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Abstract

Generating commonsense assertions, given a001
certain story context, is a tough challenge002
even for modern language models. One of003
the reasons for this may be that the model004
has to “guess" what topic or entity in a story005
to generate an assertion about. Prior work006
has tackled part of the problem, by provid-007
ing techniques to align commonsense infer-008
ences with stories and training language gen-009
eration models on these. However, none of010
the prior work provides means to control the011
parts of a generated assertion. In this work012
we present “hinting", a data augmentation tech-013
nique for improving inference of contextual-014
ized commonsense assertions. Hinting is a015
prefix prompting strategy that uses both hard016
and soft prompts. We demonstrate the ef-017
fectiveness of hinting by showcasing its ef-018
fect on two contextual commonsense infer-019
ence frameworks: ParaCOMET (Gabriel et al.,020
2021a) and GLUCOSE (Mostafazadeh et al.,021
2020a), for both general and context-specific022
inference.023

1 Introduction024

The task of generating commonsense assertions025

or facts, given a certain story context, while easy026

for humans, remains challenging for machines027

(Gabriel et al., 2021b). We define an assertion028

as a tuple that contains a subject, a relation, and029

an object (e.g., a dog, is a, animal), similar to a030

subject-verb-object triple. As we will see, these031

tuples can be contextual to a story or generally032

applicable facts. Automated systems (such as pre-033

trained transformer-based language models (Devlin034

et al., 2019; Radford et al., 2019)) struggle with035

generating these assertions, since there is an im-036

plicit assumption that clues for making predictions037

can always be found explicitly in the text. (Zhang038

et al., 2021; Liu and Singh, 2004; Da and Kasai,039

2019; Davison et al., 2019). This becomes prob-040

lematic because the model is essentially forced to041

use knowledge that it may not have seen during 042

pre-training. Additionally, models are forced to 043

guess what to predict about (i.e., what the subject 044

of an assertion is), which may lead to decreased 045

performance. 046

Previous attempts have tackled the problem of 047

contextual commonsense inference by construct- 048

ing datasets of stories aligned with assertions (i.e. 049

an assertion is given for a sentence in a story), ei- 050

ther through automated or human-annotated ways. 051

One previous attempt to tackle this problem, Para- 052

COMET (Gabriel et al., 2021b), trained a GPT-2 053

language model (Radford et al., 2019) to infer the 054

object of a commonsense assertion tuple. Given 055

a story and a sentence identifier token, along with 056

a specified relation, the model has to predict the 057

object of a commonsense assertion. 058

Another work that tries to approach this is GLU- 059

COSE (Mostafazadeh et al., 2020b). Here a dataset 060

is constructed to consist of stories and human an- 061

notations for sentences in the stories. The human 062

annotations provide specific and general common- 063

sense assertions. The authors utilize this dataset to 064

train a T5 (Raffel et al., 2020) model to perform 065

contextualized and generalized story assertion in- 066

ference. The model takes an input sequence in the 067

form of a story, a relation to predict, and a target 068

sentence, and has to predict both the general and 069

specific assertions that may be present in the target 070

sentence with the given story context. 071

In both works, the models are expected to do 072

their inference from the story, a target sentence, 073

and relation dimension alone. In the case of Para- 074

COMET, it is expected to predict an object of a 075

specific assertion, and in the case of GLUCOSE, 076

the model is expected to predict both a specific and 077

a general assertion. In either case, this forces the 078

model to rely on knowledge that it may not have 079

seen and it has to guess what to “talk" about. 080

Recently, there has been work on exploring 081

prompting (Liu et al., 2021), which is essentially 082
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finding ways of altering the input to a language083

