

000 DUALRESEARCH: ENTROPY-GATED DUAL-GRAPH 001 002 RETRIEVAL FOR ANSWER RECONSTRUCTION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 The deep-research framework orchestrates external tools to perform complex,
012 multi-step scientific reasoning that exceeds the native limits of a single large
013 language model. However, it still suffers from context pollution, weak evi-
014 dentiary support, and brittle execution paths. To address these issues, we pro-
015 pose **DualResearch**, a retrieval and fusion framework that matches the epis-
016 temic structure of tool-intensive reasoning by jointly modeling two complemen-
017 tary graphs: a *breadth semantic graph* that encodes stable background knowledge,
018 and a *depth causal graph* that captures execution provenance. Each graph has a
019 layer-native relevance function, seed-anchored semantic diffusion for breadth, and
020 causal-semantic path matching with reliability weighting for depth. To reconcile
021 their heterogeneity and query-dependent uncertainty, DualResearch converts per-
022 layer path evidence into answer distributions and fuses them in log space via an
023 *entropy-gated* rule with global calibration. The fusion up-weights the more certain
024 channel and amplifies agreement. As a complement to deep-research systems, Du-
025 alResearch compresses lengthy multi-tool execution logs into a concise reasoning
026 graph, and we show that it can reconstruct answers stably and effectively. On the
027 scientific reasoning benchmarks HLE and GPQA, DualResearch achieves com-
028 petitive performance. Using log files from the open-source system InternAgent,
029 its accuracy improves by 7.7% on HLE and 6.06% on GPQA.

030 1 INTRODUCTION 031

032 Large language models (LLMs) have demonstrated remarkable capabilities and provided new
033 paradigms for tackling scientific tasks across various domains (Achiam et al., 2023; Zhang et al.,
034 2025). However, current LLMs still lack explicit chains of evidence, systematic reasoning processes,
035 and structured modes of knowledge organization in scientific reasoning applications (Shojaee et al.,
036 2025). As a result, their responses often fall short in terms of reliable theoretical grounding and
037 logical rigor. Moreover, native models face challenges when integrating long-text information: they
038 struggle with global planning (Li et al., 2024), cross-paragraph alignment (Huang & Chang, 2023),
039 and consistency maintenance (Ahmed & Devanbu, 2023). In other words, complex scientific tasks
040 are often difficult to resolve through a single round of reasoning (Zhang et al., 2025).

041 To address this, a set of approaches known collectively as *deep-research* has been proposed (Jones,
042 2025; Hu et al., 2025; Team et al., 2025). These methods integrate LLMs with external information
043 retrieval and tool usage, enabling models to acquire and incorporate external knowledge during
044 reasoning. When necessary, they can decompose complex tasks through multi-agent collaboration,
045 and attach explicit citations of evidence in their outputs, thereby enhancing, to some extent, their
046 ability to solve challenging scientific problems. As illustrated in Figure 1, when answering the
047 question “*Which of these Turing Machines halts after the most number of steps and what is the*
048 *number of steps?*”, a typical deep-research workflow retrieves the transition tables of the relevant
049 Turing machines, generates corresponding simulator code, and ultimately derives a conclusion.

050 Nevertheless, these methods still exhibit failure modes. First, noise introduced by semantic retrieval
051 may mislead the simulation logic (Shi et al., 2025). Second, conclusions are often presented without
052 an explicit demonstration of intermediate steps (Prystawski et al., 2023). The root cause is that
053 deep research operates as a tool-intensive paradigm. It requires broad semantic anchoring across
concepts, aliases, and cross-literature evidence (Huang et al., 2025).

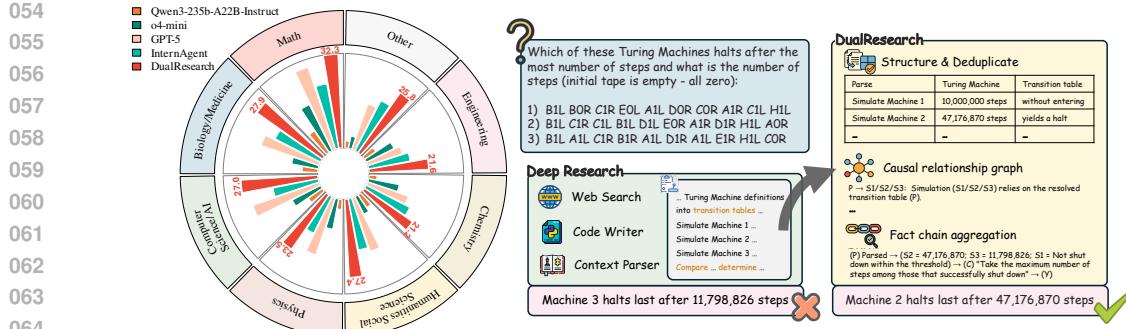


Figure 1: The illustrations for DualResearch. Left: Performance comparison on the HLE benchmark, where DualResearch consistently outperforms strong baselines across diverse scientific domains. Right: A case on the “Turing Machine halting steps” problem, where deep research produces an incorrect conclusion due to noisy retrieval and missing causal constraints, while DualResearch leverages structured process graphs and entropy-gated aggregation to derive the correct answer.

Based on this, we argue that retrieval and aggregation should reflect the epistemological structure of the task. To achieve this, we propose a new framework termed **DualResearch** constructing in parallel a *Breadth Semantic Graph*, which organizes semantic and evidential connections among entities, paragraphs, and tables, and a *Depth Causal Graph*, which encodes causal reasoning through typed actions, outputs, and verifiers. During reasoning, problem-solving advances through two collaborative stages: (1) breadth-oriented neighborhood expansion, where multi-hop semantic propagation around seed terms suppresses drift; (2) depth-oriented causal constraint analysis, where short and reliable execution chains are selected.

To further unify the semantic and procedural knowledge, we introduce an entropy-gated dual-graph fusion. Each side first forms a normalized answer distribution, which we then fuse in log space with entropy weights, giving more weight to the sharper (more certain) distribution. This boosts agreement while avoiding overconfidence under joint uncertainty. The fused output preserves recall from similarity retrieval and produces stitchable chains of evidence for the LLM to leverage. With dual-graph modeling and entropy-gated fusion, this work advances scientific reasoning from *Similarity-based Paragraph Matching* to *Causality-based Verifiable Reasoning*, improving reliability, traceability, and reproducibility.

In summary, our contributions are as follow:

1. To address the trade-off between semantic coverage and causal consistency in complex problem solving, we propose DualResearch. To our knowledge, this is the first framework that jointly models *Breadth Semantic Graph* and *Depth Causal Graph*, which assigns each Graph its own layer-native relevance function: seed-anchored semantic diffusion for breadth, and causal-semantic path matching with reliability weights for depth.
2. We propose an entropy-gated fusion mechanism that transforms evidence from both graphs into answer distributions. The mechanism reconciles two heterogeneous signals, undirected semantic neighborhoods and directed procedural paths, thereby ensuring robustness under channel disagreement and enhancing performance when the two channels align.
3. On graduate-level scientific datasets HLE and GPQA, our method successfully reused the log of the baseline and achieved superior performance. Moreover, when compared with state-of-the-art methods, DualResearch also demonstrated competitive results.

2 RELATED WORK

Retrieval-Augmented Generation (RAG) enriches LLM prompts with external evidence so that responses are grounded in factual sources (Ram et al., 2023; Fan et al., 2024). Standard RAG retrieves top- k text chunks from a vector index, which is effective for short-hop fact lookup but fragments documents and offers no representation of the reasoning process (Gao et al., 2022; 2023; Chan et al., 2024; Yu et al., 2024). Recent graph-based RAG begins to link entities or claims (Edge et al., 2024), yet most methods remain text-oriented and still lack an explicit channel for procedural

108 information, limiting reproducibility and multi-step reasoning. Beyond RAG, a complementary
 109 literature study examines how graphs interface with LLMs and agents. Three strands are prominent:
 110 (i) using graph neural network (GNNs) (Han et al., 2022) to produce topology-aware tokens for
 111 LLMs, e.g., GraphGPT (Tang et al., 2024) and LLaGA (Chen et al., 2024); (ii) using LLMs to
 112 enrich graph content and provide supervision for downstream tasks, e.g., GALM (Xie et al., 2023)
 113 and OFA (Xie et al., 2023; Liu et al., 2024); and (iii) building agents that directly operate on graphs
 114 to align GNN and LLM representations through interaction (Li et al., 2023; Brannon et al., 2023).

