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ABSTRACT

The deep-research framework orchestrates external tools to perform complex,
multi-step scientific reasoning that exceeds the native limits of a single large
language model. However, it still suffers from context pollution, weak evi-
dentiary support, and brittle execution paths. To address these issues, we pro-
pose DualResearch, a retrieval and fusion framework that matches the epis-
temic structure of tool-intensive reasoning by jointly modeling two complemen-
tary graphs: a breadth semantic graph that encodes stable background knowledge,
and a depth causal graph that captures execution provenance. Each graph has a
layer-native relevance function, seed-anchored semantic diffusion for breadth, and
causal-semantic path matching with reliability weighting for depth. To reconcile
their heterogeneity and query-dependent uncertainty, DualResearch converts per-
layer path evidence into answer distributions and fuses them in log space via an
entropy-gated rule with global calibration. The fusion up-weights the more certain
channel and amplifies agreement. As a complement to deep-research systems, Du-
alResearch compresses lengthy multi-tool execution logs into a concise reasoning
graph, and we show that it can reconstruct answers stably and effectively. On the
scientific reasoning benchmarks HLE and GPQA, DualResearch achieves com-
petitive performance. Using log files from the open-source system InternAgent,
its accuracy improves by 7.7% on HLE and 6.06% on GPQA.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities and provided new
paradigms for tackling scientific tasks across various domains (Achiam et al., 2023} [Zhang et al.,
2025)). However, current LLMs still lack explicit chains of evidence, systematic reasoning processes,
and structured modes of knowledge organization in scientific reasoning applications (Shojaee et al.,
2025). As a result, their responses often fall short in terms of reliable theoretical grounding and
logical rigor. Moreover, native models face challenges when integrating long-text information: they
struggle with global planning (Li et al.}|2024), cross-paragraph alignment (Huang & Chang}, |2023)),
and consistency maintenance (Ahmed & Devanbu, 2023). In other words, complex scientific tasks
are often difficult to resolve through a single round of reasoning (Zhang et al., 2025).

To address this, a set of approaches known collectively as deep-research has been proposed (Jones,
2025; Hu et al., 2025} Team et al., 2025). These methods integrate LLMs with external information
retrieval and tool usage, enabling models to acquire and incorporate external knowledge during
reasoning. When necessary, they can decompose complex tasks through multi-agent collaboration,
and attach explicit citations of evidence in their outputs, thereby enhancing, to some extent, their
ability to solve challenging scientific problems. As illustrated in Figure [I when answering the
question “Which of these Turing Machines halts after the most number of steps and what is the
number of steps?”, a typical deep-research workflow retrieves the transition tables of the relevant
Turing machines, generates corresponding simulator code, and ultimately derives a conclusion.

Nevertheless, these methods still exhibit failure modes. First, noise introduced by semantic retrieval
may mislead the simulation logic (Shi et al., 2025). Second, conclusions are often presented without
an explicit demonstration of intermediate steps (Prystawski et al., [2023). The root cause is that
deep research operates as a tool-intensive paradigm. It requires broad semantic anchoring across
concepts, aliases, and cross-literature evidence (Huang et al., [2025)).
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Figure 1: The illustrations for DualResearch. Left: Performance comparison on the HLE bench-
mark, where DualResearch consistently outperforms strong baselines across diverse scientific do-
mains. Right: A case on the “Turing Machine halting steps” problem, where deep research produces
an incorrect conclusion due to noisy retrieval and missing causal constraints, while DualResearch
leverages structured process graphs and entropy-gated aggregation to derive the correct answer.

Based on this, we argue that retrieval and aggregation should reflect the epistemological structure of
the task. To achieve this, we propose a new framework termed DualResearch constructing in paral-
lel a Breadth Semantic Graph, which organizes semantic and evidential connections among entities,
paragraphs, and tables, and a Depth Causal Graph, which encodes causal reasoning through typed
actions, outputs, and verifiers. During reasoning, problem-solving advances through two collabo-
rative stages: (1) breadth-oriented neighborhood expansion, where multi-hop semantic propagation
around seed terms suppresses drift; (2) depth-oriented causal constraint analysis, where short and
reliable execution chains are selected.

To further unify the semantic and procedural knowledge, we introduce an entropy-gated dual-graph
fusion. Each side first forms a normalized answer distribution, which we then fuse in log space
with entropy weights, giving more weight to the sharper (more certain) distribution. This boosts
agreement while avoiding overconfidence under joint uncertainty. The fused output preserves re-
call from similarity retrieval and produces stitchable chains of evidence for the LLM to leverage.
With dual-graph modeling and entropy-gated fusion, this work advances scientific reasoning from
Similarity-based Paragraph Matching to Causality-based Verifiable Reasoning, improving reliabil-
ity, traceability, and reproducibility.

In summary, our contributions are as follow:

1. To address the trade-off between semantic coverage and causal consistency in complex
problem solving, we propose DualResearch. To our knowledge, this is the first frame-
work that jointly models Breadth Semantic Graph and Depth Causal Graph, which assigns
each Graph its own layer-native relevance function: seed-anchored semantic diffusion for
breadth, and causal-semantic path matching with reliability weights for depth.

2. We propose an entropy-gated fusion mechanism that transforms evidence from both graphs
into answer distributions. The mechanism reconciles two heterogeneous signals, undirected
semantic neighborhoods and directed procedural paths, thereby ensuring robustness under
channel disagreement and enhancing performance when the two channels align.

