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Abstract

Generating commonsense assertions, given a
certain story context, is a tough challenge
even for modern language models. One of
the reasons for this may be that the model
has to “guess" what topic or entity in a story
to generate an assertion about. Prior work
has tackled part of the problem, by provid-
ing techniques to align commonsense infer-
ences with stories and training language gen-
eration models on these. However, none of
the prior work provides means to control the
parts of a generated assertion. In this work
we present “hinting", a data augmentation tech-
nique for improving inference of contextual-
ized commonsense assertions. Hinting is a
prefix prompting strategy that uses both hard
and soft prompts. We demonstrate the ef-
fectiveness of hinting by showcasing its ef-
fect on two contextual commonsense infer-
ence frameworks: ParaCOMET (Gabriel et al.,
2021a) and GLUCOSE (Mostafazadeh et al.,
2020a), for both general and context-specific
inference.

1 Introduction

The task of generating commonsense assertions
or facts, given a certain story context, while easy
for humans, remains challenging for machines
(Gabriel et al., 2021b). We define an assertion
as a tuple that contains a subject, a relation, and
an object (e.g., a dog, is a, animal), similar to a
subject-verb-object triple. As we will see, these
tuples can be contextual to a story or generally
applicable facts. Automated systems (such as pre-
trained transformer-based language models (Devlin
et al., 2019; Radford et al., 2019)) struggle with
generating these assertions, since there is an im-
plicit assumption that clues for making predictions
can always be found explicitly in the text. (Zhang
et al., 2021; Liu and Singh, 2004; Da and Kasai,
2019; Davison et al., 2019). This becomes prob-
lematic because the model is essentially forced to

use knowledge that it may not have seen during
pre-training. Additionally, models are forced to
guess what to predict about (i.e., what the subject
of an assertion is), which may lead to decreased
performance.

Previous attempts have tackled the problem of
contextual commonsense inference by construct-
ing datasets of stories aligned with assertions (i.e.
an assertion is given for a sentence in a story), ei-
ther through automated or human-annotated ways.
One previous attempt to tackle this problem, Para-
COMET (Gabriel et al., 2021b), trained a GPT-2
language model (Radford et al., 2019) to infer the
object of a commonsense assertion tuple. Given
a story and a sentence identifier token, along with
a specified relation, the model has to predict the
object of a commonsense assertion.

Another work that tries to approach this is GLU-
COSE (Mostafazadeh et al., 2020b). Here a dataset
is constructed to consist of stories and human an-
notations for sentences in the stories. The human
annotations provide specific and general common-
sense assertions. The authors utilize this dataset to
train a T5 (Raffel et al., 2020) model to perform
contextualized and generalized story assertion in-
ference. The model takes an input sequence in the
form of a story, a relation to predict, and a target
sentence, and has to predict both the general and
specific assertions that may be present in the target
sentence with the given story context.

In both works, the models are expected to do
their inference from the story, a target sentence,
and relation dimension alone. In the case of Para-
COMET, it is expected to predict an object of a
specific assertion, and in the case of GLUCOSE,
the model is expected to predict both a specific and
a general assertion. In either case, this forces the
model to rely on knowledge that it may not have
seen and it has to guess what to “talk" about.

Recently, there has been work on exploring
prompting (Liu et al., 2021), which is essentially



finding ways of altering the input to a language
model such that it matches templates that it has
seen during pre-training. This gives stronger per-
formance in tasks, can help with controllability in
the case of text generation, and is more parameter-
efficient and data-efficient than fine-tuning, in some
cases (Li and Liang, 2021). One novel type of
prompting is prefix prompting (Li and Liang, 2021;
Lester et al., 2021). Prefix prompting consists of
modifying a language model’s input (i.e. prefix)
by adding additional words. These words can be
explicit hard prompts (i.e., actual words such as
“give a happy review") or they can be soft prompts,
embeddings that are input into a model and can
be trained to converge on some virtual template or
virtual prompt that can help the model.

