
Continuously Improving Mobile Manipulation
with Autonomous Real-World RL

Russell Mendonca 1, Emmanuel Panov 2, Bernadette Bucher 2, Jiuguang Wang 2, Deepak Pathak 1

1Carnegie Mellon University, 2Boston Dynamics AI Institute

Figure 1: Continual Autonomous Learning: We enable a legged mobile manipulator to learn a variety of
tasks such as moving chairs (top, left and right), righting a dustpan (top, middle), and sweeping (bottom) via
practice in the real world with minimal human intervention.

Abstract: We present a fully autonomous real-world RL framework for mobile
manipulation that can learn policies without extensive instrumentation or human
supervision. This is enabled by 1) task-relevant autonomy, which guides explo-
ration towards object interactions and prevents stagnation near goal states, 2)
efficient policy learning by leveraging basic task knowledge in behavior priors,
and 3) formulating generic rewards that combine human-interpretable semantic
information with low-level, fine-grained observations. We demonstrate that our
approach allows Spot robots to continually improve their performance on a set of
four challenging mobile manipulation tasks, obtaining an average success rate of
80% across tasks, a 3-4× improvement over existing approaches. Videos can be
found at https://continual-mobile-manip.github.io/

Keywords: Continual Learning, Mobile Manipulation, Reinforcement Learning

1 Introduction

How do we build generalist systems capable of executing a wide array of tasks across diverse envi-
ronments, with minimal human involvement? While visuomotor policies trained with reinforcement
learning (RL) have demonstrated significant potential to bring robots into open-world environments,
they often first require training in simulation [1, 2, 3, 4, 5, 6]. However, it is challenging to build
simulations that capture the unbounded diversity of real-life tasks, especially involving complex
manipulation. What if learning instead occurs through direct engagement with the real world, without
extensive environment instrumentation or human supervision?

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://continual-mobile-manip.github.io/

Prior work on real-world RL for learning new skills has been shown for locomotion [7, 8], and
in manipulation for pick-place [9, 10, 11, 12] or dexterous in-hand tasks [13, 14, 15] in stationary
setups. Consider a complex, high-dimensional system like a legged mobile manipulator learning in
open spaces. The feasible space of exploration is much larger than in constrained tabletop setups.
Autonomous operation of such a complex, high-dimensional robots often does not result in data
that has useful learning signal. For example, we would like to avoid the robot simply waving its
arm in the air without interacting with objects. Furthermore, even after making some progress on
the task, the robot should not stagnate near goal states. While prior work has explored using goal
cycles [16, 13, 17] to help maintain state diversity, this has not been shown for mobile systems. Such
systems also need to learn more complex skills, involving constrained manipulation of larger objects
and moving beyond pick and place, making sample-efficient learning critical. Finally, reward
supervision using current RL approaches often requires physical instrumentation using specialized
sensors [18, 19] or humans in the loop [20, 21, 22, 23], which is difficult to scale to different tasks.

Our approach tackles each of these issues of autonomy, efficient policy learning, and reward specifi-
cation. We enable higher-quality data collection by guiding exploration toward object interactions
using off-the-shelf visual models. This leads the robot to search for, navigate to, and grasp objects
before learning how to manipulate them. We preserve state diversity to prevent robot stagnation by
extending the approach of goal-cycles to mobile tasks and with multi-robot systems. For sample
efficient policy learning, we combine RL with behavior priors that contain basic task knowledge.
These priors can be planners with a simplified incomplete model, or procedurally generated motions.
For rewards without instrumentation or human involvement, we combine semantic information from
detection and segmentation models with low-level depth observations for object state estimation.

The main contribution of this work is a general approach for continuously learning mobile manipula-
tion skills directly in the real world with autonomous RL. The main components of our approach
involve: (1) task-relevant autonomy for collecting data with useful learning signals, (2) efficient
control by integrating priors with learning policies, and (3) flexible reward specification combining
high-level visual-text semantics with low-level depth observations. Our approach enables a Spot robot
to continually improve in performance on a set of 4 challenging mobile manipulation tasks, including
moving a chair to a goal with the table in the corner or center of the playpen, picking up and vertically
balancing a long-handled dustpan, and sweeping a paper bag to a target region. Our experiments
show that our approach gets an average success rate of about 80% across tasks, a 4× improvement
over using either RL or the behavior prior individually with our task-relevant autonomy component.

2 Related Work

Autonomous Real-World RL: Previous work for real-world RL mostly involves either manip-
ulation for table-top pick-place settings [9, 10, 8], in-hand dexterous manipulation [15, 13, 14] or
locomotion behavior [24, 25, 8]. Approaches for automated resets needed for continual practice
include instrumented environments [9, 10], forward-backward policies [26], graph structure of sub-
tasks that serve as resets for one another [13, 14], or pre-trained, reliable reset policies [7]. For
mobile manipulation, real-world RL has been limited to pick and place tasks [11, 12]. In our work,
we extend the RL framework to learn challenging manipulation skills such as sweeping and moving
chairs for a mobile system. Autonomous mobile systems should leverage the ability of the robot to
move around to extend the effective reach of the robot and attempt manipulation tasks with large
objects that are not possible on a table-top setup. For efficient learning on these complex tasks, we
leverage behavior priors, which have some basic task knowledge. Moreover, task specification is a
big challenge [27] for real-world learning. Current approaches often require physical instrumentation
using specialized sensors [18, 19] or humans in the loop [20, 21, 22, 23], which is difficult to scale to
different tasks. There has been some work on completely self-supervised learning systems with some
extensions to robotics [28, 29], but these approaches are challenging to deploy on complex tasks due
to intractability, underspecification, and misalignment. We extend the approach of using language
goals and combining these with large-scale visual models [30], conditioned on open-vocabulary
prediction [31, 32, 33], to obtain object states, which can be used to compute reward.