3. On graduate-level scientific datasets HLE and GPQA, our method successfully reused the
log of the baseline and achieved superior performance. Moreover, when compared with
state-of-the-art methods, DualResearch also demonstrated competitive results.

2 RELATED WORK

Retrieval-Augmented Generation (RAG) enriches LLM prompts with external evidence so that
responses are grounded in factual sources (Ram et all [2023; |[Fan et all [2024). Standard RAG
retrieves top-k text chunks from a vector index, which is effective for short-hop fact lookup but
fragments documents and offers no representation of the reasoning process (Gao et al.| [2022; 2023
Chan et al.| [2024; [Yu et al.,|2024). Recent graph-based RAG begins to link entities or claims (Edge
et al.| 2024)), yet most methods remain text-oriented and still lack an explicit channel for procedural
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information, limiting reproducibility and multi-step reasoning. Beyond RAG, a complementary
literature study examines how graphs interface with LLMs and agents. Three strands are prominent:
(i) using graph neural network (GNNs) (Han et al., 2022) to produce topology-aware tokens for
LLMs, e.g., GraphGPT (Tang et al., 2024) and LLaGA (Chen et all [2024); (ii) using LLMs to
enrich graph content and provide supervision for downstream tasks, e.g., GALM (Xie et al., [2023)
and OFA (Xie et al.; 2023} |Liu et al.||2024); and (iii) building agents that directly operate on graphs
to align GNN and LLM representations through interaction (Li et al.l 2023} Brannon et al., 2023).

In contrast, standard RAG assumes a fixed corpus and falters when answers require dynamic tool
use. Our approach treats graphs as execution objects: a breadth channel anchors terms across doc-
uments, while a depth channel retrieves short, auditable procedure chains produced during tool
interaction. The result is not just content-grounded answers but tool-grounded and reproducible
reasoning, addressing cases where chunk-based RAG is brittle.

Deep-Research motivates a series of systems for scientific problem solving. |OpenAl| (2025c) and
DeepMind|(2024) combine retrieval with reasoning to generate evidence-grounded reports from het-
erogeneous sources. Building on multi-agent coordination, OWL (Hu et al., 2025) employs a hier-
archical architecture, while InternAgent (Team et al., [2025)) extends this paradigm with closed-loop
workflows for iterative hypothesis generation and experimentation. WebThinker (L1 et al., [2025)
emphasizes dynamic web-based reasoning, integrating preference optimization for long-horizon in-
ference. In contrast, single-agent approaches such as SFR-DR (Nguyen et al.| 2025) train LLMs to
select actions via reinforcement learning, whereas X-Masters (Chai et al., 2025)) advances ensemble
reasoning through a multi-channel strategy. Together, these systems highlight the diversity of agent
designs but also reveal open challenges in controlling solution space and ensuring reproducibility.

Despite these advances, large-scale retrieval and tool use expand the solution space and amplify
uncertainty. Our approach instead leverages solving logs to distill declarative facts and procedural
steps, thereby narrowing the solution space while improving transparency and reproducibility.

3 METHOD: BREADTH & DEPTH GRAPHS WITH LAYER-NATIVE RETRIEVAL
DISTANCES
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Figure 2: Workflow of the DualResearch. Stage 1: scientific tasks are executed with Deep Research
tools to produce raw logs. Stage 2: logs are structured into stepwise traces with intermediate ar-
tifacts. Stage 3: evidence is organized into a Breadth Semantic Graph and a Depth Causal Graph,
whose outputs are fused by an entropy-gated aggregator to yield the final answer.

Background. Tool-intensive questions usually need multi-hop reasoning before obtaining the an-
swer. The model must ground terms and assumptions in background sources and then compose
results across tools (search— parse — compute — verify). Text-only graphs capture background but
not execution structure; raw logs record execution but lack stable anchors. We therefore use two
complementary substrates and query each with a graph-native distance: a breadth semantic graph
for broad, low-variance background and a depth causal graph for short, reproducible procedure
chains. See Figure 2] for the overall workflow.
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3.1 DUAL-GRAPH COLLABORATION

Motivation. Scientific reasoning systems draw on two distinct sources: (i) static background
knowledge, including entities, definitions, equations, and cross-document evidence that remain sta-
ble across queries and are typically derived from documents or websites; and (ii) procedural knowl-
edge, consisting of transient, stepwise traces generated through search—parse—compute—verify inter-
actions, such as tool calls, intermediate artifacts, and validator outcomes. Both are essentia, the first
anchors terms and reduces hallucination, and the second mirrors the thinking process and supports
reasoning. However, most methods focus on static semantics and treat procedural signals as loose
context, or even omit its semantics, hence leading to the suboptimal results.

Definition 1 (Breadth Semantic Graph by Static Background). The Breadth graph is GP =
(VB ,EB sg). Nodes VB are canonical entities/terms, paragraph or table spans, and formula
symbols. Edges E? encode lightweight semantic/evidential relations (mentions, defines,
aliases, cites, supports, derived_from). Each edge e carries a normalized confidence
sp(e) € (0,1] summarizing extraction reliability and cross-source support. This layer provides
stable anchors and multi-hop background structure; it deliberately avoids procedural detail.

