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ABSTRACT

Beyond point predictions, conformal prediction provides prediction sets that enjoy
finite-sample probability coverage guarantees, but only at the population level. In
practice, prediction sets can under- or over-cover in subpopulations, limiting their
usability for individual predictions. To address this issue, we propose CONFLO,
a conformal prediction framework that integrates conditional normalizing flows
(CNF) with a novel form of regularization. The anchoring idea is to transform raw
nonconformity scores through a feature-dependent bijection into new scores that
are (nearly) independent of the inputs. Since independence cannot be perfectly
achieved in practice, we add a quantile-aligning penalty to the loss function as
an additional tactic to enforce common conditional coverage across user-specified
groups. Experiments on diverse datasets demonstrate that CONFLO improves
conditional coverage across subpopulations and sizes of prediction sets compared
to baseline methods and competitors like APS and RAPS.

1 INTRODUCTION

Conformal prediction is a widely adopted method in supervised learning for constructing prediction
sets with distribution-free, finite-sample coverage guarantees. The method is especially appealing in
high-stakes applications where robustness and reliability of outcome prediction are essential. How-
ever, conformal prediction guarantees only marginal coverage. That is, the prediction set contains
the true outcome with the desired probability when averaged over the population of test points. In
many applications, we would prefer a stronger guarantee called conditional coverage, meaning that
the coverage probability is achieved in each subpopulation of interest, say, when conditioning on a
particular input value. Unfortunately, it has been shown theoretically that exact conditional coverage
is unattainable in a distribution-free and finite-sample setting (Vovk, 2012b; Barber et al., 2019).

This finding has motivated a series of approximations of the conditional coverage condition. An-
drews & Shi (2013) showed that conditional moment restrictions can be reformulated as uncon-
ditional ones through carefully chosen instrument functions, an idea that later inspired functional
relaxations of conditional coverage. Vovk (2012a) formalized several notions of conditional validity
and established the impossibility of exact object-conditional guarantees, highlighting the need for
approximate alternatives. Building on these, Hebert-Johnson et al. (2018) introduced multicalibra-
tion, requiring calibration across all computationally identifiable subgroups, thereby strengthening
conditional reliability. More recently, Gibbs et al. (2024) unified these directions by casting condi-
tional coverage as a family of moment conditions, yielding exact guarantees for each subgroup if
there is a finite number of them, and approximate guarantees in more general settings.

Focusing on achieving good conditional coverage in practice, Romano et al. (2020) proposed Adap-
tive Prediction Sets (APS), which replace fixed score thresholds with adaptive stopping rules along
the ordered list of class probabilities, thereby reducing excessive set sizes in easy cases while still
maintaining coverage. Extending this idea, Angelopoulos et al. (2022) developed Regularized Adap-
tive Prediction Sets (RAPS), which combine APS with penalties on large or redundant sets and
optional inclusion of low-probability “buffer” classes. RAPS achieves tighter and more stable con-
ditional coverage, especially in multi-class and high-dimensional problems such as image classifi-
cation.

For another work that is highly related to this paper, Colombo (2024) introduced a Normalizing
Flow (NF) based framework for conformal regression when the outcome variable is continuous and

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

one-dimensional. Their method learns a feature-dependent transformation of the residuals, which
serve as the nonconformity scores, by fitting an NF that transforms the joint distribution of the
residuals and the features into a representation that has near independence between a new score and
the features. This produces prediction intervals that adapt to local heteroscedasticity.

Our approach, CONFLO, is inspired by the same principle of using flow transformations to nearly
eliminate the dependence of non-conformity scores on features, but differs in two key aspects: (i)
CONFLO is applicable to outcomes of any type, including one and multi-dimensional numerical,
and categorical ones. This is achieved as follows: instead of applying an NF to the joint distribution
of residuals and the input, CONFLO applies a CNF to any user-chosen nonconformity score condi-
tional on the input; (ii) Rather than depending entirely on the transformation for near-independence,
CONFLO pushes for groupwise quantile alignment by adding a penalty term to the training objec-
tive of the CNF. After all, CONFLO uses all calibration data to form a single threshold, yielding
prediction sets with near-nominal conditional coverage.