Prompting holds great potential for improving
contextualized commonsense inference. We intro-
duce the idea of a hint, a hybrid of hard and soft
prompts. We define a hint as the part(s) of an asser-
tion that a model has to predict, along with special
identifiers for these parts, wrapped within paren-
thesis characters. Syntactically, a hint would take
the form of: “( [subject symbol,subject], [relation
symbol,relation], [object symbol,object] )" where
the actual content of the hint between the paren-
thesis would be a permutation of all but one of the
elements in the target tuple. For example, a hint
would be “(<lIsubjl>a dog, <lobjl>an animal)") for
predicting the tuple “(a dog, is an, animal)". Hints
are provided by sampling a binomial distribution
for each element in a minibatch, which determines
whether to give a hint or not. The actual content of
the hint would then be generated by randomly sam-
pling without replacement up to all but one of the
elements in a target tuple. We give a more detailed
description of hinting in section 3.2 and 3.3.

We hypothesize that this scheme of hinting
strikes a balance between the model recalling infor-
mation that it may have seen, with information that
it may not have seen, that may only be present in the
target tuple. Additionally, by providing and train-
ing on the combination of hard and soft prompts, a
generative language model can be guided to “talk"
about a certain subject, object, or relation. We note
that the approach was designed to be simple to
implement, and to give control when generating
text. In the following sections, we give some back-
ground on prompting, controllability, and the task
of contextual commonsense inference. We follow
this by a set of experiments to show the effects

of hinting within the framing of ParaCOMET and
GLUCOSE, and finally, analyze the results, and
present future directions for this work. Concretely,
our contributions are:

* A hybrid prefix prompting technique called
hinting that provides a partial assertion to aug-
ment data for contextual commonsense infer-
ence, and

* Demonstrating that hinting does in fact im-
prove the performance for contextual com-
monsense inference as measured by auto-
mated metrics.

2 Related Work
2.1 Prompting

Recently, there has been a shift in paradigm in Nat-
ural Language Processing from pre-training and
fine-tuning a model, to pre-training, prompting, and
predicting (Liu et al., 2021). One primary reason
for this shift is the creation of ever-larger language
models, which have become computationally ex-
pensive to fine-tune. Prompting can be described as
converting a pre-trained language model input se-
quence into another sequence that resembles what
the language model has seen during pre-training.
Overall, most prompting research is focused on
formulating the task as a cloze (fill-in-the-blanks)
task. However, we consider the task of language
generation, an open-ended formulation.

Recall that prefix prompting modifies the in-
put to a language model, by adding either a
hard prompt (additional words to the input se-
quence)(Shin et al., 2020) or a soft prompt (i.e.,
adding trainable vectors that represent, but are
not equivalent to, additional words) (Li and Liang,
2021; Lester et al., 2021; Liu et al., 2021).

Unlike classic prefix prompting, hinting uses
both hard and soft prompts. The soft prompts are
in the form of symbols that represent the different
parts of the assertion (i.e., subject, relation type,
and object), and the hard prompts are in the form of
the actual parts of the assertion that are selected to
be appended as part of the hint. Our work is similar
to KnowPrompt(Chen et al., 2021), except that they
use a masked language model and soft prompts for
relationship extraction. AutoPrompt (Shin et al.,
2020) is also similar, but finds a set of “trigger"
words that give the best performance on a cloze-
related task, whereas we provide specific structured
input for the model to guide text generation.



2.2 Controllable Generation

Controllable generation can be described as ways
to control a language model’s text generation given
some kind of guidance. One work that tries to im-
plement controllable generation is CTRL (Keskar
et al., 2019). The authors supply control signals
during pre-training of a language model. This ap-
proach is intended to provide a generally applicable
language model. A body of work in controllable
generation has focused on how it can be used for
summarization. Representative work that uses tech-
niques similar to ours is GSum (Dou et al., 2021).
In contrast to GSum, our method is model inde-
pendent, allows for the source document to interact
with the guidance signal, and contains soft prompts
in the form of trainable embeddings that represent
the parts of a tuple. The GSum system gives in-
teresting insight into the fact that highlighted sen-
tences, and the provision of triples, does in fact help
with the factual correctness of abstractive summa-
rization.