Definition 2 (Depth Causal Graph by Procedural Background). The Depth graph is GP =
(VP EP sp). Nodes VP abstract execution provenance into Action (operator/tool with param-
eters and an environment signature), Artifact/Result (intermediate or final quantities), and Validator
(unit/equation/consistency checks). Directed edges E” capture stepwise dependency observed in
logs: consumes(Artifact — Action), produces(Action — Artifact), verified by(Artifact —
Validator), and carryover when an output becomes a downstream input. An edge is admitted
only if typing, units, and temporal order are coherent; admitted edges receive a single confidence
sp(e) € (0,1] derived from validator success and repeatability across retries/branches. This layer
encodes reproducible, checkable chains rather than textual co-occurrence.

Entity/Relation Extraction for the Breadth Semantic Graph. For each span of background
knowledge retrieved in the log, we feed the raw sentence or paragraph into an LLM with a fixed
extraction prompt that asks it to enumerate all salient entities (such as concepts, numerical values,
and units) and the semantic relations between them (for example, “is defined as”, “refers to”, or
“cites”). The model’s output is a small set of triple-like records, which we normalize into canonical
entity mentions and relation types. Each entity becomes a node in V2, and each relation becomes a
typed edge in E. Because the same concept may be extracted from multiple passages, we aggre-
gate these signals and assign every edge e a confidence score sp(e) that reflects the reliability and
consistency of the extraction. Running this template-driven procedure over all retrieved snippets
systematically turns unstructured background text into a Breadth Semantic Graph that covers key
concepts and their cross-document links.

Action/Artifact Parsing for the Depth Causal Graph. For every record in the execution log, in-
cluding agent decisions, tool invocations, and explicit verification steps, we apply a structured pars-
ing prompt that asks the LLM to list: (i) the action or tool and its parameters, (ii) the input artifacts,
(iii) the output artifacts, and (iv) any validations performed. From this parsed output, we instantiate
a single Action node and several Artifact nodes, and connect them with directed consumes and
produces edges. If the log entry contains a consistency or unit check, we additionally create a
Validator node and attach verified_ by edges from the corresponding artifacts. An edge is admit-
ted into £/ only when basic type, unit, and temporal constraints inferred from the log are satisfied,
and its confidence sp(e) encodes how strongly these checks succeed. This process transforms raw,
sequential logs into a coherent Depth Causal Graph that captures reproducible chains of computation
rather than opaque text traces.

Semantic Retrieval on the Two Graphs. Formally, f(-) serves as the encoder of query ¢, while
gs(+) and gp(-) serve as the node and edge encoders for the Breadth and Depth graph, respectively.
We define semantic retrieval scores as follows.

Breadth similarity (semantic anchoring). We score a background node v € V? by comparing the
query to a neighborhood—smoothed representation of v, the node embedding lightly averaged with
its immediate neighbors using edge confidences as weights. The breadth score is a single cosine:

Sp(v|q) = cos(f(q), gB(v)). (1)
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Intuitively, gz (v) suppresses spurious matches to isolated nodes and rewards terms that are seman-
tically close to the query and supported by evidence. This one-hop smoothing avoids multi-step
diffusion and hyperparameters, yet retains a topology-aware bias robust to noise extractions.

Depth similarity (order- and type-aware). Cosine on a path embedding ignores ordering and
typed constraints. We instead compare the operation sequence implied by the query to that of a
short admissible chain. Let O(q) be the sequence of required typed operations extracted from ¢
(e.g., search—parse—compute—verify), and let O(p) be the action/validator sequence
on path p (passing type/unit/time gates). Define LCS'(O(g), O(p)) as the longest common sub-
sequence that only counts matches with compatible types/units. With a simple path reliability

R(p) = (Heep sp(e))” (r€(0,1]), we use:

Les'(0(9),0)
0(q)]

This single-score criterion is simple, auditable, and efficient (dynamic programming on short se-
quences). It favors targets supported by brief, reliable chains that respect the query’s procedural
order and typing, without relying on embedding cosines.

Sp(tlq) = R(p) (2)

max
pEP<L(t)

Equation |1| provides a one-hop, neighborhood—smoothed semantic score on the Breadth graph: it
favors nodes that are textually close to the query while being supported by nearby evidence, yield-
ing a stable, topology—aware anchor without multi-step diffusion. In contrast, Equation [2] supplies
an order- and type-aware process score on the Depth graph: a target is relevant only if there ex-
ists a short admissible chain whose action/validator sequence (and units/types) matches the query’s
required operation pattern, with reliability encouraging brief, high-confidence procedures. Taken to-
gether, these complementary signals capture both where the facts live and how the result is produced,
producing compact, auditable evidence that improves downstream reasoning.

3.2 DUAL-CHANNEL ENTROPY AGGREGATION

Given a query ¢ and a finite answer set A, our goal is to select a* € A while returning a com-
pact, checkable evidence chain. We have obtained the content after two graph retrievals, then we
aggregate the information as follows.

Path Scoring with Drift Control A path p in GZ (obtained by path-constrained search) receives the
log-additive score:

Splplq) = Zlog wB — Aog - Offtopic(p), 3)

ecp

where Offtopic(p) > 0 penalizes topical drift from ¢ accumulated along p and Aog > 0 controls the
strength. An analogous score Sp(p | ¢) is computed on G, incorporating edge direction, type and
temporal consistency.