(a) Marginal coverage.
Closer to nominal is better.

(b) Prediction set size.
Smaller value is better.

(c) SSCV.
Smaller value is better.

Figure 1: Empirical coverage, average set size and SSCV across three methods designed to provide
conditional coverage: APS, RAPS, and CONFLO. All methods use a transformer encoder (Dis-
tilBERT) with a linear head. Results shown are from 20 random splits of AG News dataset into
training, calibration and testing

.

For an example, Figure 1 summarizes the performance of APS, RAPS, and CONFLO when applied
to an AG News dataset (Li, 2024). The dataset contained the title and description of 20,000 news
pieces represented as text features (x), with class labels (y) taking values in World, Sports,
Business, or Sci/Tech. Panel (a) demonstrates near-target coverage across methods, with
APS and RAPS overshooting and CONFLO aligning closely. Panel (b) highlights CONFLO ’s
efficiency, producing smaller sets while maintaining coverage. Panel (c) displays a metric called
SSCV introduced in Angelopoulos et al. (2022) and defined in equation 7, which is the maximum
deviation from the nominal coverage level of any subgroup by prediction set size. Overall, we can
see significant improvement in marginal coverage, prediction size and conditional coverage by the
propsed CONFLO. More empirical examples that shows similar results are provided in Section 4.

2 CONFLO: CONFORMAL PREDICTION WITH CONDITIONAL COVERAGE
VIA NORMALIZING FLOW

2.1 PROBLEM SETUP

Let X denote the input (feature) space and Y the outcome space. D = {(xi, yi)}ni=1 is an i.i.d
random sample from some joint population distribution P over X ×Y . The objective is to construct
a prediction set, Ĉα(x) ⊆ Y , for a new subject drawn from the population with feature x, that
provides a set of plausible values of its corresponding outcome, y, beyond a single point prediction.
The standard requirement for a prediction set is marginal probability coverage:

P{Y ∈ Ĉα(X)} ≥ 1− α . (1)

A stronger goal is to also achieve (approximate) conditional coverage:

P{Y ∈ Ĉα(X) | X = x} ≈ 1− α ∀ x ∈ X .

2
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To obtain marginal coverage, a most common approach is the split conformal approach (Papadopou-
los et al., 2002; Vovk et al., 2005; Lei et al., 2015). Briefly, the approach first split D into a training
set, Dtrain, used to fit a predictive model f̂ , and a calibration set, Dcal, used to quantify the un-
certainty of f̂ via a key term called non-conformity scores, which we denote by a(f̂ ,x, y). Taking
the classification problem with Y = {1, . . . ,K} for example, the classifier can be represented as
f̂(x) = (f̂1(x), · · · , f̂K(x)) where f̂k(x) denotes the predicted probability of the subject belonging
to the class k. A commonly used nonconformity score is then given by

a(f̂ ,x, y) = − log
(
f̂y(x)

)
. (2)

Let Q1−α be the
(
n+1
n (1− α)

)
th empirical quantile1 of {Ai = a(f̂ ,xi, yi), i ∈ Dcal}. Then for a

new input x, the prediction set,

Ĉα(x) = {y ∈ Y : a(f̂ ,x, y) ≤ Q1−α} = {y ∈ Y : − log
(
f̂y(x)

)
≤ Q1−α} ,

satisfies the marginal coverage property as defined in equation 1. In words, the prediction set consists
of all classes whose scores fall below the “global” quantile threshold, Q1−α.

Note that the distribution of A | X = x typically depends on x and can vary substantially across dif-
ferent feature values. Hence the quantiles Q(1−α,x) of subpopulations, A|X = x, will deviate from
the global quantile (the population version of Q1−α). Consequently, using the same threshold Q1−α

to form prediction sets for x across regions of X will lead to under-coverage in some subpopula-
tions and over-coverage in others. To address this issue, prior work has relied on coarse, subjective
partitioning of the data by x or y values, fitting separate quantiles within each group. In contrast,
our method CONFLO first transforms the score A into a new score B that is nearly independent of
X, so that the new score across different x share the same conditional distribution hence common
global quantile. This yields two key benefits: greater efficiency by using all data to estimate one
common quantile at any chosen level (1−α) in calibration, and prediction sets that (nearly) achieve
conditional coverage for new subjects.