2

Prior

Efficient Control

+ Policy

Task-relevant Autonomy

Multi-goal

Multi-robot

Flexible Supervision

Text + Segment + Depth

SAM

Dino

Detic

Auto-grasp

Goal-cycles

Figure 2: Method Overview: The main components of our approach for robots to continually practice tasks
in the real world. Left: Task-relevant autonomy to ensure collection of useful data via object interaction, and
maintaining state diversity via automated resets using multi-goal and multi-robot setups. Center: Efficient
control by aiding policy learning with basic task knowledge present in behavior priors in the form of planners
with a simplified model or automated behaviors. Right: Flexible reward supervision that combines human-
interpretable semantic detection-segmentation information with low-level, fine-grained depth observation.

Mobile Manipulation In the 2015 DARPA Robotics Challenge Finals, mobile manipulation so-
lutions primarily relied on pre-built object models and task-specific engineering to enable mobile
manipulation [34]. More recent work modularizing tasks into skill primitives and interacting with
those primitives using flexible planners, including large language models, has enabled more gen-
eralization outside of pre-coded tasks [35, 36, 11, 37]. Imitation learning approaches to mobile
manipulation enable joint reasoning over manipulation and navigation actions and generalize across
broad sets of tasks [38, 39, 40, 41, 42]. However, imitation learning requires an expensive collection
of expert trajectories. In contrast, RL methods can learn from experience without requiring extra
human labor for each new task. Decomposing the action space over which the RL policy operates en-
ables more tractable and efficient learning of long-horizon mobile manipulation skills [43, 44, 45, 46].
In our work, we move beyond tasks that involve picking and placing to instead learn skills that require
coordination between the legs and arms, e.g., moving chairs or sweeping.

3 Continuously Improving Mobile Manipulation via Real-world RL

Algorithm 1 Autonomous RL for Mobile Manipulation

Require: Detection-segmentation models M(.)
Require: Behavior prior P (.)

1: Initialize Data buffer D, RL policy πθ

2: Initialize task goal GT with goal object state gT
3: Initialize trajectories per task K, horizon H
4: while training do
5: for trajectory 1:K do
6: Approach object using Auto-grasp/nav
7: for timestep 1:H do
8: Use policy πθ(.) and prior P (.) for separate,

sequential or residual control
9: Compute reward rt using M(ot)

10: Add (ot, at, ot+1, rt) 7→ D
11: Sample batch β ∼ D to update π via RL
12: end for
13: (optional) If distance(x, gT) ≤ ϵ, break
14: end for
15: Switch task goal GT
16: end while

We design our approach to allow robots
to autonomously practice and efficiently
learn new skills without task demonstra-
tions or simulation modeling, and with min-
imal human involvement. The overview
of the approach we use is presented in
Alg.1. Our approach has three components,
as depicted in Fig 2: task-relevant auton-
omy, efficient control using behavior pri-
ors, and flexible reward specification. The
first ensures the data collected is likely to
have learning signal, the second utilizes
signal from data to collect even better data
to quickly improve the controller, and the
third describes how to define learning sig-
nal for tasks. This allows learning diffi-
cult manipulation tasks, including tool use
and constrained manipulation of large and
heavy objects. Next, we describe each of
these components in further detail.

3

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Task Goals: States that define goal-cycles for our 4 tasks - (a-b): Chair Moving with a corner table,
(c-d): Chair Moving with a middle table, (e-f): Long Handled Dustpan Standup, (g-h): Sweeping

3.1 Task-Relevant Autonomy

Auto-Grasp/Auto-Nav: For safe autonomous operation, we first create a map by walking the robot
around the environment. This map is used by the robot to avoid collisions during its autonomous
learning process. To ensure data collected involves object interaction, every episode begins with
the robot estimating, moving to, and/or grasping the object of interest for the task. The object state
is estimated using detection and segmentation models along with depth observations, as described
in section 3.3. The robot then navigates towards the object position using RRT* to plan in SE(2)
space using the collision map, and optionally deploys the grasping skill from the Boston Dynamics
Spot SDK depending on the task. This grasp is generated via a geometric algorithm that fits a grasp
location with a geometric model of the gripper, scores different possible grasps, and picks the best
one. We do not constrain the grasp type, or on which portion of the object the grasp is performed.
This allows the robot to keep practicing regardless of which position or orientation the object might
end up in as a result of continual interaction.

Goal-Cycles: To prevent robot stagnation near goal states, we set up ’goal-cycles’ within tasks,
which serve as automated task resets. We show the different goal states used in each of the 4 tasks
we consider in Fig.3. In the case of the chair moving tasks (Fig.3: a-d), the robot alternates between
goals that are far apart in the x-y plane, and for the dustpan stand-up task (Fig.3 e,f), the robot needs
to pickup the fallen dustpan and vertically orient and balance it. For the sweeping task (Fig.3: g-h),
we use a multi-robot setup for the goal cycle, where one robot holds the broom and needs to sweep
the paper bag into the target region (denoted by the blue box), while the other needs to pick up the
bag and drop it back into the region where it can be swept. Since we only need learning for the
sweeping skill, the robot that picks up the bag runs the previously described auto-grasp procedure.

3.2 Prior-guided Policy Learning

Incorporating Priors: We enable efficient learning by leveraging behavior priors that utilize basic
knowledge of the task. This removes the burden from the learning algorithm from having to
rediscover this knowledge and instead focus on learning additional behavior needed to solve the
task. For example, an RRT* planner with a simplified 2D model can help an agent move between
two points in the x-y plane while avoiding obstacles. Starting with this prior, using RL can help the
robot learn to recover from collisions and deal with dynamic constraints not represented in the model.
Concretely, the prior is a function P (.) that takes in an observation ot and produces an action at,
similar to a policy π(at|ot). We can deploy the prior and the policy in the following ways:

4

1. Separate: Trajectories are collected independently using either the prior
{P (a0|o0), . . . , P (aT |oT)} or the policy {π(a0|o0), . . . , π(aT |oT)}. Instead of learning en-
tirely from scratch, we incorporate the (potentially) suboptimal data from the prior into the robot’s
data buffer to bootstrap learning. Intuitively, the prior is likely to see a higher reward than a
completely randomly initialized policy, especially for sparse reward tasks. We make no assumptions
on the optimality of the prior, and bootstrap learning via incorporating its data. In practice, we first
collect trajectories using the prior, to initialize the data buffer for training the online RL policy π(.).