2.3 Discourse-aware/Contextual
commonsense inference

Commonsense inference is the task of gener-
ating a commonsense assertion.  Discourse-
aware/contextual commonsense inference is the
task of, given a certain narrative or discourse, in-
fering commonsense assertions that are coherent
within the narrative(Gabriel et al., 2021a). This task
is particularly hard because commonsense knowl-
edge may not be explicitly stated in text (Liu and
Singh, 2004) and the model needs to keep track of
entities and their states either explicitly or implic-
itly. Research into the knowledge that pre-trained
language models learn has yielded good results
in that they do contain various types of factual
knowledge, as well as some commonsense knowl-
edge(Da and Kasai, 2019; Petroni et al., 2019; Davi-
son et al., 2019). The amount of commonsense
knowledge in these models can be improved by
supplementing sparsely covered subject areas with
structured knowledge sources such as ConceptNet
(Speer et al., 2017; Davison et al., 2019).
Knowing that these pre-trained language mod-
els may contain some commonsense information
has led to the development of knowledge models
such as COMET(Bosselut et al., 2019). This line of
research has been extended from the sentence-by-
sentence level in COMET, to the paragraph-level
in ParaCOMET (Gabriel et al., 2021a). Contempo-

raneously, GLUCOSE Mostafazadeh et al. (2020a)
builds a dataset of commonsense assertions that are
contextualized to a set of stories, and generalized
(e.g., John is a human is generalized to Someone_A
is a human).

In this work, we explore the effect of hinting, in
both the ParaCOMET setting for discourse-aware
commonsense inference, and the GLUCOSE set-
ting, which includes generalization.

3 Modeling
3.1 Task

Our general task is the following. We are
given a story S composed of n sentences, S =
{51, 52,...,5,}, atarget sentence from that story,
St, where S; € S, and a dimension/relation type R.
Given all this, we want to generate a tuple in the
form of (subject, R, object) that represents an as-
sertion, present or implied, in S; given the context
S, and the relation type R.

In our initial ParaCOMET experiments, we rep-
resent S; with a unique token rather than repeating
the sentence. Additionally, we only generate the
object of the tuple. In our second set of experi-
ments, the TS GLUCOSE experiments, we repre-
sent .S; by marking it with * on the left and right of
the sentence. Additionally, we generate two tuples,
one that is the context-specific tuple, and the other
is the general tuple. We explain the experiments in
detail shortly.

3.2 Hinting

The mechanism we present in this work, called
hinting, is a kind of mixed/hybrid prompting for
generative language models. Prompting is essen-
tially supplying additional text (i.e. prompts) to a
language model to aid/guide it in a specific task. In
our case, we opt to give a “hint", as to what the as-
sertion that we want to predict contains, at the end
of our input text. This can be seen as a hybrid of
prompting the generative model with hard prompts
of parts of what it should predict along with soft
prompts of symbols that represent those parts. We
structure it this way such that, after training, when-
ever a hint is given, the model can be guided to
generate knowledge about the hint’s content.

To balance the model’s reliance on the context,
its knowledge, and the hint, we determine whether
to supply the hint by sampling a binomial distribu-
tion. Thus, we can control the frequency of when to
supply a hint (perhaps a lower frequency for easier



Model Type | Example Input Example Output
A dog is man’s best friend. Usually people go to walk dogs.
When walking dogs, people get free exercise in .
ParaCOMET addition to a l%reat%l orf) fre?sh fir‘ to get exercise
<Isentll><IxWantl>
A dog is man’s best friend. Usually people go to walk dogs.
ParaCOMET | When walking dogs, people get free exercise in addition to to see other doas
with Hint a breath of fresh air. &
<IsentlI><IxWant/>(<Isubjl>A person is at the park)
1: A dog is man’s best friend. *Usually people go to walk dogs.* | Person has a dog >Causes>Person to walk dogs **
GLUCOSE When walking dogs, people get free exercise in addition to a Someone_A has Something_A (that is a dog) >Causes>
breath of fresh air. Someone_A to walk Something_A (that is a dog)
1: A dog is man’s best friend. *Usually people go to walk dogs.* .
GLUCOSE When V\:galking dogs, people get free ezefcisre) ing;\ddition toa ¢ A person is at the park >Causes>A person sees other dogs **
with Hint breath of fresh air. Someone_A is Somewhere_A (that is a park) >Causes>

(<Ispecificl><Isubjl>A person is at the park)

Someone_A to see Something_A (that is a dog)