model such that it matches templates that it has084

seen during pre-training. This gives stronger per-085

formance in tasks, can help with controllability in086

the case of text generation, and is more parameter-087

efficient and data-efficient than fine-tuning, in some088

cases (Li and Liang, 2021). One novel type of089

prompting is prefix prompting (Li and Liang, 2021;090

Lester et al., 2021). Prefix prompting consists of091

modifying a language model’s input (i.e. prefix)092

by adding additional words. These words can be093

explicit hard prompts (i.e., actual words such as094

“give a happy review") or they can be soft prompts,095

embeddings that are input into a model and can096

be trained to converge on some virtual template or097

virtual prompt that can help the model.098

Prompting holds great potential for improving099

contextualized commonsense inference. We intro-100

duce the idea of a hint, a hybrid of hard and soft101

prompts. We define a hint as the part(s) of an asser-102

tion that a model has to predict, along with special103

identifiers for these parts, wrapped within paren-104

thesis characters. Syntactically, a hint would take105

the form of: “( [subject symbol,subject], [relation106

symbol,relation], [object symbol,object] )" where107

the actual content of the hint between the paren-108

thesis would be a permutation of all but one of the109

elements in the target tuple. For example, a hint110

would be “(<|subj|>a dog, <|obj|>an animal)") for111

predicting the tuple “(a dog, is an, animal)". Hints112

are provided by sampling a binomial distribution113

for each element in a minibatch, which determines114

whether to give a hint or not. The actual content of115

the hint would then be generated by randomly sam-116

pling without replacement up to all but one of the117

elements in a target tuple. We give a more detailed118

description of hinting in section 3.2 and 3.3.119

We hypothesize that this scheme of hinting120

strikes a balance between the model recalling infor-121

mation that it may have seen, with information that122

it may not have seen, that may only be present in the123

target tuple. Additionally, by providing and train-124

ing on the combination of hard and soft prompts, a125

generative language model can be guided to “talk"126

about a certain subject, object, or relation. We note127

that the approach was designed to be simple to128

implement, and to give control when generating129

text. In the following sections, we give some back-130

ground on prompting, controllability, and the task131

of contextual commonsense inference. We follow132

this by a set of experiments to show the effects133

of hinting within the framing of ParaCOMET and 134

GLUCOSE, and finally, analyze the results, and 135

present future directions for this work. Concretely, 136

our contributions are: 137

• A hybrid prefix prompting technique called 138

hinting that provides a partial assertion to aug- 139

ment data for contextual commonsense infer- 140

ence, and 141

• Demonstrating that hinting does in fact im- 142

prove the performance for contextual com- 143

monsense inference as measured by auto- 144

mated metrics. 145

2 Related Work 146

2.1 Prompting 147

Recently, there has been a shift in paradigm in Nat- 148

ural Language Processing from pre-training and 149

fine-tuning a model, to pre-training, prompting, and 150

predicting (Liu et al., 2021). One primary reason 151

for this shift is the creation of ever-larger language 152

models, which have become computationally ex- 153

pensive to fine-tune. Prompting can be described as 154

converting a pre-trained language model input se- 155

quence into another sequence that resembles what 156

the language model has seen during pre-training. 157

Overall, most prompting research is focused on 158

formulating the task as a cloze (fill-in-the-blanks) 159

task. However, we consider the task of language 160

generation, an open-ended formulation. 161

Recall that prefix prompting modifies the in- 162

put to a language model, by adding either a 163

hard prompt (additional words to the input se- 164

quence)(Shin et al., 2020) or a soft prompt (i.e., 165

adding trainable vectors that represent, but are 166

not equivalent to, additional words) (Li and Liang, 167

2021; Lester et al., 2021; Liu et al., 2021). 168

Unlike classic prefix prompting, hinting uses 169

both hard and soft prompts. The soft prompts are 170

in the form of symbols that represent the different 171

parts of the assertion (i.e., subject, relation type, 172

and object), and the hard prompts are in the form of 173

the actual parts of the assertion that are selected to 174

be appended as part of the hint. Our work is similar 175

to KnowPrompt(Chen et al., 2021), except that they 176

use a masked language model and soft prompts for 177

relationship extraction. AutoPrompt (Shin et al., 178

2020) is also similar, but finds a set of “trigger" 179

words that give the best performance on a cloze- 180

related task, whereas we provide specific structured 181

input for the model to guide text generation. 182
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2.2 Controllable Generation183