2. Sequential: In addition to providing data with better signal to the learning process, priors can
reliably make reasonable progress on a task. This is because they often generalize well, for example,
an SE(2) planner will make reasonable progress in moving a robot between any two points in the
x-y plane, even when it performs constrained manipulation. We would need to sample many times
from the prior to distill this information purely via the data buffer. Hence, a more direct approach is
to utilize the prior along with the policy for control. We do this by sequentially executing the prior,
followed by the policy. That is, trajectories collected in this manner take the form:

{P (a0|o0), .., P (aL|oL), π(aL+1|oL+1), .., π(aT |oT).} (1)

Thus, the prior structures the policy’s initial state distribution, making learning easier. The data
collected by the prior is added to the data buffer, allowing the policy to learn from these transitions.

3. Residual: In certain cases, the prior might not be robust enough to deploy directly but nonetheless
provide reasonable bounds on what actions should be executed. For example, for sweeping an object,
the robot’s base should roughly be in the vicinity of the trash being swept, but this does not prescribe
what exact actions to take. Such a prior can be used residually, where a policy adjusts the actions of
the prior at every time step before being executed. These trajectories take the form:

{P (a0|o0) + π(a0|o0), . . . , P (aT |oT) + π(aT |oT)} (2)

RL Policy Training: The RL objective is learn parameters θ of a policy πθ to maximize the expected
discounted sum of rewards R(st, at):

J(πθ) = E s0∼p0

at∼πθ(at|st)
st+1∼P(st+1|st,at)

[
T∑

t=0

γtR(st, at),

]
(3)

where p0 is the initial state distribution, P is the transition function and γ is the discount factor. For
sample efficient learning that effectively incorporates prior data, we use the state-of-the-art model-free
RL algorithm RLPD [47]. RLPD is an off-policy method based on Soft-Actor Critic (SAC) [48],
which samples from a mixture of data sources for online learning. Like REDQ [49], RLPD uses
a large ensemble of critics and in-target minimization over a random subset of the ensemble to
mitigate over-estimation common in TD-Learning. Since our observations consist of raw images, we
incorporate the image augmentations added by DrQ [50] to the base RL algorithm.

3.3 Flexible Supervision via Text-Prompted Segmentation

For flexible reward supervision, we combine semantic high-level information from vision and
language models with low-level depth observations. Each task is defined by a desired configuration
of some object of interest, so we derive a reward function by comparing the estimated state of the
object at a given time to this desired state (see Section 4 for task-specific details). To estimate the
state of the object, we start by using an open-vocabulary detection model Detic [51] to obtain the
bounding box corresponding to the object of interest. We then obtain the corresponding object mask
by conditioning a segmentation model, Segment-Anything [30], on the bounding box. Finally, using
depth observations and the calibrated camera system for either the egocentric or fixed third-person
cameras, we get a point cloud. Although this estimation is noisy, we find it sufficient to enable
learning effective control policies via real-world RL. This system is flexible enough to handle different
objects of interest, such as the chair, long handled dustpan for vertical orientation, or the paper bag
for sweeping. Full details on the prompts, detection and segmentation models, and reward functions
for each task in the supplemental materials.

5

4 Experimental Setup

For our experiments, we run continual autonomous RL using the Spot robot and arm system in a
playpen of about 6×5 meters, enclosed with metal railings for safety. The playpen is mapped before
autonomous operation to ensure the robot stays within bounds and doesn’t collide with the railings.
The navigation aspect of task autonomy involves searching for objects of interest. Since the main
focus of this work is on learning complex manipulation skills, we do not use learning for the search
problem; instead, we rely on a fixed camera in the scene. In addition to this, we also use the 5
egocentric body cameras of the Spot while searching for objects.

Prior Policy mode Reward Sparse

Chair-tablecorner RRT* Sequential Chair-goal distance False
Chair-tablemiddle RRT* Sequential Chair-goal distance False
Dustpan Standup Scripted Separate Handle height True
Sweeping Distance constraint Residual Bag-goal distance False

Table 1: We list the choice of prior, how it is combined with the policy,
how reward relates to the object state, and whether the reward is sparse.

The chair-moving task requires
the robot to grasp a chair and
move it between goal locations.
We consider two variants, chair-
tablecorner(Fig.3 a-b) and chair-
tablemiddle(Fig.3 c-d). The lat-
ter is more challenging since col-
lisions between the chair and ta-
ble base are much more frequent
and the robot has to operate in a much tighter space. The dustpan standup task involves lifting up the
long handle of a dust-pan (Fig.3-e), and then vertically balancing it so that it can stay upright on its
base (Fig.3-f). Sweeping involves two robots, where one of the robots holds a broom in its gripper
and needs to use it to sweep a paper bag into a goal region (Fig.3-g). The other robot does not use
learning, instead using the auto-grasp procedure to reset the paper bag by picking it up and dropping
it close to the initial position(Fig.3-h). For each task, we specify success criteria for task completion,
which corresponds to reaching the goal states in Fig.3. We list the choice of the prior, its combination
with the policy, the state measurements used for reward, and reward sparsity in Table 1.

The observation space for RL policy training for all tasks consists of three 128X128 RGB image
sources: the fixed, third-person camera and two egocentric cameras on the front of the robot.
Additionally, we use the body position, hand position, and target goal. The action space for the
chair and sweeping tasks is 5 dimensional, with base (x, y, θ) control and (x, y) control for the
hand relative to the base. The dustpan stand-up task is 3 dimensional, consisting of (z, yaw, gripper)
commands for the hand, where the gripper open action terminates the episode. We use the same
network architectures for image processing, critic functions, policy, etc., for all comparisons. Please
see supplementary materials for more details on the full reward functions, success criteria, procedural
functions for priors, hyper-parameters for learning, and network details.

