

000 001 002 003 004 005 IVC-PRUNE: REVEALING THE IMPLICIT VISUAL CO- 006 ORDINATES IN LVLMs FOR VISION TOKEN PRUNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

ABSTRACT

029
030
031 Large Vision-Language Models (LVLMs) achieve impressive performance across
032 multiple tasks. A significant challenge, however, is their prohibitive inference cost
033 when processing high-resolution visual inputs. While visual token pruning has
034 emerged as a promising solution, existing methods that primarily focus on semantic
035 relevance often discard tokens that are crucial for spatial reasoning. We address this
036 gap through a novel insight into *how LVLMs process spatial reasoning*. Specifically,
037 we reveal that LVLMs implicitly establish visual coordinate systems through Rotary
038 Position Embeddings (RoPE), where specific token positions serve as **implicit**
039 **visual coordinates** (IVC tokens) that are essential for spatial reasoning. Based
040 on this insight, we propose **IVC-Prune**, a training-free, prompt-aware pruning
041 strategy that retains both IVC tokens and semantically relevant foreground tokens.
042 IVC tokens are identified by theoretically analyzing the mathematical properties
043 of RoPE, targeting positions at which its rotation matrices approximate identity
044 matrix or the 90° rotation matrix. Foreground tokens are identified through a robust
045 two-stage process: semantic seed discovery followed by contextual refinement via
046 value-vector similarity. Extensive evaluations across four representative LVLMs
047 and twenty diverse benchmarks show that IVC-Prune reduces visual tokens by
048 approximately 50% while maintaining $\geq 99\%$ of the original performance and
049 even achieving improvements on several benchmarks.
050
051

1 INTRODUCTION

052 LVLMs achieve impressive performance in perception, understanding, and reasoning across a broad
053 range of multimodal tasks. Rapid advances in both proprietary systems (e.g., GPT-5, Gemini 2.5 Pro)
054 and open-source families (e.g., Qwen-VL [Bai et al. \(2025\)](#), InternVL [Wang et al. \(2025\)](#)) have enabled
055 greater model capacity, extended context lengths, and high-resolution image processing. However,
056 high-resolution images often generate thousands of visual tokens, leading to prohibitive memory
057 usage and long inference latency. To mitigate these challenges, recent studies have focused on
058 visual token pruning to remove redundant tokens while maximally preserving performance. Existing
059 approaches can be broadly grouped into two categories: (1) Training-based methods that learn to
060 aggregate or select tokens via architectural modifications [Ye et al. \(2025b\)](#); [Shao et al. \(2025\)](#). (2)
061 Training-free methods that use attention scores or similarity metrics for token selection [Ye et al. \(2025a\)](#);
062 [Arif et al. \(2025\)](#). While effective for general visual understanding, these methods suffer
063 substantial performance drops on spatially sensitive tasks such as visual grounding and spatial
064 reasoning. The issue arises because existing methods primarily focus on semantic relevance between
065 text and visual tokens while overlooking spatially critical tokens. As illustrated in Fig. 1, preserving
066 only semantically relevant “foreground” tokens causes performance drops in visual grounding tasks.
067

068 In this work, we investigate the mechanisms for spatial reasoning in LVLMs: how they perceive the
069 **absolute locations of objects in arbitrary resolution images** using Rotary Position Embeddings
070 (RoPE, widely adopted in current mainstream LVLMs). Our theoretical analysis shows that RoPE
071 encodes relative positions between query and key tokens in self-attention. Crucially, when a key
072 token’s RoPE rotation matrix approximates either the identity matrix or a 90° rotation, self-attention
073 isolates the *absolute* positional component of the query. This implies the existence of special token
074 positions that act as spatial references: *real axis* (identity) and *imaginary axis* (90° rotation). These
075 reference tokens form **implicit visual coordinates** (IVC), which are essential for spatial reasoning.
076
077

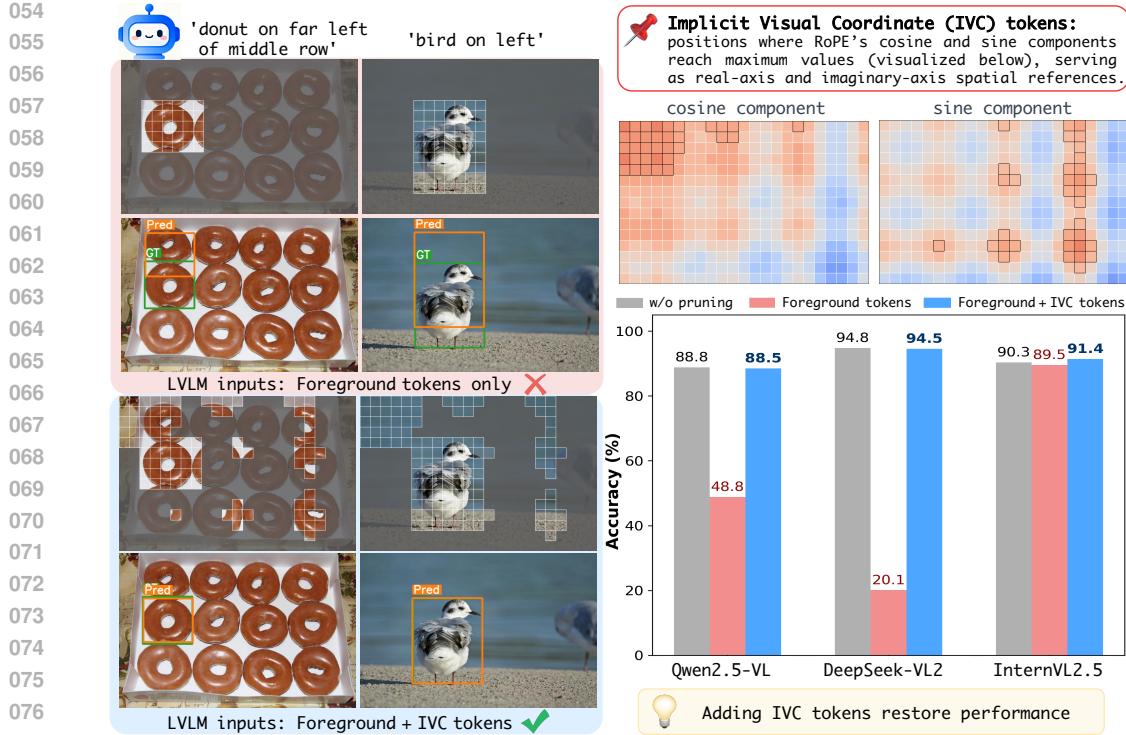


Figure 1: Implicit Visual Coordinate (IVC) tokens are crucial for spatial reasoning in LVLMs. **Left:** Visual grounding examples under different input settings. **Top right:** RoPE cosine and sine components across token positions, with IVC token locations (10% of total) marked in black. **Bottom right:** RefCOCO accuracy across three LVLMs under varying input settings, showing that adding IVC tokens largely restores performance. Detailed results and analysis are provided in Appendix A.4.

Building on this insight, we propose **IVC-Prune**, a training-free, prompt-aware pruning strategy that preserves both IVC tokens and semantically relevant foreground tokens. To identify IVC tokens, we rank the sum of cosine and sine components from RoPE. For robust foreground token selection across LVLM architectures, we employ a two-stage process: (1) Identify semantic seeds using value-vector similarity to mitigate positional bias in attention scores. (2) Leverage semantic seeds and text tokens to capture all relevant foreground tokens. Our experiments further reveal that sensitivity to early-layer pruning, reported in prior work, stems not from the pruning itself but from inadvertently removing IVC tokens. Based on this insight, we design a single-selection pruning strategy: the retained token set is determined once at a selected intermediate layer while preserving original position IDs. This selection is then applied to prune the KV caches in all earlier layers and is also used in later layers. This approach maximizes KV-cache reduction for efficient inference.

We evaluate IVC-Prune across four representative LVLMs (Qwen2.5-VL, InternVL 2.5, DeepSeek-VL2, and LLaVA v1.5) and twenty diverse benchmarks spanning visual grounding, reasoning, hallucination evaluation, and OCR tasks. Results show that IVC-Prune reduces visual tokens by approximately 50% while maintaining $\geq 99\%$ of the original performance, and in some cases achieving performance improvements. Notably, on visual grounding tasks, IVC-Prune significantly outperforms existing pruning methods. Moreover, results show that IVC tokens can be seamlessly integrated into other pruning methods to consistently enhance their spatial reasoning capabilities. Our contributions are summarized as follows:

- To the best of our knowledge, we present the first theoretical analysis that LVLMs implicitly establish visual coordinate systems through RoPE’s mathematical structure, providing novel insights into their spatial reasoning mechanisms.
- We propose IVC-Prune, a novel, training-free pruning strategy that preserves both IVC tokens and semantically relevant tokens, and introduces a robust two-stage selection process that is generalizable across LVLM architectures and benchmarks.

108

2 RELATED WORKS

110 **Large Vision-Language Models.** In recent years, Large Vision-Language Models (LVLMs) have
 111 emerged as a pivotal technology in artificial intelligence. Commercial models such as GPT-5 [OpenAI \(2025\)](#), Claude Sonnet 4 [Claude \(2025\)](#) and Gemini 2.5 Pro [Comanici et al. \(2025\)](#) demonstrate
 112 remarkable multimodal understanding and reasoning capabilities. In parallel, the open-source com-
 113 munity has also rapidly advanced, starting with the pioneering LLaVA [Liu et al. \(2023\)](#). Subsequent
 114 advances include Qwen2.5-VL [Bai et al. \(2025\)](#), which supports native high-resolution inputs, and
 115 DeepSeek-VL2 [Wu et al. \(2024\)](#), which adopts a Mixture-of-Experts (MoE) architecture for greater
 116 parameter efficiency. Further advances include long-context reasoning capabilities in models like
 117 Kimi-VL [Du et al. \(2025\)](#) and the integration of reinforcement learning in InternVL 3.5 [Wang et al. \(2025\)](#).
 118 Despite these successes, the trend towards greater model scales, longer context processing,
 119 and higher input resolution has resulted in prohibitive computational costs. These costs have become
 120 a major bottleneck for deploying LVLMs in real-world, latency-sensitive applications.
 121

122 **Token Pruning.** Token pruning reduces tokens in LLMs and LVLMs, lowering computational
 123 costs and improving efficiency. In LLMs, methods such as StreamingLLM [Xiao et al. \(2024\)](#) and
 124 MInference [Jiang et al. \(2024\)](#) retain attention sink tokens and local context tokens to support long-
 125 context. SepLLM [Chen et al. \(2025\)](#) enhances performance by also preserving separator tokens. In
 126 LVLMs, visual tokens typically far outnumber text tokens, making visual token pruning particularly
 127 important. Existing visual token pruning methods can be broadly classified into **training-based**
 128 and **training-free** approaches. Training-based approaches generally fall into two subcategories: (1)
 129 *Learnable query aggregation*, where models such as Qwen-VL [Bai et al. \(2024\)](#), MQT [Hu et al. \(2024\)](#),
 130 LLaMA-VID [Li et al. \(2024b\)](#), and VoCo-LLaMA [Ye et al. \(2025c\)](#) employ learnable queries
 131 to aggregate tokens in a manner similar to Q-Former [Li et al. \(2023b\)](#); (2) *Learned token selection*,
 132 where methods like LVP [Pruning Sun et al. \(2025\)](#) and DynamicLLaVA [Huang et al. \(2025\)](#) train
 133 modules to predict which tokens can be safely removed. However, these approaches often require
 134 substantial training costs and architectural modifications.
 135

136 Training-free methods comprise: (1) *Clustering or merging*, such as LLava-PruMerge [Shang et al. \(2024\)](#),
 137 SparseVLM [Zhang et al. \(2025c\)](#), and PACT [Dhouib et al. \(2025\)](#), which group similar tokens
 138 to reduce redundancy and mitigate information loss. However, these methods often require rebuilding
 139 token position IDs, which can hurt performance [Chien et al. \(2025\)](#) on precise localization tasks such
 140 as visual grounding. (2) *Attention/similarity-based pruning*, including FastV [Chen et al. \(2024a\)](#),
 141 FlowCut [Tong et al. \(2025\)](#), TopV [Yang et al. \(2025\)](#), and PDrop [Xing et al. \(2025\)](#), which use
 142 attention scores or similarity metrics to identify important tokens. However, these methods primarily
 143 focus on semantic relevance and often neglect spatially critical tokens, which may lead to drops in
 144 grounding accuracy. Motivated by this gap, we focus on visual grounding as a representative spatially
 145 sensitive task. Our theoretical analysis reveals that certain visual tokens implicitly act as spatial
 146 coordinates essential for spatial reasoning. Leveraging this insight, we develop a simple but effective
 147 pruning strategy that explicitly preserves these visual coordinate tokens alongside semantically
 148 relevant ones, yielding superior performance in both visual grounding and general benchmarks.
 149