Controllable generation can be described as ways184

to control a language model’s text generation given185

some kind of guidance. One work that tries to im-186

plement controllable generation is CTRL (Keskar187

et al., 2019). The authors supply control signals188

during pre-training of a language model. This ap-189

proach is intended to provide a generally applicable190

language model. A body of work in controllable191

generation has focused on how it can be used for192

summarization. Representative work that uses tech-193

niques similar to ours is GSum (Dou et al., 2021).194

In contrast to GSum, our method is model inde-195

pendent, allows for the source document to interact196

with the guidance signal, and contains soft prompts197

in the form of trainable embeddings that represent198

the parts of a tuple. The GSum system gives in-199

teresting insight into the fact that highlighted sen-200

tences, and the provision of triples, does in fact help201

with the factual correctness of abstractive summa-202

rization.203

2.3 Discourse-aware/Contextual204

commonsense inference205

Commonsense inference is the task of gener-206

ating a commonsense assertion. Discourse-207

aware/contextual commonsense inference is the208

task of, given a certain narrative or discourse, in-209

fering commonsense assertions that are coherent210

within the narrative(Gabriel et al., 2021a). This task211

is particularly hard because commonsense knowl-212

edge may not be explicitly stated in text (Liu and213

Singh, 2004) and the model needs to keep track of214

entities and their states either explicitly or implic-215

itly. Research into the knowledge that pre-trained216

language models learn has yielded good results217

in that they do contain various types of factual218

knowledge, as well as some commonsense knowl-219

edge(Da and Kasai, 2019; Petroni et al., 2019; Davi-220

son et al., 2019). The amount of commonsense221

knowledge in these models can be improved by222

supplementing sparsely covered subject areas with223

structured knowledge sources such as ConceptNet224

(Speer et al., 2017; Davison et al., 2019).225

Knowing that these pre-trained language mod-226

els may contain some commonsense information227

has led to the development of knowledge models228

such as COMET(Bosselut et al., 2019). This line of229

research has been extended from the sentence-by-230

sentence level in COMET, to the paragraph-level231

in ParaCOMET (Gabriel et al., 2021a). Contempo-232

raneously, GLUCOSE Mostafazadeh et al. (2020a) 233

builds a dataset of commonsense assertions that are 234

contextualized to a set of stories, and generalized 235

(e.g., John is a human is generalized to Someone_A 236

is a human). 237

In this work, we explore the effect of hinting, in 238

both the ParaCOMET setting for discourse-aware 239

commonsense inference, and the GLUCOSE set- 240

ting, which includes generalization. 241

3 Modeling 242

3.1 Task 243

Our general task is the following. We are 244

given a story S composed of n sentences, S = 245

{S1, S2, . . . , Sn} , a target sentence from that story, 246

St, where St ∈ S, and a dimension/relation type R. 247

Given all this, we want to generate a tuple in the 248

form of (subject, R, object) that represents an as- 249

sertion, present or implied, in St given the context 250

S, and the relation type R. 251

In our initial ParaCOMET experiments, we rep- 252

resent St with a unique token rather than repeating 253

the sentence. Additionally, we only generate the 254

object of the tuple. In our second set of experi- 255

ments, the T5 GLUCOSE experiments, we repre- 256

sent St by marking it with ∗ on the left and right of 257

the sentence. Additionally, we generate two tuples, 258

one that is the context-specific tuple, and the other 259

is the general tuple. We explain the experiments in 260

detail shortly. 261

3.2 Hinting 262

The mechanism we present in this work, called 263

hinting, is a kind of mixed/hybrid prompting for 264

generative language models. Prompting is essen- 265

tially supplying additional text (i.e. prompts) to a 266

language model to aid/guide it in a specific task. In 267

our case, we opt to give a “hint", as to what the as- 268

sertion that we want to predict contains, at the end 269

of our input text. This can be seen as a hybrid of 270

prompting the generative model with hard prompts 271

of parts of what it should predict along with soft 272

prompts of symbols that represent those parts. We 273

structure it this way such that, after training, when- 274

ever a hint is given, the model can be guided to 275

generate knowledge about the hint’s content. 276

To balance the model’s reliance on the context, 277

its knowledge, and the hint, we determine whether 278

to supply the hint by sampling a binomial distribu- 279

tion. Thus, we can control the frequency of when to 280

supply a hint (perhaps a lower frequency for easier 281
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Model Type Example Input Example Output

ParaCOMET

A dog is man’s best friend. Usually people go to walk dogs.
When walking dogs, people get free exercise in
addition to a breath of fresh air.
<|sent1|><|xWant|>

to get exercise

ParaCOMET
with Hint

A dog is man’s best friend. Usually people go to walk dogs.
When walking dogs, people get free exercise in addition to
a breath of fresh air.
<|sent1|><|xWant|>(<|subj|>A person is at the park)

to see other dogs

GLUCOSE
1: A dog is man’s best friend. *Usually people go to walk dogs.*
When walking dogs, people get free exercise in addition to a
breath of fresh air.

Person has a dog >Causes>Person to walk dogs **
Someone_A has Something_A (that is a dog) >Causes>
Someone_A to walk Something_A (that is a dog)

GLUCOSE
with Hint

1: A dog is man’s best friend. *Usually people go to walk dogs.*
When walking dogs, people get free exercise in addition to a
breath of fresh air.
(<|specific|><|subj|>A person is at the park)

A person is at the park >Causes>A person sees other dogs **
Someone_A is Somewhere_A (that is a park) >Causes>
Someone_A to see Something_A (that is a dog)

Table 1: Example of inputs for experiment set 1 (rows 1 and 2) and experiment set 2 (rows 3 and 4). In rows 2,4
we can see an example of what a hint could do. In row 2 we can see that giving the subject of “A person is at the
park" guides the model to a generation of wanting to see other dogs. In row 4 we can see a similar example but
with generalization. The hint is bolded in the examples.