5 Results

Our real-world experiments test whether autonomous real-world RL can enable robots to continuously
improve mobile manipulation skills for performing various tasks. Specifically, we seek to answer the
following questions: 1) Can a real robot learn to perform tasks that require both manipulation and
mobility in an efficient manner? 2) Does performance continually improve as the robot collects more
data? 3) How does the approach of structured exploration using priors along with RL, compare to
solely using the prior, or using only RL? 4) How does the policy learned via autonomous training
perform when evaluated in test settings?

Task-relevant Autonomy: Running the robot without auto-grasp or goal-cycles, with the full
action space comprising base and arm movement to any position in the playpen does not lead to
any meaningful change in task progress even over long periods of time. Further, such operation is
unsafe since the robot arm can get stuck in the enclosure railings, or strike the wall in an outstretched
configuration. Hence, all the experiments we conduct, including those for baselines, utilize the
task-relevant autonomy component so that the robot can make some progress on the task.

6

0 1000 2000 3000
Steps

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Chair Move - Table Corner

0 1000 2000 3000
Steps

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Chair Move - Table Middle

0 200 400 600 800
Steps

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e

Long Handled Dustpan

0 1000 2000
Steps

0.0

0.1

0.2

0.3

0.4

Su
cc

es
s R

at
e

Sweeping

RL + Prior (Ours) RL (without prior) Prior

Figure 4: Continual training improvement: Success rate vs number of samples for ours, only RL and
only prior. Note that we use our task-relevant autonomy approach with all methods. We see that our approach
continuously improves with experience across tasks, learning much faster than RL without priors, and attaining
significantly higher performance than just using the prior.

Continual Improvement via Practice: Given our task autonomy procedure, how effective is our
proposed approach of combining real world RL with behavior priors, as opposed to using either only
the prior or RL? From Fig.4, we see that our approach learns significantly faster than using only
RL, and attains much superior performance than the prior, for each of the tasks. On the especially
challenging sweeping task which involves tool use of the broom with a deformable paper bag, using
only the prior or only RL leads to almost no progress, while our method is able to learn the task. Each
robot training run takes around 8-15 hours, with the variation in time owing to different goal reset
strategies across tasks and variance in how often the robot retries grasping objects for task-relevant
autonomy. Hence, for fair comparisons across methods, we use the number of real-world samples
collected to measure efficiency. The system also needs to be robust to many different factors in order
to learn these tasks. The training area is exposed to sunlight, and the robot keeps collecting data
and learning throughout the day with varying degrees of illumination. Object starting positions and
grasps can vary widely, which affects the resulting object dynamics when practicing the task.

0 1000 2000 3000
Steps

2

1

0

M
ea

n
Re

wa
rd

Chair Move - Table Corner

0 1000 2000 3000
Steps

2

1

0

1

M
ea

n
Re

wa
rd

Chair Move - Table Middle

RL + Prior (Ours) RL (without prior) Prior

Figure 5: Training mean reward: Mean reward vs
number of samples for the chair moving tasks. The
negative average reward for RL without priors indicates
that the robot is often far from the goal location.

RL without Prior: For some tasks, using RL
without the prior does improve in performance,
but at a much slower rate than our method. With-
out the prior, RL often spends samples exploring
parts of the state that are far from the goal. To
illustrate this, we plot the average reward over
each trajectory for the chair tasks (Fig.5). The
reward for this task is of the form −x + e−x,
where x is the distance of the chair to the goal
position of the chair. The negative mean reward
for RL without the prior implies that the dis-
tance x to the goal is quite large, meaning that
the robot is often far from the goal. On the other
hand, since our method executes the prior and
policy sequentially for the chair task, our policy always starts out reasonably close to the goal, and can
thus can pick up on high reward signal more often, leading to faster learning. We observe a similar
pattern for the sweeping task, where using only RL leads the robot to wander around the playpen,
greatly decreasing the likelihood of interacting with the paper bag and obtaining high reward.

Prior without RL: While the behavior priors are effective at bootstrapping learning, they are not
sufficient on their own. This is because they do not adapt or learn from experience, and so keep
repeating the same mistakes without improvement over time. We illustrate a qualitative failure
example of the behavior prior for the chair moving task in Fig.6, where the robot following the RRT*
planner runs into a collision state due to the simplified model being used. In contrast, our approach
adapts the policy based on its experience to improve its performance, avoiding such collisions. For
some tasks like sweeping the behavior prior is much simpler, only providing a constraint not to move
too far away from the paper bag, which does not specify how the robot should sweep.

7

Figure 6: Left: The prior (RRT* with incomplete model) gets stuck in a collision with the table and is unable
to recover as the planner does not have a model of chair-table interaction dynamics. Right: Our approach
effectively recovers from collisions to complete the task.

Final Policy Evaluation: We evaluate the final policies obtained after autonomous, contin-
ual practice and find that our approach obtains an average success rate of 80% across tasks
from Table 2. For comparisons between our method and using only RL, we evaluate models
obtained with the same number of real world samples. For evaluation, we use the determin-
istic policy instead of sampling from the stochastic distribution, which is used during training.

Ours Only RL Only Prior Offline RL

Chair-tablecorner 100% 20% 22% 10%
Chair-tablemiddle 80% 50% 38% 20%
Dustpan Standup 60% 20% 18% 60%
Sweeping 80% 0% 5% 10%

Table 2: Evaluation Comparison: The success rate of the final
policy evaluated on different tasks. For evaluation, we use the deter-
ministic policy instead of sampling from the stochastic distribution
like in training. Our approach gets an average success rate of 80%,
about 4× improvement over using only the prior or only RL.

