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ABSTRACT

Large Vision-Language Models (LVLMs) achieve impressive performance across
multiple tasks. A significant challenge, however, is their prohibitive inference cost
when processing high-resolution visual inputs. While visual token pruning has
emerged as a promising solution, existing methods that primarily focus on semantic
relevance often discard tokens that are crucial for spatial reasoning. We address this
gap through a novel insight into how LVLMs process spatial reasoning. Specifically,
we reveal that LVLMs implicitly establish visual coordinate systems through Rotary
Position Embeddings (RoPE), where specific token positions serve as implicit
visual coordinates (IVC tokens) that are essential for spatial reasoning. Based
on this insight, we propose IVC-Prune, a training-free, prompt-aware pruning
strategy that retains both IVC tokens and semantically relevant foreground tokens.
IVC tokens are identified by theoretically analyzing the mathematical properties
of RoPE, targeting positions at which its rotation matrices approximate identity
matrix or the 90◦ rotation matrix. Foreground tokens are identified through a robust
two-stage process: semantic seed discovery followed by contextual refinement via
value-vector similarity. Extensive evaluations across four representative LVLMs
and twenty diverse benchmarks show that IVC-Prune reduces visual tokens by
approximately 50% while maintaining ≥ 99% of the original performance and
even achieving improvements on several benchmarks.

1 INTRODUCTION

LVLMs achieve impressive performance in perception, understanding, and reasoning across a broad
range of multimodal tasks. Rapid advances in both proprietary systems (e.g., GPT-5, Gemini 2.5 Pro)
and open-source families (e.g., Qwen-VL Bai et al. (2025), InternVL Wang et al. (2025)) have enabled
greater model capacity, extended context lengths, and high-resolution image processing. However,
high-resolution images often generate thousands of visual tokens, leading to prohibitive memory
usage and long inference latency. To mitigate these challenges, recent studies have focused on
visual token pruning to remove redundant tokens while maximally preserving performance. Existing
approaches can be broadly grouped into two categories: (1) Training-based methods that learn to
aggregate or select tokens via architectural modifications Ye et al. (2025b); Shao et al. (2025). (2)
Training-free methods that use attention scores or similarity metrics for token selection Ye et al.
(2025a); Arif et al. (2025). While effective for general visual understanding, these methods suffer
substantial performance drops on spatially sensitive tasks such as visual grounding and spatial
reasoning. The issue arises because existing methods primarily focus on semantic relevance between
text and visual tokens while overlooking spatially critical tokens. As illustrated in Fig. 1, preserving
only semantically relevant “foreground” tokens causes performance drops in visual grounding tasks.

In this work, we investigate the mechanisms for spatial reasoning in LVLMs: how they perceive the
absolute locations of objects in arbitrary resolution images using Rotary Position Embeddings
(RoPE, widely adopted in current mainstream LVLMs). Our theoretical analysis shows that RoPE
encodes relative positions between query and key tokens in self-attention. Crucially, when a key
token’s RoPE rotation matrix approximates either the identity matrix or a 90◦ rotation, self-attention
isolates the absolute positional component of the query. This implies the existence of special token
positions that act as spatial references: real axis (identity) and imaginary axis (90◦ rotation). These
reference tokens form implicit visual coordinates (IVC), which are essential for spatial reasoning.
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'donut on far left
of middle row'

LVLM inputs: Foreground tokens only

LVLM inputs: Foreground + IVC tokens

'bird on left'
Implicit Visual Coordinate (IVC) tokens:
positions where RoPE’s cosine and sine components
reach maximum values (visualized below), serving
as real-axis and imaginary-axis spatial references.

w/o pruning Foreground tokens Foreground + IVC tokens

cosine component sine component

Qwen2.5-VL DeepSeek-VL2 InternVL2.5

Adding IVC tokens restore performance

Figure 1: Implicit Visual Coordinate (IVC) tokens are crucial for spatial reasoning in LVLMs.
Left: Visual grounding examples under different input settings. Top right: RoPE cosine and sine
components across token positions, with IVC token locations (10% of total) marked in black. Bottom
right: RefCOCO accuracy across three LVLMs under varying input settings, showing that adding
IVC tokens largely restores performance. Detailed results and analysis are provided in Appendix A.4.

Building on this insight, we propose IVC-Prune, a training-free, prompt-aware pruning strategy that
preserves both IVC tokens and semantically relevant foreground tokens. To identify IVC tokens, we
rank the sum of cosine and sine components from RoPE. For robust foreground token selection across
LVLM architectures, we employ a two-stage process: (1) Identify semantic seeds using value-vector
similarity to mitigate positional bias in attention scores. (2) Leverage semantic seeds and text tokens
to capture all relevant foreground tokens. Our experiments further reveal that sensitivity to early-layer
pruning, reported in prior work, stems not from the pruning itself but from inadvertently removing
IVC tokens. Based on this insight, we design a single-selection pruning strategy: the retained token
set is determined once at a selected intermediate layer while preserving original position IDs. This
selection is then applied to prune the KV caches in all earlier layers and is also used in later layers.
This approach maximizes KV-cache reduction for efficient inference.

We evaluate IVC-Prune across four representative LVLMs (Qwen2.5-VL, InternVL 2.5, DeepSeek-
VL2, and LLaVA v1.5) and twenty diverse benchmarks spanning visual grounding, reasoning,
hallucination evaluation, and OCR tasks. Results show that IVC-Prune reduces visual tokens
by approximately 50% while maintaining ≥99% of the original performance, and in some cases
achieving performance improvements. Notably, on visual grounding tasks, IVC-Prune significantly
outperforms existing pruning methods. Moreover, results show that IVC tokens can be seamlessly
integrated into other pruning methods to consistently enhance their spatial reasoning capabilities. Our
contributions are summarized as follows:

• To the best of our knowledge, we present the first theoretical analysis that LVLMs implicitly
establish visual coordinate systems through RoPE’s mathematical structure, providing novel
insights into their spatial reasoning mechanisms.

• We propose IVC-Prune, a novel, training-free pruning strategy that preserves both IVC
tokens and semantically relevant tokens, and introduces a robust two-stage selection process
that is generalizable across LVLM architectures and benchmarks.
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2 RELATED WORKS

Large Vision-Language Models. In recent years, Large Vision-Language Models (LVLMs) have
emerged as a pivotal technology in artificial intelligence. Commercial models such as GPT-5 OpenAI
(2025), Claude Sonnet 4 Claude (2025) and Gemini 2.5 Pro Comanici et al. (2025) demonstrate
remarkable multimodal understanding and reasoning capabilities. In parallel, the open-source com-
munity has also rapidly advanced, starting with the pioneering LLaVA Liu et al. (2023). Subsequent
advances include Qwen2.5-VL Bai et al. (2025), which supports native high-resolution inputs, and
DeepSeek-VL2 Wu et al. (2024), which adopts a Mixture-of-Experts (MoE) architecture for greater
parameter efficiency. Further advances include long-context reasoning capabilities in models like
Kimi-VL Du et al. (2025) and the integration of reinforcement learning in InternVL 3.5 Wang et al.
(2025). Despite these successes, the trend towards greater model scales, longer context processing,
and higher input resolution has resulted in prohibitive computational costs. These costs have become
a major bottleneck for deploying LVLMs in real-world, latency-sensitive applications.

Token Pruning. Token pruning reduces tokens in LLMs and LVLMs, lowering computational
costs and improving efficiency. In LLMs, methods such as StreamingLLM Xiao et al. (2024) and
MInference Jiang et al. (2024) retain attention sink tokens and local context tokens to support long-
context. SepLLM Chen et al. (2025) enhances performance by also preserving separator tokens. In
LVLMs, visual tokens typically far outnumber text tokens, making visual token pruning particularly
important. Existing visual token pruning methods can be broadly classified into training-based
and training-free approaches. Training-based approaches generally fall into two subcategories: (1)
Learnable query aggregation, where models such as Qwen-VL Bai et al. (2024), MQT Hu et al.
(2024), LLaMA-VID Li et al. (2024b), and VoCo-LLaMA Ye et al. (2025c) employ learnable queries
to aggregate tokens in a manner similar to Q-Former Li et al. (2023b); (2) Learned token selection,
where methods like LVPruning Sun et al. (2025) and DynamicLLaVA Huang et al. (2025) train
modules to predict which tokens can be safely removed. However, these approaches often require
substantial training costs and architectural modifications.