115 In contrast, standard RAG assumes a fixed corpus and falters when answers require dynamic tool
 116 use. Our approach treats graphs as execution objects: a breadth channel anchors terms across doc-
 117 uments, while a depth channel retrieves short, auditable procedure chains produced during tool
 118 interaction. The result is not just content-grounded answers but tool-grounded and reproducible
 119 reasoning, addressing cases where chunk-based RAG is brittle.

120 **Deep-Research** motivates a series of systems for scientific problem solving. OpenAI (2025c) and
 121 DeepMind (2024) combine retrieval with reasoning to generate evidence-grounded reports from het-
 122 erogeneous sources. Building on multi-agent coordination, OWL (Hu et al., 2025) employs a hier-
 123 archical architecture, while InternAgent (Team et al., 2025) extends this paradigm with closed-loop
 124 workflows for iterative hypothesis generation and experimentation. WebThinker (Li et al., 2025)
 125 emphasizes dynamic web-based reasoning, integrating preference optimization for long-horizon in-
 126 ference. In contrast, single-agent approaches such as SFR-DR (Nguyen et al., 2025) train LLMs to
 127 select actions via reinforcement learning, whereas X-Masters (Chai et al., 2025) advances ensemble
 128 reasoning through a multi-channel strategy. Together, these systems highlight the diversity of agent
 129 designs but also reveal open challenges in controlling solution space and ensuring reproducibility.

130 Despite these advances, large-scale retrieval and tool use expand the solution space and amplify
 131 uncertainty. Our approach instead leverages solving logs to distill declarative facts and procedural
 132 steps, thereby narrowing the solution space while improving transparency and reproducibility.

134 3 METHOD: BREADTH & DEPTH GRAPHS WITH LAYER-NATIVE RETRIEVAL 135 DISTANCES

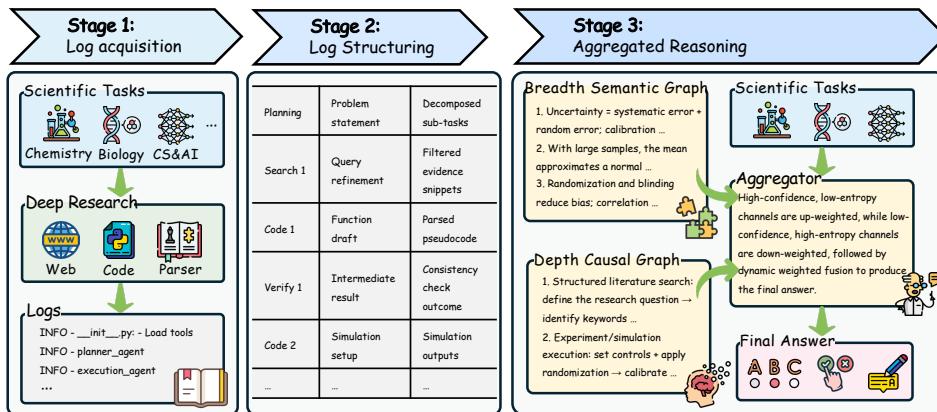


Figure 2: Workflow of the DualResearch. Stage 1: scientific tasks are executed with Deep Research tools to produce raw logs. Stage 2: logs are structured into stepwise traces with intermediate artifacts. Stage 3: evidence is organized into a Breadth Semantic Graph and a Depth Causal Graph, whose outputs are fused by an entropy-gated aggregator to yield the final answer.

Background. Tool-intensive questions usually need multi-hop reasoning before obtaining the answer. The model must ground terms and assumptions in background sources and then compose results across tools (*search* → *parse* → *compute* → *verify*). Text-only graphs capture background but not execution structure; raw logs record execution but lack stable anchors. We therefore use two complementary substrates and query each with a graph-native distance: a **breadth semantic graph** for broad, low-variance background and a **depth causal graph** for short, reproducible procedure chains. See Figure 2 for the overall workflow.

162 3.1 DUAL-GRAPH COLLABORATION
163

164 **Motivation.** Scientific reasoning systems draw on two distinct sources: **(i) static background**
 165 **knowledge**, including entities, definitions, equations, and cross-document evidence that remain sta-
 166 **ble across queries and are typically derived from documents or websites; and (ii) procedural knowl-**
 167 **edge**, consisting of transient, stepwise traces generated through *search–parse–compute–verify* inter-
 168 **actions, such as tool calls, intermediate artifacts, and validator outcomes. Both are essential, the first**
 169 **anchors terms and reduces hallucination, and the second mirrors the thinking process and supports**
 170 **reasoning. However, most methods focus on static semantics and treat procedural signals as loose**
 171 **context, or even omit its semantics, hence leading to the suboptimal results.**

172 **Definition 1** (Breadth Semantic Graph by Static Background). The Breadth graph is $G^B =$
 173 (V^B, E^B, s_B) . Nodes V^B are canonical entities/terms, paragraph or table spans, and formula
 174 symbols. Edges E^B encode lightweight semantic/evidential relations (mentions, defines,
 175 aliases, cites, supports, derived_from). Each edge e carries a normalized confidence
 176 $s_B(e) \in (0, 1]$ summarizing extraction reliability and cross-source support. This layer provides
 177 stable anchors and multi-hop background structure; it deliberately avoids procedural detail.

178 **Definition 2** (Depth Causal Graph by Procedural Background). The Depth graph is $G^D =$
 179 (V^D, E^D, s_D) . Nodes V^D abstract execution provenance into *Action* (operator/tool with param-
 180 **eters and an environment signature), *Artifact/Result* (intermediate or final quantities), and *Validator***
 181 **(unit/equation/consistency checks). Directed edges E^D capture stepwise dependency observed in**
 182 **logs: *consumes*(*Artifact* \rightarrow *Action*), *produces*(*Action* \rightarrow *Artifact*), *verified_by*(*Artifact* \rightarrow**
 183 ***Validator*), and carryover when an output becomes a downstream input. An edge is admitted**
 184 **only if typing, units, and temporal order are coherent; admitted edges receive a single confidence**
 185 **$s_D(e) \in (0, 1]$ derived from validator success and repeatability across retries/branches. This layer**
 186 **encodes reproducible, checkable chains rather than textual co-occurrence.**

187 **Entity/Relation Extraction for the Breadth Semantic Graph.** For each span of background
 188 knowledge retrieved in the log, we feed the raw sentence or paragraph into an LLM with a fixed
 189 extraction prompt that asks it to enumerate all salient entities (such as concepts, numerical values,
 190 and units) and the semantic relations between them (for example, “is defined as”, “refers to”, or
 191 “cites”). The model’s output is a small set of triple-like records, which we normalize into canonical
 192 entity mentions and relation types. Each entity becomes a node in V^B , and each relation becomes a
 193 typed edge in E^B . Because the same concept may be extracted from multiple passages, we aggre-
 194 **gate these signals and assign every edge e a confidence score $s_B(e)$ that reflects the reliability and**
 195 **consistency of the extraction. Running this template-driven procedure over all retrieved snippets**
 196 **systematically turns unstructured background text into a Breadth Semantic Graph that covers key**
 197 **concepts and their cross-document links.**

198 **Action/Artifact Parsing for the Depth Causal Graph.** For every record in the execution log, in-
 199 cluding agent decisions, tool invocations, and explicit verification steps, we apply a structured pars-
 200 ing prompt that asks the LLM to list: (i) the action or tool and its parameters, (ii) the input artifacts,
 201 (iii) the output artifacts, and (iv) any validations performed. From this parsed output, we instantiate
 202 a single *Action* node and several *Artifact* nodes, and connect them with directed *consumes* and
 203 *produces* edges. If the log entry contains a consistency or unit check, we additionally create a
 204 *Validator* node and attach *verified_by* edges from the corresponding artifacts. An edge is admit-
 205 **ted into E^D only when basic type, unit, and temporal constraints inferred from the log are satisfied,**
 206 **and its confidence $s_D(e)$ encodes how strongly these checks succeed. This process transforms raw,**
 207 **sequential logs into a coherent Depth Causal Graph that captures reproducible chains of computation**
 208 **rather than opaque text traces.**

209 **Semantic Retrieval on the Two Graphs.** Formally, $f(\cdot)$ serves as the encoder of query q , while
 210 $g_B(\cdot)$ and $g_D(\cdot)$ serve as the node and edge encoders for the Breadth and Depth graph, respectively.
 211 We define *semantic* retrieval scores as follows.