150

3 METHOD

151

3.1 BACKGROUND: ROTARY POSITION EMBEDDINGS IN ATTENTION

152 Rotary Position Embeddings (RoPE) [Su et al. \(2024\)](#), the mainstream positional encoding in LVLMs,
 153 encode positional information by applying structured rotations to feature vectors. For a d -dimensional
 154 vector v , RoPE divides it into $d/2$ two-dimensional subspaces. Each pair (v_{2k}, v_{2k+1}) , corresponding
 155 to a token at position m , is rotated as follows:

$$\begin{bmatrix} v'_{2k} \\ v'_{2k+1} \end{bmatrix} = \underbrace{\begin{pmatrix} \cos(m\theta_k) & -\sin(m\theta_k) \\ \sin(m\theta_k) & \cos(m\theta_k) \end{pmatrix}}_{\triangleq \mathbf{R}(m, \theta_k)} \begin{bmatrix} v_{2k} \\ v_{2k+1} \end{bmatrix}, \quad k = 0, \dots, \frac{d}{2} - 1, \quad (1)$$

156 where $\theta_k = 10000^{-2k/d}$ is a predefined frequency for the k -th pair. Let $\mathbf{R}_m =$
 157 $\text{diag}(\mathbf{R}(m, \theta_0), \dots, \mathbf{R}(m, \theta_{d/2-1}))$ denote the block-diagonal matrix that applies these rotations to
 158 the full d -dimensional vector. In a self-attention layer, for input features x_n and x_m at absolute
 159

162 positions n and m , the queries and keys are computed as:
 163

$$164 \quad \mathbf{q}_n = \mathbf{R}_n(\mathbf{W}_q \mathbf{x}_n) \in \mathbb{R}^d, \quad \mathbf{k}_m = \mathbf{R}_m(\mathbf{W}_k \mathbf{x}_m) \in \mathbb{R}^d, \quad (2)$$

165 where \mathbf{W}_q and \mathbf{W}_k are the query and key projection matrices, respectively. The attention score is
 166 given by the dot product between the rotated queries and keys. Since \mathbf{R}_n is an orthogonal rotation
 167 matrix, its transpose is equivalent to a rotation by the negative angle ($\mathbf{R}_n^\top = \mathbf{R}_{-n}$), we can rewrite:
 168

$$169 \quad \text{AttentionScore}(\mathbf{q}_n, \mathbf{k}_m) = (\mathbf{R}_n \mathbf{W}_q \mathbf{x}_n)^T (\mathbf{R}_m \mathbf{W}_k \mathbf{x}_m) \\ 170 \quad = \mathbf{x}_n^T \mathbf{W}_q^T \mathbf{R}_{-n} \mathbf{R}_m \mathbf{W}_k \mathbf{x}_m \\ 171 \quad = \mathbf{x}_n^T \mathbf{W}_q^T \mathbf{R}_{m-n} \mathbf{W}_k \mathbf{x}_m. \quad (3)$$

172 Eq. 3 reveals that the attention score inherently depends on the *relative* position ($m - n$). This
 173 property provides RoPE with a natural mechanism for encoding relative positional relationships.
 174

175 3.2 EXPLORING THE IMPLICIT VISUAL COORDINATE

176 While RoPE naturally encodes relative positions, tasks such as spatial reasoning require knowledge
 177 of absolute object positions in an image. This suggests the need for absolute reference coordinates.
 178 We hypothesize that models can implicitly establish such coordinates through RoPE’s deterministic
 179 rotation matrices, whose periodic and orthogonal properties naturally define coordinate reference
 180 points. Consider the attention score: $\text{Score}(\mathbf{q}_n, \mathbf{k}_m) = \mathbf{x}_n^T \mathbf{W}_q^T \mathbf{R}_{-n} \mathbf{R}_m \mathbf{W}_k \mathbf{x}_m$. When the model
 181 attends to reference tokens at positions m , where the rotation matrix \mathbf{R}_m approximates key canonical
 182 transformations (e.g., identity matrix or 90° rotation matrices), the attention effectively isolates the
 183 query’s absolute positional component \mathbf{R}_n . This motivates identifying positions m whose rotation
 184 matrices serve as these canonical basis operators for an implicit coordinate system.
 185

186 **Real-Axis Reference.** Based on our analysis, an ideal real-axis reference corresponds to the identity
 187 transformation. We search for positions m where \mathbf{R}_m is close to the identity matrix \mathbf{I} , as measured
 188 by the squared Frobenius norm:
 189

$$190 \quad \|\mathbf{R}_m - \mathbf{I}\|_F^2 = \sum_{k=0}^{d/2-1} \|\mathbf{R}(m, \theta_k) - \mathbf{I}_2\|_F^2 \\ 191 \quad = \sum_{k=0}^{d/2-1} \left\| \begin{pmatrix} \cos(m\theta_k) - 1 & -\sin(m\theta_k) \\ \sin(m\theta_k) & \cos(m\theta_k) - 1 \end{pmatrix} \right\|_F^2 = \sum_{k=0}^{d/2-1} 4(1 - \cos(m\theta_k)), \quad (4)$$

192 where $\mathbf{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{I} = \text{diag}(\mathbf{I}_2, \dots, \mathbf{I}_2)$. Minimizing this distance is equal to maximizing the
 193 sum of the cosine terms. Accordingly, we define the real-axis score for a position m as:
 194

$$195 \quad V(m) = \sum_{k=0}^{d/2-1} \cos(m\theta_k), \quad (5)$$

196 which is equivalent to summing the **cosine components** of the positional embedding across all dimensions.
 197 Positions m that maximize $V(m)$ are thus appropriate candidates for **real-axis references**.
 198

199 **Imaginary-Axis Reference.** To complete the coordinate frame, an orthogonal axis is required.
 200 In each 2D feature subspace, this axis corresponds to a 90° counterclockwise rotation, represented by
 201 $\mathbf{J}_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, which extends to higher dimensions as the block-diagonal matrix
 202 $\mathbf{J} = \text{diag}(\mathbf{J}_2, \dots, \mathbf{J}_2)$. We identify positions m whose rotation matrices \mathbf{R}_m closely approximate
 203 \mathbf{J} . The distance is given by:
 204

$$205 \quad \|\mathbf{R}_m - \mathbf{J}\|_F^2 = \sum_{k=0}^{d/2-1} \|\mathbf{R}(m, \theta_k) - \mathbf{J}_2\|_F^2 = \sum_{k=0}^{d/2-1} 4(1 - \sin(m\theta_k)). \quad (6)$$

206 Minimizing this distance equals maximizing the sum of sines. We define the imaginary-axis score:
 207

$$208 \quad U(m) = \sum_{k=0}^{d/2-1} \sin(m\theta_k), \quad (7)$$

which aggregates the sine components of the positional embedding across all dimensions. Positions m that maximize $U(m)$ serve as **imaginary-axis references**, providing a consistent 90° phase shift relative to the real-axis references and enabling the construction of a stable implicit coordinate system.

Implications. This analysis reveals that RoPE’s mathematical properties naturally enable LVLMs to construct implicit coordinate systems. The functions $V(m)$ and $U(m)$ identify special positions that serve as coordinate anchors, thereby providing a mathematical foundation for absolute spatial reasoning in visual tasks. Importantly, these coordinate references emerge from the inherent periodicity and orthogonality properties of RoPE, suggesting that spatial understanding in LVLMs may be structured. This implicit coordinate system provides a theoretical basis for understanding how LVLMs perceive the absolute locations of objects in images of arbitrary resolution.

3.3 IMPLICIT VISUAL COORDINATE FOR TOKEN PRUNING

We propose a *training-free* token pruning strategy for LVLMs, applied within the language decoder to enable *prompt-aware* pruning. Our method specifically preserves two crucial visual token types:

- **Implicit Visual Coordinate (IVC) tokens:** Tokens that are essential for spatial reasoning.
- **Foreground tokens:** Visual tokens that are semantically aligned with the text prompt.

IVC Token Selection. Following the analysis in Section 3.2, we select IVC tokens by ranking each token position m using the coordinate scores $V(m)$ and $U(m)$. We retain the top- k_c tokens for each score and combine them to form the IVC token set:

$$\mathcal{I}_{\text{ivc}} = \arg \text{TopK}(\{V(m)\}, k_c) \cup \arg \text{TopK}(\{U(m)\}, k_c). \quad (8)$$

Foreground Token Selection. We employ a two-stage procedure to identify foreground tokens. A common practice for token pruning is to use attention scores between text and image tokens, assuming higher attention indicates stronger semantic relevance. However, attention scores (Eq. 3) are affected by relative token positions. Prior studies [Zhang et al. \(2024; 2025b\)](#); [Luan et al. \(2025\)](#) show that *text tokens often attend preferentially to spatially proximate visual tokens rather than to semantically relevant ones*. To mitigate this positional bias, we compute attention-like similarity scores between the value vectors (\mathbf{V}) of text and image tokens, which are unaffected by positional embeddings.

Stage 1: Semantic Seed Identification. Let $\mathbf{V}_{\text{text}} \in \mathbb{R}^{L \times D}$ and $\mathbf{V}_{\text{img}} \in \mathbb{R}^{N \times D}$ denote the value vectors for L text tokens and N visual tokens, respectively, with hidden dimension D . We first identify a small set of “semantic seeds”—visual tokens that are strongly aligned with the semantics of the text prompt. For each visual token, we compute a relevance score by averaging the normalized attention it receives from all text tokens:

$$\mathbf{s} = \text{Mean} \left(\text{Softmax} \left(\frac{\mathbf{V}_{\text{text}} \cdot \mathbf{V}_{\text{img}}^T}{\sqrt{D}}, \text{dim} = 1 \right), \text{dim} = 0 \right) \in \mathbb{R}^N, \quad (9)$$

where the softmax normalizes each text token’s attention distribution over visual tokens, and the mean aggregates these scores across all text tokens. We then select the top 1% scoring visual tokens to form the seed set $\mathcal{I}_{\text{seed}}$, where $k_s = \lceil 0.01 \times N \rceil$ is the seed set size.

Stage 2: Contextual Foreground Refinement. Semantic seed tokens may only partially cover large or complex objects. To better capture the entire foreground, we expand the query set to include both all text tokens and the initially selected seeds: $\mathbf{V}_{\text{query}} = \mathbf{V}_{\text{text}} \cup \{\mathbf{v}_j^{\text{img}}\}_{j \in \mathcal{I}_{\text{seed}}}$. Let $\mathbf{V}_{\text{query}} \in \mathbb{R}^{(L+k_s) \times D}$ denote the concatenated value vectors from this expanded query set. The refinement score for each visual token is computed by averaging the normalized attention it receives from all query tokens:

$$\mathbf{f} = \text{Mean} \left(\text{Softmax} \left(\frac{\mathbf{V}_{\text{query}} \cdot \mathbf{V}_{\text{img}}^T}{\sqrt{D}}, \text{dim} = 1 \right), \text{dim} = 0 \right) \in \mathbb{R}^N. \quad (10)$$

The final foreground token set \mathcal{I}_{fg} is formed by selecting the top- k_f tokens according to \mathbf{f} . This ensures that the retained tokens are supported by both textual semantics and key visual features. With the IVC token set \mathcal{I}_{ivc} , the retained token set is $\mathcal{I}_{\text{selected}} = \mathcal{I}_{\text{ivc}} \cup \mathcal{I}_{\text{fg}}$, as summarized in Algorithm 1.