Below, we describe how this transformation can be trained to achieve near independence in a CNF
framework and a novel penalty function.

2.2 TRANSFORMATIONS TOWARDS INDEPENDENCE

Bogachev et al. (2005) has shown that there always exists a strictly monotone map t⋆(a,x) such that
the transformed scores

B = t⋆(A,X)

satisfy the distributional invariance,

FB|X=x(b | x) = FB(b), ∀ x ∈ X , b ∈ R.

In this ideal case, marginal and conditional distributions coincide, and exact conditional cover-
age follows. Since the ideal transformation t⋆ is unknown, we resort to a parametric family
{tθ(a,x) : θ ∈ Θ} and assume that t⋆ can be well-approximated within it. Furthermore, rather
than conditioning on the full high-dimensional input x, one may use a lower-dimensional represen-
tation h(x) learned during training. Such dimensionality reduction can stabilize the training of t and
yield closer approximations to conditional coverage across levels of h(x). To simplify notation, we
use x from now on to denote either the full vector of features or a reduced representation, omitting
explicit reference to h(x).

2.2.1 CONDITIONAL NORMALIZING FLOWS

We approximate the ideal transformation t⋆ via CNF (Chen et al., 2019; Kingma & Dhariwal, 2018;
Winkler et al., 2019), which is a family of invertible and differentiable mappings that can transform
a collection of random vectors with complex conditional distributions to user-specified base distri-
butions. Each CNF transformation is determined by a vector of parameters θ, and the transformed

1Here, the p−th empirical quantile of a set is defined to be the ⌈p⌉th smallest order statistic of the set, where
⌈·⌉ is the ceiling function.
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scores are b = tθ(a,x). In the context of transforming non-conformity scores, a natural additional
requirement is that the ordering of the scores are retained, that is, tθ should be strictly monotone in
a.

There are many designs of CNFs, and for monotone transformations of one-dimensional scores we
adopt conditional affine coupling layers (Dinh et al., 2016; Papamakarios et al., 2021). For a raw
nonconformity score a and features x, the transformation to the new score b is

b = a · exp
(
σθ(x)

)
+ µθ(x), (3)

where σθ(·) and µθ(·) are neural networks that serve as flexible, feature-specific scale and shift
terms. The exponential factor guarantees positivity, ensuring the mapping from a to b is strictly
increasing, as required.

By the change-of-variables formula, the conditional density of a given x is

pA|x(a | x) = pB
(
tθ(a,x)

) ∣∣∣ ∂
∂a tθ(a,x)

∣∣∣,
where pB is the chosen base density (e.g., standard normal or logistic) that is free of x. Accordingly,
the negative log-likelihood for a data point (ai,xi) is

ℓθ(ai,xi) = − log pB
(
tθ(ai,xi)

)
− log

∣∣∣ ∂
∂a tθ(ai,xi)

∣∣∣.
The parameters θ are estimated by minimizing the negative log-likelihood (NLL) of the transformed
scores against the base density, which is

LNLL(θ) = −
∑

i∈Dcal

[
log pB

(
tθ(ai,xi)

)
+ log

∣∣∂atθ(ai,xi)
∣∣]. (4)

A primary objective of finding θ that minimizes LNLL is to align the conditional distribution pB|X=x

with the common base density pB for all x. The specific choice of pB is not crucial, as was confirmed
in experiments that we conducted.

2.3 QUANTILE ALIGNMENT REGULARIZATION

While the flexibility of neural networks, σθ(·) and µθ(·), enables CNFs to approximate the ideal
transformation, their parameters θ are fitted using a finite sample of calibration data, and the inde-
pendence of B from X can not be perfectly achieved. In practice, residual dependence can persist
and lead to coverage disparities across different regions of the feature space. To address this, we
develop a quantile alignment (QA) regularizer.