From Paths to Per—-Channel Answer Distributions Let Pp(a) and Pp(a) denote the sets of
breadth/causal paths that support answer a (possibly filtered/verified by an LLM over their stitched
contexts). We map path scores to per—channel answer distributions via log-sum-exp aggregation:

2 pePs(a) exp(Sa(p | ) 2 pePp(a) exp(Sp(p | 9))

Pp(alq) = »Pplalq) =

Darea ZpEPD(a’) eXP(SD (p | Q)) .
“4)
Entropy-Driven Log-Linear Fusion We quantify each channel’s certainty using Shannon entropy,

Hp = — Z;PB(CL |g)log Pp(alq),  Hp=-— X;Pp(a |@)log Pp(alq), (5
ac ae

D wred 2pery ) P (SB(P | 9))

and fuse the channels in log-space with a data—dependent gate:

P(a]q) = softmax(a(H) -log Pp(a | q) + (1 - a(H)) -log Pp(a | q)), (6)

B exp(—Hp)
a(H) = oxp(—Hp) + exp(—Hzg) € [0, 1]. (7)
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Intuitively, the more peaked (certain) channel receives the larger weight; diffuse (high-entropy)
evidence is down-weighted. When both channels are confident and consistent, their signals are
amplified by the fusion.

Global Calibration We further calibrate the fused distribution to discourage overconfidence under
global uncertainty:

Pla | g) = softmax( L log P(a | q) - 8- (Hp + Hp)), ®)

with temperature v > 0 (smaller  sharpens) and penalty 8 > 0.

Answer Selection and Minimal Evidence Chain The final prediction is the MAP answer

a* = arg max P(a|q). )

To return a verifiable rationale, we extract a minimal evidence chain on GP U GB supporting a*.
Let A, denote the marginal contribution of edge e to P(a* | q), measured as the drop in P(a* | q)
when removing e (leave-one-out). We greedily prune edges in ascending A, until the cumulative
drop exceeds a threshold § > 0, and report the remaining path. Because G encodes directed,
typed and temporal constraints while G provides cross-document coverage, the resulting chain is
simultaneously deep and broad.

Eqs.[6H8| make the decision rule evidence-adaptive: a high-entropy channel cannot dominate the pre-
diction, while agreement between confident channels is explicitly amplified. The off-topic penalty
in Eq. [3| curbs topical drift during breadth exploration. The path-constrained extraction provides a
compact, checkable rationale for a*, aligning the final output with graph-grounded evidence. More
theoretical analysis can be found in Appendix

4 EXPERIMENT

In this section, the experimental setup is first introduced. Subsequently, the improvements of the
proposed method over the baselines are demonstrated. Then, comparisons with existing methods,
ablation studies on different components, and more targeted analyses are also presented.

4.1 EXPERIMENTAL DETAILS

Baseline and Setting. In this study, we adopt InternAgent (Team et al. [2025) as the baseline.
And we collected log files generated during InternAgent problem-solving process and subsequently
cleaned them, thereby providing the foundation for graph construction. The results of QwQ-32B,
DeepSeek-R1-671B, and WebThinker-32B-RL are obtained from |Li et al.| (2025). The results of
SFR-DR-20B (Nguyen et al., 2025) and X-Masters (Chai et al.| 2025) are drawn from their papers.
Results for OpenAl Deep Research (OpenAl, 2025¢) and Gemini Deep Research (DeepMind| [2024)
are taken from their respective technical reports. For Qwen3-235B-A22B-Instruct (Yang et al.
20235), GPT-5 (OpenAl, 2025a), and o4-mini (OpenAll 2025b), we conducted direct evaluations
through the API (see Appendix for prompt settings), with the temperature set to 0.0 and no
restriction on the maximum token limit.

Benchmark. GAIA (Mialon et al. [2023) is a benchmark for general-purpose Al assistants com-
prising 466 real-world, information-seeking questions that require multi-step reasoning, multimodal
understanding, web browsing, and tool use. Its tasks are designed to be straightforward for humans
yet challenging for current models, with closed-form answers and a held-out subset used to support
robust, leaderboard-style evaluation of agentic systems. Our results are based on its 165-question
validation set. Google-Proof Q&A (GPQA) (Rein et al., 2024) is a graduate-level benchmark of
448 expert-written multiple-choice questions in biology, chemistry, and physics, designed to test
advanced scientific reasoning. We adopt its GPQA-Diamond subset (198 questions), which was cu-
rated to include only items unanimously agreed upon by domain experts but often misanswered by
non-experts, ensuring both reliability and difficulty. Humanity’s Last Exam (HLE) (Phan et al.,
2025) is a multimodal benchmark of 2,500 expert-curated, closed-form questions across eight do-
mains. It assesses advanced reasoning through multiple-choice and exact-match tasks, comprising
2,158 text-only and 342 text—image items, thereby enabling rigorous evaluation across modalities.
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Table 1: Comparison on HLE and GPQA. We report per-subset accuracy for the baseline InternA-
gent and DualResearch under two settings. Improvements over the baselines are highlighted in red.

A i h subset (%
Data Setting Model Method ceuracy in each subsct (%) 1

Math Bio/Med CS/AI Physics Human. Chem. Engineer. Other Avg.