Table 1: Example of inputs for experiment set 1 (rows 1 and 2) and experiment set 2 (rows 3 and 4). In rows 2,4
we can see an example of what a hint could do. In row 2 we can see that giving the subject of “A person is at the
park" guides the model to a generation of wanting to see other dogs. In row 4 we can see a similar example but
with generalization. The hint is bolded in the examples.

tasks. and a higher frequency for harder tasks). Ad- 3.4

Models

ditionally, the content of the hint is determined by
random sampling of permutations of components,
up to a maximum of all but one component. Since
our task is to predict the tuple, we do not want to
make the model overly reliant on hints for the an-
swer. This approach is relatively naive, however.
In the future we can explore the freedom to con-
struct more complex ways of supplying hints. In
the section 4 we give details on how we use hints
for our ParaCOMET and GLUCOSE experiments.

3.3 An example of Hinting

A simple example of hinting is the following:

Story: A dog is man’s best friend. Usually peo-
ple go to walk dogs. When walking dogs, people
get free exercise in addition to a breath of fresh air.

Target sentence: Usually people go to walk
dogs.

Target assertion: (subject: People, relation:
are capable of, object: walking a dog.)

A hint can be any permutation of the target as-
sertion, except the complete assertion, along with
some symbol that indicates which part it is:

Possible Hints: (<lsubjl> People), (<|subjl>
People, <lrell> capable of), (<lsubjl> People,
<lobjl> walking a dog), (<lrell> Capable of,
<lobjl> walking a dog), (<lobjl> Walking a dog),
(<lIrell> Capable of)

Putting everything altogether, a hint for the given
story, target sentence and target assertion, yields
the following:

Hint: ( <lsubjl> People, <lrell> capable of)

For our first set of experiments, we utilize the Para-
COMET (Gabriel et al., 2021b) framing with a
BART(Lewis et al., 2020) model and a T5(Raffel
et al., 2020) model to observe the effects of hinting
in a sequence-to-sequence formulation. We use
the off the shelf pretrained “base" version of these
models for efficiency in the computations. We also
utilize the Huggingface Transformers (Wolf et al.,
2019) library implementation of these models. For
our second set of experiments we utilize the T5
model in our experiments. In the next section we
give details on the setups that we utilize for each
set of experiments.

4 Experimental Setup

4.1 Experiment Description

We run two sets of experiments to show the ef-
fectiveness of hinting. The first is utilizing the
original ParaCOMET problem framing and adding
hints to this framing. This framing consists of
given a story S composed of n sentences, S =
{51, 52,...,5,}, a relation type R, and a target
sentence token (i.e. < [sent0| >, < |sentl| >,
ooy < |sent(n — 1)| >), we must predict the ob-
ject of a triple, utilizing the sentence as a subject
and the supplied relation 2. Within this framework,
after the relation R, we add our hint between paren-
thesis (i.e. “([hint])”). In this framing, our hint
can be composed of: a subject symbol along with
the target sentence (i.e., the subject of the triple),
a relation symbol along with the relation type or
dimension R, or an object symbol along with the



object of the triple. Using the example in section
3.3, a possible hint in this set of experiments would
be: “(<lsubjl> Usually people go to walk dogs,
<Irell> Capable of)".

We utilize the same formulation as the original
work only with a BART and T5 model. We note
that the T5 and the BART model utilize a sequence-
to-sequence(Sutskever et al., 2014) formulation,
which requires encoding a source sequence, and
decoding it into a target sequence whereas Para-
COMET originally used a cross-entropy loss for
the concatenation of the story, target sentence, re-
lation, and object, and a GPT-2 model (Radford
et al., 2019). For the T5 model, we add the prefix
“source:” before the story .S, and the prefix “hint:"
for placing our hints, to be consistent with the pre-
fix training that the T5 model has. For simplicity,
we construct the same “heuristic""-based dataset
that ParaCOMET which utilizes a heuristic match-
ing technique to align ATOMIC(Sap et al., 2019)
triples to story sentences.