Further, we set the initial state of the
objects to be close to the opposite goal
in the goal cycle. For instance, in the
sweeping task, we initialize the paper
bag roughly in the location shown in
Fig.3-h. This is different from train-
ing, where the paper bag could end up
in any location, and success is continu-
ally evaluated. We note that on the par-
ticularly hard task of sweeping, none
of the other methods are successful,
while our approach gets 80% success.

Prior Data Quality: The behavior prior helps our approach in two ways, by structuring exploration
for online learning, and also by providing higher quality data than random search, containing higher
reward. To test the quality of the data obtained by the prior, we run offline RL on the dataset collected
by the prior. This utilizes the reward of transitions to learn a policy, without any online rollouts.
From Table 2, we see that on the chair and sweeping tasks, the behavior prior data quality is much
worse, with an average success rate of 13%. The case of dustpan standup is notable since offline RL
performs on par with our method, getting about 60% success. While the numerical performance is
similar, there is a considerable qualitative difference in the behavior learned. Our approach learns
strategies that are very different from the behavior prior, through exploration. This involves raising
the robot’s arm and dropping the dustpan, such that it lands upright. On the other hand, offline RL
sticks close to the successful examples from the behavior prior generations.

6 Discussion and Limitations

We have presented an approach for continuously learning new mobile manipulation skills. This is
enabled using task-relevant autonomy, efficient real-world control using behavior priors, and flexible
reward definition. The current approach uses learning primarily for acquiring low-level manipulation
skills after objects are grasped. Using automated procedures for navigation and search making use
of a fixed third-person camera is a current limitation. This can be addressed by adding learning
for the higher-level search problem too, which would allow the robot to rely just on its egocentric
observations. This would allow learning in more unstructured, open-ended environments.

8

7 Acknowledgements

We thank Laura Smith, Murtaza Dalal, Ananye Agrawal, Kaiyu Zheng and Farzad Niroui for
thoughtful discussions and their valuable feedback. This work was supported by the DARPA Machine
Commonsense Program, Google Research Award and ONR N00014-22-1-2096.

References

[1] M. Cutler, T. J. Walsh, and J. P. How. Reinforcement Learning with Multi-Fidelity Simulators.
In ICRA, pages 3888–3895. IEEE, 2014.

[2] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain Randomization
for Transferring Deep Neural Networks from Simulation to the Real World. In IROS, pages
23–30. IEEE, 2017.

[3] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, et al. Solving Rubik’s Cube with a Robot Hand. arXiv
preprint arXiv:1910.07113, 2019.

[4] T. Haarnoja, B. Moran, G. Lever, S. H. Huang, D. Tirumala, M. Wulfmeier, J. Humplik,
S. Tunyasuvunakool, N. Y. Siegel, R. Hafner, et al. Learning Agile Soccer Skills for a Bipedal
Robot with Deep Reinforcement Learning. arXiv preprint arXiv:2304.13653, 2023.

[5] R. Yang, Y. Kim, A. Kembhavi, X. Wang, and K. Ehsani. Harmonic Mobile Manipulation.
arXiv preprint arXiv:2312.06639, 2023.

[6] X. Cheng, K. Shi, A. Agarwal, and D. Pathak. Extreme Parkour with Legged Robots. arXiv
preprint arXiv:2309.14341, 2023.

[7] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine. Legged Robots that Keep on
Learning: Fine-Tuning Locomotion Policies in the Real World. In ICRA, pages 1593–1599.
IEEE, 2022.

[8] P. Wu, A. Escontrela, D. Hafner, K. Goldberg, and P. Abbeel. DayDreamer: World Models for
Physical Robot Learning. In CoRL, 2023.

[9] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakr-
ishnan, V. Vanhoucke, et al. QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based
Robotic Manipulation. arXiv preprint arXiv:1806.10293, 2018.

[10] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and
K. Hausman. MT-Opt: Continuous Multi-Task Robotic Reinforcement Learning at Scale. arXiv
preprint arXiv:2104.08212, 2021.

[11] C. Sun, J. Orbik, C. M. Devin, B. H. Yang, A. Gupta, G. Berseth, and S. Levine. Fully
Autonomous Real-World Reinforcement Learning with Applications to Mobile Manipulation.
In CoRL, pages 308–319. PMLR, 2022.

[12] A. Herzog, K. Rao, K. Hausman, Y. Lu, P. Wohlhart, M. Yan, J. Lin, M. G. Arenas, T. Xiao,
D. Kappler, et al. Deep rl at scale: Sorting waste in office buildings with a fleet of mobile
manipulators. arXiv preprint arXiv:2305.03270, 2023.

[13] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin, and S. Levine. Reset-Free
Reinforcement Learning via Multi-Task Learning: Learning Dexterous Manipulation Behaviors
without Human Intervention. In ICRA, pages 6664–6671. IEEE, 2021.

[14] K. Xu, Z. Hu, R. Doshi, A. Rovinsky, V. Kumar, A. Gupta, and S. Levine. Dexterous Ma-
nipulation from Images: Autonomous Real-World RL via Substep Guidance. In ICRA, pages
5938–5945. IEEE, 2023.

9

[15] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar. Deep Dynamics Models for Learning
Dexterous Manipulation. In CoRL, pages 1101–1112. PMLR, 2020.

[16] W. Han, S. Levine, and P. Abbeel. Learning Compound Multi-Step Controllers under Unknown
Dynamics. In IROS, 2015.

[17] A. Gupta, C. Lynch, B. Kinman, G. Peake, S. Levine, and K. Hausman. Demonstration-
Bootstrapped Autonomous Practicing via Multi-Task Reinforcement Learning. In ICRA, pages
5020–5026. IEEE, 2023.

[18] A. Yahya, A. Li, M. Kalakrishnan, Y. Chebotar, and S. Levine. Collective Robot Reinforcement
Learning with Distributed Asynchronous Guided Policy Search. In IROS, 2017.

[19] C. Schenck and D. Fox. Visual Closed-Loop Control for Pouring Liquids. In ICRA, 2017.