Specifically, we partition the representation space into G groups (e.g., via k-means clustering).
Within each group g, we compute the empirical (1 − α)-quantile of the transformed scores in the
calibration set, denoted by Qg , for g = 1, . . . , G. If the conditional distribution of B|X were per-
fectly aligned across groups, all Qg would coincide. Deviations among these groupwise quantiles
therefore serve as a measure of residual dependence on X, and we aim to reduce it. Specifically, we
define the QA penalty corresponding to the quantiles resulted from a given parameter value θ as

LQA =
1

G

G∑
g=1

(
Qg −Q

)2
, where Q = 1

G

G∑
g=1

Qg .

We modify the training of the CNF, tθ, from searching for θ̂ that minimizes the negative loglikeli-
hood in equation 4 to that of the following target function:

Ltotal(θ) = LNLL(θ) + λLQA(θ), (5)

where λ > 0 is a tuning parameter that controls the trade-off between alignment with the base
density and alignment among the subgroup quantiles. In practice, we found this modification to
significantly improve stability and reliability of the prediction sets.
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2.4 DETERMINE THRESHOLDING QUANTILE VIA FURTHER CALIBRATION

After training f̂ on Dtrain and tθ̂ on a first calibration set, we need to obtain transformed scores
b and its empirical quantile Q1−α on a second held-out calibration set Dcal2 . That is, it was not
involved in the training of f̂ or tθ̂. This is to ensure exchangeability of future data points and data
in the held-out set to maintain validity of the coverage rate.

Finally, for a new input xn+1, we form the prediction set:

Ĉα(x) =
{
y ∈ Y : b(xn+1, y) ≤ Q1−α

}
. (6)

A summary of the CONFLO algorithm is provided below. It outputs prediction sets with guaranteed
marginal coverage of (1 − α) (Proposition 1). While the algorithm is new, the marginal coverage
proof follows standard conformal prediction arguments; we state it as a proposition for clarity and
citation. In addition, we have a conjecture that asymptotic conditional coverage holds for the CON-
FLO predictions under some regularity conditions. Briefly, as the total data size increases, if we
split the data into training and calibration properly such that there is sufficient data for training with
diminishing error both the predictor and the transformer within subpopulations of X of interest, then
the transformed score A becomes asymptotically independent of X, and the resulting prediction sets
achieve asymptotic conditional coverage.

Remark: in practice, a user can avoid empty prediction sets by opting to apply the standard “non-
empty set” correction that adds a most likely value of y, argmaxy p̂(y | x). Clearly, this step will
not reduce the coverage probability.

Proposition 1. Suppose the sample points in calibration set and (xn+1, yn+1) are exchangeable.
For any prediction set obtain in equation 6, we have the following coverage guarantee:

P(yn+1 ∈ Ĉα(xn+1)) ≥ 1− α.

Furthermore, if the scores Bi are almost surely distinct, the marginal coverage is near tight:

P(yn+1 ∈ Ĉα(xn+1)) ≤ 1− α+
1

|Dcal|+ 1
.

Algorithm 1 CONFLO

1: Input:
• Training data {(xi, yi)}ni=1 ⊂ Rp × R
• Miscoverage level α ∈ [0, 1]

• Specifications of the family of CNF, {tθ}, including the affine form, and neural networks
µ and σ in equation 3

• Test input xn+1 whose response yn+1 requires a prediction set
2: Procedure:

1. Randomly split the data into three disjoint subsets: Dtrain,Dcal1 ,Dcal2 .

2. Train a predictor or a classifier f̂ on Dtrain.
3. Form nonconformity scores a (e.g. following equation 2) for subjects in Dcal1 , and fit a

CNF tθ̂ by minimizing the target function in equation 5.

4. Obtain transformed score b(xi, yi) = t̂(a(f̂ ,xi, yi),xi) for i ∈ Dcal2 , and find the confor-
mal threshold Q1−α.

3: Output: Prediction set for yn+1 is given by

Ĉα(xn+1) =
{
y ∈ Y : b(xn+1, y) ≤ Q1−α

}
.