For our second set of experiments, we utilize the
formulation utilized in GLUCOSE(Mostafazadeh
et al., 2020b). The formulation utilizes the T5
model in a sequence-to-sequence formulation once
more. In this formulation, the source text is
composed of a prefix of a dimension to predict
D €1,2,...10!, followed by the story S with the
marked target sentence. The target sentence, Sy, is
marked with x before and after the sentence. An
example input is: “1: The first sentence. *The tar-
get sentence. * The third sentence.”. This task is
slightly different from the ParaCOMET one, in that
in addition to predicting a context specific triple,
the model has to predict a generalized triple. In
this task we have to infer a general and context
specific subject, object and a relation. For our hints
we provide up to five out of these six things, along
with a symbol that represents whether it is the sub-
ject, object, or relation, and another symbol that
represents whether it is part of the general or spe-
cific assertion. We add our hint after the story .S,
utilizing the prefix “hint:” and supplying the hint
between parenthesis. In this set of experiments, an
example of our hint can be, given the example in
section 3.3: “(<Ispecificl> <lobjl> walking a dog,
<lIgenerall> <lobjl> walking something that is an
animal)".

!The definition for each dimension number is given in the
GLUCOSE work

4.2 Experiment Configuration

We run the first set of experiments for 3 epochs
on the dataset’s training data and evaluation data.
We utilize a max source sequence length for the
BART and T5 models of 256, and a max target
length of 128. Additionally, we use the ADAM
(Kingma and Ba, 2015) optimizer with a learning
rate of 2e-5, and a linear warm-up of 0.2 percent
of the total iterations. We utilize the same system
to generate the training data and testing data that
ParaCOMET uses. We also utilize a batch size of 4
for training. In this set of experiments we generate
our aggregation scores from the final score at the
end of every epoch.

We run the second set of experiments for 1
epochs on the data. Additionally, we utilize a linear
warm up of 3000 steps. We utilize the ADAM opti-
mizer with a learning rate of le-5, a train batch size
4, and a max source length of 1024 and max target
length of 384. We utilize the training and testing
data given by the GLUCOSE work. In this set of
experiments, we calculate the scores on the test set
every 2000 iterations and these are the scores we
utilize to report our aggregation.

In both experiments we report the scores given
by SacreBLEU(Post, 2018), ROUGE (Lin, 2004),
and METEOR (Banerjee and Lavie, 2005) using the
datasets library (Lhoest et al., 2021) metrics sys-
tem to get a sense of how good the commonsense
inferences are, and we run both experiments with 4
different variations or seeds each.

5 Results and Analysis

5.1 Experiments Set 1: ParaCOMET
formulation with hints

The aggregated results for this set of experiments
can be found in table 2. We can see here that on
average, hinting does tend to improve the score
even if slightly. It seems that providing a hint is
beneficial and not detrimental for contextual com-
monsense inference. We also notice that hinting has
very similar average and median values, which may
mean that performance is more consistent. This can
be expected as hinting is a mechanism to make the
model focus on generating inferences about what-
ever is provided on the hint, which may eliminate
spurious generations and make the overall outputs
more consistent. Given the way that this task is
framed, a possibility that could explain the rela-
tive similarity of the performances, is that hinting
only adds the object of the triple as additional pos-



BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L ROUGE-L-SUM

Model No Hint Hint No Hint Hint No Hint Hint No Hint Hint No Hint Hint No Hint Hint

BART 41.803 | 41.834 | 58.933 | 58.907 61.127 | 61.136 | 50.059 | 50.184 | 61.059 | 61.079 | 61.065 61.084
(Average)

(h]}II:(}:gn) 41.818 | 41.824 | 58914 | 58.929 | 61.199 | 61.142 | 50.083 | 50.191 | 61.138 | 61.084 | 61.136 | 61.087

T5 37.857 | 37.897 | 56.263 | 56.329 | 55313 | 55.429 | 43.718 | 43.787 | 55.274 | 55.384 | 55.275 | 55.387
(Average)

(Mgisian) 37.824 | 38.036 | 56.321 56.298 | 55.367 | 55.488 | 43.712 | 43.839 | 55.323 | 55.431 55.330 | 55.436

Table 2: Median and average scores for the first set of experiments utilizing the ParaCOMET formulation with and

without hinting. The largest scores are bolded.