212 **Breadth similarity (semantic anchoring).** We score a background node $v \in V^B$ by comparing the
 213 query to a *neighborhood–smoothed* representation of v , the node embedding lightly averaged with
 214 its immediate neighbors using edge confidences as weights. The breadth score is a single cosine:

$$S_B(v \mid q) = \cos(f(q), \bar{g}_B(v)). \quad (1)$$

216 Intuitively, $\bar{g}_B(v)$ suppresses spurious matches to isolated nodes and rewards terms that are semantically close to the query and supported by evidence. This one-hop smoothing avoids multi-step diffusion and hyperparameters, yet retains a topology-aware bias robust to noise extractions.
217
218
219

220 **Depth similarity (order- and type-aware).** Cosine on a path embedding ignores ordering and
221 typed constraints. We instead compare the *operation sequence* implied by the query to that of a
222 short admissible chain. Let $O(q)$ be the sequence of required typed operations extracted from q
223 (e.g., search → parse → compute → verify), and let $O(p)$ be the action/validator sequence
224 on path p (passing type/unit/time gates). Define $\text{LCS}^\dagger(O(q), O(p))$ as the longest common sub-
225 sequence that only counts matches with compatible types/units. With a simple path reliability
226 $R(p) = (\prod_{e \in p} s_D(e))^\tau$ ($\tau \in (0, 1]$), we use:
227

$$S_D(t \mid q) = \max_{p \in \mathcal{P}_{\leq L}(t)} R(p) \cdot \frac{\text{LCS}^\dagger(O(q), O(p))}{|O(q)|}. \quad (2)$$

230 This single-score criterion is simple, auditable, and efficient (dynamic programming on short se-
231 quences). It favors targets supported by brief, reliable chains that *respect the query’s procedural*
232 *order and typing*, without relying on embedding cosines.
233

234 Equation 1 provides a one-hop, neighborhood-smoothed *semantic* score on the Breadth graph: it
235 favors nodes that are textually close to the query while being supported by nearby evidence, yield-
236 ing a stable, topology-aware anchor without multi-step diffusion. In contrast, Equation 2 supplies
237 an *order- and type-aware* process score on the Depth graph: a target is relevant only if there ex-
238 ists a short admissible chain whose action/validator sequence (and units/types) matches the query’s
239 required operation pattern, with reliability encouraging brief, high-confidence procedures. Taken to-
240 gether, these complementary signals capture both *where the facts live* and *how the result is produced*,
241 producing compact, auditable evidence that improves downstream reasoning.
242

3.2 DUAL-CHANNEL ENTROPY AGGREGATION

243 Given a query q and a finite answer set \mathcal{A} , our goal is to select $a^* \in \mathcal{A}$ while returning a com-
244 pact, checkable evidence chain. We have obtained the content after two graph retrievals, then we
245 aggregate the information as follows.
246

247 **Path Scoring with Drift Control** A path p in \mathcal{G}^B (obtained by path-constrained search) receives the
248 log-additive score:
249

$$S_B(p \mid q) = \sum_{e \in p} \log w_e^B - \lambda_{\text{off}} \cdot \text{Offtopic}(p), \quad (3)$$

250 where $\text{Offtopic}(p) \geq 0$ penalizes topical drift from q accumulated along p and $\lambda_{\text{off}} \geq 0$ controls the
251 strength. An analogous score $S_D(p \mid q)$ is computed on \mathcal{G}^D , incorporating edge direction, type and
252 temporal consistency.
253

254 **From Paths to Per-Channel Answer Distributions** Let $\mathcal{P}_B(a)$ and $\mathcal{P}_D(a)$ denote the sets of
255 breadth/causal paths that support answer a (possibly filtered/verified by an LLM over their stitched
256 contexts). We map path scores to per-channel answer distributions via log-sum-exp aggregation:
257

$$P_B(a \mid q) = \frac{\sum_{p \in \mathcal{P}_B(a)} \exp(S_B(p \mid q))}{\sum_{a' \in \mathcal{A}} \sum_{p \in \mathcal{P}_B(a')} \exp(S_B(p \mid q))}, P_D(a \mid q) = \frac{\sum_{p \in \mathcal{P}_D(a)} \exp(S_D(p \mid q))}{\sum_{a' \in \mathcal{A}} \sum_{p \in \mathcal{P}_D(a')} \exp(S_D(p \mid q))}. \quad (4)$$

261 **Entropy-Driven Log-Linear Fusion** We quantify each channel’s certainty using Shannon entropy,
262

$$H_B = - \sum_{a \in \mathcal{A}} P_B(a \mid q) \log P_B(a \mid q), \quad H_D = - \sum_{a \in \mathcal{A}} P_D(a \mid q) \log P_D(a \mid q), \quad (5)$$

263 and fuse the channels in log-space with a data-dependent gate:
264

$$P(a \mid q) = \text{softmax}\left(\alpha(H) \cdot \log P_D(a \mid q) + (1 - \alpha(H)) \cdot \log P_B(a \mid q)\right), \quad (6)$$

$$\alpha(H) = \frac{\exp(-H_D)}{\exp(-H_D) + \exp(-H_B)} \in [0, 1]. \quad (7)$$

270 Intuitively, the more peaked (certain) channel receives the larger weight; diffuse (high-entropy)
 271 evidence is down-weighted. When both channels are confident and consistent, their signals are
 272 amplified by the fusion.

273 **Global Calibration** We further calibrate the fused distribution to discourage overconfidence under
 274 global uncertainty:
 275

$$\tilde{P}(a | q) = \text{softmax}\left(\frac{1}{\gamma} \log P(a | q) - \beta \cdot (H_B + H_D)\right), \quad (8)$$

276 with temperature $\gamma > 0$ (smaller γ sharpens) and penalty $\beta \geq 0$.
 277

278 **Answer Selection and Minimal Evidence Chain** The final prediction is the MAP answer
 279

$$a^* = \arg \max_{a \in \mathcal{A}} \tilde{P}(a | q). \quad (9)$$

280 To return a verifiable rationale, we extract a *minimal evidence chain* on $\mathcal{G}^D \cup \mathcal{G}^B$ supporting a^* .
 281 Let Δ_e denote the marginal contribution of edge e to $\tilde{P}(a^* | q)$, measured as the drop in $\tilde{P}(a^* | q)$
 282 when removing e (leave-one-out). We greedily prune edges in ascending Δ_e until the cumulative
 283 drop exceeds a threshold $\delta > 0$, and report the remaining path. Because \mathcal{G}^D encodes directed,
 284 typed and temporal constraints while \mathcal{G}^B provides cross-document coverage, the resulting chain is
 285 simultaneously *deep* and *broad*.

286 Eqs. 6–8 make the decision rule *evidence-adaptive*: a high-entropy channel cannot dominate the pre-
 287 diction, while agreement between confident channels is explicitly amplified. The off-topic penalty
 288 in Eq. 3 curbs topical drift during breadth exploration. The path-constrained extraction provides a
 289 compact, checkable rationale for a^* , aligning the final output with graph-grounded evidence. More
 290 theoretical analysis can be found in Appendix A.

295 4 EXPERIMENT

296 In this section, the experimental setup is first introduced. Subsequently, the improvements of the
 297 proposed method over the baselines are demonstrated. Then, comparisons with existing methods,
 298 ablation studies on different components, and more targeted analyses are also presented.
 299

300 4.1 EXPERIMENTAL DETAILS

301 **Baseline and Setting.** In this study, we adopt InternAgent (Team et al., 2025) as the baseline.
 302 And we collected log files generated during InternAgent problem-solving process and subsequently
 303 cleaned them, thereby providing the foundation for graph construction. The results of QwQ-32B,
 304 DeepSeek-R1-671B, and WebThinker-32B-RL are obtained from Li et al. (2025). The results of
 305 SFR-DR-20B (Nguyen et al., 2025) and X-Masters (Chai et al., 2025) are drawn from their papers.
 306 Results for OpenAI Deep Research (OpenAI, 2025c) and Gemini Deep Research (DeepMind, 2024)
 307 are taken from their respective technical reports. For Qwen3-235B-A22B-Instruct (Yang et al.,
 308 2025), GPT-5 (OpenAI, 2025a), and o4-mini (OpenAI, 2025b), we conducted direct evaluations
 309 through the API (see Appendix B.2 for prompt settings), with the temperature set to 0.0 and no
 310 restriction on the maximum token limit.