Pruning Strategy. A critical design choice is determining the optimal layer for token pruning. Previous works report that *LVLMs are sensitive to token removal in early layers* ([Xing et al., 2025](#); [Ye et al., 2025b](#)). Our experiments, however, indicate that this sensitivity primarily arises from the removal of IVC tokens, rather than the pruning operation itself. As shown in Fig. 1, Tab. 6, and

270
271
272
273 **Require:** $\mathbf{V}_{\text{text}} \in \mathbb{R}^{L \times D}$, $\mathbf{V}_{\text{img}} \in \mathbb{R}^{N \times D}$,
274 k_c , k_f , $\{\theta_k\}$
275 **Ensure:** $\mathcal{I}_{\text{selected}} \subseteq \{1, 2, \dots, N\}$

276 **// IVC token selection**

277 1: $V(m) = \sum_{k=0}^{d/2-1} \cos(m\theta_k)$,
278 $U(m) = \sum_{k=0}^{d/2-1} \sin(m\theta_k)$ for $m \in [1, N]$

279 2: $\mathcal{I}_v \leftarrow \arg \text{TopK}(\{V(m)\}, k_c)$

280 3: $\mathcal{I}_u \leftarrow \arg \text{TopK}(\{U(m)\}, k_c)$

281 4: $\mathcal{I}_{\text{ivc}} \leftarrow \mathcal{I}_v \cup \mathcal{I}_u$

282 **// Semantic seed identification**

283 5: $\mathbf{A}_{\text{seed}} = \frac{\mathbf{V}_{\text{text}} \mathbf{V}_{\text{img}}^T}{\sqrt{D}} \in \mathbb{R}^{L \times N}$

284 6: $\mathbf{A}_{\text{seed}} \leftarrow \text{Softmax}(\mathbf{A}_{\text{seed}}, \text{dim} = 1)$

285 7: $\mathbf{s} = \text{Mean}(\mathbf{A}_{\text{seed}}, \text{dim} = 0)$

286 8: $\mathcal{I}_{\text{seed}} \leftarrow \arg \text{TopK}(\mathbf{s}, k_s)$, $k_s = \lceil 0.01 * N \rceil$

287 **// Foreground refinement**

288 9: $\mathbf{V}_{\text{query}} \leftarrow [\mathbf{V}_{\text{text}}; \mathbf{V}_{\text{img}}[\mathcal{I}_{\text{seed}}, :]]$

289 10: $\mathbf{f} = \text{Mean}(\text{Softmax}(\frac{\mathbf{V}_{\text{query}} \mathbf{V}_{\text{img}}^T}{\sqrt{D}}))$

290 11: $\mathcal{I}_{\text{fg}} \leftarrow \arg \text{TopK}(\mathbf{f}, k_f)$

291 12: **return** $\mathcal{I}_{\text{selected}} = \mathcal{I}_{\text{fg}} \cup \mathcal{I}_{\text{ivc}}$

295 Tab. 11, performance remains robust even when pruning is applied at all layers, as long as both IVC
296 tokens and foreground are retained. Moreover, consistent with recent findings (Shao et al., 2025;
297 Zhang et al., 2025a), we observe that *attention patterns in intermediate layers are most sensitive to*
298 *prompt semantics*, whereas shallow and final layers exhibit weaker prompt dependence. Guided by
299 this, as illustrated in Fig. 2, we determine the retained token set once at a selected intermediate layer,
300 while preserving the original position IDs. The selection is then applied to prune the KV caches in
301 all earlier layers, and is also used in subsequent layers. This strategy provides three benefits: (1)
302 minimal overhead from a single pruning operation, (2) prevention of suboptimal selection decisions
303 in shallow layers from adversely affecting subsequent layer computations, and (3) maximized KV
304 cache reduction for enhanced decoding efficiency.

305 4 EXPERIMENTS

308 4.1 EXPERIMENTAL SETTINGS

310 **Architectures.** We evaluate IVC-Prune on four open-source LVLMs: Qwen2.5-VL (native resolution)
311 Bai et al. (2025), InternVL-2.5 (dynamic resolution) Chen et al. (2024c), DeepSeek-VL2
312 (dynamic resolution, MoE) Wu et al. (2024), and LLaVA-v1.5 (fixed resolution) Liu et al. (2023).

313 **Benchmarks.** We evaluate the models across a diverse set of tasks, covering:
314 *Visual Grounding*: RefCOCO, RefCOCO+ Yu et al. (2016), and RefCOCOg Mao et al. (2016).
315 *General Reasoning*: SEEDBench (SEED) Li et al. (2023a), MMBench (MMB) Liu et al. (2024a),
316 MMStar (MMS) Chen et al. (2024b), and MME Chaoyou et al. (2023).
317 *Hallucination Evaluation*: POPE Li et al. (2023c) and HallusionBench (HallIB) Guan et al. (2024).
318 *Real-world Comprehension*: RealWorldQA (RWQA) Corp. (2024).
319 *OCR*: TextVQA (TVQA) Singh et al. (2019) and AI2D Kembhavi et al. (2016).

320 **Implementation Details.** We reproduced FastV Chen et al. (2024a), Window FastV Wen et al. (2025),
321 PDrop Xing et al. (2025), and VScan Zhang et al. (2025a) using the VLMEvalKit framework (Duan
322 et al., 2024) with the default inference settings. The selection layer i is selected based on empirical
323 performance on a small subset of RefCOCO_{testA} (or POPE for LLaVA v1.5), and kept fixed for all
324 experiments. Regarding the token preservation ratio, we set $k_c = 10\%$ and $k_f = 40\%$, which results

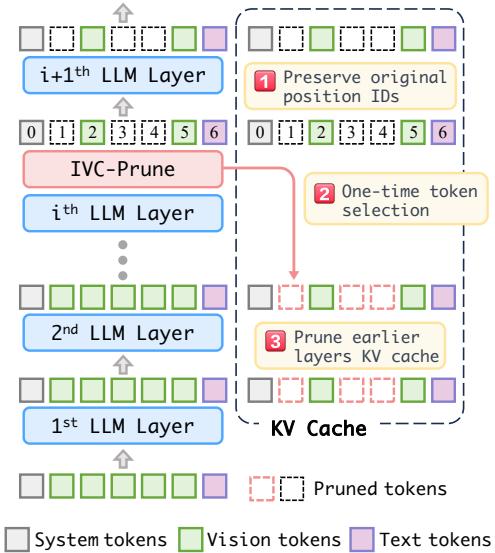


Figure 2: Illustration of the IVC-Prune strategy. Token selection is performed once at layer i on visual tokens, while preserving their original position IDs. The selection decision prunes the corresponding tokens from the KV caches of all earlier layers.

324 Table 1: Results on visual grounding benchmarks across different LVLMs and token pruning methods.
325 “Average Tokens” is the percentage of visual tokens retained in the KV-cache after pruning. “Rel.
326 Avg.” represents the average performance relative to the vanilla. **Bold**: Best. Underline: Second best.

328 Models	329 Method	330 Average 331 Tokens ↓	332 RefCOCO			333 RefCOCO+			334 RefCOCOg		335 Rel. Avg.
			336 testA	337 testB	338 val	339 testA	340 testB	341 val	342 test	343 val	
336 Qwen2.5-VL 337 7B	Vanilla	100%	92.2	84.7	89.6	88.0	74.3	82.8	86.9	86.8	100%
	FastV	54%	74.4	76.5	75.4	68.9	66.8	67.7	75.3	74.8	84.7%
	Window FastV	54%	82.9	79.8	81.8	77.4	69.0	74.0	79.2	79.5	91.0%
	PDrop	61%	77.6	59.1	68.7	72.1	50.1	62.6	63.7	64.4	75.4%
	VScan	50%	90.2	82.2	86.7	84.6	70.6	79.0	83.6	83.9	96.4%
	IVC-Prune	50%	92.0	84.5	89.3	87.4	74.1	82.4	86.5	86.5	99.6%
336 InternVL 2.5 337 8B	Vanilla	100%	94.7	86.0	90.3	91.5	78.7	85.1	87.6	87.1	100%
	FastV	53%	87.0	77.6	<u>81.6</u>	<u>82.6</u>	70.7	76.1	77.9	78.5	90.1%
	Window FastV	53%	82.9	73.6	<u>78.8</u>	80.1	66.6	73.5	74.4	73.4	86.0%
	PDrop	56%	85.0	<u>77.8</u>	80.8	80.9	69.9	75.1	77.7	77.0	89.0%
	IVC-Prune	50%	94.2	85.7	90.3	91.1	78.2	84.8	86.9	86.4	99.5%
	Vanilla	100%	96.5	92.6	95.2	94.7	87.9	91.4	93.3	93.2	100%
340 DeepSeek-VL2 341 Small-16B	FastV	54%	94.4	89.5	92.6	91.8	83.6	87.8	90.6	90.4	96.7%
	Window FastV	54%	95.0	90.4	<u>93.6</u>	92.5	<u>85.2</u>	<u>89.2</u>	91.3	90.9	97.8%
	PDrop	57%	95.7	89.1	<u>93.0</u>	<u>93.7</u>	84.5	89.0	91.5	91.3	97.7%
	IVC-Prune	52%	96.0	91.8	94.5	94.0	86.6	90.3	92.4	92.2	99.0%

345 Table 2: Results on general VQA benchmarks covering reasoning, hallucination, real-world comprehension,
346 and OCR tasks. “A. T.” denotes Average Tokens. **Green** cells surpass the unpruned method.

348 Models	349 Method	350 A. T.↓	351 SEED MMB MMS RWQA MME POPE HallIB TVQA AI2D										352 Rel. Avg.
			353 SEED	354 MMB	355 MMS	356 RWQA	357 MME	358 POPE	359 HallIB	360 TVQA	361 AI2D		
353 Qwen2.5-VL 354 7B	Vanilla	100%	76.7	82.4	64.2	67.8	2310.6	86.9	51.5	84.9	83.8	100%	
	FastV	54%	72.9	80.5	59.8	68.5	2242.5	86.2	54.3	84.7	81.6	98.4%	
	Window FastV	54%	73.9	<u>80.6</u>	58.1	67.4	2235.5	85.9	49.4	83.9	<u>81.8</u>	96.9%	
	PDrop	61%	74.0	78.9	57.9	66.0	2309.7	85.7	53.3	83.9	81.2	97.5%	
	VScan	50%	74.8	80.6	59.9	<u>68.4</u>	2285.0	87.3	56.5	84.3	79.1	99.1%	
	IVC-Prune	50%	76.7	82.6	62.9	<u>68.2</u>	2303.1	87.6	54.8	84.4	84.2	100.6%	
355 InternVL 2.5 356 8B	Vanilla	100%	77.1	83.2	62.7	69.4	2344.0	89.0	50.8	79.0	84.4	100%	
	FastV	53%	74.0	81.6	<u>62.5</u>	65.0	2268.3	86.7	48.8	76.8	83.1	97.0%	
	Window FastV	53%	73.9	82.0	57.7	65.8	2254.0	87.1	48.3	76.3	82.8	96.1%	
	PDrop	56%	<u>75.4</u>	<u>82.7</u>	60.5	<u>67.7</u>	2316.7	<u>87.8</u>	47.2	65.0	<u>83.3</u>	95.8%	
	IVC-Prune	50%	77.0	83.0	62.6	69.9	2308.2	88.9	50.2	78.0	84.3	99.6%	
	Vanilla	100%	76.9	79.2	57.7	70.3	2128.6	89.3	43.8	83.4	82.0	100%	
361 DeepSeek-VL2 362 Small-16B	FastV	54%	75.6	78.2	55.9	69.0	2112.8	89.2	42.7	<u>83.1</u>	<u>81.0</u>	98.6%	
	Window FastV	54%	76.1	78.3	56.2	68.2	2122.4	89.0	38.1	<u>82.3</u>	<u>80.5</u>	97.3%	
	PDrop	57%	76.8	<u>79.1</u>	<u>57.3</u>	69.7	2132.5	89.4	44.5	83.3	81.8	100.0%	
	IVC-Prune	52%	77.0	79.3	57.7	70.3	2132.2	89.5	44.3	83.0	81.8	100.1%	
	Vanilla	100%	64.4	60.6	34.2	54.5	1543.1	74.5	25.8	20.7	49.1	100%	
	FastV	30%	60.1	59.8	33.5	50.2	1555.2	73.4	28.6	<u>21.0</u>	49.0	99.3%	
364 LLaVA-v1.5 365 7B	Window FastV	30%	62.2	60.2	<u>34.1</u>	51.6	1643.3	78.2	27.4	19.8	48.8	100.3%	
	PDrop	47%	63.6	60.2	33.6	<u>53.7</u>	1600.4	79.5	<u>28.0</u>	18.9	49.4	100.6%	
	VScan	30%	63.9	60.5	32.6	51.8	1637.5	78.8	<u>28.0</u>	<u>21.0</u>	49.0	101.2%	
	IVC-Prune	28%	64.4	60.6	34.5	54.5	1554.4	77.6	26.7	21.1	<u>49.2</u>	101.3%	

369 in an average token preservation rate of approximately 50%. For LLaVA-v1.5-7B, we use $k_c = 5\%$
370 and $k_f = 25\%$. More detailed configurations are provided in the Appendix A.2.