Dual-ascent tuning. We optimize the weight λ in equation 5 using a dual-ascent scheme. In this
process, the normalizing flow is trained on Dcal1 for a total of T epochs, divided into segments of
length t. After each training segment, we re-evaluate empirical coverage on the same Dcal1 and
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update λ accordingly. If coverage falls below the target level 1 − α, λ is increased to place more
emphasis on the quantile alignment penalty; otherwise, it is decreased to preserve the likelihood-
fitting objective. By iterating this train–evaluate–update cycle across all T epochs, λ is adaptively
steered toward values that reduce inefficiency (e.g., set size or SSCV) while respecting the coverage
constraint.

Algorithm 2 Dual-ascent tuning for λ

1: Input: initial λ0, steps ηc, ηs > 0, total epochs E, segment length t, training set Dcal1 , bounds
λmin, λmax, scale β > 0

2: Output: tuned weight λ⋆

3: Initialize λ← λ0, S ← ⌈E/t⌉
4: for s = 1 to S do
5: Train CNF on Dcal1 for t epochs with current λ
6: Estimate coverage ĉov on Dcal1
7: Shortfall g ← (1− α)− ĉov
8: if g > 0 then ▷ under-covered
9: λ← min

{
λmax, λ+ ηc · g · β

}
10: else ▷ coverage sufficient
11: λ← max

{
λmin, (1− ηs)λ

}
12: end if
13: end for
14: return λ⋆ ← λ

3 RELATED WORK

We now review related work along two complementary lines: (i) adaptive set construction from
classifier probabilities (APS, RAPS) and (ii) flow-based transformations that reshape outputs or
residuals prior to calibration.

In APS (Romano et al., 2020), the nonconformity score for a pair (x, y) is the (randomized) cumu-
lative mass along the sorted softmax vector:

SAPS(x, y, u; π̂) :=

o(y,π̂(x))−1∑
i=1

π̂(i)(x) + u π̂(o(y,π̂(x)))(x), u ∼ Unif[0, 1],

where o(y, π̂(x)) is the rank of y among the probabilities π̂(x) sorted in decreasing order. A single
threshold τ is then calibrated on a held-out split as the (1 − α) conformal quantile of these scores,
yielding finite-sample marginal coverage 1 − α. At test time, the prediction set contains the top
labels whose cumulative mass first exceeds τ .

Because APS is sensitive to noisy probability estimates, the resulting sets are often larger than
necessary. To address this, Angelopoulos et al. (2022) modified the APS score with a size penalty
that discourages including many low-probability labels, together with a small top-kreg buffer to
stabilize the boundary. To optimize the penalty parameter λ and evaluate conditional coverage, they
further proposed the size–stratified coverage violation (SSCV) metric. Specifically, let {Sj}sj=1

be disjoint set–size strata such that
⋃s

j=1 Sj = {1, . . . , |Y|}. The index set of examples whose
prediction–set size (from algorithm C) falls into stratum Sj is

Jj =
{
i ∈ [n] :

∣∣C(Xi, Yi, Ui)
∣∣ ∈ Sj

}
.

Then SSCV is defined as

SSCV
(
C, {Sj}sj=1

)
= sup

j∈[s]

∣∣∣∣∣
∣∣{ i : Yi ∈ C(Xi, Yi, Ui), i ∈ Jj }

∣∣
|Jj |

− (1− α)

∣∣∣∣∣ . (7)

This metric measures the maximum deviation from the target coverage across different strata of
prediction–set sizes.
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However, APS and RAPS do not explicitly model or remove the x-dependence of the nonconformity
scores. They calibrate a single global threshold, guaranteeing only marginal coverage. As a result,
subgroup- or x-conditional reliability may improve but can still vary systematically.

This motivates flow-based conformal methods: first transform an x-dependent quantity (scores, out-
puts, or residuals) into a simple base distribution through a bijective function, then calibrate in that
latent space using one global quantile, and finally map back to obtain the prediction set or interval.
In CONTRA (Fang et al., 2025), a flow sends the output to a latent variable that is approximately
standard normal; nonconformity is then defined as the distance to the origin in latent space, so a
single radius threshold becomes a compact prediction region after mapping back. Colombo (2024)
proposed fitting a flow on residuals to reduce x-dependence, after which a single quantile on the
transformed residuals can be inverted to produce input-adaptive intervals.