311 **Benchmark. GAIA** (Mialon et al., 2023) is a benchmark for general-purpose AI assistants
 312 comprising 466 real-world, information-seeking questions that require multi-step reasoning, multimodal
 313 understanding, web browsing, and tool use. Its tasks are designed to be straightforward for humans
 314 yet challenging for current models, with closed-form answers and a held-out subset used to support
 315 robust, leaderboard-style evaluation of agentic systems. Our results are based on its 165-question
 316 validation set. **Google-Proof Q&A (GPQA)** (Rein et al., 2024) is a graduate-level benchmark of
 317 448 expert-written multiple-choice questions in biology, chemistry, and physics, designed to test
 318 advanced scientific reasoning. We adopt its GPQA-Diamond subset (198 questions), which was cu-
 319 rated to include only items unanimously agreed upon by domain experts but often misanswered by
 320 non-experts, ensuring both reliability and difficulty. **Humanity’s Last Exam (HLE)** (Phan et al.,
 321 2025) is a multimodal benchmark of 2,500 expert-curated, closed-form questions across eight do-
 322 mains. It assesses advanced reasoning through multiple-choice and exact-match tasks, comprising
 323 2,158 text-only and 342 text–image items, thereby enabling rigorous evaluation across modalities.

324
325
326
327 Table 1: Comparison on **HLE** and **GPQA**. We report per-subset accuracy for the baseline InternAgent
328 and DualResearch under two settings. Improvements over the baselines are highlighted in red.
329
330
331
332
333
334
335

327 Data Setting	328 Model	329 Method	330 Accuracy in each subset (%) ↑									
			331 Math	332 Bio/Med	333 CS/AI	334 Physics	335 Human.	336 Chem.	337 Engineer.	338 Other	339 Avg.	
340 HLE	341 Qwen3-235B 342 -A22B-Instruct	343 InternAgent	344 13.5	345 15.3	346 11.6	347 6.9	348 16.1	349 8.9	350 15.6	351 17.6	352 13.3	
		DualResearch	16.9	18.9	13.9	10.9	19.7	21.8	21.9	19.9	17.1	
		Improvement	↑3.4	↑3.6	↑2.3	↑4.0	↑3.6	↑12.9	↑6.3	↑2.3	↑3.8	
	353 Text-Only	354 InternAgent	355 23.5	356 18.9	357 13.9	358 17.3	359 21.6	360 21.6	361 18.8	362 25.0	363 21.3	
		364 o4-mini	365 DualResearch	366 31.3	367 27.0	368 26.8	369 24.3	370 29.0	371 25.7	372 28.1	373 30.1	374 29.0
		Improvement	↑7.8	↑8.1	↑12.9	↑7.0	↑7.4	↑4.1	↑9.3	↑5.1	↑7.7	
375 HLE	376 Qwen3-235B 377 -A22B-Instruct	378 InternAgent	379 13.0	380 12.5	381 10.8	382 7.4	383 14.2	384 7.9	385 9.0	386 13.7	387 11.9	
		DualResearch	16.2	15.0	12.8	9.6	17.4	13.3	12.6	15.0	14.8	
		Improvement	↑3.2	↑2.5	↑2.0	↑2.2	↑3.2	↑5.4	↑3.6	↑1.3	↑2.9	
	388 All-Set	389 InternAgent	390 23.5	391 18.9	392 17.4	393 15.7	394 19.2	395 18.2	396 16.2	397 20.6	398 20.1	
		399 o4-mini	400 DualResearch	401 32.3	402 27.9	403 27.0	404 23.5	405 27.4	406 21.2	407 21.6	408 25.8	409 27.8
		Improvement	↑8.8	↑9.0	↑9.6	↑7.8	↑8.2	↑3.0	↑5.4	↑5.2	↑7.7	
410 GPQA	411 -diamond	412 InternAgent	-	73.68	-	94.19	-	-	70.97	-	81.31	
		DualResearch	-	84.21	-	96.51	-	-	79.57	-	87.37	
		Improvement	-	↑10.53	-	↑2.32	-	-	↑8.60	-	↑6.06	

346 4.2 COMPARISON WITH BASELINE METHOD

347
348 We quantify the improvements of DualResearch over InternAgent across datasets and backbones.
349 As shown in Table 1, **On the HLE Text-Only**, DualResearch demonstrates significant improvements
350 over the baseline InternAgent across two different models. Specifically, it achieves a 12.9%
351 increase in Chemistry with Qwen3 and in CS/AI with o4-mini, along with average accuracy gains
352 of 3.8% and 7.7%, respectively. Similar improvements remain evident **on the HLE All-Set**, where
353 average accuracy increases by 2.9% and 7.7%. **On GPQA**, using o4-mini as the backbone model,
354 the largest improvement is observed in Biology, with an increase of 10.53%. The overall average ac-
355 curacy also rises by 6.06%. These stable improvements substantiate that, after reusing InternAgent’s
356 solution logs, DualResearch consistently amplifies effective evidence while suppressing irrelevant
357 information, leading to sustained and reproducible performance gains.

358 In addition, we reproduced the results of X-Masters on Bio/Med within HLE Text-Only. Based on
359 its logs, DualResearch achieving an improvement of 4.9% (see Appendix B.1 for details).

360 4.3 COMPARISON BETWEEN DUALRESEARCH AND EXISTING WORK

361
362 In this section, we compare the proposed method with existing approaches. As illustrated in Table
363 2, DualResearch remains highly competitive among all evaluated systems. On the HLE Text-Only
364 task, DualResearch achieves an average accuracy of 29.0%, below Tongyi-DeepResearch and X-
365 Masters. Note that DualResearch itself is not a standalone deep-research agent, it is a post-hoc mod-
366 ule that operates on the execution logs of existing systems. Nevertheless, it substantially improves
367 over the corresponding single-turn baselines and the original InternAgent results under the same
368 backbone models, and attains the best or second-best performance in most disciplines. Moreover,
369 X-Masters further relies on a multi-channel majority-voting strategy that markedly increases token
370 usage, whereas DualResearch can be easily plugged into different agents with minimal overhead.
371 These observations indicate that DualResearch possesses good transferability and plug-and-play
372 capability, making it a general enhancement module for current and future deep-research systems
373 rather than a competing end-to-end solution.

374
375 In the All-Set setting, the average accuracy was 27.8%, outperforming the second-best, Gemini Deep
376 Research, by 0.9%. Here, it ranked first in seven out of eight fields, placing second in Engineering.
377 Compared with agent baselines using the same backbone model, our method consistently demon-
378 strated significant improvements. On o4-mini, DualResearch outperformed InternAgent by 7.3% in
379 the Text-Only setting and by 7.3% in the All-Set setting.

378
 379 Table 2: Comparison on **HLE**. The best results are **bolded**, and the second-best results are
 380 underlined. Methods marked \dagger are direct model evaluations, those marked \ddagger are agent-based. Here,
 381 “Qwen3-235B” denotes “Qwen3-235B-A22B-Instruct.”

382	383	Method	Accuracy in each subset (%) \uparrow								
			384	385	386	387	388	389	390	391	392
QwQ-32B \dagger	12.6	14.0	7.9	4.0	6.0	13.3	5.3	4.4	9.6		
DeepSeek-R1-671B \dagger	9.3	8.6	7.4	5.8	11.0	5.6	10.3	7.5	8.6		
Qwen3-235B \dagger	11.4	9.0	8.5	5.5	8.3	4.9	7.8	6.3	9.2		
o4-mini \dagger	19.7	9.9	13.4	13.4	9.8	6.9	9.4	6.8	14.5		
GPT-5 \dagger	<u>31.3</u>	21.2	<u>25.5</u>	23.3	21.8	18.8	10.9	19.3	25.9		
WebThinker-32B-RL \ddagger	16.7	25.6	2.0	12.7	18.0	26.7	15.8	15.6	15.8		
SFR-DR-20B \ddagger	-	-	-	-	-	-	-	-	28.7		
X-Masters \ddagger	38.5	27.6	22.5	<u>24.1</u>	33.2	<u>26.1</u>	<u>23.4</u>	<u>29.0</u>	<u>32.1</u>		
Tongy \ddagger	-	-	-	-	-	-	-	-	32.9		
Text-Only	Kimi-Research \ddagger	-	-	-	-	-	-	-	-	26.9	
	InternAgent (Qwen3-235B) \ddagger	13.5	15.3	11.6	6.9	16.1	8.9	15.6	17.6	13.3	
	InternAgent (o4-mini) \ddagger	23.5	18.9	13.9	17.3	21.6	21.6	18.8	25.0	21.3	
	DualResearch (Qwen3-235B) \ddagger	16.9	18.9	13.9	10.9	19.7	21.8	21.9	19.9	17.1	
	DualResearch (o4-mini) \ddagger	<u>31.3</u>	<u>27.0</u>	26.8	24.3	<u>29.0</u>	25.7	28.1	30.1	29.0	
All-Set	Qwen3-235B \dagger	11.1	7.9	8.3	6.1	7.8	5.5	7.2	5.2	8.6	
	o4-mini \dagger	19.0	11.4	12.9	12.6	9.1	12.7	12.6	6.9	14.3	
	GPT-5 \dagger	<u>31.0</u>	22.1	<u>24.9</u>	<u>21.7</u>	20.6	16.4	14.4	18.0	24.8	
	OpenAI Deep Research \ddagger	-	-	-	-	-	-	-	-	26.6	
	Gemini Deep Research \ddagger	-	-	-	-	-	-	-	-	<u>26.9</u>	
	InternAgent (Qwen3-235B) \ddagger	13.0	12.5	10.8	7.4	14.2	7.9	9.0	13.7	11.9	
	InternAgent (o4-mini) \ddagger	23.5	18.9	17.4	15.7	19.2	18.2	16.2	20.6	20.1	
	DualResearch (Qwen3-235B) \ddagger	16.2	15.0	12.8	9.6	17.4	13.3	12.6	15.0	14.8	
	DualResearch (o4-mini) \ddagger	32.3	27.9	<u>27.0</u>	<u>23.5</u>	27.4	21.2	<u>21.6</u>	25.8	27.8	