Training-free methods comprise: (1) Clustering or merging, such as LLava-PruMerge Shang et al.
(2024), SparseVLM Zhang et al. (2025c), and PACT Dhouib et al. (2025), which group similar tokens
to reduce redundancy and mitigate information loss. However, these methods often require rebuilding
token position IDs, which can hurt performance Chien et al. (2025) on precise localization tasks such
as visual grounding. (2) Attention/similarity-based pruning, including FastV Chen et al. (2024a),
FlowCut Tong et al. (2025), TopV Yang et al. (2025), and PDrop Xing et al. (2025), which use
attention scores or similarity metrics to identify important tokens. However, these methods primarily
focus on semantic relevance and often neglect spatially critical tokens, which may lead to drops in
grounding accuracy. Motivated by this gap, we focus on visual grounding as a representative spatially
sensitive task. Our theoretical analysis reveals that certain visual tokens implicitly act as spatial
coordinates essential for spatial reasoning. Leveraging this insight, we develop a simple but effective
pruning strategy that explicitly preserves these visual coordinate tokens alongside semantically
relevant ones, yielding superior performance in both visual grounding and general benchmarks.

3 METHOD

3.1 BACKGROUND: ROTARY POSITION EMBEDDINGS IN ATTENTION

Rotary Position Embeddings (RoPE) Su et al. (2024), the mainstream positional encoding in LVLMs,
encode positional information by applying structured rotations to feature vectors. For a d-dimensional
vector v, RoPE divides it into d/2 two-dimensional subspaces. Each pair (v2k,v2k+1), corresponding
to a token at position m, is rotated as follows:[

v′
2k

v′
2k+1

]
=

(
cos(mθk) − sin(mθk)
sin(mθk) cos(mθk)

)
︸ ︷︷ ︸

≜R(m,θk)

[
v2k

v2k+1

]
, k = 0, . . . ,

d

2
− 1, (1)

where θk = 10000−2k/d is a predefined frequency for the k-th pair. Let Rm =
diag(R(m, θ0), . . . ,R(m, θd/2−1)) denote the block-diagonal matrix that applies these rotations to
the full d-dimensional vector. In a self-attention layer, for input features xn and xm at absolute
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positions n and m, the queries and keys are computed as:

qn = Rn(Wqxn) ∈ Rd, km = Rm(Wkxm) ∈ Rd, (2)

where Wq and Wk are the query and key projection matrices, respectively. The attention score is
given by the dot product between the rotated queries and keys. Since Rn is an orthogonal rotation
matrix, its transpose is equivalent to a rotation by the negative angle (R⊤

n = R−n), we can rewrite:

AttentionScore(qn,km) = (RnWqxn)
T (RmWkxm)

= xT
nW

T
q R−nRmWkxm

= xT
nW

T
q Rm−nWkxm. (3)

Eq. 3 reveals that the attention score inherently depends on the relative position (m − n). This
property provides RoPE with a natural mechanism for encoding relative positional relationships.

3.2 EXPLORING THE IMPLICIT VISUAL COORDINATE

While RoPE naturally encodes relative positions, tasks such as spatial reasoning require knowledge
of absolute object positions in an image. This suggests the need for absolute reference coordinates.
We hypothesize that models can implicitly establish such coordinates through RoPE’s deterministic
rotation matrices, whose periodic and orthogonal properties naturally define coordinate reference
points. Consider the attention score: Score(qn,km) = xT

nW
T
q R−nRmWkxm. When the model

attends to reference tokens at positions m, where the rotation matrix Rm approximates key canonical
transformations (e.g., identity matrix or 90◦ rotation matrices), the attention effectively isolates the
query’s absolute positional component Rn. This motivates identifying positions m whose rotation
matrices serve as these canonical basis operators for an implicit coordinate system.

Real-Axis Reference. Based on our analysis, an ideal real-axis reference corresponds to the identity
transformation. We search for positions m where Rm is close to the identity matrix I , as measured
by the squared Frobenius norm:

∥Rm − I∥2F =

d/2−1∑
k=0

∥R(m, θk)− I2∥2F

=

d/2−1∑
k=0

∥∥∥∥(cos(mθk)− 1 − sin(mθk)
sin(mθk) cos(mθk)− 1

)∥∥∥∥2
F

=

d/2−1∑
k=0

4
(
1− cos(mθk)

)
, (4)

where I2 = ( 1 0
0 1 ) and I = diag(I2, . . . , I2). Minimizing this distance is equal to maximizing the

sum of the cosine terms. Accordingly, we define the real-axis score for a position m as:

V (m) =

d/2−1∑
k=0

cos(mθk), (5)

which is equivalent to summing the cosine components of the positional embedding across all di-
mensions. Positions m that maximize V (m) are thus appropriate candidates for real-axis references.

Imaginary-Axis Reference. To complete the coordinate frame, an orthogonal axis is required.
In each 2D feature subspace, this axis corresponds to a 90◦ counterclockwise rotation, repre-
sented by J2 =

(
0 −1
1 0

)
, which extends to higher dimensions as the block-diagonal matrix

J = diag(J2, . . . ,J2). We identify positions m whose rotation matrices Rm closely approximate
J . The distance is given by:

∥Rm − J∥2F =

d/2−1∑
k=0

∥R(m, θk)− J2∥2F =

d/2−1∑
k=0

4
(
1− sin(mθk)

)
. (6)

Minimizing this distance equals maximizing the sum of sines. We define the imaginary-axis score:

U(m) =

d/2−1∑
k=0

sin(mθk), (7)
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which aggregates the sine components of the positional embedding across all dimensions. Positions
m that maximize U(m) serve as imaginary-axis references, providing a consistent 90◦ phase shift
relative to the real-axis references and enabling the construction of a stable implicit coordinate system.

Implications. This analysis reveals that RoPE’s mathematical properties naturally enable LVLMs to
construct implicit coordinate systems. The functions V (m) and U(m) identify special positions that
serve as coordinate anchors, thereby providing a mathematical foundation for absolute spatial reason-
ing in visual tasks. Importantly, these coordinate references emerge from the inherent periodicity and
orthogonality properties of RoPE, suggesting that spatial understanding in LVLMs may be structured.
This implicit coordinate system provides a theoretical basis for understanding how LVLMs perceive
the absolute locations of objects in images of arbitrary resolution.

3.3 IMPLICIT VISUAL COORDINATE FOR TOKEN PRUNING

We propose a training-free token pruning strategy for LVLMs, applied within the language decoder
to enable prompt-aware pruning. Our method specifically preserves two crucial visual token types:

• Implicit Visual Coordinate (IVC) tokens: Tokens that are essential for spatial reasoning.
• Foreground tokens: Visual tokens that are semantically aligned with the text prompt.

IVC Token Selection. Following the analysis in Section 3.2, we select IVC tokens by ranking each
token position m using the coordinate scores V (m) and U(m). We retain the top-kc tokens for each
score and combine them to form the IVC token set:

Iivc = argTopK({V (m)}, kc) ∪ argTopK({U(m)}, kc). (8)

Foreground Token Selection. We employ a two-stage procedure to identify foreground tokens. A
common practice for token pruning is to use attention scores between text and image tokens, assuming
higher attention indicates stronger semantic relevance. However, attention scores (Eq. 3) are affected
by relative token positions. Prior studies Zhang et al. (2024; 2025b); Luan et al. (2025) show that
text tokens often attend preferentially to spatially proximate visual tokens rather than to semantically
relevant ones. To mitigate this positional bias, we compute attention-like similarity scores between
the value vectors (V) of text and image tokens, which are unaffected by positional embeddings.