[20] J. Fu, A. Singh, D. Ghosh, L. Yang, and S. Levine. Variational Inverse Control with Events: A
General Framework for Data-Driven Reward Definition. In NeurIPS, volume 31, 2018.

[21] A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine. End-to-End Robotic Reinforcement
Learning without Reward Engineering. In RSS, 2019.

[22] H. Liu, S. Nasiriany, L. Zhang, Z. Bao, and Y. Zhu. Robot Learning on the Job: Human-
in-the-Loop Autonomy and Learning During Deployment. arXiv preprint arXiv:2211.08416,
2022.

[23] L. Smith, N. Dhawan, M. Zhang, P. Abbeel, and S. Levine. Avid: Learning multi-stage tasks
via pixel-level translation of human videos. arXiv preprint arXiv:1912.04443, 2019.

[24] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan. Learning to Walk in the Real World with Minimal
Human Effort. In CoRL, 2020.

[25] L. Smith, I. Kostrikov, and S. Levine. Demonstrating a Walk in the Park: Learning to Walk in
20 Minutes With Model-Free Reinforcement Learning. In RSS, 2022.

[26] A. Sharma, A. M. Ahmed, R. Ahmad, and C. Finn. Self-Improving Robots: End-to-End
Autonomous Visuomotor Reinforcement Learning. arXiv preprint arXiv:2303.01488, 2023.

[27] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar, and S. Levine. The
Ingredients of Real-World Robotic Reinforcement Learning. In ICLR, 2020.

[28] V. H. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine. Skew-Fit: State-Covering
Self-Supervised Reinforcement Learning. In ICML, 2020.

[29] R. Mendonca, S. Bahl, and D. Pathak. ALAN: Autonomously Exploring Robotic Agents in the
Real World. In ICRA, 2023.

[30] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W.-Y. Lo, et al. Segment Anything. arXiv preprint arXiv:2304.02643, 2023.

[31] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-T. L. Chiang, T. Erez,
L. Hasenclever, J. Humplik, et al. Language to Rewards for Robotic Skill Synthesis. arXiv
preprint arXiv:2306.08647, 2023.

[32] H. Li, X. Yang, Z. Wang, X. Zhu, J. Zhou, Y. Qiao, X. Wang, H. Li, L. Lu, and J. Dai. Auto
MC-Reward: Automated Dense Reward Design with Large Language Models for Minecraft.
arXiv preprint arXiv:2312.09238, 2023.

[33] K. Baumli, S. Baveja, F. Behbahani, H. Chan, G. Comanici, S. Flennerhag, M. Gazeau, K. Hol-
sheimer, D. Horgan, M. Laskin, et al. Vision-Language Models as a Source of Rewards. arXiv
preprint arXiv:2312.09187, 2023.

10

[34] E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine, J. Strauss, G. Pratt, and
C. Orlowski. The DARPA Robotics Challenge Finals: Results and Perspectives. Journal of
Field Robotics, 34(2):229 – 240, 2 2017. doi:10.1002/rob.21683.

[35] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg, S. Rusinkiewicz, and
T. Funkhouser. TidyBot: Personalized Robot Assistance with Large Language Models. Au-
tonomous Robots, 2023.

[36] B. Wu, R. Martin-Martin, and L. Fei-Fei. M-EMBER: Tackling Long-Horizon Mobile Manipu-
lation via Factorized Domain Transfer. In ICRA, 2023.

[37] M. Bajracharya, J. Borders, D. Helmick, T. Kollar, M. Laskey, J. Leichty, J. Ma, U. Nagarajan,
A. Ochiai, J. Petersen, et al. A Mobile Manipulation System for One-Shot Teaching of Complex
Tasks in Homes. In ICRA, pages 11039–11045. IEEE, 2020.

[38] A. Gupta, A. Murali, D. P. Gandhi, and L. Pinto. Robot Learning in Homes: Improving
Generalization and Reducing Dataset Bias. In NeurIPS, volume 31, 2018.

[39] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. RT-1: Robotics Transformer for Real-World Control at Scale. In
arXiv preprint arXiv:2212.06817, 2022.

[40] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano,
K. Jeffrey, S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine,
Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet,
N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng.
Do As I Can and Not As I Say: Grounding Language in Robotic Affordances. In arXiv preprint
arXiv:2204.01691, 2022.

[41] N. M. M. Shafiullah, A. Rai, H. Etukuru, Y. Liu, I. Misra, S. Chintala, and L. Pinto. On Bringing
Robots Home. arXiv preprint arXiv:2311.16098, 2023.

[42] Z. Fu, T. Z. Zhao, and C. Finn. Mobile ALOHA: Learning Bimanual Mobile Manipulation with
Low-Cost Whole-Body Teleoperation. In arXiv, 2024.

[43] F. Xia, C. Li, R. Martı́n-Martı́n, O. Litany, A. Toshev, and S. Savarese. ReLMoGen: Integrating
Motion Generation in Reinforcement Learning for Mobile Manipulation. In ICRA, pages
4583–4590. IEEE, 2021.

[44] J. Gu, D. S. Chaplot, H. Su, and J. Malik. Multi-Skill Mobile Manipulation for Object
Rearrangement. In ICLR, 2023.

[45] Y. Ma, F. Farshidian, T. Miki, J. Lee, and M. Hutter. Combining Learning-Based Locomotion
Policy With Model-Based Manipulation for Legged Mobile Manipulators. IEEE Robotics and
Automation Letters, 7(2):2377–2384, 2022.

[46] N. Yokoyama, A. Clegg, J. Truong, E. Undersander, T.-Y. Yang, S. Arnaud, S. Ha, D. Batra, and
A. Rai. ASC: Adaptive Skill Coordination for Robotic Mobile Manipulation. IEEE Robotics
and Automation Letters, 9(1):779–786, 2024. doi:10.1109/LRA.2023.3336109.