373 4.2 RESULTS AND DISCUSSIONS

375 **Results on Visual Grounding Tasks.** Visual grounding requires precise object localization and
376 thus serves as a strong benchmark for spatial reasoning in LVLMs. As shown in Tab. 1, IVC-Prune
377 reduces roughly 50% of visual tokens, with only marginal drops of 0.4%, 0.5%, and 1.0% across
three distinct LVLMs. In contrast, FastV and PDrop struggle on Qwen2.5-VL (−15.3% and −24.6%)

378
 379
 380
 381
 382 Table 3: Analysis of inference efficiency on the Qwen2.5-VL-7B evaluated on the RefCOCO_{testA}
 383 benchmark. “KV Cache”, “Prefill Time”, and “Decode Latency” represent per-sample computational
 384 costs. “Total Time” measures the complete benchmark execution time. Lower values (↓) are better.
 385
 386
 387

Models	Method	Average Tokens (%) ↓	KV Cache (MB) ↓	Prefill Time (ms) ↓	Decode Latency (ms/token) ↓	Total Time (mm:ss) ↓	Accuracy (%) ↑
Qwen2.5-VL 7B	Vanilla	100%	26.0 (1.00×)	408 (1.00×)	65.3 (1.00×)	60'17 (1.00×)	92.2
	FastV	54%	16.1 (1.6×)	297 (1.37×)	62.7 (1.04×)	51'51 (1.16×)	74.4
	PDrop	61%	16.4 (1.6×)	315 (1.30×)	62.8 (1.04×)	52'23 (1.15×)	77.6
	IVC-Prune	50%	15.9 (1.6×)	322 (1.27×)	60.2 (1.08×)	47'47 (1.27×)	92.0

388
 389 Table 4: Ablation study on the impact of IVC tokens, using the Qwen2.5-VL-7B model. “w/” indicates
 390 that extra IVC tokens are added to the visual input. “w/o” indicates removing IVC tokens from
 391 the visual input. “RC_{testA}” and “RC+_{testA}” denote the RefCOCO_{testA} and RefCOCO+_{testA}.
 392
 393

Method	Config.	RC _{testA}	RC+ _{testA}	SEED	MMB
Vanilla	Default	92.2	88.0	76.7	82.4
	w/o IVC	84.1	79.4	76.1	82.2
IVC-Prune	Default	92.0	87.4	76.7	82.6
	w/o IVC	76.0	71.3	75.2	80.6
FastV	Default	74.4	68.9	72.9	80.5
	w/ IVC	82.1	76.5	74.6	80.5
PDrop	Default	77.6	72.1	74.0	78.9
	w/ IVC	83.9	76.5	74.6	79.2

388
 389 Table 5: Ablation study of applying our method to Qwen2.5-VL models with different parameter
 390 sizes (3B, 7B, and 32B).
 391
 392

Models	Method	RC _{testA}	RC+ _{testA}	SEED	MMB
3B	Vanilla	89.6	82.5	73.8	76.7
	FastV	81.2	71.0	70.3	73.8
	PDrop	67.6	56.8	68.4	71.7
	IVC-Prune	89.1	81.7	73.5	75.9
7B	Vanilla	92.2	88.0	76.7	82.4
	FastV	74.4	68.9	72.9	80.5
	PDrop	77.6	72.1	74.0	78.9
	IVC-Prune	92.0	87.4	76.7	82.6
32B	Vanilla	91.3	86.7	76.9	86.8
	FastV	74.3	67.1	70.8	81.3
	PDrop	49.8	43.6	66.0	68.0
	IVC-Prune	91.1	86.3	76.7	85.8

406 and InternVL 2.5 (−9.9% and −11.0%), while performing comparatively better on DeepSeek-VL2
 407 (−3.3% and −2.3%). These results highlight the robustness of IVC-Prune in preserving spatial
 408 reasoning performance under aggressive token reduction.

409 **Results on General VQA Benchmarks.** We evaluate our method on nine diverse VQA benchmarks
 410 across four representative LVLMs (Tab. 2). While the average number of retained tokens is comparable
 411 to state-of-the-art methods (FastV and PDrop), our method consistently achieves higher performance
 412 across all models. Notably, IVC-Prune matches or even surpasses the unpruned vanilla models,
 413 achieving average relative scores of 100.6%, 99.6%, 100.1%, and 101.3% for the four LVLMs.
 414 In contrast, FastV suffers substantial drops on Qwen2.5-VL (98.4%) and InternVL 2.5 (97.0%),
 415 while PDrop degrades on InternVL 2.5 (95.8%). Further experiments on spatial reasoning, video
 416 understanding, and additional VQA benchmarks (Appendix A.3) confirm these trends. The results
 417 show the robustness of our approach across diverse LVLM architectures and benchmarks.

4.3 EFFICIENCY ANALYSIS

421 Tab. 3 presents an efficiency comparison among vanilla, FastV, and IVC-Prune on Qwen2.5-VL-7B
 422 with 8×A100 (40 GB) GPUs. Both FastV and IVC-Prune reduce average token count to roughly
 423 half of the baseline. Our prefill time is slightly higher than that of FastV (322ms vs. 297 ms), which
 424 is expected given our pruning strategy: we perform token selection at an intermediate layer rather
 425 than the shallowest layers. This design retains more semantically relevant tokens, but also increases
 426 computation during the prefill stage. However, IVC-Prune applies the pruned token set uniformly
 427 across all layers, yielding a further reduction in KV-cache and lower decoding latency (60.2 ms/token
 428 vs. 62.7 ms/token for FastV). Total Time measures the complete wall-clock runtime of the benchmark,
 429 including both forward computation and token generation, where LVLMs often spend notable time
 430 in beam search or sampling operations. Under this realistic measurement, IVC-Prune achieves
 431 the shortest total runtime (47'47), demonstrating that the decoding latency reduction effectively
 432 compensates for the modest prefill overhead and delivers an improved trade-off between accuracy
 433 preservation and practical efficiency.

432 Table 6: Ablation study comparing IVC tokens with alternative visual token patterns on Qwen2.5-
 433 VL-7B. Only the highlighted tokens, **pink tokens** (pattern-specific) and **blue tokens** (foreground),
 434 are retained as inputs. “Random” selects 15% tokens at random. “C Points” are the corners plus the
 435 image center. IVC^{5%–20%} denotes different retain ratios.
 436

437 Pattern	438 None	439 Random	440 C Points	441 Window	442 Diagonal	443 IVC ^{5%}	444 IVC ^{10%}	445 IVC ^{20%}	446 Baseline
447 RC _{testA}	448 58.0	449 79.3	450 73.5	451 89.0	452 89.8	453 89.1	454 92.8	455 93.3	456 92.2
457 RC+ _{testA}	458 56.8	459 77.6	460 71.8	461 86.3	462 87.0	463 87.0	464 90.0	465 90.4	466 88.0
467 GQA _{CA}	468 90.3	469 92.0	470 91.3	471 92.3	472 92.3	473 93.3	474 93.3	475 93.7	476 93.7

447 Table 7: Ablation of foreground token selection on InternVL-2.5-8B, **with IVC tokens** included in
 448 all settings. Stage 1 denotes Semantic Seed Identification. Stage 2 denotes Contextual Foreground
 449 Refinement. The variant “Stage 1+2 w/ Text–Image Attention” replaces the value-similarity scoring
 450 in Stage 1+2 with conventional text–image attention scores.
 451

452 Method	453 Avg. Tokens	454 RefCOCO _{testA}	455 RefCOCO+ _{testA}	456 TVQA	457 MMB
458 Vanilla (No Pruning)	459 100%	460 94.7	461 91.5	462 79.0	463 83.2
464 Stage 1	465 50%	466 93.9	467 90.9	468 76.1	469 83.0
470 Stage 1 + Stage 2	471 50%	472 94.2	473 91.1	474 78.0	475 83.0
476 Stage 1+2 w/ Text–Image Attention	477 50%	478 82.2	479 79.3	480 75.7	481 83.1

458 4.4 ABLATION STUDIES

459 **Impact of IVC Tokens.** We analyze our proposed IVC tokens in Tab. 4. Removing IVC tokens
 460 causes substantial performance drops on visual grounding tasks on RefCOCO_{testA}: Vanilla degrades
 461 from 92.2 to 84.1 (-8.1), and IVC-Prune from 92.0 to 76.0 (-16.0). Conversely, adding IVC tokens
 462 to existing methods yields significant improvements: FastV increases from 74.4 to 82.1 (+7.7) and
 463 PDrop from 77.6 to 83.9 (+6.3). These results confirm that IVC tokens are essential for spatial
 464 reasoning and can be seamlessly integrated into existing pruning methods to enhance their spatial
 465 reasoning capabilities. Notably, the impact on non-/weakly-spatial tasks (SEEDBench, MMBench)
 466 remains minimal, indicating that IVC tokens specifically target spatial reasoning.
 467

468 **Effectiveness of IVC Tokens Compared to Alternative Patterns.** To validate the effectiveness of
 469 IVC tokens, we compare them with several alternative token patterns on visual grounding benchmarks
 470 and GQA_{choose all} (GQA_{CA}) [Zhang et al. \(2025d\)](#) in Tab. 6. These benchmarks provide foreground
 471 annotations, enabling direct analysis of token selection effectiveness. The results confirm that back-
 472 ground tokens contribute positively to performance, particularly for visual grounding. On RefCOCO,
 473 IVC^{10%} outperforms the full-token baseline. On the less spatially focused GQA benchmark, all
 474 variants achieve comparable accuracy, with IVC^{20%} matching the baseline at 93.7%. Thus, we adopt
 475 IVC^{10%} as our default configuration, delivering optimal performance with high efficiency.
 476

477 **Ablation of Foreground Token Selection.** Tab. 7 evaluates variations of our foreground selection
 478 strategy, where all configurations include IVC tokens by default and differ only in the selection
 479 mechanism. Using only the semantic seed identification (stage 1) recovers most of the performance but
 480 still underperforms the complete two-stage method, particularly on TextVQA (-1.9). This highlights
 481 the importance of the refinement stage for better capturing the complete foreground. Replacing the
 482 value-similarity scores with text–image attention scores results in a substantial performance drop in
 483 grounding tasks (*e.g.*, -12.0 on RefCOCO_{testA}), suggesting that attention scores are suboptimal, likely
 484 due to positional bias. Interestingly, MMBench performance remains unchanged across settings,
 485 indicating that this benchmark may be less sensitive to the specifics of visual tokens.
 486

487 **Effectiveness Across Parameter Scales.** Tab. 5 evaluates our method across different model scales
 488 (3B, 7B, and 32B parameters). Across all scales, IVC-Prune consistently preserves the performance
 489 of the vanilla model. The robustness of IVC-Prune across diverse scales demonstrates that our
 490 approach is not limited by model capacity, supporting its applicability to a wide range of LVLMs.
 491

486

5 DISCUSSION AND LIMITATIONS

487

5.1 DISCUSSION ON NOVELTY AND RELATION TO PRIOR WORK

490 While token pruning is an established field, IVC-Prune introduces distinct theoretical and method-
 491 ological innovations compared to prior token pruning approaches:

492 **Theoretical analysis for spatial reasoning in LVLMs.** We present the first theoretical characteri-
 493 zation of the mathematical structure of RoPE within LVLMs, revealing that certain token positions
 494 function as Implicit Visual Coordinate (IVC) tokens. These tokens encode absolute spatial infor-
 495 mation essential for object localization at arbitrary image resolutions. This analysis offers novel
 496 mechanistic insights into how LVLMs localize objects at arbitrary resolutions, which is a fundamental
 497 property previously unexplored in pruning literature.

498 **Explanation of early-layer pruning sensitivity.** Prior works (Xing et al., 2025; Ye et al., 2025b)
 499 reported severe performance drops when pruning early transformer layers, without clarifying the
 500 cause. Our controlled ablations (Tab. 6, Tab. 11) show that sensitivity arises from the removal of IVC
 501 tokens rather than pruning itself.