Stage 1: Semantic Seed Identification. Let Vtext ∈ RL×D and Vimg ∈ RN×D denote the value
vectors for L text tokens and N visual tokens, respectively, with hidden dimension D. We first
identify a small set of "semantic seeds"—visual tokens that are strongly aligned with the semantics
of the text prompt. For each visual token, we compute a relevance score by averaging the normalized
attention it receives from all text tokens:

s = Mean

(
Softmax

(
Vtext ·VT

img√
D

, dim = 1

)
, dim = 0

)
∈ RN , (9)

where the softmax normalizes each text token’s attention distribution over visual tokens, and the
mean aggregates these scores across all text tokens. We then select the top 1% scoring visual tokens
to form the seed set Iseed, where ks = ⌈0.01×N⌉ is the seed set size.

Stage 2: Contextual Foreground Refinement. Semantic seed tokens may only partially cover large
or complex objects. To better capture the entire foreground, we expand the query set to include both all
text tokens and the initially selected seeds: Vquery = Vtext ∪ {vimg

j }j∈Iseed . Let Vquery ∈ R(L+ks)×D

denote the concatenated value vectors from this expanded query set. The refinement score for each
visual token is computed by averaging the normalized attention it receives from all query tokens:

f = Mean

(
Softmax

(
Vquery ·VT

img√
D

, dim = 1

)
, dim = 0

)
∈ RN . (10)

The final foreground token set Ifg is formed by selecting the top-kf tokens according to f . This
ensures that the retained tokens are supported by both textual semantics and key visual features. With
the IVC token set Iivc, the retained token set is Iselected = Iivc ∪ Ifg, as summarized in Algorithm 1.

Pruning Strategy. A critical design choice is determining the optimal layer for token pruning.
Previous works report that LVLMs are sensitive to token removal in early layers (Xing et al., 2025;
Ye et al., 2025b). Our experiments, however, indicate that this sensitivity primarily arises from the
removal of IVC tokens, rather than the pruning operation itself. As shown in Fig. 1, Tab. 6, and
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Algorithm 1 IVC-Prune

Require: Vtext ∈ RL×D, Vimg ∈ RN×D,
kc, kf , {θk}

Ensure: Iselected ⊆ {1, 2, . . . , N}
// IVC token selection

1: V (m) =
∑d/2−1

k=0 cos(mθk),

U(m) =
∑d/2−1

k=0 sin(mθk) for m ∈ [1, N ]
2: Iv ← argTopK({V (m)}, kc)
3: Iu ← argTopK({U(m)}, kc)
4: Iivc ← Iv ∪ Iu

// Semantic seed identification

5: Aseed =
VtextV

T
img√

D
∈ RL×N

6: Aseed ← Softmax(Aseed, dim = 1)
7: s = Mean(Aseed, dim = 0)
8: Iseed ← argTopK(s, ks), ks = ⌈0.01 ∗N⌉

// Foreground refinement
9: Vquery ← [Vtext;Vimg[Iseed, :]]

10: f = Mean(Softmax(
Vquery·VT

img√
D

))

11: Ifg ← argTopK(f , kf )

12: return Iselected = Ifg ∪ Iivc

1st LLM Layer

IVC-Prune

ith LLM Layer

2nd LLM Layer

i+1th LLM Layer

System tokens Vision tokens Text tokens

Pruned tokens

KV Cache

10 2 3 4 5 6 10 2 3 4 5 6

Preserve original 
position IDs

Prune earlier
layers KV cache

One-time token
selection

Figure 2: Illustration of the IVC-Prune strategy.
Token selection is performed once at layer i on
visual tokens, while preserving their original po-
sition IDs. The selection decision prunes the
corresponding tokens from the KV caches of all
earlier layers and is used for subsequent layers.

Tab. 11, performance remains robust even when pruning is applied at all layers, as long as both IVC
tokens and foreground are retained. Moreover, consistent with recent findings (Shao et al., 2025;
Zhang et al., 2025a), we observe that attention patterns in intermediate layers are most sensitive to
prompt semantics, whereas shallow and final layers exhibit weaker prompt dependence. Guided by
this, as illustrated in Fig. 2, we determine the retained token set once at a selected intermediate layer,
while preserving the original position IDs. The selection is then applied to prune the KV caches in
all earlier layers, and is also used in subsequent layers. This strategy provides three benefits: (1)
minimal overhead from a single pruning operation, (2) prevention of suboptimal selection decisions
in shallow layers from adversely affecting subsequent layer computations, and (3) maximized KV
cache reduction for enhanced decoding efficiency.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Architectures. We evaluate IVC-Prune on four open-source LVLMs: Qwen2.5-VL (native reso-
lution) Bai et al. (2025), InternVL-2.5 (dynamic resolution) Chen et al. (2024c), DeepSeek-VL2
(dynamic resolution, MoE) Wu et al. (2024), and LLaVA-v1.5 (fixed resolution) Liu et al. (2023).

Benchmarks. We evaluate the models across a diverse set of tasks, covering:
Visual Grounding: RefCOCO, RefCOCO+ Yu et al. (2016), and RefCOCOg Mao et al. (2016).
General Reasoning: SEEDBench (SEED) Li et al. (2023a), MMBench (MMB) Liu et al. (2024a),
MMStar (MMS) Chen et al. (2024b), and MME Chaoyou et al. (2023).
Hallucination Evaluation: POPE Li et al. (2023c) and HallusionBench (HallB) Guan et al. (2024).
Real-world Comprehension: RealWorldQA (RWQA) Corp. (2024).
OCR: TextVQA (TVQA) Singh et al. (2019) and AI2D Kembhavi et al. (2016).

Implementation Details. We reproduced FastV Chen et al. (2024a), Window FastV Wen et al. (2025),
PDrop Xing et al. (2025), and VScan Zhang et al. (2025a) using the VLMEvalKit framework (Duan
et al., 2024) with the default inference settings. The selection layer i is selected based on empirical
performance on a small subset of RefCOCOtestA (or POPE for LLaVA v1.5), and kept fixed for all
experiments. Regarding the token preservation ratio, we set kc = 10% and kf = 40%, which results
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Table 1: Results on visual grounding benchmarks across different LVLMs and token pruning methods.
“Average Tokens” is the percentage of visual tokens retained in the KV-cache after pruning. “Rel.
Avg.” represents the average performance relative to the vanilla. Bold: Best. Underline: Second best.

Models Method Average RefCOCO RefCOCO+ RefCOCOg Rel. Avg.Tokens ↓ testA testB val testA testB val test val

Qwen2.5-VL
7B

Vanilla 100% 92.2 84.7 89.6 88.0 74.3 82.8 86.9 86.8 100%
FastV 54% 74.4 76.5 75.4 68.9 66.8 67.7 75.3 74.8 84.7%
Window FastV 54% 82.9 79.8 81.8 77.4 69.0 74.0 79.2 79.5 91.0%
PDrop 61% 77.6 59.1 68.7 72.1 50.1 62.6 63.7 64.4 75.4%
VScan 50% 90.2 82.2 86.7 84.6 70.6 79.0 83.6 83.9 96.4%
IVC-Prune 50% 92.0 84.5 89.3 87.4 74.1 82.4 86.5 86.5 99.6%

InternVL 2.5
8B

Vanilla 100% 94.7 86.0 90.3 91.5 78.7 85.1 87.6 87.1 100%
FastV 53% 87.0 77.6 81.6 82.6 70.7 76.1 77.9 78.5 90.1%
Window FastV 53% 82.9 73.6 78.8 80.1 66.6 73.5 74.4 73.4 86.0%
PDrop 56% 85.0 77.8 80.8 80.9 69.9 75.1 77.7 77.0 89.0%
IVC-Prune 50% 94.2 85.7 90.3 91.1 78.2 84.8 86.9 86.4 99.5%

DeepSeek-VL2
Small-16B

Vanilla 100% 96.5 92.6 95.2 94.7 87.9 91.4 93.3 93.2 100%
FastV 54% 94.4 89.5 92.6 91.8 83.6 87.8 90.6 90.4 96.7%
Window FastV 54% 95.0 90.4 93.6 92.5 85.2 89.2 91.3 90.9 97.8%
PDrop 57% 95.7 89.1 93.0 93.7 84.5 89.0 91.5 91.3 97.7%
IVC-Prune 52% 96.0 91.8 94.5 94.0 86.6 90.3 92.4 92.2 99.0%

Table 2: Results on general VQA benchmarks covering reasoning, hallucination, real-world compre-
hension, and OCR tasks. “A. T.” denotes Average Tokens. Green cells surpass the unpruned method.