Qwen3-235B InternAgent  13.5 15.3 11.6 6.9 16.1 8.9 15.6 17.6 133
-A22B-Instruct DualResearch 16.9 18.9 13.9 10.9 19.7 21.8 21.9 199 17.1

HLE Improvement 13.4  13.6 1723 14.0 13.6 1129 16.3 123 13.8
Text-Only

InternAgent 23.5 18.9 13.9 17.3 21.6 21.6 18.8 25.0 213
o4-mini DualResearch 31.3 27.0 26.8 24.3 29.0 25.7 28.1 30.1 29.0
Improvement 17.8 18.1 1129 17.0 17.4 14.1 19.3 151 17.7

InternAgent  13.0 12.5 10.8 7.4 14.2 7.9 9.0 13.7 119

3-235B
13;;; ooy DualRescach 162 150 128 96 174 133 126 150 148

- - u
HLE Improvement 13.2  12.5 120 122 13.2 154 13.6 T3 129
All-Set InternAgent 23.5 18.9 17.4 15.7 19.2 18.2 16.2 20.6  20.1
o4-mini DualResearch 32.3 27.9 27.0 23.5 27.4 21.2 21.6 258 27.8
Improvement 18.8 19.0 19.6 17.8 182 3.0 154 152 177
GPQA InternAgent - 73.68 - 94.19 - - 70.97 - 8131
diamond o4-mini DualResearch - 84.21 - 96.51 - - 79.57 - 8737
Improvement - 110.53 - 12.32 - - 18.60 - 76.06

4.2 COMPARISON WITH BASELINE METHOD

We quantify the improvements of DualResearch over InternAgent across datasets and backbones.
As shown in Table [I, On the HLE Text-Only, DualResearch demonstrates significant improve-
ments over the baseline InternAgent across two different models. Specifically, it achieves a 12.9%
increase in Chemistry with Qwen3 and in CS/AI with o4-mini, along with average accuracy gains
of 3.8% and 7.7%, respectively. Similar improvements remain evident on the HLE All-Set, where
average accuracy increases by 2.9% and 7.7%. On GPQA, using o4-mini as the backbone model,
the largest improvement is observed in Biology, with an increase of 10.53%. The overall average ac-
curacy also rises by 6.06%. These stable improvements substantiate that, after reusing InternAgent’s
solution logs, DualResearch consistently amplifies effective evidence while suppressing irrelevant
information, leading to sustained and reproducible performance gains.

In addition, we reproduced the results of X-Masters on Bio/Med within HLE Text-Only. Based on
its logs, DualResearch achieving an improvement of 4.9% (see Appendix [B.]for details).

4.3 COMPARISON BETWEEN DUALRESEARCH AND EXISTING WORK

In this section, we compare the proposed method with existing approaches. As illustrated in Table
DualResearch remains highly competitive among all evaluated systems. On the HLE Text-Only
task, DualResearch achieves an average accuracy of 29.0%, below Tongyi-DeepResearch and X-
Masters. Note that DualResearch itself is not a standalone deep-research agent, it is a post-hoc mod-
ule that operates on the execution logs of existing systems. Nevertheless, it substantially improves
over the corresponding single-turn baselines and the original InternAgent results under the same
backbone models, and attains the best or second-best performance in most disciplines. Moreover,
X-Masters further relies on a multi-channel majority-voting strategy that markedly increases token
usage, whereas DualResearch can be easily plugged into different agents with minimal overhead.
These observations indicate that DualResearch possesses good transferability and plug-and-play
capability, making it a general enhancement module for current and future deep-research systems
rather than a competing end-to-end solution.

In the All-Set setting, the average accuracy was 27.8%, outperforming the second-best, Gemini Deep
Research, by 0.9%. Here, it ranked first in seven out of eight fields, placing second in Engineering.
Compared with agent baselines using the same backbone model, our method consistently demon-
strated significant improvements. On 04-mini, DualResearch outperformed InternAgent by 7.3% in
the Text-Only setting and by 7.3% in the All-Set setting.
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Table 2: Comparison on HLE. The best results are bolded, and the second-best results are
underlined. Methods marked t are direct model evaluations, those marked § are agent-based. Here,
“Qwen3-235B” denotes “Qwen3-235B-A22B-Instruct.”

Accuracy in each subset (%) T

Method Math Bio/Med CS/AI Physics Human. Chem. Engineer. Other Avg.
QwQ-32B 126 140 79 4.0 6.0 13.3 53 44 9.6
DeepSeek-R1-671B t 9.3 8.6 7.4 5.8 11.0 5.6 10.3 75 8.6
Qwen3-235B t 11.4 9.0 8.5 5.5 8.3 49 7.8 63 92
o4-mini { 19.7 9.9 134 134 9.8 6.9 9.4 6.8 145
GPT-5 313 212 255 233 21.8 18.8 10.9 193 259
WebThinker-32B-RL 16.7  25.6 2.0 12.7 18.0  26.7 15.8 15.6 158
SFR-DR-20B § - - - - - - - - 287
X-Masters § 385 27.6 225 241 332 261 234 29.0 32.1
Tongy I - - - - - - - - 329

Text-Only Kimi-Research { - - 26.9

InternAgent (Qwen3-235B) 13.5 15.3 11.6 6.9 16.1 8.9 15.6 17.6 133

InternAgent (04-mini) { 23.5 18.9 13.9 17.3 21.6 21.6 18.8 25.0 213
DualResearch (Qwen3-235B ) 169  18.9 139 109 197 21.8 21.9 199 17.1
DualResearch (04-mini) § 313 270 268 243 29.0 257 28.1 30.1 29.0
Qwen3-235B t 11.1 7.9 8.3 6.1 7.8 5.5 7.2 52 8.6
o4-mini T 190 114 129 126 9.1 12.7 12.6 69 143
GPT-5 ¢} 31.0 22.1 249 217 20.6 16.4 14.4 18.0 24.8
OpenAl Deep Research § - - - - - - - - 266