502 **Safe early-layer KV-cache pruning.** Guided by the IVC analysis, we implement a single-selection
 503 strategy that enables pruning of early-layer KV caches while preserving performance. This achieves
 504 maximal cache reduction and faster decoding, whereas prior training-free methods avoid early-layer
 505 pruning entirely due to quality loss.

506 **Cross-Architecture Robustness.** We introduce a two-stage semantic foreground token selection
 507 method leverages value-vector similarity, followed by semantic seeding and contextual refinement.
 508 This design effectively reduces positional bias from attention distributions. Our method general-
 509 izes across diverse image inputs, yielding competitive results on four LVLM families and twenty
 510 benchmarks, demonstrating that it is architecture-agnostic.

512

5.2 LIMITATIONS

514 Although IVC-Prune performs well across diverse LVLMs and tasks, several limitations remain.
 515 First, our fixed pruning ratios, while effective in both image and video settings, are not dynamically
 516 adapted to task-specific visual or temporal complexity, which may lead to suboptimal pruning in
 517 certain scenarios. Second, the pruning layer is selected based on validation performance on a small
 518 subset of the benchmark. While it is effective in practice, this underscores the need for automated
 519 strategies to identify the optimal pruning layer and motivates further interpretability studies into the
 520 distinct functional roles of different layers in LVLMs. Finally, the identification of IVC tokens is
 521 inherently tied to the mathematical structure of RoPE. Extending this framework to architectures
 522 using alternative positional encodings (e.g. learned 2D embeddings) will require additional theoretical
 523 and empirical validation.

524

6 CONCLUSION

526 In this work, we present a new insight into how LVLMs perform spatial reasoning: LVLMs inherently
 527 establish an implicit visual coordinate system through the mathematical structure of RoPE, using
 528 specific token positions as spatial coordinates. Based on this, we introduce IVC-Prune, a novel
 529 training-free pruning method that preserves both crucial Implicit Visual Coordinate (IVC) tokens
 530 and semantically aligned foreground tokens. Experiments across diverse LVLM architectures and
 531 benchmarks demonstrate that IVC-Prune reduces computational costs (e.g., 50% KV-cache reduction)
 532 with negligible performance loss, and in some cases even surpasses the unpruned vanilla method. In
 533 the future, we plan to extend IVC-Prune with dynamic, task-adaptive pruning ratios and explore its
 534 integration into training-time architecture design. We hope our findings will motivate further research
 535 into positional encoding mechanisms and their role in spatial reasoning within LVLMs.

540 REPRODUCIBILITY
541

542 We provide comprehensive details to ensure full reproducibility of our experimental results in
543 Section 4.1, Appendix A.1 and Appendix A.2. All evaluations are conducted using the default
544 inference settings on 8xA100 40 GB GPUs (8xH800 80 GB for the 32B and video experiments). The
545 code and experimental configurations will be made publicly available.

546
547 REFERENCES
548

549 Kazi Hasan Ibn Arif, JinYi Yoon, Dimitrios S Nikolopoulos, Hans Vandierendonck, Deepu John,
550 and Bo Ji. HiRED: Attention-guided token dropping for efficient inference of high-resolution
551 vision-language models. In *Proc. AAAI Conf. Artif. Intell.*, volume 39, pp. 1773–1781, 2025.

552 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
553 and Jingren Zhou. Qwen-VL: A versatile vision-language model for understanding, localization,
554 text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 2024.

555 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
556 Shijie Wang, Jun Tang, et al. Qwen2.5-VL technical report. *arXiv preprint arXiv:2502.13923*,
557 2025.

558 Fu Chaoyou, Chen Peixian, Shen Yunhang, Qin Yulei, Zhang Mengdan, Lin Xu, Yang Jinrui, Zheng
559 Xiawu, Li Ke, Sun Xing, et al. MME: A comprehensive evaluation benchmark for multimodal
560 large language models. *arXiv preprint arXiv:2306.13394*, 2023.

561 Guoxuan Chen, Han Shi, Jiawei Li, Yihang Gao, Xiaozhe Ren, Yimeng Chen, Xin Jiang, Zhenguo
562 Li, Weiyang Liu, and Chao Huang. SepLLM: Accelerate large language models by compressing
563 one segment into one separator. In *Int. Conf. Mach. Learn.*, 2025.

564 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
565 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
566 language models. In *Eur. Conf. Comput. Vis.*, pp. 19–35, 2024a.

567 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
568 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
569 models? *Adv. Neural Inform. Process. Syst.*, 37:27056–27087, 2024b.

570 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
571 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
572 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024c.

573 Tzu-Chun Chien, Chieh-Kai Lin, Shiang-Feng Tsai, Ruei-Chi Lai, Hung-Jen Chen, and Min Sun.
574 Grounding-aware token pruning: Recovering from drastic performance drops in visual grounding
575 caused by pruning. *arXiv preprint arXiv:2506.21873*, 2025.

576 Claude. System card: Claude opus 4 & claude sonnet 4. www.anthropic.com/clause/sonnet, 2025.

577 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
578 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
579 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
580 *arXiv preprint arXiv:2507.06261*, 2025.

581 X.AI Corp. Grok-1.5 vision preview: Connecting the digital and physical worlds with our first
582 multimodal model. <https://x.ai/blog/grok-1.5v>, 2024.

583 Mohamed Dhouib, Davide Buscaldi, Sonia Vanier, and Aymen Shabou. PACT: Pruning and clustering-
584 based token reduction for faster visual language models. In *IEEE Conf. Comput. Vis. Pattern
585 Recog.*, pp. 14582–14592, 2025.

586 Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin Zhang,
587 Chenzhuang Du, Chu Wei, et al. Kimi-VL technical report. *arXiv preprint arXiv:2504.07491*,
588 2025.

594 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang
 595 Zang, Pan Zhang, Jiaqi Wang, et al. VLMEvalKit: An open-source toolkit for evaluating large
 596 multi-modality models. In *ACM Int. Conf. Multimedia*, pp. 11198–11201, 2024.

597

598 Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
 599 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-MME: The first-ever comprehensive evaluation
 600 benchmark of multi-modal llms in video analysis. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp.
 601 24108–24118, 2025.

602

603 Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
 604 Chen, Furong Huang, Yaser Yacoob, et al. HallusionBench: an advanced diagnostic suite for
 605 entangled language hallucination and visual illusion in large vision-language models. In *IEEE*
 606 *Conf. Comput. Vis. Pattern Recog.*, pp. 14375–14385, 2024.

607

608 Wenbo Hu, Zi-Yi Dou, Liunian Li, Amita Kamath, Nanyun Peng, and Kai-Wei Chang. Matryoshka
 609 query transformer for large vision-language models. *Adv. Neural Inform. Process. Syst.*, 37:
 50168–50188, 2024.

610

611 Wenzuan Huang, Zijie Zhai, Yunhang Shen, Shaosheng Cao, Fei Zhao, Xiangfeng Xu, Zheyu Ye,
 612 and Shaohui Lin. Dynamic-LLaVA: Efficient multimodal large language models via dynamic
 613 vision-language context sparsification. In *Int. Conf. Learn. Represent.*, 2025.

614

615 Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
 616 Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. MIInference 1.0: Accelerating pre-
 617 filling for long-context llms via dynamic sparse attention. *Adv. Neural Inform. Process. Syst.*, 37:
 52481–52515, 2024.

618

619 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
 A diagram is worth a dozen images. In *Eur. Conf. Comput. Vis.*, pp. 235–251, 2016.

620

621 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. SEEDBench:
 622 Benchmarking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*,
 623 2023a.

624

625 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping language-image
 626 pre-training with frozen image encoders and large language models. In *Int. Conf. Mach. Learn.*,
 627 pp. 19730–19742, 2023b.

628

629 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
 630 Ping Luo, et al. MVBench: A comprehensive multi-modal video understanding benchmark. In
 631 *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 22195–22206, 2024a.

632

633 Yanwei Li, Chengyao Wang, and Jiaya Jia. LlaMA-VID: An image is worth 2 tokens in large
 634 language models. In *Eur. Conf. Comput. Vis.*, pp. 323–340, 2024b.

635

636 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 637 object hallucination in large vision-language models. In *Proceedings of Conference on Empirical
 638 Methods in Natural Language Processing*, pp. 292–305, 2023c.

639

640 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Adv. Neural
 641 Inform. Process. Syst.*, 36:34892–34916, 2023.

642

643 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
 644 Wang, Conghui He, Ziwei Liu, et al. MMBench: Is your multi-modal model an all-around player?
 645 In *Eur. Conf. Comput. Vis.*, pp. 216–233, 2024a.

646

647 Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, et al. Ocrbench: On the hidden mystery of ocr in
 648 large multimodal models. *Science China Information Sciences*, 67(12):220102, 2024b.

649

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 650 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 651 science question answering. *Adv. Neural Inform. Process. Syst.*, 35:2507–2521, 2022.

648 Bozhi Luan, Wengang Zhou, Hao Feng, Zhe Wang, Xiaosong Li, and Houqiang Li. Multi-cue
 649 adaptive visual token pruning for large vision-language models. *arXiv preprint arXiv:2503.08019*,
 650 2025.

651 Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy.
 652 Generation and comprehension of unambiguous object descriptions. In *IEEE Conf. Comput. Vis.
 653 Pattern Recog.*, pp. 11–20, 2016.

654 Minesh Mathew, Dimosthenis Karatzas, and C.V. Jawahar. DocVQA: A dataset for vqa on document
 655 images. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*,
 656 pp. 2200–2209, January 2021.

657 Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and C.V. Jawahar.
 658 InfographicVQA. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
 659 Vision*, pp. 1697–1706, January 2022.

660 OpenAI. Gpt-5 system card. openai.com/index/gpt-5-system-card, 2025.

661 Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.
 662 A-OKVQA: A benchmark for visual question answering using world knowledge. In *Eur. Conf.
 663 Comput. Vis.*, pp. 146–162, 2022.

664 Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. LLaVA-PruMerge: Adaptive
 665 token reduction for efficient large multimodal models. *arXiv preprint arXiv:2403.15388*, 2024.

666 Zhenwei Shao, Mingyang Wang, Zhou Yu, Wenwen Pan, Yan Yang, Tao Wei, Hongyuan Zhang,
 667 Ning Mao, Wei Chen, and Jun Yu. Growing a twig to accelerate large vision-language models. In
 668 *Int. Conf. Comput. Vis.*, pp. 1–xx, 2025.

669 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 670 and Marcus Rohrbach. Towards vqa models that can read. In *IEEE Conf. Comput. Vis. Pattern
 671 Recog.*, pp. 8317–8326, 2019.

672 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. RoFormer: Enhanced
 673 transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

674 Yizheng Sun, Yanze Xin, Hao Li, Jingyuan Sun, Chenghua Lin, and Riza Theresa Batista-Navarro.
 675 LVPruning: An effective yet simple language-guided vision token pruning approach for multi-
 676 modal large language models. In *Findings of the Association for Computational Linguistics:
 677 NAACL*, pp. 4299–4308, 2025.

678 Jintao Tong, Wenwei Jin, Pengda Qin, Anqi Li, Yixiong Zou, Yuhong Li, Yuhua Li, and Ruixuan Li.
 679 FlowCut: Rethinking redundancy via information flow for efficient vision-language models. *arXiv
 680 preprint arXiv:2505.19536*, 2025.

681 Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, Sharon Li, and Neel Joshi. Is a
 682 picture worth a thousand words? delving into spatial reasoning for vision language models. *Adv.
 683 Neural Inform. Process. Syst.*, 37:75392–75421, 2024.

684 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
 685 Linglin Jing, Shenglong Ye, Jie Shao, et al. InternVL3.5: Advancing open-source multimodal
 686 models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025.

687 Zichen Wen, Yifeng Gao, Weijia Li, Conghui He, and Linfeng Zhang. Token pruning in multimodal
 688 large language models: Are we solving the right problem? In *Findings of the Association for
 689 Computational Linguistics*, pp. 15537–15549, 2025.

690 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
 691 Ma, Chengyue Wu, Bingxuan Wang, et al. DeepSeek-VL2: Mixture-of-experts vision-language
 692 models for advanced multimodal understanding. *arXiv preprint arXiv:2412.10302*, 2024.