Models Method A. T.↓ SEED MMB MMS RWQA MME POPE HallB TVQA AI2D Rel. Avg.

Qwen2.5-VL
7B

Vanilla 100% 76.7 82.4 64.2 67.8 2310.6 86.9 51.5 84.9 83.8 100%
FastV 54% 72.9 80.5 59.8 68.5 2242.5 86.2 54.3 84.7 81.6 98.4%
Window FastV 54% 73.9 80.6 58.1 67.4 2235.5 85.9 49.4 83.9 81.8 96.9%
PDrop 61% 74.0 78.9 57.9 66.0 2309.7 85.7 53.3 83.9 81.2 97.5%
VScan 50% 74.8 80.6 59.9 68.4 2285.0 87.3 56.5 84.3 79.1 99.1%
IVC-Prune 50% 76.7 82.6 62.9 68.2 2303.1 87.6 54.8 84.4 84.2 100.6%

InternVL 2.5
8B

Vanilla 100% 77.1 83.2 62.7 69.4 2344.0 89.0 50.8 79.0 84.4 100%
FastV 53% 74.0 81.6 62.5 65.0 2268.3 86.7 48.8 76.8 83.1 97.0%
Window FastV 53% 73.9 82.0 57.7 65.8 2254.0 87.1 48.3 76.3 82.8 96.1%
PDrop 56% 75.4 82.7 60.5 67.7 2316.7 87.8 47.2 65.0 83.3 95.8%
IVC-Prune 50% 77.0 83.0 62.6 69.9 2308.2 88.9 50.2 78.0 84.3 99.6%

DeepSeek-VL2
Small-16B

Vanilla 100% 76.9 79.2 57.7 70.3 2128.6 89.3 43.8 83.4 82.0 100%
FastV 54% 75.6 78.2 55.9 69.0 2112.8 89.2 42.7 83.1 81.0 98.6%
Window FastV 54% 76.1 78.3 56.2 68.2 2122.4 89.0 38.1 82.3 80.5 97.3%
PDrop 57% 76.8 79.1 57.3 69.7 2132.5 89.4 44.5 83.3 81.8 100.0%
IVC-Prune 52% 77.0 79.3 57.7 70.3 2132.2 89.5 44.3 83.0 81.8 100.1%

LLaVA-v1.5
7B

Vanilla 100% 64.4 60.6 34.2 54.5 1543.1 74.5 25.8 20.7 49.1 100%
FastV 30% 60.1 59.8 33.5 50.2 1555.2 73.4 28.6 21.0 49.0 99.3%
Window FastV 30% 62.2 60.2 34.1 51.6 1643.3 78.2 27.4 19.8 48.8 100.3%
PDrop 47% 63.6 60.2 33.6 53.7 1600.4 79.5 28.0 18.9 49.4 100.6%
VScan 30% 63.9 60.5 32.6 51.8 1637.5 78.8 28.0 21.0 49.0 101.2%
IVC-Prune 28% 64.4 60.6 34.5 54.5 1554.4 77.6 26.7 21.1 49.2 101.3%

in an average token preservation rate of approximately 50%. For LLaVA-v1.5-7B, we use kc = 5%
and kf = 25%. More detailed configurations are provided in the Appendix A.2.

4.2 RESULTS AND DISCUSSIONS

Results on Visual Grounding Tasks. Visual grounding requires precise object localization and
thus serves as a strong benchmark for spatial reasoning in LVLMs. As shown in Tab. 1, IVC-Prune
reduces roughly 50% of visual tokens, with only marginal drops of 0.4%, 0.5%, and 1.0% across
three distinct LVLMs. In contrast, FastV and PDrop struggle on Qwen2.5-VL (−15.3% and−24.6%)
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Table 3: Analysis of inference efficiency on the Qwen2.5-VL-7B evaluated on the RefCOCOtestA
benchmark. “KV Cache”, “Prefill Time”, and “Decode Latency” represent per-sample computational
costs. “Total Time” measures the complete benchmark execution time. Lower values (↓) are better.

Models Method Average KV Cache Prefill Time Decode Latency Total Time Accuracy
Tokens (%) ↓ (MB) ↓ (ms)↓ (ms/token) ↓ (mm’ss) ↓ (%)↑

Qwen2.5-VL
7B

Vanilla 100% 26.0 (1.0×) 408 (1.00×) 65.3 (1.00×) 60’17 (1.00×) 92.2
FastV 54% 16.1 (1.6×) 297 (1.37×) 62.7 (1.04×) 51’51 (1.16×) 74.4
PDrop 61% 16.4 (1.6×) 315 (1.30×) 62.8 (1.04×) 52’23 (1.15×) 77.6
IVC-Prune 50% 15.9 (1.6×) 322 (1.27×) 60.2 (1.08×) 47’47 (1.27×) 92.0

Table 4: Ablation study on the impact of IVC to-
kens, using the Qwen2.5-VL-7B model. “w/ ” indi-
cates that extra IVC tokens are added to the visual
input. “w/o” indicates removing IVC tokens from
the visual input. “RCtestA” and “RC+testA” denote
the RefCOCOtestA and RefCOCO+testA.

Method Config. RCtestA RC+testA SEED MMB

Vanilla Default 92.2 88.0 76.7 82.4
w/o IVC 84.1 79.4 76.1 82.2

IVC-Prune Default 92.0 87.4 76.7 82.6
w/o IVC 76.0 71.3 75.2 80.6

FastV Default 74.4 68.9 72.9 80.5
w/ IVC 82.1 76.5 74.6 80.5

PDrop Default 77.6 72.1 74.0 78.9
w/ IVC 83.9 76.5 74.6 79.2

Table 5: Ablation study of applying our method
to Qwen2.5-VL models with different parameter
sizes (3B, 7B, and 32B).

Models Method RCtestA RC+testA SEED MMB

3B

Vanilla 89.6 82.5 73.8 76.7
FastV 81.2 71.0 70.3 73.8
PDrop 67.6 56.8 68.4 71.7
IVC-Prune 89.1 81.7 73.5 75.9

7B

Vanilla 92.2 88.0 76.7 82.4
FastV 74.4 68.9 72.9 80.5
PDrop 77.6 72.1 74.0 78.9
IVC-Prune 92.0 87.4 76.7 82.6

32B

Vanilla 91.3 86.7 76.9 86.8
FastV 74.3 67.1 70.8 81.3
PDrop 49.8 43.6 66.0 68.0
IVC-Prune 91.1 86.3 76.7 85.8

and InternVL 2.5 (−9.9% and −11.0%), while performing comparatively better on DeepSeek-VL2
(−3.3% and −2.3%). These results highlight the robustness of IVC-Prune in preserving spatial
reasoning performance under aggressive token reduction.

Results on General VQA Benchmarks. We evaluate our method on nine diverse VQA benchmarks
across four representative LVLMs (Tab. 2). While the average number of retained tokens is comparable
to state-of-the-art methods (FastV and PDrop), our method consistently achieves higher performance
across all models. Notably, IVC-Prune matches or even surpasses the unpruned vanilla models,
achieving average relative scores of 100.6%, 99.6%, 100.1%, and 101.3% for the four LVLMs.
In contrast, FastV suffers substantial drops on Qwen2.5-VL (98.4%) and InternVL 2.5 (97.0%),
while PDrop degrades on InternVL 2.5 (95.8%). Further experiments on spatial reasoning, video
understanding, and additional VQA benchmarks (Appendix A.3) confirm these trends. The results
show the robustness of our approach across diverse LVLM architectures and benchmarks.