All-Set
" Gemini Deep Research 26.9

InternAgent (Qwen3-235B) I 13.0 12.5 10.8 7.4 14.2 7.9 9.0 13.7 119

InternAgent (04-mini) I 23.5 18.9 17.4 15.7 19.2 18.2 16.2 20.6 20.1
DualResearch (Qwen3-235B 1) 16.2  15.0 12.8 9.6 17.4 13.3 12.6 15.0 14.8
DualResearch (04-mini) 323 279 27.0 235 27.4 21.2 21.6 25.8 27.8

Table [3| shows comparison on GPQA, DualResearch likewise exhibited superior performance,
achieving an average accuracy of 87.37%, which is 2.02% higher than direct inference with GPT-5.
By subset, on Bio, the result tied with the best; on Chem, the improvement was most pronounced
at 3.23%; and on Phys, it further led by 1.16%. In addition, on the same backbone model 04-mini,
our average accuracy is 6.06% higher than that of InternAgent. Overall, our method distills the
logs of DeepResearch into declarative and procedural knowledge. This reduces the solution space,
decreases uncertainty, and ultimately delivers more stable improvements.

Table[|reports the comparison on GAIA. DualResearch again achieves the best overall performance,
obtaining an average accuracy of 71.10%, which is 3.74% higher than OpenAl Deep Research. By
difficulty level, it reaches 84.95% and 73.58% on Level-1 and Level-2, surpassing OpenAl Deep
Research by 10.66% and 4.52%, respectively. In the most challenging Level-3 split, it ranks second
while still outperforming InternAgent by 10.20%.

Table 3: Comparison on GPQA. The best re-  Table 4: Comparison on GAIA. The best re-
sults are bolded, and the second-best results are sults are bolded, and the second-best results are
underlined. Methods marked t are direct model ~ underlined. Methods marked { are direct model
evaluations, those marked | are agent-based. evaluations, those marked | are agent-based.

Accuracy in each subset (%) 1 Accuracy in each subset (%) 1

Method Method

Bio Chem Phys Avg. Level-1 Level-2 Level-3 Avg.
DeepSeek-R1-671B 63.16 76.34 91.86 82.32 Qwen3-235B 15.09 3.49 384  6.67
o4-mini T 7895 63.44 94.19 78.28 o4-mini T 28.30  12.79 7.69 16.97
GPT-5 84.21 76.34 9535 85.35 DeepSeek-R1-671B 3396 1395 3.84 18.74
WebThinker-32B-RL 78.90 50.50 90.70 70.70 OpenAl Deep Research I 74.29  69.06  47.60 67.36
InternAgent (04-mini) f  73.68 70.97 94.19 81.31 InternAgent (04-mini) § 7849  69.18 26.53 65.12
DualResearch (04-mini) § 84.21 79.57 96.51 87.37 DualResearch (04-mini) f 84.95 73.58 36.73 71.10
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4.4 ABLATION STUDY

In this section, we conduct an ablation study on the key
components based on o4-mini to verify the contribution
and complementarity of each submodule. Table 5] reports
the results on HLE and GPQA. First, it can be observed
that single-source information already brings consistent

Table 5: Ablation of components with
o4-mini. The best results are bolded.

Components Datasets

. ‘ Breadth Depth Aggregation HLE GPQA

gains: on HLE, Breadth and Depth improve performance
by 3.5% and 3.4%, respectively; on GPQA, Depth yields X X X 201 8131
an improvement of 1.52%. Second, directly concatenat- v X X 236 8131
ing Breadth and Depth introduces conflicts and noise, re- X v o 235 8283
sulting in only a 1.8% improvement over the HLE base- v v X 219 80.80
v 4 v 27.8 87.37

line and even a 0.51% decrease on GPQA. This indicates
that unconstrained fusion of the two types of evidence en-
larges the solution space and amplifies uncertainty. Finally, with the introduction of entropy-based
aggregation, the model achieves the best results, reaching 27.8% on HLE and 87.37% on GPQA.
This aligns with our original design motivation: by hierarchically modeling declarative and pro-
cedural evidence from logs, and employing entropy-driven aggregation to adaptively select high-
confidence and low-redundancy information, we avoid the expansion of the search space caused by
naive concatenation, thereby improving performance on both benchmarks simultaneously.

4.5 ANALYSIS & VISUALIZATION

Case Study. Figure[3|highlights the differences between InternAgent and DualResearch in evidence

D, h
~Dudl earcn

G? _?J In 1803 Colonel Thomas Talbot received a land grant for About 4.2 k tokens |

British Settlers. How many destitute migrants settled as a result
of this land grant between 1803 and 1823 and how many acres
larger was the acreage he claimed than the original land grant?

InternAgent-
Overview of the Problem

N
About 41.5 k tokens
In 1803, Colonel Thomas Talbot received a land grant for British
settlers. The question asks:

1) How many destitute immigrants settled there between ...

2) How many more acres did he eventually claim compared ...

Task List

The solution process was broken into several nodes:
- Search for the number of destitute immigrants (1803-1823).

Execution Steps

1. Node n2 found that the original 1803 land grant was 5,000 acres.

Declarative Knowledge
Land Grant Situation

- In 1803, Talbot was initially granted 5,000 acres of land.
- By 1821, he personally held more than 65,000 acres ...