693 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 694 language models with attention sinks. In *Int. Conf. Learn. Represent.*, 2024.

702 Long Xing, Qidong Huang, Xiaoyi Dong, Jiajie Lu, Pan Zhang, Yuhang Zang, Yuhang Cao, Conghui
 703 He, Jiaqi Wang, Feng Wu, and Dahua Lin. Conical visual concentration for efficient large
 704 vision-language models. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 14593–14603, 2025.

705

706 Cheng Yang, Yang Sui, Jinqi Xiao, Lingyi Huang, Yu Gong, Chendi Li, Jinghua Yan, Yu Bai,
 707 Ponnuswamy Sadayappan, Xia Hu, et al. TopV: Compatible token pruning with inference time
 708 optimization for fast and low-memory multimodal vision language model. In *IEEE Conf. Comput.
 709 Vis. Pattern Recog.*, pp. 19803–19813, 2025.

710 Weihao Ye, Qiong Wu, Wenhao Lin, and Yiyi Zhou. Fit and prune: Fast and training-free visual token
 711 pruning for multi-modal large language models. In *Proc. AAAI Conf. Artif. Intell.*, volume 39, pp.
 712 22128–22136, 2025a.

713

714 Xubing Ye, Yukang Gan, Yixiao Ge, Xiao-Ping Zhang, and Yansong Tang. ATP-LLaVA: Adaptive
 715 token pruning for large vision language models. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp.
 716 24972–24982, 2025b.

717

718 Xubing Ye, Yukang Gan, Xiaoke Huang, Yixiao Ge, and Yansong Tang. VoCo-LLaMA: Towards
 719 vision compression with large language models. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp.
 720 29836–29846, 2025c.

721

722 Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context
 723 in referring expressions. In *Eur. Conf. Comput. Vis.*, pp. 69–85, 2016.

724

725 Ce Zhang, Kaixin Ma, Tianqing Fang, Wenhao Yu, Hongming Zhang, Zhisong Zhang, Yaqi Xie,
 726 Katia Sycara, Haitao Mi, and Dong Yu. VScan: Rethinking visual token reduction for efficient
 727 large vision-language models. *arXiv preprint arXiv:2505.22654*, 2025a.

728

729 Qizhe Zhang, Aosong Cheng, Ming Lu, Renrui Zhang, Zhiyong Zhuo, Jiajun Cao, Shaobo Guo,
 730 Qi She, and Shanghang Zhang. Beyond text-visual attention: Exploiting visual cues for effective
 731 token pruning in vlms. *Int. Conf. Comput. Vis.*, 2025b.

732

733 Yuan Zhang, Chun-Kai Fan, Junpeng Ma, Wenzhao Zheng, Tao Huang, Kuan Cheng, Denis Gu-
 734 dovskiy, Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, et al. SparseVLM: Visual token sparsifi-
 735 cation for efficient vision-language model inference. In *Int. Conf. Mach. Learn.*, 2025c.

736

737 Zeliang Zhang, Phu Pham, Wentian Zhao, Kun Wan, Yu-Jhe Li, Jianing Zhou, Daniel Miranda,
 738 Ajinkya Kale, and Chenliang Xu. Treat visual tokens as text? but your mllm only needs fewer
 739 efforts to see. *arXiv preprint arXiv:2410.06169*, 2024.

740

741 Zhi Zhang, Srishti Yadav, Fengze Han, and Ekaterina Shutova. Cross-modal information flow in
 742 multimodal large language models. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 19781–19791,
 743 2025d.

744

745 Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Zhengyang Liang, Shitao Xiao, Minghao Qin, Xi Yang,
 746 Yongping Xiong, Bo Zhang, Tiejun Huang, and Zheng Liu. MLVU: Benchmarking multi-task long
 747 video understanding. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 13691–13701, 2025.

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **A.1 DETAILS OF EVALUATION BENCHMARKS**
759760 **Visual Grounding:** RefCOCO and RefCOCO+ [Yu et al. \(2016\)](#) (testA, testB, val), and Ref-
761 COCOg [Mao et al. \(2016\)](#) (test, val).762 **General Reasoning:** SEEDBench_{image} (SEED) [Li et al. \(2023a\)](#), MMBench_{DEV_EN_V11} (MMB) [Liu](#)
763 et al. (2024a), AI2D_{test} (AI2D) [Kembhavi et al. \(2016\)](#), MMStar (MMS) [Chen et al. \(2024b\)](#),
764 MME [Chaoyou et al. \(2023\)](#), MMBench_{DEV_EN}, MMBench_{DEV_CN_V11}, MMBench_{DEV_CN} [Liu et al.](#)
765 (2024a).766 **Hallucination Evaluation:** POPE [Li et al. \(2023c\)](#), HallusionBench [Guan et al. \(2024\)](#).
767768 **Real-world Comprehension:** RealWorldQA (RWQA) [Corp. \(2024\)](#), A-OKVQA [Schwenk et al.](#)
769 (2022).770 **OCR:** TextVQA (TVQA) [Singh et al. \(2019\)](#) and AI2D [Kembhavi et al. \(2016\)](#).
771772 **Science Knowledge:** ScienceQA (SQA) [Lu et al. \(2022\)](#).773 **Spatial Reasoning:** SpatialEval [Wang et al. \(2024\)](#).774 **Video Understanding:** MVBench [Li et al. \(2024a\)](#), Video-MME [Fu et al. \(2025\)](#), and MLVU [Zhou](#)
775 et al. (2025).776 For all benchmarks, we follow the standardized evaluation protocol adopted in VLMEvalKit [Duan](#)
777 et al. (2024), employing GPT-4.1 as the judge model for question-answer scoring. For
778 GQA_{choose all} [Zhang et al. \(2025d\)](#), we report performance on the *ChooseAttr*, *ChooseCat*, and
779 *ChooseRel* subsets.
780781 **A.2 DETAILED CONFIGURATION OF DIFFERENT LVLMs**
782783 Different LVLMs adopt distinct image preprocessing pipelines and architecture depths, as illustrated
784 in Fig. 3. Consequently, the application of IVC-Prune requires minor model-specific adjustments. To
785 ensure reproducibility, this section provides the detailed configuration for each model.
786787 **Layer Selection Protocol.** The pruning layer i is determined based on validation performance on a
788 small subset of RefCOCO_{testA} (or POPE for LLaVA v1.5). Once the optimal layer is determined for
789 each model, the same layer configuration is consistently applied across all benchmarks and tasks to
790 ensure fair comparison and reproducibility.
791792 **Model-specific Settings.**793

- **Qwen2.5-VL:** We apply IVC-Prune at layer 16 in the 7B model (28 layers total), layer 22 in
794 the 3B model (32 layers total), and layer 35 in the 32B model (64 layers total).
- **InternVL 2.5:** We perform IVC-Prune at layer 16 (32 layers total). The pruning is first
795 applied to the thumbnail image. Then, the identified foreground tokens are mapped to the
796 corresponding positions in tiled images. IVC tokens are computed independently within
797 each tiled image and the thumbnail image.
- **DeepSeek-VL2:** We apply IVC-Prune at layer 17 (27 layers total). Similar to InternVL 2.5,
798 we first perform pruning on the thumbnail (excluding padding areas) and map foreground
799 tokens to tiled images. Since DeepSeek-VL2 uses special tokens to separate lines in tiles,
800 we select IVC tokens within each line while preserving all special tokens. We avoid pruning
801 layer 0 as DeepSeek-VL2 relies on the layer 0 KV-cache length to manage the prefilling
802 stage.
- **LLaVA v1.5:** We perform IVC-Prune at layer 15 (32 layers total). Layer 0 is excluded from
803 pruning as removing its KV-cache leads to significant performance degradation [Chen et al.](#)
804 (2024a).

805 **Baseline Method Settings.** We reproduce FastV [Chen et al. \(2024a\)](#) and PDrop [Xing et al. \(2025\)](#)
806 with the following configurations:
807

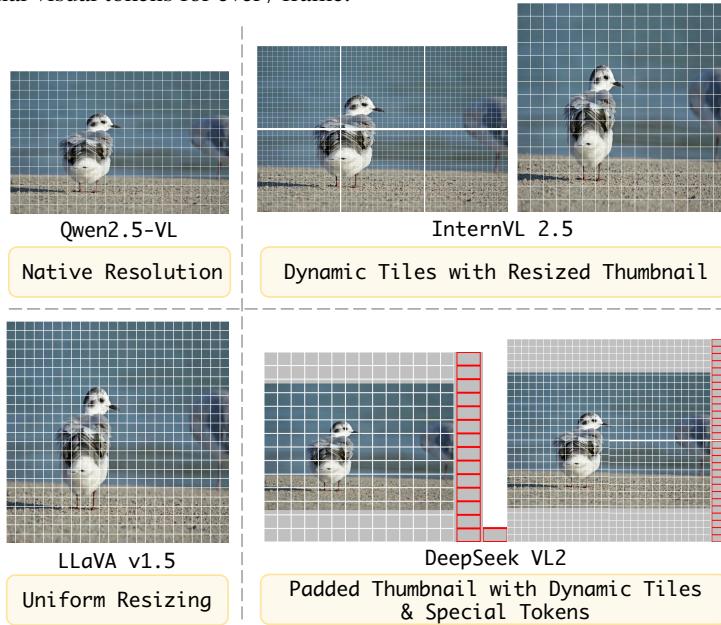
810

- **FastV:** $K = 2, R = 50\%$ for Qwen2.5-VL, InternVL 2.5, and DeepSeek-VL2; $K = 2, R = 75\%$ for LLaVA v1.5. We use the KV-cache compatible implementation.
- **PDrop:** $K \in \{8, 16, 24\}$ with $\lambda \in \{0.7, 0.5, 0.5\}$ for Qwen2.5-VL, InternVL 2.5, and DeepSeek-VL2; $\lambda \in \{0.5, 0.5, 0.5\}$ for LLaVA v1.5.

811
812
813
814

815 **Video Benchmark Implementation.** For experiments on video datasets, we adopt a consistent
816 per-frame pruning strategy. IVC-Prune is applied to each video frame independently, retaining 50%
817 of the original visual tokens for every frame.

818
819
820
821
822
823
824
825
826
827



838 Figure 3: Comparison of image preprocessing strategies in different LVLMs. White squares represent
839 image tokens. Red squares indicate special tokens introduced in DeepSeek-VL2.
840

841 A.3 FURTHER EXPERIMENTS

842

843 **Analysis of Spatial Reasoning Benchmark Results.** Tab. 8 demonstrates the effectiveness of our
844 method on spatial reasoning tasks. Across all evaluated LVLMs, our IVC-Prune achieves the highest
845 *Overall* scores compared with other pruning methods.

846

847 **Analysis of Video Understanding Benchmark Results.** Tab. 9 demonstrates the effectiveness of
848 our method on video understanding tasks. By retaining only 50% of the original visual tokens, our
849 approach consistently meets or exceeds the performance of the baseline, achieving average relative
850 scores of 100.1% for Qwen2.5-VL-7B and 100.3% for InternVL 2.5-8B. These results underscore
851 that our pruning strategy is robust and effective for processing temporal data.

852

853 **Analysis of VQA Benchmark Results.** The results in Tab. 10 further corroborate the effectiveness
854 of our proposed method. Across four distinct Large Vision-Language Models (LVLMs), our approach
855 consistently demonstrates a superior efficiency-performance trade-off. While retaining only about
856 50% of the visual tokens for most models (and as low as 28% for LLaVA-v1.5), our method achieves
857 average relative performance scores of 100.2%, 100.0%, 100.1%, and 101.3%. These scores not only
858 meet or exceed the baseline but also consistently surpass competing pruning methods like FastV and
859 PDrop, often while using fewer tokens. This underscores the robustness of our strategy in preserving
860 essential visual information for complex VQA tasks across diverse model architectures.