4.3 EFFICIENCY ANALYSIS

Tab. 3 presents an efficiency comparison among vanilla, FastV, and IVC-Prune on Qwen2.5-VL-7B
with 8×A100 (40 GB) GPUs. Both FastV and IVC-Prune reduce average token count to roughly
half of the baseline. Our prefill time is slightly higher than that of FastV (322ms vs. 297 ms), which
is expected given our pruning strategy: we perform token selection at an intermediate layer rather
than the shallowest layers. This design retains more semantically relevant tokens, but also increases
computation during the prefill stage. However, IVC-Prune applies the pruned token set uniformly
across all layers, yielding a further reduction in KV-cache and lower decoding latency (60.2 ms/token
vs. 62.7 ms/token for FastV). Total Time measures the complete wall-clock runtime of the benchmark,
including both forward computation and token generation, where LVLMs often spend notable time
in beam search or sampling operations. Under this realistic measurement, IVC-Prune achieves
the shortest total runtime (47’47), demonstrating that the decoding latency reduction effectively
compensates for the modest prefill overhead and delivers an improved trade-off between accuracy
preservation and practical efficiency.
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Table 6: Ablation study comparing IVC tokens with alternative visual token patterns on Qwen2.5-
VL-7B. Only the highlighted tokens, pink tokens (pattern-specific) and blue tokens (foreground),
are retained as inputs. “Random” selects 15% tokens at random. “C Points” are the corners plus the
image center. IVC5%−20% denotes different retain ratios.

Pattern None Random C Points Window Diagonal IVC5% IVC10% IVC20% Baseline

RCtestA 58.0 79.3 73.5 89.0 89.8 89.1 92.8 93.3 92.2
RC+testA 56.8 77.6 71.8 86.3 87.0 87.0 90.0 90.4 88.0
GQACA 90.3 92.0 91.3 92.3 92.3 93.3 93.3 93.7 93.7

Table 7: Ablation of foreground token selection on InternVL-2.5-8B, with IVC tokens included in
all settings. Stage 1 denotes Semantic Seed Identification. Stage 2 denotes Contextual Foreground
Refinement. The variant “Stage 1+2 w/ Text–Image Attention” replaces the value-similarity scoring
in Stage 1+2 with conventional text–image attention scores.

Method Avg. Tokens RefCOCOtestA RefCOCO+testA TVQA MMB

Vanilla (No Pruning) 100% 94.7 91.5 79.0 83.2
Stage 1 50% 93.9 90.9 76.1 83.0
Stage 1 + Stage 2 50% 94.2 91.1 78.0 83.0
Stage 1+2 w/ Text–Image Attention 50% 82.2 79.3 75.7 83.1

4.4 ABLATION STUDIES

Impact of IVC Tokens. We analyze our proposed IVC tokens in Tab. 4. Removing IVC tokens
causes substantial performance drops on visual grounding tasks on RefCOCOtestA: Vanilla degrades
from 92.2 to 84.1 (-8.1), and IVC-Prune from 92.0 to 76.0 (-16.0). Conversely, adding IVC tokens
to existing methods yields significant improvements: FastV increases from 74.4 to 82.1 (+7.7) and
PDrop from 77.6 to 83.9 (+6.3). These results confirm that IVC tokens are essential for spatial
reasoning and can be seamlessly integrated into existing pruning methods to enhance their spatial
reasoning capabilities. Notably, the impact on non-/weakly-spatial tasks (SEEDBench, MMBench)
remains minimal, indicating that IVC tokens specifically target spatial reasoning.

Effectiveness of IVC Tokens Compared to Alternative Patterns. To validate the effectiveness of
IVC tokens, we compare them with several alternative token patterns on visual grounding benchmarks
and GQAchoose all (GQACA) Zhang et al. (2025d) in Tab. 6. These benchmarks provide foreground
annotations, enabling direct analysis of token selection effectiveness. The results confirm that back-
ground tokens contribute positively to performance, particularly for visual grounding. On RefCOCO,
IVC10% outperforms the full-token baseline. On the less spatially focused GQA benchmark, all
variants achieve comparable accuracy, with IVC20% matching the baseline at 93.7%. Thus, we adopt
IVC10% as our default configuration, delivering optimal performance with high efficiency.

Ablation of Foreground Token Selection. Tab. 7 evaluates variations of our foreground selection
strategy, where all configurations include IVC tokens by default and differ only in the selection
mechanism. Using only the semantic seed identification (stage 1) recovers most of the performance but
still underperforms the complete two-stage method, particularly on TextVQA (-1.9). This highlights
the importance of the refinement stage for better capturing the complete foreground. Replacing the
value-similarity scores with text-image attention scores results in a substantial performance drop in
grounding tasks (e.g., -12.0 on RefCOCOtestA), suggesting that attention scores are suboptimal, likely
due to positional bias. Interestingly, MMBench performance remains unchanged across settings,
indicating that this benchmark may be less sensitive to the specifics of visual tokens.

Effectiveness Across Parameter Scales. Tab. 5 evaluates our method across different model scales
(3B, 7B, and 32B parameters). Across all scales, IVC-Prune consistently preserves the performance
of the vanilla model. The robustness of IVC-Prune across diverse scales demonstrates that our
approach is not limited by model capacity, supporting its applicability to a wide range of LVLMs.
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5 DISCUSSION AND LIMITATIONS

5.1 DISCUSSION ON NOVELTY AND RELATION TO PRIOR WORK

While token pruning is an established field, IVC-Prune introduces distinct theoretical and method-
ological innovations compared to prior token pruning approaches:

Theoretical analysis for spatial reasoning in LVLMs. We present the first theoretical characteri-
zation of the mathematical structure of RoPE within LVLMs, revealing that certain token positions
function as Implicit Visual Coordinate (IVC) tokens. These tokens encode absolute spatial infor-
mation essential for object localization at arbitrary image resolutions. This analysis offers novel
mechanistic insights into how LVLMs localize objects at arbitrary resolutions, which is a fundamental
property previously unexplored in pruning literature.

Explanation of early-layer pruning sensitivity. Prior works (Xing et al., 2025; Ye et al., 2025b)
reported severe performance drops when pruning early transformer layers, without clarifying the
cause. Our controlled ablations (Tab. 6, Tab. 11) show that sensitivity arises from the removal of IVC
tokens rather than pruning itself.

Safe early-layer KV-cache pruning. Guided by the IVC analysis, we implement a single-selection
strategy that enables pruning of early-layer KV caches while preserving performance. This achieves
maximal cache reduction and faster decoding, whereas prior training-free methods avoid early-layer
pruning entirely due to quality loss.

Cross-Architecture Robustness. We introduce a two-stage semantic foreground token selection
method leverages value-vector similarity, followed by semantic seeding and contextual refinement.
This design effectively reduces positional bias from attention distributions. Our method general-
izes across diverse image inputs, yielding competitive results on four LVLM families and twenty
benchmarks, demonstrating that it is architecture-agnostic.

5.2 LIMITATIONS

Although IVC-Prune performs well across diverse LVLMs and tasks, several limitations remain.
First, our fixed pruning ratios, while effective in both image and video settings, are not dynamically
adapted to task-specific visual or temporal complexity, which may lead to suboptimal pruning in
certain scenarios. Second, the pruning layer is selected based on validation performance on a small
subset of the benchmark. While it is effective in practice, this underscores the need for automated
strategies to identify the optimal pruning layer and motivates further interpretability studies into the
distinct functional roles of different layers in LVLMs. Finally, the identification of IVC tokens is
inherently tied to the mathematical structure of RoPE. Extending this framework to architectures
using alternative positional encodings (e.g. learned 2D embeddings) will require additional theoretical
and empirical validation.

6 CONCLUSION

In this work, we present a new insight into how LVLMs perform spatial reasoning: LVLMs inherently
establish an implicit visual coordinate system through the mathematical structure of RoPE, using
specific token positions as spatial coordinates. Based on this, we introduce IVC-Prune, a novel
training-free pruning method that preserves both crucial Implicit Visual Coordinate (IVC) tokens
and semantically aligned foreground tokens. Experiments across diverse LVLM architectures and
benchmarks demonstrate that IVC-Prune reduces computational costs (e.g., 50% KV-cache reduction)
with negligible performance loss, and in some cases even surpasses the unpruned vanilla method. In
the future, we plan to extend IVC-Prune with dynamic, task-adaptive pruning ratios and explore its
integration into training-time architecture design. We hope our findings will motivate further research
into positional encoding mechanisms and their role in spatial reasoning within LVLMs.
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REPRODUCIBILITY

We provide comprehensive details to ensure full reproducibility of our experimental results in
Section 4.1, Appendix A.1 and Appendix A.2. All evaluations are conducted using the default
inference settings on 8×A100 40 GB GPUs (8×H800 80 GB for the 32B and video experiments). The
code and experimental configurations will be made publicly available.
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A APPENDIX

A.1 DETAILS OF EVALUATION BENCHMARKS

Visual Grounding: RefCOCO and RefCOCO+ Yu et al. (2016) (testA, testB, val), and Ref-
COCOg Mao et al. (2016) (test, val).