tasks. and a higher frequency for harder tasks). Ad-282

ditionally, the content of the hint is determined by283

random sampling of permutations of components,284

up to a maximum of all but one component. Since285

our task is to predict the tuple, we do not want to286

make the model overly reliant on hints for the an-287

swer. This approach is relatively naive, however.288

In the future we can explore the freedom to con-289

struct more complex ways of supplying hints. In290

the section 4 we give details on how we use hints291

for our ParaCOMET and GLUCOSE experiments.292

3.3 An example of Hinting293

A simple example of hinting is the following:294

Story: A dog is man’s best friend. Usually peo-295

ple go to walk dogs. When walking dogs, people296

get free exercise in addition to a breath of fresh air.297

Target sentence: Usually people go to walk298

dogs.299

Target assertion: (subject: People, relation:300

are capable of, object: walking a dog.)301

A hint can be any permutation of the target as-302

sertion, except the complete assertion, along with303

some symbol that indicates which part it is:304

Possible Hints: (<|subj|> People), (<|subj|>305

People, <|rel|> capable of), (<|subj|> People,306

<|obj|> walking a dog), (<|rel|> Capable of,307

<|obj|> walking a dog), (<|obj|> Walking a dog),308

(<|rel|> Capable of)309

Putting everything altogether, a hint for the given310

story, target sentence and target assertion, yields311

the following:312

Hint: ( <|subj|> People, <|rel|> capable of)313

3.4 Models 314

For our first set of experiments, we utilize the Para- 315

COMET (Gabriel et al., 2021b) framing with a 316

BART(Lewis et al., 2020) model and a T5(Raffel 317

et al., 2020) model to observe the effects of hinting 318

in a sequence-to-sequence formulation. We use 319

the off the shelf pretrained “base" version of these 320

models for efficiency in the computations. We also 321

utilize the Huggingface Transformers (Wolf et al., 322

2019) library implementation of these models. For 323

our second set of experiments we utilize the T5 324

model in our experiments. In the next section we 325

give details on the setups that we utilize for each 326

set of experiments. 327

4 Experimental Setup 328

4.1 Experiment Description 329

We run two sets of experiments to show the ef- 330

fectiveness of hinting. The first is utilizing the 331

original ParaCOMET problem framing and adding 332

hints to this framing. This framing consists of 333

given a story S composed of n sentences, S = 334

{S1, S2, . . . , Sn}, a relation type R, and a target 335

sentence token (i.e. < |sent0| >, < |sent1| >, 336

. . . , < |sent(n − 1)| >), we must predict the ob- 337

ject of a triple, utilizing the sentence as a subject 338

and the supplied relation R. Within this framework, 339

after the relation R, we add our hint between paren- 340

thesis (i.e. “([hint])”). In this framing, our hint 341

can be composed of: a subject symbol along with 342

the target sentence (i.e., the subject of the triple), 343

a relation symbol along with the relation type or 344

dimension R, or an object symbol along with the 345
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object of the triple. Using the example in section346