861
862

863 A.4 EXTENDED RESULTS AND ANALYSIS FOR FIG. 1

864 Tab. 11 presents detailed results of visual grounding performance across multiple LVLMs and
865 input configurations, extending the summary in Fig. 1. For most models (Qwen2.5-VL-7B/3B and

864
865
866 Table 8: Evaluation results on spatial reasoning benchmark.
867
868

Models	Method	Average Tokens ↓	SpatialEval					Overall
			Mazenav	Spatialgrid	Spatialmap	Spatialreal		
Qwen2.5-VL 7B	Vanilla	100%	32.8	84.1	68.3	70.4	62.0	
	FastV	54%	33.5	78.3	68.1	69.6	60.2	
	PDrop	61%	26.8	75.5	66.8	63.7	56.6	
	IVC-Prune	50%	35.2	83.4	69.9	70.4	63.0	
InternVL 2.5 8B	Vanilla	100%	33.5	76.2	63.5	65.9	58.0	
	FastV	53%	28.1	54.5	52.6	60.0	45.5	
	PDrop	56%	32.8	66.1	60.8	61.5	53.5	
	IVC-Prune	50%	32.7	76.1	63.8	68.1	57.8	
DeepSeek-VL2 Small-16B	Vanilla	100%	32.1	75.2	59.3	60.0	55.6	
	FastV	54%	32.6	65.9	58.0	58.5	52.3	
	PDrop	57%	33.5	73.8	59.1	61.5	55.6	
	IVC-Prune	52%	32.3	75.3	59.3	59.3	55.7	
LLaVA-v1.5 7B	Vanilla	100%	31.3	30.1	43.5	38.5	35.0	
	FastV	30%	30.4	29.5	44.1	35.5	34.5	
	PDrop	47%	30.8	29.1	44.0	35.5	34.5	
	IVC-Prune	28%	30.3	30.0	43.1	38.5	34.6	

879
880
881
882 Table 9: Evaluation results on video understanding benchmark.
883
884

Models	Method	Average Tokens ↓	MVBench 64 frame	VideoMME				MLVU		Rel. Avg.
				w/o subs	short	medium	long	M-Aug	G-Aug	
Qwen2.5-VL 7B	Vanilla	100%	67.7	63.1	74.0	62.9	52.6	65.1	5.65	100%
	FastV	54%	67.7	62.7	74.1	62.7	51.3	65.0	5.52	99.2%
	PDrop	61%	67.7	63.1	74.0	62.9	52.6	64.0	5.53	99.5%
	IVC-Prune	50%	67.7	63.4	74.3	63.1	52.7	65.7	5.55	100.1%
InternVL 2.5 8B	Vanilla	100%	70.4	63.6	75.8	62.8	52.3	68.6	4.79	100%
	FastV	53%	69.2	62.9	73.3	61.6	53.7	65.7	4.77	98.6%
	PDrop	56%	68.6	62.1	73.4	62.8	50.1	66.5	4.65	97.4%
	IVC-Prune	50%	70.1	64.3	76.4	63.2	53.1	68.3	4.74	100.3%

897 DeepSeek-VL2-Small-16B), restricting the inputs to only foreground tokens leads to a substantial
898 performance drop across all benchmarks. Remarkably, augmenting these foreground tokens with just
899 10% IVC tokens not only recovers performance but often surpasses the unpruned vanilla baseline.
900 This suggests that IVC tokens provide effective visual coordinates required for accurate object
901 localization.

902 An exception arises with InternVL 2.5-8B, where the foreground-only setting retains comparatively
903 high accuracy. We hypothesize that this robustness stems from its distinctive image processing
904 strategy, which uses fixed-size thumbnails and tiled images with pre-defined aspect ratios. This
905 fixed-size input may implicitly encode positional and boundary information, reducing the model's
906 reliance on implicit visual coordinates. In contrast, the other LVLMs operate on variable-resolution
907 inputs and thus appear more sensitive to the absence of IVC tokens. Nevertheless, even for InternVL
908 2.5, adding IVC tokens yields further gains. This confirms the universal value of IVC tokens.

909 A.5 ANALYSIS OF CLUSTERING- OR MERGING- BASED TOKEN REDUCTION METHODS

910 In this section, we provide a detailed analysis of the limitations inherent in clustering or merging-
911 based token reduction mechanisms (e.g., Llava-PruMerge [Shang et al. \(2024\)](#), SparseVLM [Zhang et al. \(2025c\)](#), and PACT [Dhouib et al. \(2025\)](#)), specifically concerning their impact on spatial
912 reasoning capabilities.

913 In prior work on token pruning, Position IDs are typically handled in one of two ways: preserving
914 the original position IDs of retained tokens or reassigning position IDs to produce a contiguous
915 index sequence in the pruned representation. Retaining the original position IDs maintains spatial

918 Table 10: Comprehensive evaluation results on additional VQA benchmarks.
919

920 Models	921 Method	922 A. T.\downarrow	923 A-OKVQA	924 SQA_{TEST}	925 MMB_{EN}	926 MMB_{CN_V11}	927 MMB_{CN}	928 Rel. Avg.
921 Qwen2.5-VL 922 7B	922 Vanilla	923 100%	924 86.5	925 88.7	926 83.4	927 81.4	928 82.2	929 100%
	922 FastV	923 54%	924 <u>86.4</u>	925 85.8	926 <u>81.8</u>	927 80.0	928 <u>80.8</u>	929 98.2%
	922 PDrop	923 61%	924 85.6	925 87.5	926 80.8	927 79.5	928 80.5	929 98.0%
	922 IVC-Prune	923 50%	924 86.7	925 87.0	926 83.8	927 82.6	928 82.7	929 100.2%
925 InternVL 2.5 926 8B	926 Vanilla	927 100%	928 87.2	929 98.1	930 83.9	931 82.9	932 83.1	933 100%
	926 FastV	927 53%	928 86.6	929 97.4	930 82.5	931 80.8	932 81.9	933 98.6%
	926 PDrop	927 56%	928 86.9	929 97.9	930 83.4	931 81.5	932 81.9	933 99.1%
	926 IVC-Prune	927 50%	928 87.2	929 98.2	930 83.9	931 83.0	932 82.9	933 100.0%
929 DeepSeek-VL2 930 Small-16B	930 Vanilla	931 100%	932 86.9	933 96.9	934 80.8	935 78.8	936 79.7	937 100%
	930 FastV	931 54%	932 85.9	933 96.3	934 79.7	935 77.9	936 78.5	937 98.8%
	930 PDrop	931 57%	932 86.7	933 96.8	934 80.8	935 78.9	936 79.8	937 100.0%
	930 IVC-Prune	931 52%	932 86.6	933 96.8	934 80.8	935 79.0	936 80.1	937 100.1%
932 LLaVA-v1.5 933 7B	933 Vanilla	934 100%	935 78.9	936 66.4	937 63.3	938 41.3	939 41.8	940 100%
	933 FastV	934 30%	935 79.0	936 66.3	937 62.5	938 40.9	939 42.2	940 99.7%
	933 PDrop	934 47%	935 79.2	936 66.3	937 62.8	938 40.9	939 42.1	940 99.8%
	933 IVC-Prune	934 28%	935 78.8	936 66.4	937 63.3	938 42.8	939 43.0	940 101.3%

938 Table 11: Extended and detailed results corresponding to Fig. 1: Performance comparison on visual
939 grounding benchmarks across different LVLMs under various input settings.
940

941 Inputs	942 Method	943 RefCOCO			944 RefCOCO+			945 RefCOCOg	
		946 testA	947 testB	948 val	949 testA	950 testB	951 val	952 test	953 val
943 Qwen2.5-VL 944 7B	944 Vanilla	945 92.2	946 84.7	947 89.6	948 88.0	949 74.3	950 82.8	951 86.9	952 86.8
	944 Foreground tokens	945 58.0	946 39.4	947 49.0	948 56.8	949 39.4	950 48.6	951 44.6	952 44.9
	944 Foreground + 10% IVC tokens	945 92.8	946 82.9	947 89.8	948 89.9	949 77.2	950 86.2	951 86.0	952 87.1
946 Qwen2.5-VL 947 3B	947 Vanilla	948 89.6	949 83.4	950 87.6	951 82.5	952 71.4	953 77.9	954 84.3	955 83.9
	947 Foreground tokens	948 61.9	949 51.0	950 55.1	951 57.2	952 48.4	953 51.6	954 52.2	955 53.6
	947 Foreground + 10% IVC tokens	948 92.9	949 86.7	950 90.9	951 88.9	952 82.0	953 86.2	954 89.5	955 90.0
949 InternVL 2.5 950 8B	950 Vanilla	951 94.7	952 86.0	953 90.3	954 91.5	955 78.7	956 85.1	957 87.6	958 87.1
	950 Foreground tokens	951 92.4	952 86.9	953 89.2	954 91.3	955 84.9	956 88.3	957 88.5	958 87.6
	950 Foreground + 10% IVC tokens	951 93.8	952 89.3	953 91.1	954 92.8	955 85.8	956 89.5	957 90.8	958 89.6
952 DeepSeek-VL2 953 Small-16B	953 Vanilla	954 96.5	955 92.6	956 95.2	957 94.7	958 87.9	959 91.4	960 93.3	961 93.2
	953 Foreground tokens only	954 21.6	955 18.4	956 20.2	957 19.6	958 17.3	959 18.8	960 17.4	961 17.2
	953 Foreground + 10% IVC tokens	954 96.0	955 92.9	956 94.7	957 94.9	958 88.5	959 91.6	960 93.8	961 93.8

955 consistency, whereas clustering or merging approaches, as in SparseVLM, generate aggregated tokens
956 that require position ID reconstruction. These reconstructed indices do not correspond to precise
957 coordinates in the original visual grid, resulting in a loss of spatial location fidelity.

958 To validate this observation, we reproduced SparseVLM using Qwen2.5-VL 7B as the backbone
959 and compared two configurations: the default implementation, which includes the clustering and
960 merging step, and a modified variant in which clustering is disabled. Results, shown in Tab. 12,
961 reveal that the default configuration suffers severe degradation on the RefCOCO spatial grounding
962 benchmarks, achieving only **15.3%** of the baseline accuracy. In contrast, the variant without clustering
963 recovers performance to **76.1%**, confirming that the merging operation and consequent position ID
964 reconstruction are the dominant sources of error.

965 Interestingly, performance on general VQA tasks remains comparable to the baseline when clustering
966 is used, indicating that semantic information is largely preserved while spatial structure is compro-
967 mised. These findings are consistent with prior work Chien et al. (2025) and lead to an important
968 conclusion: preserving the original position IDs is essential for tasks involving fine-grained spatial
969 reasoning.

972 Table 12: Ablation study on the effect of clustering in SparseVLM.
973

974 Method	975 A. T.	976 RefCOCO			977 RefCOCO+			978 RefCOCOg		979 Rel. Avg.	
		980 testA	981 testB	982 val	983 testA	984 testB	985 val	986 test	987 val		
988 Vanilla	989 100%	990 92.2	991 84.7	992 89.6	993 88.0	994 74.3	995 82.8	996 86.9	997 86.8	998 100%	
999 IVC-Prune	1000 50%	1001 92.0	1002 84.5	1003 89.3	1004 87.4	1005 74.1	1006 82.4	1007 86.5	1008 86.5	1009 99.6%	
1010 SparseVLM w/o clustering	1011 49%	1012 77.2	1013 61.2	1014 69.1	1015 71.7	1016 53.5	1017 63.2	1018 63.2	1019 63.6	1020 76.1%	
1021 SparseVLM w clustering	1022 51%	1023 14.1	1024 13.8	1025 14.2	1026 12.6	1027 11.7	1028 12.5	1029 12.3	1030 13.6	1031 15.3%	
1032 Method	1033 A. T.	1034 SEED	1035 MMB	1036 MMS	1037 RWQA	1038 MME	1039 POPE	1040 HallB	1041 TVQA	1042 AI2D	1043 Rel. Avg.
1044 Vanilla	1045 100%	1046 76.7	1047 82.4	1048 64.2	1049 67.8	1050 2310.6	1051 86.9	1052 51.5	1053 84.9	1054 83.8	1055 100%
1056 IVC-Prune	1057 50%	1058 76.7	1059 82.6	1060 62.9	1061 68.2	1062 2303.1	1063 87.6	1064 54.8	1065 84.4	1066 84.2	1067 100.6%
1068 SparseVLM w/o clustering	1069 49%	1070 74.9	1071 79.6	1072 45.6	1073 61.4	1074 2279.6	1075 85.9	1076 53.5	1077 83.7	1078 82.3	1079 94.9%
1080 SparseVLM w clustering	1081 51%	1082 74.8	1083 82.0	1084 61.3	1085 67.8	1086 2320.0	1087 86.8	1088 54.5	1089 84.5	1090 82.5	1091 99.6%