407 Table 3 shows comparison on **GPQA**, DualResearch likewise exhibited superior performance,
 408 achieving an average accuracy of 87.37%, which is 2.02% higher than direct inference with GPT-5.
 409 By subset, on Bio, the result tied with the best; on Chem, the improvement was most pronounced
 410 at 3.23%; and on Phys, it further led by 1.16%. In addition, on the same backbone model o4-mini,
 411 our average accuracy is 6.06% higher than that of InternAgent. Overall, our method distills the
 412 logs of DeepResearch into declarative and procedural knowledge. This reduces the solution space,
 413 decreases uncertainty, and ultimately delivers more stable improvements.

414 Table 4 reports the comparison on **GAIA**. DualResearch again achieves the best overall performance,
 415 obtaining an average accuracy of 71.10%, which is 3.74% higher than OpenAI Deep Research. By
 416 difficulty level, it reaches 84.95% and 73.58% on Level-1 and Level-2, surpassing OpenAI Deep
 417 Research by 10.66% and 4.52%, respectively. In the most challenging Level-3 split, it ranks second
 418 while still outperforming InternAgent by 10.20%.

419 Table 3: Comparison on **GPQA**. The best results are **bolded**, and the second-best results are
 420 underlined. Methods marked \dagger are direct model evaluations, those marked \ddagger are agent-based.

424	425	Method	Accuracy in each subset (%) \uparrow			
			Bio	Chem	Phys	Avg.
DeepSeek-R1-671B \dagger	63.16	<u>76.34</u>	91.86	82.32		
o4-mini \dagger	78.95	63.44	94.19	78.28		
GPT-5 \dagger	84.21	<u>76.34</u>	<u>95.35</u>	<u>85.35</u>		
WebThinker-32B-RL \ddagger	78.90	50.50	90.70	70.70		
InternAgent (o4-mini) \ddagger	73.68	70.97	94.19	81.31		
DualResearch (o4-mini) \ddagger	84.21	79.57	96.51	87.37		

423 Table 4: Comparison on **GAIA**. The best results are **bolded**, and the second-best results are
 424 underlined. Methods marked \dagger are direct model evaluations, those marked \ddagger are agent-based.

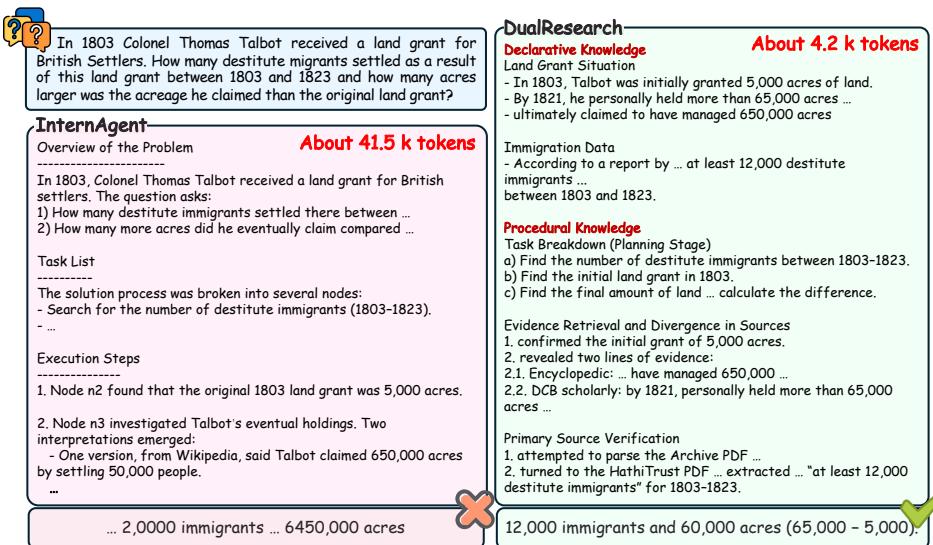
424	425	Method	Accuracy in each subset (%) \uparrow			
			426	427	428	429
Qwen3-235B \dagger	15.09	3.49	3.84	6.67		
o4-mini \dagger	28.30	12.79	7.69	16.97		
DeepSeek-R1-671B \dagger	33.96	13.95	3.84	18.74		
OpenAI Deep Research \ddagger	74.29	69.06	47.60	67.36		
InternAgent (o4-mini) \ddagger	<u>78.49</u>	<u>69.18</u>	26.53	65.12		
DualResearch (o4-mini) \ddagger	84.95	73.58	<u>36.73</u>	71.10		

432 4.4 ABLATION STUDY
433

434 In this section, we conduct an ablation study on the key
435 components based on o4-mini to verify the contribution
436 and complementarity of each submodule. Table 5 reports
437 the results on HLE and GPQA. First, it can be observed
438 that single-source information already brings consistent
439 gains: on HLE, Breadth and Depth improve performance
440 by 3.5% and 3.4%, respectively; on GPQA, Depth yields
441 an improvement of 1.52%. Second, directly concatenating
442 Breadth and Depth introduces conflicts and noise, re-
443 sulting in only a 1.8% improvement over the HLE base-
444 line and even a 0.51% decrease on GPQA. This indicates
445 that unconstrained fusion of the two types of evidence en-
446 larges the solution space and amplifies uncertainty. Finally,
447 with the introduction of entropy-based
448 aggregation, the model achieves the best results, reaching
449 27.8% on HLE and 87.37% on GPQA.
450 This aligns with our original design motivation: by hierarchically modeling declarative and
451 procedural evidence from logs, and employing entropy-driven aggregation to adaptively select high-
452 confidence and low-redundancy information, we avoid the expansion of the search space caused by
453 naive concatenation, thereby improving performance on both benchmarks simultaneously.

454 4.5 ANALYSIS & VISUALIZATION

455 **Case Study.** Figure 3 highlights the differences between InternAgent and DualResearch in evidence
456
457
458



473 Figure 3: Case study of a historical query comparing InternAgent and DualResearch.
474 management and constraint modeling. InternAgent generated a 41.5k-token log that repeatedly
475 conflated contradictory cues, for example, equating “claimed” with “managed” and misinterpreting
476 “at least 12,000” as a larger value. The long record accumulated noise rather than certainty.

477 In contrast, DualResearch distilled the same log into structured evidence: (1) declarative facts, such
478 as the grant of 5,000 acres, 12,000 immigrants (1803–1823), and over 65,000 acres personally held
479 by 1821; and (2) procedural steps, including constraining time, normalizing units, and restrict-
480 ing “claimed” to personal holdings. It then applied entropy-gated selection, down-weighting the
481 650,000-acre claim as uncertain and retaining the 65,000-acre figure as reliable. With a compact
482 4.2k-token graph, it produced the correct result: 12,000 immigrants and a 60,000-acre difference.
483 These findings show that layered representations and uncertainty-driven evidence selection improve
484 both interpretive consistency and computational reliability.

485 **Signal and Subject Graph Construction Strategies.** Figure 4 shows that subject-level multi-
sample graph aggregation outperforms the Signal baseline in Bio/Med, Chemistry, Engineering,

Table 5: Ablation of components with o4-mini. The best results are **bolded**.

Components			Datasets	
Breadth	Depth	Aggregation	HLE	GPQA
✗	✗	✗	20.1	81.31
✓	✗	✗	23.6	81.31
✗	✓	✗	23.5	82.83
✓	✓	✗	21.9	80.80
✓	✓	✓	27.8	87.37

Physics, and Mathematics, benefiting from strong ontological consistency and standardized notation. By reusing entities and relations across samples, aggregation yields denser graphs that enhance long-chain reasoning efficiency and verification accuracy. Conversely, in domains with greater heterogeneity, such as Other, Humanities, and CS/AI, Signal’s single-sample graphs prove more effective, as direct merging may introduce contradictory or weakly related edges, amplifying noise and undermining causal coherence. The small gap indicates DualResearch adapts, strengthening reusable edges in coherent domains and suppressing weak or conflicting ones in heterogeneous settings, balancing overall gains with domain-specific contrasts.