General Reasoning: SEEDBenchimage (SEED) Li et al. (2023a), MMBenchDEV_EN_V11 (MMB) Liu
et al. (2024a), AI2Dtest (AI2D) Kembhavi et al. (2016), MMStar (MMS) Chen et al. (2024b),
MME Chaoyou et al. (2023), MMBenchDEV_EN, MMBenchDEV_CN_V11, MMBenchDEV_CN Liu et al.
(2024a).

Hallucination Evaluation: POPE Li et al. (2023c), HallusionBench Guan et al. (2024).

Real-world Comprehension: RealWorldQA (RWQA) Corp. (2024), A-OKVQA Schwenk et al.
(2022).

OCR: TextVQA (TVQA) Singh et al. (2019) and AI2D Kembhavi et al. (2016).

Science Knowledge: ScienceQA (SQA) Lu et al. (2022).

Spatial Reasoning: SpatialEval Wang et al. (2024).

Video Understanding: MVBench Li et al. (2024a), Video-MME Fu et al. (2025), and MLVU Zhou
et al. (2025).

For all benchmarks, we follow the standardized evaluation protocol adopted in VLMEvalKit Duan
et al. (2024), employing GPT-4.1 as the judge model for question-answer scoring. For
GQAchoose all Zhang et al. (2025d), we report performance on the ChooseAttr, ChooseCat, and
ChooseRel subsets.

A.2 DETAILED CONFIGURATION OF DIFFERENT LVLMS

Different LVLMs adopt distinct image preprocessing pipelines and architecture depths, as illustrated
in Fig. 3. Consequently, the application of IVC-Prune requires minor model-specific adjustments. To
ensure reproducibility, this section provides the detailed configuration for each model.

Layer Selection Protocol. The pruning layer i is determined based on validation performance on a
small subset of RefCOCOtestA (or POPE for LLaVA v1.5). Once the optimal layer is determined for
each model, the same layer configuration is consistently applied across all benchmarks and tasks to
ensure fair comparison and reproducibility.

Model-specific Settings.

• Qwen2.5-VL: We apply IVC-Prune at layer 16 in the 7B model (28 layers total), layer 22 in
the 3B model (32 layers total), and layer 35 in the 32B model (64 layers total).

• InternVL 2.5: We perform IVC-Prune at layer 16 (32 layers total). The pruning is first
applied to the thumbnail image. Then, the identified foreground tokens are mapped to the
corresponding positions in tiled images. IVC tokens are computed independently within
each tiled image and the thumbnail image.

• DeepSeek-VL2: We apply IVC-Prune at layer 17 (27 layers total). Similar to InternVL 2.5,
we first perform pruning on the thumbnail (excluding padding areas) and map foreground
tokens to tiled images. Since DeepSeek-VL2 uses special tokens to separate lines in tiles,
we select IVC tokens within each line while preserving all special tokens. We avoid pruning
layer 0 as DeepSeek-VL2 relies on the layer 0 KV-cache length to manage the prefilling
stage.

• LLaVA v1.5: We perform IVC-Prune at layer 15 (32 layers total). Layer 0 is excluded from
pruning as removing its KV-cache leads to significant performance degradation Chen et al.
(2024a).

Baseline Method Settings. We reproduce FastV Chen et al. (2024a) and PDrop Xing et al. (2025)
with the following configurations:
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• FastV: K = 2, R = 50% for Qwen2.5-VL, InternVL 2.5, and DeepSeek-VL2; K = 2, R =
75% for LLaVA v1.5. We use the KV-cache compatible implementation.

• PDrop: K ∈ {8, 16, 24} with λ ∈ {0.7, 0.5, 0.5} for Qwen2.5-VL, InternVL 2.5, and
DeepSeek-VL2; λ ∈ {0.5, 0.5, 0.5} for LLaVA v1.5.

Video Benchmark Implementation. For experiments on video datasets, we adopt a consistent
per-frame pruning strategy. IVC-Prune is applied to each video frame independently, retaining 50%
of the original visual tokens for every frame.

LLaVA v1.5 DeepSeek VL2

Qwen2.5-VL

Native Resolution

InternVL 2.5

Dynamic Tiles with Resized Thumbnail

Uniform Resizing Padded Thumbnail with Dynamic Tiles       
& Special Tokens

Figure 3: Comparison of image preprocessing strategies in different LVLMs. White squares represent
image tokens. Red squares indicate special tokens introduced in DeepSeek-VL2.

A.3 FURTHER EXPERIMENTS

Analysis of Spatial Reasoning Benchmark Results. Tab. 8 demonstrates the effectiveness of our
method on spatial reasoning tasks. Across all evaluated LVLMs, our IVC-Prune achieves the highest
Overall scores compared with other pruning methods.

Analysis of Video Understanding Benchmark Results. Tab. 9 demonstrates the effectiveness of
our method on video understanding tasks. By retaining only 50% of the original visual tokens, our
approach consistently meets or exceeds the performance of the baseline, achieving average relative
scores of 100.1% for Qwen2.5-VL-7B and 100.3% for InternVL 2.5-8B. These results underscore
that our pruning strategy is robust and effective for processing temporal data.

Analysis of VQA Benchmark Results. The results in Tab. 10 further corroborate the effectiveness
of our proposed method. Across four distinct Large Vision-Language Models (LVLMs), our approach
consistently demonstrates a superior efficiency-performance trade-off. While retaining only about
50% of the visual tokens for most models (and as low as 28% for LLaVA-v1.5), our method achieves
average relative performance scores of 100.2%, 100.0%, 100.1%, and 101.3%. These scores not only
meet or exceed the baseline but also consistently surpass competing pruning methods like FastV and
PDrop, often while using fewer tokens. This underscores the robustness of our strategy in preserving
essential visual information for complex VQA tasks across diverse model architectures.

A.4 EXTENDED RESULTS AND ANALYSIS FOR FIG. 1

Tab. 11 presents detailed results of visual grounding performance across multiple LVLMs and
input configurations, extending the summary in Fig. 1. For most models (Qwen2.5-VL-7B/3B and
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Table 8: Evaluation results on spatial reasoning benchmark.

Models Method Average SpatialEval
Tokens ↓ Mazenav Spatialgrid Spatialmap Spatialreal Overall

Qwen2.5-VL
7B

Vanilla 100% 32.8 84.1 68.3 70.4 62.0
FastV 54% 33.5 78.3 68.1 69.6 60.2
PDrop 61% 26.8 75.5 66.8 63.7 56.6
IVC-Prune 50% 35.2 83.4 69.9 70.4 63.0

InternVL 2.5
8B

Vanilla 100% 33.5 76.2 63.5 65.9 58.0
FastV 53% 28.1 54.5 52.6 60.0 45.5
PDrop 56% 32.8 66.1 60.8 61.5 53.5
IVC-Prune 50% 32.7 76.1 63.8 68.1 57.8

DeepSeek-VL2
Small-16B

Vanilla 100% 32.1 75.2 59.3 60.0 55.6
FastV 54% 32.6 65.9 58.0 58.5 52.3
PDrop 57% 33.5 73.8 59.1 61.5 55.6
IVC-Prune 52% 32.3 75.3 59.3 59.3 55.7

LLaVA-v1.5
7B

Vanilla 100% 31.3 30.1 43.5 38.5 35.0
FastV 30% 30.4 29.5 44.1 35.5 34.5
PDrop 47% 30.8 29.1 44.0 35.5 34.5
IVC-Prune 28% 30.3 30.0 43.1 38.5 34.6

Table 9: Evaluation results on video understanding benchmark.