- ultimately claimed to have managed 650,000 acres

Immigration Data

- According to a report by ... at least 12,000 destitute
immigrants ...

between 1803 and 1823.

Procedural Knowledge

Task Breakdown (Planning Stage)

a) Find the number of destitute immigrants between 1803-1823.
b) Find the initial land grant in 1803.

¢) Find the final amount of land ... calculate the difference.

Evidence Retrieval and Divergence in Sources

1. confirmed the initial grant of 5,000 acres.

2. revealed two lines of evidence:

2.1. Encyclopedic: ... have managed 650,000 ...

2.2. DCB scholarly: by 1821, personally held more than 65,000

acres ...
2. Node n3 investigated Talbot's eventual holdings. Two
interpretations emerged:

- One version, from Wikipedia, said Talbot claimed 650,000 acres
by settling 50,000 people. 2. turned to the HathiTrust PDF ... extracted ... “at least 12,000

|_= o \desﬂtute immigrants” for 1803-1823. N
[ .. 2,0000 immigrants ... 6450,000 acres [12,000 immigrants and 60,000 acres (65,000 - 5,000):

Figure 3: Case study of a historical query comparing InternAgent and DualResearch.
management and constraint modeling. InternAgent generated a 41.5k-token log that repeatedly
conflated contradictory cues, for example, equating “claimed” with “managed” and misinterpreting
“at least 12,000” as a larger value. The long record accumulated noise rather than certainty.

Primary Source Verification
1. attempted to parse the Archive PDF ..

In contrast, DualResearch distilled the same log into structured evidence: (1) declarative facts, such
as the grant of 5,000 acres, 12,000 immigrants (1803-1823), and over 65,000 acres personally held
by 1821; and (2) procedural steps, including constraining time, normalizing units, and restrict-
ing “claimed” to personal holdings. It then applied entropy-gated selection, down-weighting the
650,000-acre claim as uncertain and retaining the 65,000-acre figure as reliable. With a compact
4.2k-token graph, it produced the correct result: 12,000 immigrants and a 60,000-acre difference.
These findings show that layered representations and uncertainty-driven evidence selection improve
both interpretive consistency and computational reliability.

Signal and Subject Graph Construction Strategies. Figure [4] shows that subject-level multi-
sample graph aggregation outperforms the Signal baseline in Bio/Med, Chemistry, Engineering,
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Physics, and Mathematics, benefiting from strong ontological consistency and standardized nota-
tion. By reusing entities and relations across samples, aggregation yields denser graphs that enhance
long-chain reasoning efficiency and verification accuracy. Conversely, in domains with greater het-
erogeneity, such as Other, Humanities, and CS/AI, Signal’s single-sample graphs prove more ef-
fective, as direct merging may introduce contradictory or weakly related edges, amplifying noise
and undermining causal coherence. The small gap indicates DualResearch adapts, strengthening
reusable edges in coherent domains and suppressing weak or conflicting ones in heterogeneous set-
tings, balancing overall gains with domain-specific contrasts.

35
XX Signal [N Subject 323
311 T
0 288 22 . 279 N 278
274 2/°570 - 268
> X
§ 25.8
325 235
< 22.1 212 21.6
20 20.0]
.8
| | | INNIRMNVINY | |
15 < S o) 5 X
N o™ 3 & O oS ¢ S ey
o¥ \,\\3“\ (/6‘ %'\ol W o < ‘\q\‘\z' Q‘(\‘{ W K

Figure 4: Accuracy comparison between two graph construction strategies across disciplines. Sig-
nal denotes single-sample graph construction, where each instance independently forms a knowl-
edge graph. Subject denotes subject-level multi-sample graph aggregation, where multiple instances
within the same discipline are merged into a unified graph.

5 CONCLUSION

In this paper, we have introduced DualResearch, a dual-graph retrieval and fusion framework de-
signed for tool-intensive scientific reasoning tasks. The method constructs both a breadth knowledge
graph and a depth process graph: the former provides stable background knowledge, while the lat-
ter captures executable reasoning processes. In extensive experiments, DualResearch can directly
leverage the problem-solving trajectories of existing deep research frameworks to yield significant
improvements in both accuracy and verifiability. On scientific benchmarks such as HLE and GPQA,
our approach substantially outperforms strong baselines and maintains competitiveness across mul-
tidimensional evaluation metrics.

In the future, we plan to extend DualResearch to multimodal scientific reasoning by integrating
diverse sources of evidence such as figures, tables, and experimental data. We believe that this
direction will further advance the breadth and depth of automated scientific discovery.

10
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6 ETHICS STATEMENT

This article does not involve research on human subjects, practices of dataset release, insights, meth-
ods, or applications with potential harm, or other related ethical issues.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our research results. The implementation
details of the proposed DualResearch framework, including graph construction rules and entropy-
gated aggregation, are described in the main text and further elaborated in the appendix. For theo-
retical contributions, all assumptions are explicitly stated, and complete proofs of the related claims
are provided in the appendix. For empirical evaluations, we used publicly available datasets, with
the processing pipeline and experimental settings documented in the supplementary materials. All
relevant code for this study will be released on GitHub upon acceptance of the paper.
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A THEORY

A.1 RATIONALE AND SCOPE

Complex, tool-intensive queries expose two complementary information channels: a breadth chan-
nel that aggregates stable background evidence across documents, and a depth channel that cap-
tures instance-specific procedural traces (tools, intermediates, validations). These channels differ
systematically in structure (undirected relatedness vs. directed, typed causality) and uncertainty
(low-variance coverage vs. path-dependent reliability). In practice, which channel is preferable is
instance-dependent: breadth can dominate when background suffices, while depth is decisive when
procedural constraints determine correctness. Collapsing both into a single latent space fixes an
inductive bias that cannot adapt per query and invites ad-hoc fusion without guarantees.