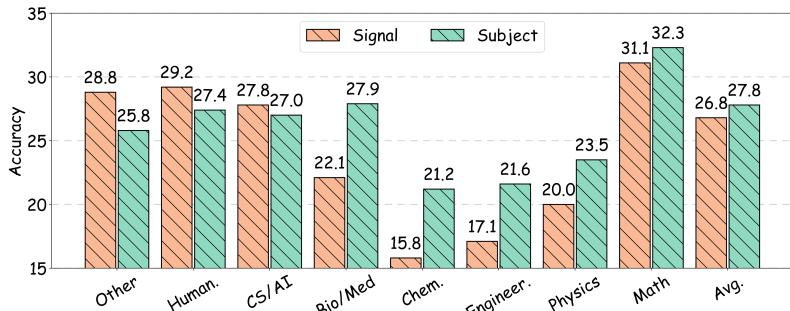


Figure 4: Accuracy comparison between two graph construction strategies across disciplines. Signal denotes single-sample graph construction, where each instance independently forms a knowledge graph. Subject denotes subject-level multi-sample graph aggregation, where multiple instances within the same discipline are merged into a unified graph.

5 CONCLUSION

In this paper, we have introduced DualResearch, a dual-graph retrieval and fusion framework designed for tool-intensive scientific reasoning tasks. The method constructs both a breadth knowledge graph and a depth process graph: the former provides stable background knowledge, while the latter captures executable reasoning processes. In extensive experiments, DualResearch can directly leverage the problem-solving trajectories of existing deep research frameworks to yield significant improvements in both accuracy and verifiability. On scientific benchmarks such as HLE and GPQA, our approach substantially outperforms strong baselines and maintains competitiveness across multidimensional evaluation metrics.

In the future, we plan to extend DualResearch to multimodal scientific reasoning by integrating diverse sources of evidence such as figures, tables, and experimental data. We believe that this direction will further advance the breadth and depth of automated scientific discovery.

540 **6 ETHICS STATEMENT**
541542 This article does not involve research on human subjects, practices of dataset release, insights, meth-
543 ods, or applications with potential harm, or other related ethical issues.
544545 **7 REPRODUCIBILITY STATEMENT**
546547 We have made every effort to ensure the reproducibility of our research results. The implementation
548 details of the proposed DualResearch framework, including graph construction rules and entropy-
549 gated aggregation, are described in the main text and further elaborated in the appendix. For theo-
550 retical contributions, all assumptions are explicitly stated, and complete proofs of the related claims
551 are provided in the appendix. For empirical evaluations, we used publicly available datasets, with
552 the processing pipeline and experimental settings documented in the supplementary materials. All
553 relevant code for this study will be released on GitHub upon acceptance of the paper.
554555 **REFERENCES**
556557 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
558 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
559 report. *arXiv preprint arXiv:2303.08774*, 2023.560 Toufique Ahmed and Premkumar Devanbu. Better patching using llm prompting, via self-
561 consistency. In *2023 38th IEEE/ACM International Conference on Automated Software Engi-
562 neering (ASE)*, pp. 1742–1746. IEEE, 2023.
563564 William Brannon, Suyash Fulay, Hang Jiang, Wonjune Kang, Brandon Roy, Jad Kabbara, and Deb
565 Roy. Congrat: Self-supervised contrastive pretraining for joint graph and text embeddings. *arXiv
566 preprint arXiv:2305.14321*, 2023.567 Jingyi Chai, Shuo Tang, Rui Ye, Yuwen Du, Xinyu Zhu, Mengcheng Zhou, Yanfeng Wang, Yuzhi
568 Zhang, Linfeng Zhang, Siheng Chen, et al. Scimaster: Towards general-purpose scientific ai
569 agents, part i. x-master as foundation: Can we lead on humanity’s last exam? *arXiv preprint
570 arXiv:2507.05241*, 2025.
571572 Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo, Wei Xue, Yike Guo, and Jie Fu. Rq-rag:
573 Learning to refine queries for retrieval augmented generation. *arXiv preprint arXiv:2404.00610*,
574 2024.575 Runjin Chen, Tong Zhao, AJAY KUMAR JAISWAL, Neil Shah, and Zhangyang Wang. Llaga:
576 Large language and graph assistant. In *International Conference on Machine Learning (ICML)*,
577 2024.
578579 Google DeepMind. Gemini deep research. <https://deepmind.google/technologies/gemini/deep-research/>, 2024. Accessed: 2025-09-24.580 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
581 and Jonathan Larson. From local to global: A graph rag approach to query-focused summariza-
582 tion. *arXiv preprint arXiv:2404.16130*, 2024.
583584 Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and
585 Qing Li. A survey on rag meeting llms: Towards retrieval-augmented large language models.
586 In *International Conference on Knowledge Discovery and Data Mining (KDD)*, pp. 6491–6501,
587 2024.
588589 Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
590 relevance labels. *arXiv preprint arXiv:2212.10496*, 2022.
591592 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
593 Haofen Wang. Retrieval-augmented generation for large language models: A survey. *arXiv
594 preprint arXiv:2312.10997*, 2023.

594 Kai Han, Yunhe Wang, Jianyuan Guo, Yehui Tang, and Enhua Wu. Vision gnn: An image is worth
 595 graph of nodes. *Advances in neural information processing systems*, 35:8291–8303, 2022.
 596

597 Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan
 598 Jin, Yingru Li, Qiguang Chen, et al. Owl: Optimized workforce learning for general multi-agent
 599 assistance in real-world task automation. *arXiv preprint arXiv:2505.23885*, 2025.

600 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
 601 In *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 1049–1065, 2023.
 602

603 Yuxuan Huang, Yihang Chen, Haozheng Zhang, Kang Li, Meng Fang, Linyi Yang, Xiaoguang Li,
 604 Lifeng Shang, Songcen Xu, Jianye Hao, et al. Deep research agents: A systematic examination
 605 and roadmap. *arXiv preprint arXiv:2506.18096*, 2025.

606 Nicola Jones. Openai’s deep research’ tool: is it useful for scientists? *Nature*, 2025.
 607

608 Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhui Chen. Long-context llms struggle with
 609 long in-context learning, 2024.

610 Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
 611 Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability.
 612 *arXiv preprint arXiv:2504.21776*, 2025.

613

614 Yichuan Li, Kaize Ding, and Kyumin Lee. Grenade: Graph-centric language model for self-
 615 supervised representation learning on text-attributed graphs. In *International Conference on Em-
 616 pirical Methods in Natural Language Processing (EMNLP)*, pp. 2745–2757, 2023.

617 Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan Zhang.
 618 One for all: Towards training one graph model for all classification tasks. In *International Con-
 619 ference on Learning Representations (ICLR)*, 2024.

620

621 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
 622 a benchmark for general ai assistants. In *The Twelfth International Conference on Learning
 623 Representations*, 2023.

624

625 Xuan-Phi Nguyen, Shrey Pandit, Revanth Gangi Reddy, Austin Xu, Silvio Savarese, Caiming Xiong,
 626 and Shafiq Joty. Sfr-deepresearch: Towards effective reinforcement learning for autonomously
 627 reasoning single agents. *arXiv preprint arXiv:2509.06283*, 2025.

628

629 OpenAI. Introducing gpt-5 for developers. OpenAI website, 2025a. Available: <https://openai.com/index/introducing-gpt-5-for-developers/>.

630

631 OpenAI. Openai o3 and o4-mini system card. OpenAI website, 2025b. Available: <https://openai.com/index/o3-o4-mini-system-card/>.

632

633 OpenAI. Deepresearch. <https://openai.com/research/deep-research>, 2025c. Ac-
 634 cessed: 2025-09-24.

635

636 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
 637 Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. *arXiv preprint
 638 arXiv:2501.14249*, 2025.

639

640 Ben Prystawski, Michael Li, and Noah Goodman. Why think step by step? reasoning emerges from
 641 the locality of experience. *Advances in Neural Information Processing Systems*, 36:70926–70947,
 642 2023.

643

644 Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and
 645 Yoav Shoham. In-context retrieval-augmented language models. *Transactions of the Association
 646 for Computational Linguistics (TACL)*, 11:1316–1331, 2023.

647

648 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 649 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 650 mark. In *First Conference on Language Modeling*, 2024.