3.3, a possible hint in this set of experiments would347

be: “(<|subj|> Usually people go to walk dogs,348

<|rel|> Capable of)".349

We utilize the same formulation as the original350

work only with a BART and T5 model. We note351

that the T5 and the BART model utilize a sequence-352

to-sequence(Sutskever et al., 2014) formulation,353

which requires encoding a source sequence, and354

decoding it into a target sequence whereas Para-355

COMET originally used a cross-entropy loss for356

the concatenation of the story, target sentence, re-357

lation, and object, and a GPT-2 model (Radford358

et al., 2019). For the T5 model, we add the prefix359

“source:” before the story S, and the prefix “hint:"360

for placing our hints, to be consistent with the pre-361

fix training that the T5 model has. For simplicity,362

we construct the same “heuristic""-based dataset363

that ParaCOMET which utilizes a heuristic match-364

ing technique to align ATOMIC(Sap et al., 2019)365

triples to story sentences.366

For our second set of experiments, we utilize the367

formulation utilized in GLUCOSE(Mostafazadeh368

et al., 2020b). The formulation utilizes the T5369

model in a sequence-to-sequence formulation once370

more. In this formulation, the source text is371

composed of a prefix of a dimension to predict372

D ∈ 1, 2, . . .101, followed by the story S with the373

marked target sentence. The target sentence, St, is374

marked with ∗ before and after the sentence. An375

example input is: “1: The first sentence. *The tar-376

get sentence. * The third sentence.". This task is377

slightly different from the ParaCOMET one, in that378

in addition to predicting a context specific triple,379

the model has to predict a generalized triple. In380

this task we have to infer a general and context381

specific subject, object and a relation. For our hints382

we provide up to five out of these six things, along383

with a symbol that represents whether it is the sub-384

ject, object, or relation, and another symbol that385

represents whether it is part of the general or spe-386

cific assertion. We add our hint after the story S,387

utilizing the prefix “hint:” and supplying the hint388

between parenthesis. In this set of experiments, an389

example of our hint can be, given the example in390

section 3.3: “(<|specific|> <|obj|> walking a dog,391

<|general|> <|obj|> walking something that is an392

animal)".393

1The definition for each dimension number is given in the
GLUCOSE work

4.2 Experiment Configuration 394

We run the first set of experiments for 3 epochs 395

on the dataset’s training data and evaluation data. 396

We utilize a max source sequence length for the 397

BART and T5 models of 256, and a max target 398

length of 128. Additionally, we use the ADAM 399

(Kingma and Ba, 2015) optimizer with a learning 400

rate of 2e-5, and a linear warm-up of 0.2 percent 401

of the total iterations. We utilize the same system 402

to generate the training data and testing data that 403

ParaCOMET uses. We also utilize a batch size of 4 404

for training. In this set of experiments we generate 405

our aggregation scores from the final score at the 406

end of every epoch. 407