4 EXPERIMENTS

In this section, we systematically compare the performance of the proposed CONFLO to APS and
RAPS methods reviewed in section 3. We evaluate our approach on ten multi-class benchmarks
spanning three classes: tabular, image, and text.

(1) Tabular data. CoverType (Blackard, 1998) and SATImage (Srinivasan, 1993) are modeled with
a two-layer multilayer perceptron (MLP). Each MLP processes the input features through two fully
connected layers with nonlinear activation.

(2) Image data. For MNIST (LECUN) and Fashion-MNIST (Xiao et al., 2017), we adopt a
lightweight convolutional neural network (CNN) tailored for grayscale images, consisting of two
convolutional layers followed by pooling and a fully connected classifier. For more complex
datasets, SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky, 2009), and CIFAR-100 (Krizhevsky,
2009), we use a compact CNN backbone with additional convolutional blocks and batch normaliza-
tion to handle higher-resolution, color images and greater class diversity.

(3) Text data. AG News (Zhang et al., 2015), 20 Newsgroups (Mitchell, 1997), and Banking77
(Casanueva et al., 2020) are processed using a Transformer encoder (DistilBERT) (Sanh et al., 2019).
Input sequences are tokenized and embedded, passed through the pre-trained DistilBERT layers, and
then classified with a linear head attached to the [CLS] token representation (Devlin et al., 2019) .

Data partitioning. We construct disjoint splits for classifier training Dtrain, calibration Dcal, and
testing Dtest under two strategies:

1. Tabular. We partition the full dataset into 65% Dtrain, 25% Dcal, and 15% Dtest.
2. Image and Text Data We retain the official test set as Dtest and partition the provided training

set into 75% for Dtrain and 25% for Dcal.

Table 1: Summary of dataset structures in experiments.

Dataset num. of classes n1 (training) n2 (calibration) n3 (test)

SATImage 5 3857 1605 965
CoverType 7 12000 5000 3000

MNIST 10 45000 15000 10000
FMNIST 10 45000 15000 10000
SVHN 10 54842 18315 26032
CIFAR 10 10 37500 12500 10000
CIFAR 100 100 37500 12500 10000

AG News 4 15000 5000 3000
20 Newsgroup 20 11307 4712 2827
Banking 77 77 7502 2501 3080

For large datasets, we first draw a label stratified subsample and then apply the same policy to the
subset, detailed in Table 1. When additional hyperparameter tuning or flow training is required (e.g.,

7
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for RAPS or CONFLO), we further split the calibration set as

Dcal = Dcal1 ∪ Dcal2 , |Dcal1 | = 0.3 |Dcal|, |Dcal2 | = 0.7 |Dcal|,
usingDcal1 for tuning/flow training and reservingDcal2 exclusively for conformal calibration. Meth-
ods that do not require tuning (e.g., APS) calibrate on the full Dcal. We then train a base classifier g
on Dtrain. In CONFLO, after getting the base classifier g, we freeze its weights and define the raw
nonconformity score as

a = − log p̂(y | x).
The pair (a,x) is then passed to the conditional flow model, and QA groups are formed by k-means
clustering on x (default G=20 ), where the weight λ is tuned via a coverage-driven dual-ascent
controller.

Table 2: Empirical coverage, average set size, and SSCV for 90% conformal predic-
tion sets across ten datasets. Results are averaged over 20 random splits with standard
errors. The best (smallest) set size or SSCV in each row is shown in bold.

Dataset Method Coverage ↑ Set Size ↓ SSCV ↓

SATImage
APS 0.956± 0.008 1.180± 0.018 0.063± 0.009
RAPS 0.953± 0.008 1.161± 0.020 0.059± 0.009
CONFLO 0.912± 0.009 1.013± 0.007 0.013± 0.007

CoverType
APS 0.942± 0.003 1.267± 0.013 0.080± 0.001
RAPS 0.940± 0.003 1.254± 0.014 0.078± 0.002
CONFLO 0.902± 0.004 1.082± 0.008 0.004± 0.002

MNIST
APS 0.994± 0.001 1.006± 0.001 0.094± 0.001
RAPS 0.993± 0.001 1.006± 0.001 0.093± 0.001
CONFLO 0.991± 0.001 1.000± 0.001 0.091± 0.001