Model BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L ROUGE-L-SUM

No Hint Hint No Hint Hint Hint Hint No Hint Hint No Hint Hint No Hint Hint
(Avg ’(l‘)fMaX) 40.242 | 44.367 | 40.550 | 43.069 | 53.881 | 56.209 | 34.702 | 36.817 | 50.321 52.61 50.329 | 52.617
( A'I“, i’ ) 30.237 | 32.147 | 33.953 | 34.761 | 46.925 | 47.562 | 28.334 | 28.791 43.32 44.08 43.330 | 44.083
(M;I;isian) 33.578 | 36.002 | 36.163 | 36.787 | 49.787 | 50.496 | 30.864 | 31.479 | 46.149 | 47.257 | 46.143 | 47.293

Table 3: Results for the GLUCOSE formulation set of experiments. We include the average, median, and the
average of the maximum values per run. The largest scores are bolded.

sible data that the model may see during training;
the subject and the relation can be repeated with
hinting.

5.2 Experiments Set 2: GLUCOSE
formulation with hints

The aggregated results for this set of experiments
can be found in table 3. For this particular formu-
lation we notice that hinting does tend to improve
the performance when evaluating the average of
the maximum scores per variation, the average,
and median of the scores. This suggests that hint-
ing is indeed beneficial for the task of contextu-
alized commonsense inference, especially when
faced with the harder task of generating both a gen-
eral and context dependent assertion. We believe
that this improvement is because hinting gives the
model the clues it may need to decide on what to
focus or attend to, to generate useful inferences.

In our tests we noticed that the performance of
the system tends to degrade over time (at least ac-
cording to the automated metrics). Because of this,
in addition to the median and average of our scores,
we report the average of the maximum scores in
our variations.

5.3 Why hint?

From the results in both sets of experiments, we
can see that hinting tends to increase the perfor-
mance of contextualized commonsense inference.
However, in some cases, the performance increase

is minimal. This brings the question of: Why hint
at all? The primary reason is for controllability in
the generation. By supplying these hints, we are
teaching the model pay attention and talk about a
certain subject, relation, or object. This in turn,
after training, can be leveraged by a user or down-
stream application to guide the model to generate
assertions from parts that they supply (i.e., if they
supply a subject, it will generate assertions of the
subject). Although this is not very clear within
the ParaCOMET formulation, it becomes clearer
in the GLUCOSE formulation of the problem. We
give an illustrative example of the usefulness of
hinting in table 1. We can see that by giving a
model the hint, the model could be capable of in-
ferring about information that may not be present
in the story. Although the effectiveness of this is
not explicitly tested in this work, we do note that
this behavior is useful in downstream tasks such
as story understanding and contextual knowledge
graph generation.

Lastly, hinting was designed to be simple to im-
plement, and is model independent. Given all of
these, there is very little work that has to be done to
incorporate hinting in the contextual commonsense
inference task.

5.4 Is hinting optimal?

This work was a proof of concept for this tech-
nique. We acknowledge there is a large body of
research on the area of prompting. The way the




hinting mechanism was designed however, leaves
much space to explore alternate mechanisms such
as AutoPrompt(Shin et al., 2020), or including ad-
ditional soft prompts such as those in Li and Liang
(2021). Because of the naivety of the approach, we
do not think it is an optimal approach, and there is
a large body of research that points to manual tem-
plating of prompts being less effective than learned
prompts (Liu et al., 2021). However, from our tests,
it does not degrade performance, and seems to only
improve it.

6 Future Work

When designing the hinting system certain aspects
were formulated to leave space for improvements.
One area that can be improved upon is finding a
smarter way of selecting when to hint, and finding
a smarter way of selecting what to hint. In addition
to this, more soft prompts could be added to the
hint such that they would learn an optimal virtual
template or soft-prompt that could improve even
further performance on this task.

Another area that is open for future work is pro-
viding deeper ablation studies to determine what
parts of the hint are more effective and when. This
work is more a proof-of-concept that hinting, or
more broadly prompting, is applicable towards this
task of contextual commonsense inference. Further-
more, given that models trained with hinting for
contextual commonsense inference can be guided
by the information supplied in hints, such models
can be utilized in a variety of downstream applica-
tions such as story understanding and contextual
knowledge graph generation.

7 Conclusion

In this work we presented hinting, a simple hybrid
prompting mechanism that consists of appending
parts of a target tuple into an input sequence for
the task of contextual commonsense inference. We
showed that hinting tends to improve performance
in automated metrics, and when it does not improve
performance, it is comparable to not utilizing hint-
ing. With this, we open the doors for exploring
prompting within the realm of contextual common-
sense inference.
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