[47] P. J. Ball, L. Smith, I. Kostrikov, and S. Levine. Efficient Online Reinforcement Learning with
Offline Data. In ICML, 2023.

[48] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor. In ICML, pages 1861–1870,
2018.

[49] X. Chen, C. Wang, Z. Zhou, and K. Ross. Randomized Ensembled Double Q-Learning:
Learning Fast Without a Model. In ICLR, 2021.

11

http://dx.doi.org/10.1002/rob.21683
http://dx.doi.org/10.1109/LRA.2023.3336109

[50] D. Yarats, R. Fergus, and I. Kostrikov. Image Augmentation Is All You Need: Regularizing
Deep Reinforcement Learning from Pixels. In ICLR, 2021.

[51] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra. Detecting Twenty-Thousand
Classes Using Image-Level Supervision. In ECCV, 2022.

[52] K. Stachowicz, D. Shah, A. Bhorkar, I. Kostrikov, and S. Levine. FastRLAP: A System
for Learning High-Speed Driving via Deep RL and Autonomous Practicing. arXiv preprint
arXiv:2304.09831, 2023.

[53] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, et al. Grounding
DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection. arXiv
preprint arXiv:2303.05499, 2023.

[54] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740–755.
Springer, 2014.

12

Appendix

A Videos

The main video summarizing our results can be found in result video.mp4 in the zip folder. This
depicts the robot performing each of the tasks we consider - moving the chair 1) with a table in
the corner in the playpen, 2) with a table in the middle of the playpen, 3) picking up a dustpan and
vertically orienting it such that it can stand up, 4) sweeping a paper bag into a target region. We also
include timelapse videos which show how our approach adapts behavior over time.

B Policy Training

For our experiments we run DrQ implemented in the official RLPD codebase open-sourced by
Ball et al. [47]. Since we run image-based real robot experiments, we use learning algorithm
hyperparameters (including for the image encoders) from Stachowicz et al. [52], which deployed
RLPD for race car driving. The observations are first encoded into a latent space (separately for the
actor and critic), and the processed latent is used by the critic ensemble or the actor. Details of the
architecture for each of these, in addition to hyperparameters for training is provided in Table 3.

We use both image and vector observations for learning. Each of these is processed by an image
encoder or a 1-layer dense encoding for vector observations, and the corresponding latents are all
concatenated together and then used as input for the actor or critic. Note that we use separate encoders
for the critic and the critic. We use the architecture from Stachowicz et al. [52] for encoding each
image source, without using any pre-trained embeddings, the network is retrained from scratch for
each new experiment. There are 4 RGB image sources. The network encoders are provided with
the last 3 frames for each image source, except for the goal image, since this remains fixed for the
episode. The image sources are -

• Egocentric front-left image

• Egocentric front-right image

• Third-person fixed-cam current image

• Third-person fixed-cam goal image

We use (128,128) spatial resolution for the egocentric images, and (256,256) for the images from the
third person camera. The latter uses a higher resolution since it is further away from the scene and
objects appear smaller/less clear.

In addition, we have two vector observations -

• Body pose - We compute the (x,y,θ) position of the robot body in the SE(2) plane relative to
the calibrated playpen frame (calibration details in section D). The input to the network is 4
dimensional, consisting of (x, y, cos(θ), sin(θ)). We use sin, cos transforms for the angle to
avoid discontinuities in input, since −π and π represent the same orientation.

• Hand pose - 6-dof end effector orientation of the hand relative to the base position.

There are certain learning parameters that are tuned separately for each environment, which we list in
Table 4. This was mainly to balance the exploration-exploitation trade-off for learning new behavior,
and pertain to the weight placed on entropy maximization in DrQ (temperature and target entropy),
or to handle sparse rewards (number of min Q functions). We use a maximum episode length of 16
for the chair and sweeping tasks, and 8 for the dustpan task, since it has sparse reward.

13

Table 3: Hyperparameters used in the experiments
Category Hyperparameter Value
Training Batch size 256

Update to Sample Ratio 4

Actor/Critic Actor learning rate 3e-4
Critic learning rate 3e-4
Actor network architecture 2x256
Critic network architecture 2x256
Critic ensemble size 10

Image Encoder Layer count 4
Convolution size 3x3
Stride 2
Hidden channels 32
Output latent dim 50

Table 4: Environment-tuned Hyperparameters
Env #MinQ Temp LR Init Temp Target Entropy

Chair 2 1e-4 0.5 -2
Dustpan 1 1e-3 0.1 -2

Sweeping 2 1e-4 0.1 -4

C Rewards

C.1 Detection-Segmentation

Figure 7: Grounded SAM/Detic Visualization: Visualization
of the object masks obtained from Segment Anything for chair
moving(left) and sweeping (right).

For each task, there is an object of
interest, the state of which is used to
compute the reward. We specify the
object using a text prompt, which is
used by the detection model to ob-
tain a bounding box. This is then
used to condition the Segment Any-
thing [30] model to obtain a 2D ob-
ject mask, as shown in Fig.7. For
text-based detection we use either
Grounding-Dino [53] or Detic [51].
For Grounding-Dino, we append the

task-specific prompt to the list of class names in COCO [54] (to avoid cases of false positive de-
tection), and we use Detic with objects365 vocabulary class names. The task-specific text
prompts we use are ’chair’ for the chair tasks, ’red broom’ for the dustpan standup task, and
’box.bag.poster.signboard.envelope.tag.clipboard.street sign’ for the sweeping task. The object of
interest in the sweeping task is a paper bag being swept and we use many different possible matching
text descriptions since it is detected as different classes due to its deformable nature. We list the
detection model and the confidence threshold for a detection to be accepted for each task in Table 5.

Once we obtain object masks, we can obtain the corresponding object point-cloud using depth
observations. Some detections are rejected based on estimated position, eg: if there is a detection
of an object outside the playpen. This filtering is essential since the robot often picks up on known
infeasible objects, eg: the box in the middle of the playpen, or some chairs outside the railings.