We run the second set of experiments for 1 408

epochs on the data. Additionally, we utilize a linear 409

warm up of 3000 steps. We utilize the ADAM opti- 410

mizer with a learning rate of 1e-5, a train batch size 411

4, and a max source length of 1024 and max target 412

length of 384. We utilize the training and testing 413

data given by the GLUCOSE work. In this set of 414

experiments, we calculate the scores on the test set 415

every 2000 iterations and these are the scores we 416

utilize to report our aggregation. 417

In both experiments we report the scores given 418

by SacreBLEU(Post, 2018), ROUGE (Lin, 2004), 419

and METEOR(Banerjee and Lavie, 2005) using the 420

datasets library (Lhoest et al., 2021) metrics sys- 421

tem to get a sense of how good the commonsense 422

inferences are, and we run both experiments with 4 423

different variations or seeds each. 424

5 Results and Analysis 425

5.1 Experiments Set 1: ParaCOMET 426

formulation with hints 427

The aggregated results for this set of experiments 428

can be found in table 2. We can see here that on 429

average, hinting does tend to improve the score 430

even if slightly. It seems that providing a hint is 431

beneficial and not detrimental for contextual com- 432

monsense inference. We also notice that hinting has 433

very similar average and median values, which may 434

mean that performance is more consistent. This can 435

be expected as hinting is a mechanism to make the 436

model focus on generating inferences about what- 437

ever is provided on the hint, which may eliminate 438

spurious generations and make the overall outputs 439

more consistent. Given the way that this task is 440

framed, a possibility that could explain the rela- 441

tive similarity of the performances, is that hinting 442

only adds the object of the triple as additional pos- 443
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BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L ROUGE-L-SUM
Model No Hint Hint No Hint Hint No Hint Hint No Hint Hint No Hint Hint No Hint Hint
BART

(Average) 41.803 41.834 58.933 58.907 61.127 61.136 50.059 50.184 61.059 61.079 61.065 61.084

BART
(Median) 41.818 41.824 58.914 58.929 61.199 61.142 50.083 50.191 61.138 61.084 61.136 61.087

T5
(Average) 37.857 37.897 56.263 56.329 55.313 55.429 43.718 43.787 55.274 55.384 55.275 55.387

T5
(Median) 37.824 38.036 56.321 56.298 55.367 55.488 43.712 43.839 55.323 55.431 55.330 55.436

Table 2: Median and average scores for the first set of experiments utilizing the ParaCOMET formulation with and
without hinting. The largest scores are bolded.

Model BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L ROUGE-L-SUM
No Hint Hint No Hint Hint Hint Hint No Hint Hint No Hint Hint No Hint Hint

T5
(Avg. of Max) 40.242 44.367 40.550 43.069 53.881 56.209 34.702 36.817 50.321 52.61 50.329 52.617

T5
(Avg.) 30.237 32.147 33.953 34.761 46.925 47.562 28.334 28.791 43.32 44.08 43.330 44.083

T5
(Median) 33.578 36.002 36.163 36.787 49.787 50.496 30.864 31.479 46.149 47.257 46.143 47.293

Table 3: Results for the GLUCOSE formulation set of experiments. We include the average, median, and the
average of the maximum values per run. The largest scores are bolded.

