well as estimate the total compute.723

• The paper should disclose whether the full research project required more compute than the724

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it725

into the paper).726

Code of ethics727

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS728

Code of Ethics https://neurips.cc/public/EthicsGuidelines?729

Answer: [Yes]730

Justification: No human subjects or sensitive data are used. All tools run in a sandbox with safeguards731

such as recursion limits and automated testing.732

Guidelines:733

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.734

• If the authors answer No, they should explain the special circumstances that require a deviation735

from the Code of Ethics.736

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due737

to laws or regulations in their jurisdiction).738

Broader impacts739

Question: Does the paper discuss both potential positive societal impacts and negative societal740

impacts of the work performed?741

Answer: [Yes]742

Justification: We discuss positive uses for alignment, governance, and evolving tool ecosystems.743

We also note risks such as collapse dynamics and describe mitigations via sandboxing and quality744

control.745

Guidelines:746

• The answer NA means that there is no societal impact of the work performed.747
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• If the authors answer NA or No, they should explain why their work has no societal impact or748

why the paper does not address societal impact.749

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,750

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-751

ment of technologies that could make decisions that unfairly impact specific groups), privacy752

considerations, and security considerations.753

• The conference expects that many papers will be foundational research and not tied to particular754

applications, let alone deployments. However, if there is a direct path to any negative applications,755

the authors should point it out. For example, it is legitimate to point out that an improvement in756

the quality of generative models could be used to generate deepfakes for disinformation. On the757

other hand, it is not needed to point out that a generic algorithm for optimizing neural networks758

could enable people to train models that generate Deepfakes faster.759

• The authors should consider possible harms that could arise when the technology is being used760

as intended and functioning correctly, harms that could arise when the technology is being used761

as intended but gives incorrect results, and harms following from (intentional or unintentional)762

misuse of the technology.763

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies764

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for moni-765

toring misuse, mechanisms to monitor how a system learns from feedback over time, improving766

the efficiency and accessibility of ML).767

Safeguards768

Question: Does the paper describe safeguards that have been put in place for responsible release of769

data or models that have a high risk for misuse (e.g., pretrained language models, image generators,770

or scraped datasets)?771

Answer: [Yes]772

Justification: We describe execution safeguards including sandboxing, recursion limits, automated773

tests, error logging, and controlled visibility. These measures reduce misuse risk for released artifacts.774

Guidelines:775

• The answer NA means that the paper poses no such risks.776

• Released models that have a high risk for misuse or dual-use should be released with necessary777

safeguards to allow for controlled use of the model, for example by requiring that users adhere778

to usage guidelines or restrictions to access the model or implementing safety filters.779

• Datasets that have been scraped from the Internet could pose safety risks. The authors should780

describe how they avoided releasing unsafe images.781

• We recognize that providing effective safeguards is challenging, and many papers do not require782

this, but we encourage authors to take this into account and make a best faith effort.783

Licenses for existing assets784

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,785

properly credited and are the license and terms of use explicitly mentioned and properly respected?786

Answer: [Yes]787

Justification: We cite prior works and list external dependencies at the tool level. Any third-party788

assets are used under their original licenses and will be credited accordingly.789

Guidelines:790

• The answer NA means that the paper does not use existing assets.791

• The authors should cite the original paper that produced the code package or dataset.792

• The authors should state which version of the asset is used and, if possible, include a URL.793

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.794

• For scraped data from a particular source (e.g., website), the copyright and terms of service of795

that source should be provided.796
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• If assets are released, the license, copyright information, and terms of use in the package should797

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for798

some datasets. Their licensing guide can help determine the license of a dataset.799

• For existing datasets that are re-packaged, both the original license and the license of the derived800

asset (if it has changed) should be provided.801

• If this information is not available online, the authors are encouraged to reach out to the asset’s802

creators.803

New assets804

Question: Are new assets introduced in the paper well documented and is the documentation provided805

alongside the assets?806

Answer: [Yes]807

Justification: We introduce a prompt-executable Boids constraint suite and a TCI analyzer with clear808

equations, I/O definitions, and implementation notes. Structured logs and run folders document these809

assets.810

Guidelines:811

• The answer NA means that the paper does not release new assets.812

• Researchers should communicate the details of the dataset/code/model as part of their sub-813

missions via structured templates. This includes details about training, license, limitations,814

etc.815

• The paper should discuss whether and how consent was obtained from people whose asset is816

used.817

• At submission time, remember to anonymize your assets (if applicable). You can either create818

an anonymized URL or include an anonymized zip file.819

Crowdsourcing and research with human subjects820

Question: For crowdsourcing experiments and research with human subjects, does the paper include821

the full text of instructions given to participants and screenshots, if applicable, as well as details about822

compensation (if any)?823

Answer: [NA]824

Justification: Not applicable: the work uses autonomous software agents and synthetic artifacts only.825

No crowdsourcing or human studies were conducted.826

Guidelines:827

• The answer NA means that the paper does not involve crowdsourcing nor research with human828

subjects.829

• Including this information in the supplemental material is fine, but if the main contribution of830

the paper involves human subjects, then as much detail as possible should be included in the831

main paper.832

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other833

labor should be paid at least the minimum wage in the country of the data collector.834

Institutional review board (IRB) approvals or equivalent for research with human subjects835

Question: Does the paper describe potential risks incurred by study participants, whether such836

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an837

equivalent approval/review based on the requirements of your country or institution) were obtained?838

Answer: [NA]839

Justification: Not applicable: there were no human subjects or user studies, so no IRB review was840

required.841

Guidelines:842
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• The answer NA means that the paper does not involve crowdsourcing nor research with human843

subjects.844

• Depending on the country in which research is conducted, IRB approval (or equivalent) may845

be required for any human subjects research. If you obtained IRB approval, you should clearly846

state this in the paper.847

• We recognize that the procedures for this may vary significantly between institutions and848

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for849

their institution.850

• For initial submissions, do not include any information that would break anonymity (if applica-851

ble), such as the institution conducting the review.852

Declaration of LLM usage853

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard854

component of the core methods in this research? Note that if the LLM is used only for writing,855

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or856

originality of the research, declaration is not required.857

Answer: [Yes]858

Justification: We describe how LLM agents follow an observe, reflect, build loop and are constrained859

by prompt-executable validators. This usage is central to the method and is documented in Methods860

with related citations.861

Guidelines:862

• The answer NA means that the core method development in this research does not involve LLMs863

as any important, original, or non-standard components.864

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what865

should or should not be described.866
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