Models Method Average MVBench VideoMME MLVU Rel. Avg.Tokens ↓ 64 frame w/o subs short medium long M-Aug G-Aug

Qwen2.5-VL
7B

Vanilla 100% 67.7 63.1 74.0 62.9 52.6 65.1 5.65 100%
FastV 54% 67.7 62.7 74.1 62.7 51.3 65.0 5.52 99.2%
PDrop 61% 67.7 63.1 74.0 62.9 52.6 64.0 5.53 99.5%
IVC-Prune 50% 67.7 63.4 74.3 63.1 52.7 65.7 5.55 100.1%

InternVL 2.5
8B

Vanilla 100% 70.4 63.6 75.8 62.8 52.3 68.6 4.79 100%
FastV 53% 69.2 62.9 73.3 61.6 53.7 65.7 4.77 98.6%
PDrop 56% 68.6 62.1 73.4 62.8 50.1 66.5 4.65 97.4%
IVC-Prune 50% 70.1 64.3 76.4 63.2 53.1 68.3 4.74 100.3%

DeepSeek-VL2-Small-16B), restricting the inputs to only foreground tokens leads to a substantial
performance drop across all benchmarks. Remarkably, augmenting these foreground tokens with just
10% IVC tokens not only recovers performance but often surpasses the unpruned vanilla baseline.
This suggests that IVC tokens provide effective visual coordinates required for accurate object
localization.

An exception arises with InternVL 2.5-8B, where the foreground-only setting retains comparatively
high accuracy. We hypothesize that this robustness stems from its distinctive image processing
strategy, which uses fixed-size thumbnails and tiled images with pre-defined aspect ratios. This
fixed-size input may implicitly encode positional and boundary information, reducing the model’s
reliance on implicit visual coordinates. In contrast, the other LVLMs operate on variable-resolution
inputs and thus appear more sensitive to the absence of IVC tokens. Nevertheless, even for InternVL
2.5, adding IVC tokens yields further gains. This confirms the universal value of IVC tokens.

A.5 ANALYSIS OF CLUSTERING- OR MERGING- BASED TOKEN REDUCTION METHODS

In this section, we provide a detailed analysis of the limitations inherent in clustering or merging-
based token reduction mechanisms (e.g., Llava-PruMerge Shang et al. (2024), SparseVLM Zhang
et al. (2025c), and PACT Dhouib et al. (2025)), specifically concerning their impact on spatial
reasoning capabilities.

In prior work on token pruning, Position IDs are typically handled in one of two ways: preserving
the original position IDs of retained tokens or reassigning position IDs to produce a contiguous
index sequence in the pruned representation. Retaining the original position IDs maintains spatial
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Table 10: Comprehensive evaluation results on additional VQA benchmarks.

Models Method A. T.↓ A-OKVQA SQATEST MMBEN MMBCN_V11 MMBCN Rel. Avg.

Qwen2.5-VL
7B

Vanilla 100% 86.5 88.7 83.4 81.4 82.2 100%
FastV 54% 86.4 85.8 81.8 80.0 80.8 98.2%
PDrop 61% 85.6 87.5 80.8 79.5 80.5 98.0%
IVC-Prune 50% 86.7 87.0 83.8 82.6 82.7 100.2%

InternVL 2.5
8B

Vanilla 100% 87.2 98.1 83.9 82.9 83.1 100%
FastV 53% 86.6 97.4 82.5 80.8 81.9 98.6%
PDrop 56% 86.9 97.9 83.4 81.5 81.9 99.1%
IVC-Prune 50% 87.2 98.2 83.9 83.0 82.9 100.0%

DeepSeek-VL2
Small-16B

Vanilla 100% 86.9 96.9 80.8 78.8 79.7 100%
FastV 54% 85.9 96.3 79.7 77.9 78.5 98.8%
PDrop 57% 86.7 96.8 80.8 78.9 79.8 100.0%
IVC-Prune 52% 86.6 96.8 80.8 79.0 80.1 100.1%

LLaVA-v1.5
7B

Vanilla 100% 78.9 66.4 63.3 41.3 41.8 100%
FastV 30% 79.0 66.3 62.5 40.9 42.2 99.7%
PDrop 47% 79.2 66.3 62.8 40.9 42.1 99.8%
IVC-Prune 28% 78.8 66.4 63.3 42.8 43.0 101.3%

Table 11: Extended and detailed results corresponding to Fig. 1: Performance comparison on visual
grounding benchmarks across different LVLMs under various input settings.

Inputs Method RefCOCO RefCOCO+ RefCOCOg
testA testB val testA testB val test val

Qwen2.5-VL
7B

Vanilla 92.2 84.7 89.6 88.0 74.3 82.8 86.9 86.8
Foreground tokens 58.0 39.4 49.0 56.8 39.4 48.6 44.6 44.9
Foreground + 10% IVC tokens 92.8 82.9 89.8 89.9 77.2 86.2 86.0 87.1

Qwen2.5-VL
3B

Vanilla 89.6 83.4 87.6 82.5 71.4 77.9 84.3 83.9
Foreground tokens 61.9 51.0 55.1 57.2 48.4 51.6 52.2 53.6
Foreground + 10% IVC tokens 92.9 86.7 90.9 88.9 82.0 86.2 89.5 90.0

InternVL 2.5
8B

Vanilla 94.7 86.0 90.3 91.5 78.7 85.1 87.6 87.1
Foreground tokens 92.4 86.9 89.2 91.3 84.9 88.3 88.5 87.6
Foreground + 10% IVC tokens 93.8 89.3 91.1 92.8 85.8 89.5 90.8 89.6

DeepSeek-VL2
Small-16B

Vanilla 96.5 92.6 95.2 94.7 87.9 91.4 93.3 93.2
Foreground tokens only 21.6 18.4 20.2 19.6 17.3 18.8 17.4 17.2
Foreground + 10% IVC tokens 96.0 92.9 94.7 94.9 88.5 91.6 93.8 93.8

consistency, whereas clustering or merging approaches, as in SparseVLM, generate aggregated tokens
that require position ID reconstruction. These reconstructed indices do not correspond to precise
coordinates in the original visual grid, resulting in a loss of spatial location fidelity.

To validate this observation, we reproduced SparseVLM using Qwen2.5-VL 7B as the backbone
and compared two configurations: the default implementation, which includes the clustering and
merging step, and a modified variant in which clustering is disabled. Results, shown in Tab. 12,
reveal that the default configuration suffers severe degradation on the RefCOCO spatial grounding
benchmarks, achieving only 15.3% of the baseline accuracy. In contrast, the variant without clustering
recovers performance to 76.1%, confirming that the merging operation and consequent position ID
reconstruction are the dominant sources of error.

Interestingly, performance on general VQA tasks remains comparable to the baseline when clustering
is used, indicating that semantic information is largely preserved while spatial structure is compro-
mised. These findings are consistent with prior work Chien et al. (2025) and lead to an important
conclusion: preserving the original position IDs is essential for tasks involving fine-grained spatial
reasoning.
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Table 12: Ablation study on the effect of clustering in SparseVLM.

Method A. T. RefCOCO RefCOCO+ RefCOCOg Rel. Avg.testA testB val testA testB val test val

Vanilla 100% 92.2 84.7 89.6 88.0 74.3 82.8 86.9 86.8 100%
IVC-Prune 50% 92.0 84.5 89.3 87.4 74.1 82.4 86.5 86.5 99.6%
SparseVLM w/o clustering 49% 77.2 61.2 69.1 71.7 53.5 63.2 63.2 63.6 76.1%
SparseVLM w clustering 51% 14.1 13.8 14.2 12.6 11.7 12.5 12.3 13.6 15.3%

Method A. T. SEED MMB MMS RWQA MME POPE HallB TVQA AI2D Rel. Avg.

Vanilla 100% 76.7 82.4 64.2 67.8 2310.6 86.9 51.5 84.9 83.8 100%
IVC-Prune 50% 76.7 82.6 62.9 68.2 2303.1 87.6 54.8 84.4 84.2 100.6%
SparseVLM w/o clustering 49% 74.9 79.6 45.6 61.4 2279.6 85.9 53.5 83.7 82.3 94.9%
SparseVLM w clustering 51% 74.8 82.0 61.3 67.8 2320.0 86.8 54.5 84.5 82.5 99.6%

A.6 ANALYSIS OF HIGH-RESOLUTION OCR BENCHMARKS.