sible data that the model may see during training;444

the subject and the relation can be repeated with445

hinting.446

5.2 Experiments Set 2: GLUCOSE447

formulation with hints448

The aggregated results for this set of experiments449

can be found in table 3. For this particular formu-450

lation we notice that hinting does tend to improve451

the performance when evaluating the average of452

the maximum scores per variation, the average,453

and median of the scores. This suggests that hint-454

ing is indeed beneficial for the task of contextu-455

alized commonsense inference, especially when456

faced with the harder task of generating both a gen-457

eral and context dependent assertion. We believe458

that this improvement is because hinting gives the459

model the clues it may need to decide on what to460

focus or attend to, to generate useful inferences.461

In our tests we noticed that the performance of462

the system tends to degrade over time (at least ac-463

cording to the automated metrics). Because of this,464

in addition to the median and average of our scores,465

we report the average of the maximum scores in466

our variations.467

5.3 Why hint?468

From the results in both sets of experiments, we469

can see that hinting tends to increase the perfor-470

mance of contextualized commonsense inference.471

However, in some cases, the performance increase472

is minimal. This brings the question of: Why hint 473

at all? The primary reason is for controllability in 474

the generation. By supplying these hints, we are 475

teaching the model pay attention and talk about a 476

certain subject, relation, or object. This in turn, 477

after training, can be leveraged by a user or down- 478

stream application to guide the model to generate 479

assertions from parts that they supply (i.e., if they 480

supply a subject, it will generate assertions of the 481

subject). Although this is not very clear within 482

the ParaCOMET formulation, it becomes clearer 483

in the GLUCOSE formulation of the problem. We 484

give an illustrative example of the usefulness of 485

hinting in table 1. We can see that by giving a 486

model the hint, the model could be capable of in- 487

ferring about information that may not be present 488

in the story. Although the effectiveness of this is 489

not explicitly tested in this work, we do note that 490

this behavior is useful in downstream tasks such 491

as story understanding and contextual knowledge 492

graph generation. 493

Lastly, hinting was designed to be simple to im- 494

plement, and is model independent. Given all of 495

these, there is very little work that has to be done to 496

incorporate hinting in the contextual commonsense 497

inference task. 498

5.4 Is hinting optimal? 499

This work was a proof of concept for this tech- 500

nique. We acknowledge there is a large body of 501

research on the area of prompting. The way the 502
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hinting mechanism was designed however, leaves503

much space to explore alternate mechanisms such504

as AutoPrompt(Shin et al., 2020), or including ad-505

ditional soft prompts such as those in Li and Liang506

(2021). Because of the naivety of the approach, we507

do not think it is an optimal approach, and there is508

a large body of research that points to manual tem-509

plating of prompts being less effective than learned510

prompts (Liu et al., 2021). However, from our tests,511

it does not degrade performance, and seems to only512

improve it.513

6 Future Work514

When designing the hinting system certain aspects515

were formulated to leave space for improvements.516

One area that can be improved upon is finding a517

smarter way of selecting when to hint, and finding518

a smarter way of selecting what to hint. In addition519

to this, more soft prompts could be added to the520

hint such that they would learn an optimal virtual521

template or soft-prompt that could improve even522

further performance on this task.523

Another area that is open for future work is pro-524

viding deeper ablation studies to determine what525

parts of the hint are more effective and when. This526

work is more a proof-of-concept that hinting, or527

more broadly prompting, is applicable towards this528

task of contextual commonsense inference. Further-529

more, given that models trained with hinting for530

contextual commonsense inference can be guided531

by the information supplied in hints, such models532

can be utilized in a variety of downstream applica-533

tions such as story understanding and contextual534

knowledge graph generation.535

7 Conclusion536

In this work we presented hinting, a simple hybrid537

prompting mechanism that consists of appending538

parts of a target tuple into an input sequence for539

the task of contextual commonsense inference. We540

showed that hinting tends to improve performance541

in automated metrics, and when it does not improve542

performance, it is comparable to not utilizing hint-543

ing. With this, we open the doors for exploring544

prompting within the realm of contextual common-545

sense inference.546
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