985
986 **A.6 ANALYSIS OF HIGH-RESOLUTION OCR BENCHMARKS.**
987

988 We evaluate the proposed IVC-Prune on three high-resolution OCR benchmarks DocVQA [Mathew et al. \(2021\)](#), InfoVQA [Mathew et al. \(2022\)](#), and OCRBench [Liu et al. \(2024b\)](#) using the Qwen2.5-VL
989 7B model. Results are reported in Tab. 13. On DocVQA and InfoVQA, IVC-Prune achieves accuracy
990 comparable to the Vanilla model, and consistently outperforms FastV and PDrop, suggesting that the
991 proposed method is well-suited for high-resolution VQA scenarios.
992

993
994 Table 13: Evaluation results on high-resolution OCR benchmark.
995

996 Method	997 Avg. Tokens	998 DocVQA	999 InfoVQA	1000 OCRBench
1001 Vanilla	1002 100%	1003 94.9	1004 81.7	1005 88.4
1006 FastV	1007 52%	1008 93.9	1009 76.4	1010 67.3
1011 PDrop	1012 52%	1013 93.8	1014 69.4	1015 62.0
1016 IVC-Prune	1017 50%	1018 94.4	1019 80.9	1020 66.3

1001 In contrast, all pruning methods suffer substantial degradation on OCRBench. To understand this
1002 discrepancy, we conduct a fine-grained analysis across OCRBench’s task categories (Tab. 14). The
1003 most pronounced drops occur in **recognition-focused** tasks, specifically Text Recognition and
1004 Handwritten Mathematical Expression Recognition. Meanwhile, VQA categories remain largely
1005 unaffected.
1006

1007 We attribute this gap to the nature of recognition-focused tasks: images typically contain densely
1008 packed characters or symbols with minimal background. Accurate recognition relies on preserving
1009 fine-grained visual details. Under a uniform 50% pruning ratio, a substantial portion of tokens
1010 encoding these details are removed, leading to inevitable performance loss.
1011

1012 Visualization examples in Tab. 15 further support this analysis. Failure cases originate from
1013 recognition-focused tasks and relatively low-resolution images. These inputs contain mostly fore-
1014 ground tokens relevant to text or symbolic content, leaving little redundant information to prune. In
1015 contrast, VQA-oriented inputs retain sufficient visual context even after pruning, sustaining strong
1016 performance.
1017

1018 Overall, our findings highlight that the performance drop on OCRBench is not a general failure of the
1019 proposed IVC-Prune for high-resolution inputs, but rather a limitation in handling high-density text
1020 recognition. This suggests that *adaptive* or *task-aware* pruning strategies, which account for token
1021 density and semantic importance, may be necessary to maintain accuracy in such scenarios.
1022

1023 **A.7 ADDITIONAL RESULTS UNDER EXTREMELY LOW TOKEN BUDGETS**
1024

1025 Following the evaluation protocol in PDrop, we performed experiments on LLaVA-v1.5-7B to assess
1026 the behavior of IVC-Prune under extremely low token retention rates. Specifically, we evaluated three
1027 settings corresponding to 33.3%, 22.2%, and 11.1% of the original token budget. As shown in Tab. 16,
1028 IVC-Prune exhibits remarkable robustness under these aggressive token reduction scenarios. Notably,
1029

1026 Table 14: Task-level breakdown of OCRBench performance. Parentheses indicate the relative
 1027 performance compared to Vanilla.

Task Category	Vanilla	IVC-Prune	FastV	PDrop
Scene Text-centric VQA	17.9	17.6 (98.3%)	17.7 (98.9%)	17.7 (98.9%)
Doc-oriented VQA	18.0	17.1 (95.0%)	16.7 (92.8%)	14.7 (81.7%)
Key Information Extraction	18.2	16.8 (92.3%)	13.0 (71.4%)	11.8 (64.8%)
Text Recognition	26.9	14.0 (52.0%)	18.3 (68.0%)	17.6 (65.4%)
Handwritten Mathematical Expression Recognition	7.4	0.8 (10.8%)	1.6 (21.6%)	0.2 (2.7%)
Final Score	88.4	66.3 (75.0%)	67.3 (76.1%)	62.0 (70.1%)

1036
 1037 Table 15: Qualitative visualization of IVC-Prune performance on the OCRBench benchmark. Gray
 1038 regions indicate tokens pruned by the model. For high-resolution images, red bounding boxes were
 1039 added post hoc to highlight locations relevant to the ground-truth answer.

Reserved Tokens	Question	Resolution	Answer	Prediction	Correct
	what is written in the image?	196x56	rcaihittnu	The text in the image reads "rcaintnu".	✗
	what is written in the image?	112x28	CENTRE	century	✗
	what is the number in the image?	196x28	100972	The image contains the handwritten text " $\lambda_0 = 72$ ".	✗
	What is the period of registry observation taken into consideration for 'bilateral arthroplasty'?	1652x2352	14 years	The period of registry observation considered for 'bilateral arthroplasty' is 14 years.	✓
	What is total percentage of businesses laying off staff and reducing staff hours?	1148x1876	68.3%	To find the total percentage of businesses that either laid off staff or reduced staff hours, you need to add the percentages for each category: - Percentage of businesses that laid off staff: 28.4% - Percentage of businesses that reduced staff hours or shifts: 39.9% Adding these two percentages together: $28.4\% + 39.9\% = 68.3\%$ So, the total percentage of businesses that either laid off staff or reduced staff hours is 68.3%.	✓

1079 at 11% token retention, IVC-Prune sustains 97.2% of the baseline performance. This robustness
 highlights the method's capacity to maintain critical tokens.

Table 16: Results under extremely low token budgets on LLaVA-v1.5 7B.

Method	A. T. ↓	SEED	MMB	MMS	RWQA	MME	POPE	HallB	TVQA	AI2D	Rel. Avg.
Vanilla	576 (100%)	64.4	60.6	34.2	54.5	1543.1	74.5	25.8	20.7	49.1	100%
FastV	192 (33.3%)	61.2	60.2	33.4	51.6	1572.7	74.8	29.0	21.8	48.8	100.7%
PDrop	192 (33.3%)	60.0	54.6	31.9	51.2	1607.6	80.1	25.7	17.0	48.6	95.9%
IVC-Prune	192 (33.3%)	64.5	60.7	34.5	54.4	1567.7	76.9	26.2	21.1	49.1	101.0%
FastV	128 (22.2%)	57.2	58.3	33.1	47.7	1462.1	67.8	28.1	18.7	48.0	94.7%
PDrop	128 (22.2%)	56.0	49.8	31.1	50.8	1565.4	77.2	24.4	14.8	45.1	90.7%
IVC-Prune	128 (22.2%)	64.5	60.7	34.0	54.4	1525.6	77.0	26.2	20.1	49.1	100.0%
FastV	64 (11.1%)	45.8	40.2	28.4	38.2	1109.7	31.9	27.1	6.6	45.8	70.6%
PDrop	64 (11.1%)	46.3	39.2	28.3	46.5	1205.7	51.0	23.6	8.6	46.2	75.4%
IVC-Prune	64 (11.1%)	64.2	60.4	33.9	54.1	1511.3	75.4	24.8	16.9	49.1	97.2%

A.8 ABLATION OF TOKEN ALLOCATION STRATEGY

To determine the optimal balance between spatial structure and semantic content, we conducted an ablation study on the IVC token ratio. Operating under a fixed 50% total token budget, we evaluated IVC allocations of 5%, 10%, and 20% using the Qwen2.5-VL 7B model. The remaining budget in each setting is assigned to foreground semantic tokens.

The results, summarized in Tab. 17, demonstrate that allocating **10%** of tokens to IVC yields the best performance. Lowering the ratio to 5% results in a performance drop due to insufficient spatial fidelity, while increasing it to 20% degrades performance by restricting the budget available for semantic foreground tokens.

Table 17: Ablation study on token allocation strategy under a 50% total token budget. Experiments were conducted on Qwen2.5-VL 7B. The “IVC Token” column denotes the percentage of total tokens.

IVC Token Ratio	RefCOCO _{testA}	RefCOCO+ _{testA}	SeedBench	MMBench
5%	91.8	87.2	76.6	82.5
10% (Ours)	92.0	87.4	76.7	82.6
20%	91.3	87.0	76.6	82.3

A.9 VISUALIZATION OF IVC TOKENS

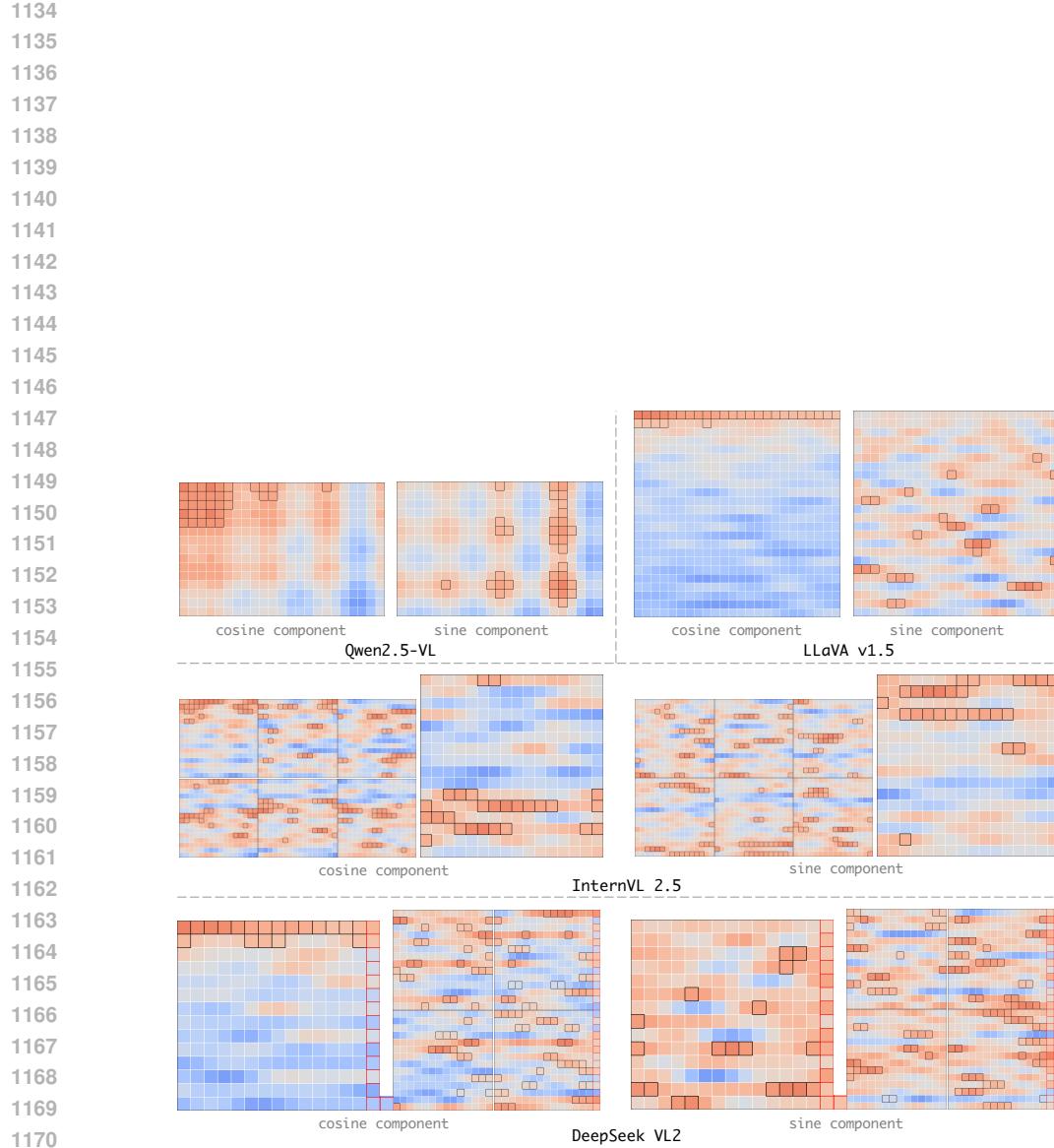


Figure 4: Visualization of the positional embedding scores for four LVLMs, where cosine ($V(m)$) and sine ($U(m)$) components are summed over all dimensions as in Eqs. 5 and 7. Black squares denote the selected 10% IVC tokens, and red squares indicate the special tokens introduced in DeepSeek-VL2. Note that IVC tokens are determined solely by position and are independent of the content.