648 Jinxin Shi, Jiabao Zhao, Xingjiao Wu, Ruyi Xu, Yuan-Hao Jiang, and Liang He. Mitigating reasoning
 649 hallucination through multi-agent collaborative filtering. *Expert Systems with Applications*,
 650 263:125723, 2025.

651 Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
 652 Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
 653 models via the lens of problem complexity. *arXiv preprint arXiv:2506.06941*, 2025.

654 Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
 655 Graphgpt: Graph instruction tuning for large language models. In *ACM International Conference
 656 on Research and Development in Information Retrieval (SIGIR)*, pp. 491–500, 2024.

657 NovelSeek Team, Bo Zhang, Shiyang Feng, Xiangchao Yan, Jiakang Yuan, Zhiyin Yu, Xiaohan He,
 658 Songtao Huang, Shaowei Hou, Zheng Nie, et al. Novelseek: When agent becomes the scientist-
 659 building closed-loop system from hypothesis to verification. *arXiv preprint arXiv:2505.16938*,
 660 2025.

661 Han Xie, Da Zheng, Jun Ma, Houyu Zhang, Vassilis N Ioannidis, Xiang Song, Qing Ping, Sheng
 662 Wang, Carl Yang, Yi Xu, et al. Graph-aware language model pre-training on a large graph corpus
 663 can help multiple graph applications. In *International Conference on Knowledge Discovery and
 664 Data Mining (KDD)*, pp. 5270–5281, 2023.

665 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 666 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 667 arXiv:2505.09388*, 2025.

668 Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan You, Chao Zhang, Mohammad Shoeybi, and
 669 Bryan Catanzaro. Rankrag: Unifying context ranking with retrieval-augmented generation in
 670 llms. *arXiv preprint arXiv:2407.02485*, 2024.

671 Yanbo Zhang, Sumeer A Khan, Adnan Mahmud, Huck Yang, Alexander Lavin, Michael Levin,
 672 Jeremy Frey, Jared Dunnmon, James Evans, Alan Bundy, et al. Exploring the role of large lan-
 673 guage models in the scientific method: from hypothesis to discovery. *npj Artificial Intelligence*, 1
 674 (1):14, 2025.

675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 A THEORY
703704 A.1 RATIONALE AND SCOPE
705

706 Complex, tool-intensive queries expose two complementary information channels: a *breadth* channel
707 that aggregates stable background evidence across documents, and a *depth* channel that captures
708 instance-specific procedural traces (tools, intermediates, validations). These channels differ
709 systematically in structure (undirected relatedness vs. directed, typed causality) and uncertainty
710 (low-variance coverage vs. path-dependent reliability). In practice, which channel is preferable is
711 *instance-dependent*: breadth can dominate when background suffices, while depth is decisive when
712 procedural constraints determine correctness. Collapsing both into a single latent space fixes an
713 inductive bias that cannot adapt per query and invites ad-hoc fusion without guarantees.
714

715 We therefore cast retrieval as a *mixture-of-experts* problem under a proper scoring rule (log-loss),
716 where breadth and depth provide probabilistic posteriors and a gate arbitrates their contributions.
717 Our gate is *uncertainty-aware* via Shannon entropy, a choice that is both operational and theo-
718 retically convenient: (i) geometric (log-linear) mixtures admit pointwise upper bounds by convex
719 combinations of expert losses; and (ii) under mild, testable entropy–loss calibration, lower entropy
720 predicts lower conditional loss, so an entropy gate approximates the oracle that selects the better
721 expert per instance. The theorem below formalizes this intuition as an *oracle inequality* with a mea-
722 surable gating regret that vanishes when the entropy ordering matches the conditional-loss ordering.
723 This yields a principled explanation of why dual-graph fusion can strictly outperform any single
724 graph in expectation, while remaining faithful to each channel’s inductive bias.
725

726 **Definition 3** (Dual-graph posteriors and entropy-gated fusion). Let \mathcal{A} be a finite answer set and
727 $(q, y) \sim \mathcal{D}$ be query–label pairs. Two layer-native predictors produce posteriors $P_B(\cdot | q)$ (Breadth
728 graph) and $P_D(\cdot | q)$ (Depth graph). Define their Shannon entropies $H_B(q) = -\sum_{a \in \mathcal{A}} P_B(a | q) \log P_B(a | q)$ and $H_D(q)$ analogously, and per-example log-losses $\ell_B(q, y) = -\log P_B(y | q)$,
729 $\ell_D(q, y) = -\log P_D(y | q)$. The fused posterior is the geometric (log-linear) mixture
730

$$731 P_F(a | q) \propto P_B(a | q)^{1-\alpha(H)} P_D(a | q)^{\alpha(H)}, \quad \alpha(H) = \frac{e^{-H_D(q)}}{e^{-H_D(q)} + e^{-H_B(q)}} \in [0, 1],$$

732 with population (expected) log-loss risk $\mathcal{R}(P) = \mathbb{E}_{(q, y) \sim \mathcal{D}}[-\log P(y | q)]$. We say channel
733 $i \in \{B, D\}$ is *entropy–loss calibrated* if there exists a nondecreasing $\phi_i : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ such that
734 $\mathbb{E}[\ell_i(q, y) | H_i(q) = h] = \phi_i(h)$ almost everywhere.
735

736 **Theorem 1** (Generalization advantage of entropy-gated dual-graph fusion). Under the setting above,
737 for any (q, y) and any fixed $\alpha \in [0, 1]$,

$$738 -\log P_F(y | q) \leq (1 - \alpha) \ell_B(q, y) + \alpha \ell_D(q, y).$$

739 Consequently, for the entropy gate $\alpha(H)$,

$$740 \mathcal{R}(P_F) \leq \mathbb{E}[\min\{\mathbb{E}[\ell_B | H], \mathbb{E}[\ell_D | H]\}] + \mathcal{E}_{\text{gate}}, \quad \mathcal{E}_{\text{gate}} = \mathbb{E}[|\Delta(H)| \cdot |\alpha(H) - \alpha^*(H)|], \quad (10)$$

741 where $H = (H_B, H_D)$, $\Delta(H) = \mathbb{E}[\ell_D | H] - \mathbb{E}[\ell_B | H]$, and $\alpha^*(H) = \mathbb{I}\{\Delta(H) < 0\}$ is the oracle
742 gate. If both channels are entropy–loss calibrated and the *sign-consistency* condition holds almost
743 surely,

$$744 \text{sign}(\Delta(H)) = \text{sign}(H_D - H_B),$$

745 then $\alpha(H) = \alpha^*(H)$ almost surely, $\mathcal{E}_{\text{gate}} = 0$, and

$$746 \mathcal{R}(P_F) \leq \mathbb{E}[\min\{\mathbb{E}[\ell_B | H], \mathbb{E}[\ell_D | H]\}] \leq \min\{\mathcal{R}(P_B), \mathcal{R}(P_D)\}. \quad (11)$$

747 Thus the entropy-gated dual-graph fusion generalizes at least as well as the better single graph and
748 strictly better whenever the better channel varies across queries.
749

750 **Proof. Step 1: Pointwise bound for geometric mixtures.** For any $\alpha \in [0, 1]$, the fused posterior
751 can be written as $P_F(y | q) = \frac{P_B(y | q)^{1-\alpha} P_D(y | q)^\alpha}{Z}$ with $Z = \sum_a P_B(a | q)^{1-\alpha} P_D(a | q)^\alpha$. By
752 Hölder’s inequality (generalized AM–GM), $\sum_a x_a^{1-\alpha} y_a^\alpha \leq (\sum_a x_a)^{1-\alpha} (\sum_a y_a)^\alpha$ for $x_a, y_a \geq 0$.
753 Taking $x_a = P_B(a | q)$, $y_a = P_D(a | q)$ (each sums to 1), we have $Z \leq 1$ and hence $\log Z \leq 0$.
754 Therefore, we have
755

$$-\log P_F(y | q) = -(1 - \alpha) \log P_B(y | q) - \alpha \log P_D(y | q) + \log Z \leq (1 - \alpha) \ell_B(q, y) + \alpha \ell_D(q, y).$$

756 **Step 2: Expectation and oracle decomposition.** Taking expectations and letting the gate be data-
 757 dependent $\alpha(H)$, we have

$$759 \quad \mathcal{R}(P_F) \leq \mathbb{E}[\ell_B] + \mathbb{E}[\alpha(H) \cdot (\ell_D - \ell_B)] = \mathbb{E}[\mathbb{E}[\ell_B | H] + \alpha(H)(\mathbb{E}[\ell_D | H] - \mathbb{E}[\ell_B | H])].$$