14

Table 5: Detection Settings
Env Detection Model Confidence Threshold

Chair Grounding-Dino 0.4
Dustpan Grounding-Dino 0.2

Sweeping Detic 0.1

C.2 Reward Function

Chair-moving tasks: For this task, we compute reward at every timestep of the episode. Given the
estimated chair point cloud using the detection-segmentation system along with depth observations,
we estimate the center of mass xt and the yaw rotation wt. Given the goal position g and orientation
gw (extracted from the goal image), we compute position xdiff and yaw difference wdiff norms. Then
the reward is given by :

rposition = −xdiff + e(−xdiff) + e(−10·xdiff)

rori = e(−wdiff) + e(−10·wdiff)

Total Reward = rposition + rori

Dustpan Standup In this task, it is difficult to provide reward when the robot is interacting with the
dustpan, since the detection model fails to pick up on the dustpan from the third person or egocentric
image observations. We can measure reward at the end of the episode (when the robot has released
its grasp) to detect the dustpan and estimate the center of the handle xT , and provide a large bonus
if the height of the handle (z component of xT) is above a set threshold. To prioritize faster task
completion, we use an alive penalty of -0.1. The robot can terminate the episode earlier by releasing
its gripper and letting go of the handle.

rpenalty = −0.1

rbonus = 10 if xt height ≥ thresh

Total Reward =

{
rpenalty, if timestep t < T
rbonus, if end of episode, timestep T

Sweeping: Similar to the chair task, we compute reward at every timestep of the episode. We
estimate the point cloud of the paper bag, let its center of mass be denoted by xt. The target region
is a rectangle, denoted by Gr. Let d(x,Gr) denote the distance from position x to the closest
corresponding point on the rectangle given by Gr. Then the reward is given by:

rdistance = −0.2 · d(xt, Gr) + e(−10·xdiff)

rprogress = 10 ·max(0, d(xt−1, Gr)− d(xt, Gr))

rbonus =

{
10, if d(xt, Gr) = 0
0, else

Total Reward = rdistance + rprogress + rbonus

C.3 Success Criteria

The results we show for continual improvement during training, as well as the evaluation of the final
policies report success rate. Success is defined for an episode in the following manner:

• Chair tasks: Max reward in episode is above 1, implying the chair is very close to its target.

15

• Dustpan Standup: Episode ends with a reward of 10 (indicating the dustpan is standing up).

• Sweeping: Episode ends with a reward of 10 (paper bag is swept into the goal region).

C.4 Priors

Algorithm 2 Prior generation for Dustpan Standup

1: Initialize Prior data buffer D
2: Initialize Uniform noise distribution U with limits

:
(−0.1,−0.1,−1) → (0.1, 0.1, 1)

3: for N = 1 to Number of episodes do
4: Initialize action list A = []
5: Set yaw hand rotation ω to either +0.5 or -0.5
6: for t = 1 to episode len do
7: Set vertical hand action z to be either +0.2 or

-0.2
8: Add (z, ω, 0) + (n ∼ U) to A
9: end for

10: Add (−0.2, ω, 0) + (n ∼ U) to A
11: Execute A on the robot, record observations, add

to D
12: end for
13: return Prior data buffer D

For the chair moving tasks we use RRT*
for planning a path in SE(2) space with a
simplified model that only has 2D occu-
pancy of the top surface of the table, and
is not aware of the chair, or robot-chair or
chair-table interactions. This generates a
set of way-points for the target position of
the center of mass of the robot in SE(2)
space, in global coordinates. We use coor-
dinate transforms to convert these targets to
be in the robot’s body frame in order to use
the same action space as the reactive RL
policy. We are able to perform this com-
putation since we know the robot’s body
position in global coordinates. Specifically,
we have Wbody = Wglobal ∗ T−1, where
Wf denotes the way-point with respect to
frame f and T is the matrix transform of
the robot body center of mass with respect
to the global coordinates. For sweeping, the prior is simply to stay within 0.5m of the last detected
location of the paper bag. For dustpan standup we use a simple procedural function to generate
trajectories to create a prior dataset, which we detail in Algorithm 2

D Map Calibration

Figure 8: Collision map of
the playpen used for safety
and navigation. The table
is added to this map when
included in experiments.

We use the GraphNav functionality provided in the SpotSDK by Boston
Dynamics for Spot robots for generating a map of the playpen. This
involves walking the robot around with some fiducials (we use 5) in the
arena. This needs to be performed only once, and is used to obtain a
reference frame to localize the robot, which is useful to record body pose
information and also to implement safety checks to make sure the robot
is not executing actions that collide with the playpen railings. While Spot
has inbuilt collision avoidance we implement an additional safety layer
using the map to clip unsafe actions that would move the robot too close
to the playpen railings. For navigation we use RRT* to plan in SE(2)
space given the obstacles, using the collision map of the playpen as shown
in Fig. 8. The red region denotes the estimate of the robot’s position in

the x-y plane, with the blue marking denoting its heading.

E System Overview

We use a workstation with a single A5000 GPU to run RLPD online, which requires about 20GB
GPU memory, mostly owing to all the image inputs that need to be processed. The detection and
segmentation models are run on cloud compute on a single A100 GPU. The fixed third person
camera images from the realsense are streamed to a local laptop. Communication between the laptop,
workstation and cloud server is facilitated via GRPC servers, and the main program script is run on
the workstation, which also controls the robot. Commands are issued to the robot over wifi using the
SpotSDK provided by Boston Dynamics.

16

	Introduction
	Related Work
	Continuously Improving Mobile Manipulation via Real-world RL
	Task-Relevant Autonomy
	Prior-guided Policy Learning
	Flexible Supervision via Text-Prompted Segmentation

	Experimental Setup
	Results
	Discussion and Limitations
	Acknowledgements
	Videos
	Policy Training
	Rewards
	Detection-Segmentation
	Reward Function
	Success Criteria
	Priors

	Map Calibration
	System Overview