We evaluate the proposed IVC-Prune on three high-resolution OCR benchmarks DocVQA Mathew
et al. (2021), InfoVQA Mathew et al. (2022), and OCRBench Liu et al. (2024b) using the Qwen2.5-VL
7B model. Results are reported in Tab. 13. On DocVQA and InfoVQA, IVC-Prune achieves accuracy
comparable to the Vanilla model, and consistently outperforms FastV and PDrop, suggesting that the
proposed method is well-suited for high-resolution VQA scenarios.

Table 13: Evaluation results on high-resolution OCR benchmark.

Method Avg. Tokens DocVQA InfoVQA OCRBench

Vanilla 100% 94.9 81.7 88.4
FastV 52% 93.9 76.4 67.3
PDrop 52% 93.8 69.4 62.0
IVC-Prune 50% 94.4 80.9 66.3

In contrast, all pruning methods suffer substantial degradation on OCRBench. To understand this
discrepancy, we conduct a fine-grained analysis across OCRBench’s task categories (Tab. 14). The
most pronounced drops occur in recognition-focused tasks, specifically Text Recognition and
Handwritten Mathematical Expression Recognition. Meanwhile, VQA categories remain largely
unaffected.

We attribute this gap to the nature of recognition-focused tasks: images typically contain densely
packed characters or symbols with minimal background. Accurate recognition relies on preserving
fine-grained visual details. Under a uniform 50% pruning ratio, a substantial portion of tokens
encoding these details are removed, leading to inevitable performance loss.

Visualization examples in Tab. 15 further support this analysis. Failure cases originate from
recognition-focused tasks and relatively low-resolution images. These inputs contain mostly fore-
ground tokens relevant to text or symbolic content, leaving little redundant information to prune. In
contrast, VQA-oriented inputs retain sufficient visual context even after pruning, sustaining strong
performance.

Overall, our findings highlight that the performance drop on OCRBench is not a general failure of the
proposed IVC-Prune for high-resolution inputs, but rather a limitation in handling high-density text
recognition. This suggests that adaptive or task-aware pruning strategies, which account for token
density and semantic importance, may be necessary to maintain accuracy in such scenarios.

A.7 ADDITIONAL RESULTS UNDER EXTREMELY LOW TOKEN BUDGETS

Following the evaluation protocol in PDrop, we performed experiments on LLaVA-v1.5-7B to assess
the behavior of IVC-Prune under extremely low token retention rates. Specifically, we evaluated three
settings corresponding to 33.3%, 22.2%, and 11.1% of the original token budget. As shown in Tab. 16,
IVC-Prune exhibits remarkable robustness under these aggressive token reduction scenarios. Notably,
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Table 14: Task-level breakdown of OCRBench performance. Parentheses indicate the relative
performance compared to Vanilla.

Task Category Vanilla IVC-Prune FastV PDrop

Scene Text-centric VQA 17.9 17.6 (98.3%) 17.7 (98.9%) 17.7 (98.9%)
Doc-oriented VQA 18.0 17.1 (95.0%) 16.7 (92.8%) 14.7 (81.7%)
Key Information Extraction 18.2 16.8 (92.3%) 13.0 (71.4%) 11.8 (64.8%)
Text Recognition 26.9 14.0 (52.0%) 18.3 (68.0%) 17.6 (65.4%)
Handwritten Mathematical Expression Recognition 7.4 0.8 (10.8%) 1.6 (21.6%) 0.2 (2.7%)

Final Score 88.4 66.3 (75.0%) 67.3 (76.1%) 62.0 (70.1%)

Table 15: Qualitative visualization of IVC-Prune performance on the OCRBench benchmark. Gray
regions indicate tokens pruned by the model. For high-resolution images, red bounding boxes were
added post hoc to highlight locations relevant to the ground-truth answer.

Reserved Tokens Question Resolution Answer Prediction Correct

what is written in the
image? 196×56 rcaihttnu The text in the image

reads "rcaintnu". ✗

what is written in the
image? 112×28 CENTRE century ✗

what is the number in
the image? 196×28 100972

The image contains the
handwritten text "λ0 =
72".

✗

What is the period
of registry observa-
tion taken into consid-
eration for ’ bilateral
arthroplasty ’ ?

1652x2352 14 years

The period of registry ob-
servation considered for
’bilateral arthroplasty’ is
14 years.

✓

What is total percent-
age of businesses lay-
ing of staff and reduc-
ing staff hours?

1148x1876 68.3%

To find the total percent-
age of businesses that ei-
ther laid off staff or re-
duced staff hours, you
need to add the percent-
ages for each category: -
Percentage of businesses
that laid off staff: 28.4% -
Percentage of businesses
that reduced staff hours
or shifts: 39.9% Adding
these two percentages to-
gether:

28.4%+39.9% = 68.3%

So, the total percentage
of businesses that either
laid off staff or reduced
staff hours is 68.3%.

✓

at 11% token retention, IVC-Prune sustains 97.2% of the baseline performance. This robustness
highlights the method’s capacity to maintain critical tokens.
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Table 16: Results under extremely low token budgets on LLaVA-v1.5 7B.

Method A. T. ↓ SEED MMB MMS RWQA MME POPE HallB TVQA AI2D Rel. Avg.

Vanilla 576 (100%) 64.4 60.6 34.2 54.5 1543.1 74.5 25.8 20.7 49.1 100%

FastV 192 (33.3%) 61.2 60.2 33.4 51.6 1572.7 74.8 29.0 21.8 48.8 100.7%
PDrop 192 (33.3%) 60.0 54.6 31.9 51.2 1607.6 80.1 25.7 17.0 48.6 95.9%
IVC-Prune 192 (33.3%) 64.5 60.7 34.5 54.4 1567.7 76.9 26.2 21.1 49.1 101.0%

FastV 128 (22.2%) 57.2 58.3 33.1 47.7 1462.1 67.8 28.1 18.7 48.0 94.7%
PDrop 128 (22.2%) 56.0 49.8 31.1 50.8 1565.4 77.2 24.4 14.8 45.1 90.7%
IVC-Prune 128 (22.2%) 64.5 60.7 34.0 54.4 1525.6 77.0 26.2 20.1 49.1 100.0%

FastV 64 (11.1%) 45.8 40.2 28.4 38.2 1109.7 31.9 27.1 6.6 45.8 70.6%
PDrop 64 (11.1%) 46.3 39.2 28.3 46.5 1205.7 51.0 23.6 8.6 46.2 75.4%
IVC-Prune 64 (11.1%) 64.2 60.4 33.9 54.1 1511.3 75.4 24.8 16.9 49.1 97.2%

A.8 ABLATION OF TOKEN ALLOCATION STRATEGY

To determine the optimal balance between spatial structure and semantic content, we conducted an
ablation study on the IVC token ratio. Operating under a fixed 50% total token budget, we evaluated
IVC allocations of 5%, 10%, and 20% using the Qwen2.5-VL 7B model. The remaining budget in
each setting is assigned to foreground semantic tokens.

The results, summarized in Tab. 17, demonstrate that allocating 10% of tokens to IVC yields the
best performance. Lowering the ratio to 5% results in a performance drop due to insufficient spatial
fidelity, while increasing it to 20% degrades performance by restricting the budget available for
semantic foreground tokens.

Table 17: Ablation study on token allocation strategy under a 50% total token budget. Experiments
were conducted on Qwen2.5-VL 7B. The “IVC Token” column denotes the percentage of total tokens.

IVC Token Ratio RefCOCOtestA RefCOCO+testA SeedBench MMBench
5% 91.8 87.2 76.6 82.5
10% (Ours) 92.0 87.4 76.7 82.6
20% 91.3 87.0 76.6 82.3

A.9 VISUALIZATION OF IVC TOKENS
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LLaVA v1.5

DeepSeek VL2

Qwen2.5-VL

InternVL 2.5

cosine component sine component cosine component sine component

cosine component sine component

cosine component sine component

Figure 4: Visualization of the positional embedding scores for four LVLMs, where cosine (V (m))
and sine (U(m)) components are summed over all dimensions as in Eqs. 5 and 7. Black squares
denote the selected 10% IVC tokens, and red squares indicate the special tokens introduced in
DeepSeek-VL2. Note that IVC tokens are determined solely by position and are independent of the
content.
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