760 Let $\Delta(H) = \mathbb{E}[\ell_D | H] - \mathbb{E}[\ell_B | H]$ and define the oracle gate $\alpha^*(H) = \mathbb{I}\{\Delta(H) < 0\}$. Then

$$761 \quad \mathbb{E}[\ell_B | H] + \alpha(H)\Delta(H) = \min\{\mathbb{E}[\ell_B | H], \mathbb{E}[\ell_D | H]\} + (\alpha(H) - \alpha^*(H))\Delta(H).$$

762 Taking outer expectations and applying $|\mathbb{E}[X]| \leq \mathbb{E}[|X|]$ yields equation 10.

764 **Step 3: Calibration implies sign-consistent gating.** If channels are entropy-loss calibrated, there
 765 exist nondecreasing ϕ_B, ϕ_D with $\mathbb{E}[\ell_i | H_i = h] = \phi_i(h)$. Hence $\Delta(H) = \phi_D(H_D) - \phi_B(H_B)$
 766 and $\text{sign}(\Delta(H)) = \text{sign}(H_D - H_B)$ whenever ϕ_i are strictly increasing. Our entropy gate $\alpha(H) =$
 767 $\frac{e^{-H_D}}{e^{-H_D} + e^{-H_B}}$ is a strictly increasing function of $-(H_D - H_B)$, thus $\alpha(H) = \alpha^*(H)$ almost surely
 768 under the sign-consistency condition, making $\mathcal{E}_{\text{gate}} = 0$. Finally, Jensen's inequality for the convex
 769 function \min gives $\mathbb{E}[\min\{\mathbb{E}[\ell_B | H], \mathbb{E}[\ell_D | H]\}] \leq \min\{\mathbb{E}[\ell_B], \mathbb{E}[\ell_D]\}$. In this way, we have
 770 completed the proof. \square

772 A minimal worked example for depth similarity

773 Query: "Consider the song 'All My Loves Are You' as played by Erroll Garner on the 1986 album *Afternoon Of An Elf*. What type of scale does Garner play in the right hand melody between
 774 seconds 39 and 43 of the song?" (The album/track info is standard; e.g., *Afternoon of an Elf* lists "All My Loves Are You" and is widely available on streaming.
 775 Answer set: {Chromatic, Major (Ionian), Dorian, Blues}

776 What our method expects from the query.

777 From the text, the query implies a short, typed procedure:

778 $O(q) = \text{search_track}(\text{Audio}) \rightarrow \text{segment_audio}(00:39-00:43) \rightarrow \text{compute_intervals}(\text{RH_melody}) \rightarrow \text{verify_scale_pattern}(\text{theory_check})$
 779 This is exactly the kind of order- and type-aware sequence that our depth score compares against candidate execution chains (Definition 2 and Eq. 2).

780 Three competing candidate paths from the log and how S_D is computed

781 We imagine three admissible (typed, unit/time-consistent) chains produced during a tool run. For each chain we compute Eq. (2):

$$782 \quad S_D(t|q) = \max_{p \in \mathcal{P}_{\text{SL}(t)}} R(p) \cdot \frac{\text{LCS}^+(O(q), O(p))}{|O(q)|}.$$

783 Path $p_1 \rightarrow$ predicts Chromatic

784 $O(p_1) = [\text{search_track}, \text{segment_audio}, \text{compute_intervals}, \text{verify_scale_pattern}]$

785 Reliability: 0.96

786 Path $p_2 \rightarrow$ predicts Dorian

787 $O(p_2) = [\text{search_track}, \text{segment_audio}, \text{estimate_key}, \text{classify_mode}]$

788 Reliability: 0.92, Depth score: 0.46.

789 Path $p_3 \rightarrow$ predicts Blues

790 $O(p_3) = [\text{search_track}, \text{transcribe_chords}, \text{classify_blues_scale}]$

791 Reliability: 0.94, Depth score: 0.235.

792 Thus, the order- and type-aware depth similarity strongly favors Chromatic (0.96) over Dorian (0.46) and Blues (0.235). This follows our definition of depth retrieval and typed LCS[†] exactly.

793 Where the breadth channel points

794 On the breadth graph we include background nodes like:

795 "Chromatic scale = sequence of semitone steps" (music-theory node) \rightarrow matches the query's "what type of scale (melodic pattern) in a 4-s excerpt," and supports an interval-step interpretation.
 796 (Definition pages as background.)

797 In this example, "Chromatic scale" receives a higher breadth score than "Dorian" or "Blues" because the query explicitly targets *semitone-based right-hand melody identification* in a tight time
 798 window—semantically closer to the chromatic definition than to modal/hexatonic summaries.

799 Fusion and final selection

800 Each channel produces a normalized answer distribution (Eq. 4). The entropy-gated fusion then up-weights the sharper (lower-entropy) channel (Eqs. 6-7), amplifying agreement. Here, Depth is
 801 very peaked on Chromatic, so $\alpha(H)$ leans toward Depth; the fused posterior's MAP is Chromatic Scale.

802 **Final answer:** Chromatic Scale.

797 Figure 5: Example for depth similarity.

803 B MORE RESULTS AND DETAILS FOR EXPERIMENTS

804 In this section, we present the performance improvements achieved by DualResearch when reusing
 805 X-Masters logs. We then demonstrate how we configure prompts to enable the LLM to clean logs,
 806 as well as evaluate on the HLE and GPQA datasets.

807 B.1 IMPROVEMENT IN X-MASTERS

808 As shown in Table 6, it is evident that after reusing the scientific logs generated by X-Masters during
 809 problem solving, DualResearch demonstrates significant improvements. The accuracy increased
 810 from 23.9% to 28.8%, yielding a gain of 4.9%. This finding is consistent with the conclusions
 811 reported on InternAgent in the main text, providing strong evidence that DualResearch, as a post-
 812 processing method for deep research, can deliver stable performance gains.

810 Table 6: Compared with the baseline X-Masters, DualResearch shows improvements on HLE Text-
 811 Only in the Bio/Med domain. Here, X-Masters refers to the originally reported results, while X-
 812 Masters denotes the results we obtained from our reproduction. All frameworks employ DeepSeek-
 813 R1-671B as the backbone model.

Methods	X-Masters	X-Masters*	DualResearch	Improvement
Acc. in Bio/Med	27.6	23.9	28.8	↑4.9

818 B.2 PROMPT FOR TEST LLMs IN HLE AND GPQA

819

820 **SYSTEM_PROMPT**

821 Your response should be in the following format:

822 Explanation: {your explanation for your answer choice}

823 Answer: {your chosen answer}

824 Confidence: {your confidence score between 0% and 100% for your answer}

825

826 **User_PROMPT**

827 Please answer the following question:

828 {question_text}

829

830 Figure 6: The prompt used to call LLM to answer scientific questions in HLE and GPQA.

831

832

833 **User_PROMPT**

834 Your response should be in the following format:

835 Explanation: {your explanation for your answer choice}

836 Answer: {your chosen answer}

837 Confidence: {your confidence score between 0% and 100% for your answer} Judge whether the following [response] to [question] is correct or not based on the precise and unambiguous [correct_answer] below.

838 [question]: {question}

839 [response]: {response}

840 Your judgement must be in the format and criteria specified below:

841 extracted_final_answer: The final exact answer extracted from the [response]. Put the extracted answer as 'None' if there is no exact, final answer to extract from the response.

842 [correct_answer]: {correct_answer}

843 reasoning: Explain why the extracted_final_answer is correct or incorrect based on [correct_answer], focusing only on if there are meaningful differences between [correct_answer] and the extracted_final_answer. Do not comment on any background to the problem, do not attempt to solve the problem, do not argue for any answer different than [correct_answer], focus only on whether the answers match.

844 correct: Answer 'yes' if extracted_final_answer matches the [correct_answer] given above, or is within a small margin of error for numerical problems. Answer 'no' otherwise, i.e. if there is any inconsistency, ambiguity, non-equivalence, or if the extracted answer is incorrect.

845 confidence: The extracted confidence score between 0|\%| and 100|\%| from [response]. Put 100 if there is no confidence score available.

852 Figure 7: The prompts used to invoke LLMs for evaluating response content all use o3-mini as the
 853 judge model in this article.

855 C THE USE OF LARGE LANGUAGE MODELS (LLMs)

856 In this study, large language models (LLMs) were used only in a limited scope to assist with pe-
 857 ripheral tasks. For code development, we occasionally employed Claude-4 to generate boilerplate
 858 functions for data preprocessing and visualization, which were subsequently reviewed and adjusted
 859 by the authors. For manuscript preparation, GPT-5 was used to provide minor linguistic suggestions
 860 and stylistic improvements, while all conceptual content, methodological design, and experimental
 861 analyses were entirely conducted by the authors.