FMNIST
APS 0.950± 0.002 1.070± 0.006 0.050± 0.002
RAPS 0.947± 0.002 1.061± 0.004 0.047± 0.002
CONFLO 0.939± 0.003 1.034± 0.010 0.039± 0.003

SVHN
APS 0.961± 0.003 1.101± 0.016 0.061± 0.003
RAPS 0.958± 0.003 1.082± 0.012 0.058± 0.003
CONFLO 0.939± 0.005 1.000± 0.000 0.039± 0.004

CIFAR-10
APS 0.917± 0.005 1.555± 0.063 0.029± 0.005
RAPS 0.915± 0.005 1.529± 0.067 0.032± 0.005
CONFLO 0.899± 0.006 1.366± 0.061 0.038± 0.008

CIFAR-100
APS 0.905± 0.005 11.233± 0.671 0.040± 0.008
RAPS 0.904± 0.005 11.123± 0.772 0.041± 0.013
CONFLO 0.899± 0.004 9.258± 0.637 0.081± 0.005

AG News
APS 0.951± 0.006 1.256± 0.019 0.058± 0.011
RAPS 0.948± 0.007 1.236± 0.017 0.055± 0.012
CONFLO 0.906± 0.010 1.024± 0.009 0.009± 0.006

20 Newsgroups
APS 0.921± 0.006 4.032± 0.082 0.052± 0.009
RAPS 0.920± 0.006 4.016± 0.096 0.061± 0.023
CONFLO 0.903± 0.009 3.612± 0.243 0.053± 0.023

Banking 77
APS 0.944± 0.003 4.373± 0.141 0.060± 0.007
RAPS 0.940± 0.005 3.883± 0.379 0.062± 0.005
CONFLO 0.903± 0.008 2.513± 0.620 0.024± 0.017

Table 2 reports the empirical coverage probability, average set size, and SSCV of the predic-
tion sets. Coverage rates are generally close to the nominal 0.9 across all methods. On simpler
datasets—such as the tabular benchmarks and the lower-complexity image datasets (MNIST, FM-
NIST, and SVHN)—all approaches produce very small sets, with CONFLO achieving not only the
smallest set sizes but also the lowest SSCV. On the remaining five datasets, CONFLO continues
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to yield the smallest prediction sets, often substantially smaller than the alternatives. In terms of
SSCV, CONFLO achieves the lowest values on two benchmarks while remaining broadly compa-
rable on the others. Overall, CONFLO provides a single-threshold approach that reliably meets the
target marginal coverage while producing compact prediction sets, and further improves conditional
coverage reliability through appropriate tuning of the QA strength or group formation.

5 SUMMARY AND DISCUSSION

Our approach, CONFLO2, builds on the central idea of flow-based transformations for conformal
prediction, but introduces two key innovations that substantially broaden applicability and improve
conditional reliability.

First, unlike prior methods that apply normalizing flows to residuals or outputs, CONFLO is applica-
ble to outcomes of any type—whether continuous, multidimensional, or categorical. This flexibility
is achieved by applying a conditional normalizing flow (CNF) directly to a user-chosen noncon-
formity score, rather than to the joint distribution of residuals and covariates. By decoupling the
framework from the outcome type, CONFLO provides a unified tool for conformal prediction across
diverse problem settings.

Second, instead of relying solely on the transformation to induce conditional independence, CON-
FLO explicitly enforces groupwise quantile alignment (QA) through an additional penalty term in
the CNF training objective. This regularization ensures that the transformed scores exhibit near-
invariance across subgroups of the input space, thereby approximate the conditional coverage.

Although CONFLO shows strong empirical performance across diverse tasks, our results so far
provide only empirical evidence of conditional reliability. A key limitation is that we have not yet
delivered a full theoretical proof of its asymptotic near-conditional coverage guarantees. In future
work, we plan to formalize these guarantees with rigorous asymptotic analysis, providing a solid
theoretical foundation to complement our empirical findings.

2Use of Large Language Models: LLMs were used to polish the writing and to help search potentially
relevant methods and related work. All technical contributions, analyses, and conclusions are solely those of
the authors.
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