We therefore cast retrieval as a mixture-of-experts problem under a proper scoring rule (log-loss),
where breadth and depth provide probabilistic posteriors and a gate arbitrates their contributions.
Our gate is uncertainty-aware via Shannon entropy, a choice that is both operational and theo-
retically convenient: (i) geometric (log-linear) mixtures admit pointwise upper bounds by convex
combinations of expert losses; and (ii) under mild, testable entropy—loss calibration, lower entropy
predicts lower conditional loss, so an entropy gate approximates the oracle that selects the better
expert per instance. The theorem below formalizes this intuition as an oracle inequality with a mea-
surable gating regret that vanishes when the entropy ordering matches the conditional-loss ordering.
This yields a principled explanation of why dual-graph fusion can strictly outperform any single
graph in expectation, while remaining faithful to each channel’s inductive bias.

Definition 3 (Dual-graph posteriors and entropy-gated fusion). Let .4 be a finite answer set and
(¢,y) ~ D be query-label pairs. Two layer-native predictors produce posteriors Pg(- | ¢) (Breadth

graph) and Pp(- | q) (Depth graph). Define their Shannon entropies Hp(q) = — >, 4 Pr(a |
q)log Pg(a | q) and Hp(q) analogously, and per-example log-losses ¢5(q,y) = —log Pg(y | ¢),
¢p(q,y) = —log Pp(y | q). The fused posterior is the geometric (log-linear) mixture

e_HD (a)

Pr(a|q) < Pg(a|q)' =" Pp(a|q)*™), o(H) = € [0,1],

e—Hp (9) + e—Hs (9)

with population (expected) log-loss risk R(P) = E(,,y~p[ — log P(y | q)]. We say channel
i € {B, D} is entropy-loss calibrated if there exists a nondecreasing ¢; : Ry — Ry such that
E[¢;(q,y) | Hi;(q) = h] = ¢;(h) almost everywhere.

Theorem 1 (Generalization advantage of entropy-gated dual-graph fusion). Under the setting above,
for any (g, y) and any fixed a € [0, 1],

—log Pr(y|q) < (1-a)lp(q.y)+alplqy).
Consequently, for the entropy gate a(H),
R(Pr) < E[min{E[(5 | H], Ellp | H]}] + Egates  Egate = E|A(H)| - |a(H) — o*(H)]],
(10)
where H = (Hp, Hp), A(H) =E[{p | H|—E[{p | H], and o*(H) = I{A(H) < 0} is the oracle
gate. If both channels are entropy—loss calibrated and the sign-consistency condition holds almost
surely,
sign(A(H)) = sign(Hp — Hg),

then o(H) = o*(H) almost surely, Egate = 0, and

R(Pr) < E[min{E[(p | H], E[(p | H]}] < min{R(Pg), R(Pp)}. (11)

Thus the entropy-gated dual-graph fusion generalizes at least as well as the better single graph and
strictly better whenever the better channel varies across queries.

Proof. Step 1: Pointwise bound for geometric mixtures. For any o € [0, 1], the fused posterior

can be written as Pr(y | q) = Po(yla)" QPD(ym with Z = > Pg(a | ¢)'"“Pp(a | ¢)*. By

Holder’s inequality (generalized AM— GM) Yoty < (3, 2a) (X, Ya)? for 24, yq > 0.
Taking x, = Pg(a | ¢), yo = Pp(a | q) (each sums to 1), we have Z < 1 and hence log Z < 0.
Therefore, we have

—log Pr(y | q) = —(1—a)log Pe(y | q)—alog Pp(y | q)+log Z < (1—a)lp(q,y)+alp(q,y).

14
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Step 2: Expectation and oracle decomposition. Taking expectations and letting the gate be data-
dependent «(H ), we have
R(Pr) < El(5] + Ela(H) - (¢p — {p)] = E[E[(g | H] + o(H)(E[(p | H| - E[¢5 | H])].
Let A(H) =E[{p | H] — E[{p | H] and define the oracle gate o* (H) = I{A(H) < 0}. Then
Ellg | H + o(H)A(H) =min{E[{g | H,E[{p | H]} + (a(H) — «*(H))A(H).
Taking outer expectations and applying | E[X] | < E[| X ] yields equation[10}
Step 3: Calibration implies sign-consistent gating. If channels are entropy—loss calibrated, there

exist nondecreasing ¢, ¢p with E[¢; | H; = h] = ¢;(h). Hence A(H) = ¢p(Hp) — ¢p(Hp)
and sign(A(H)) = sign(Hp — Hp) whenever ¢; are strictly increasing. Our entropy gate a(H) =
% is a strictly increasing function of —(Hp — Hp), thus a(H) = o*(H) almost surely
under the sign-consistency condition, making £gate = 0. Finally, Jensen’s inequality for the convex
function min gives Emin{E[{g | H],E[{p | H]}] < min{E[¢5],E[¢p]|}. In this way, we have
completed the proof. O

A minimal worked example for depth similarity
Query. "Consider the song 'All My Loves Are You' as played by Erroll Garner on the 1986 album Afternoon Of An EIf. What type of scale does Garner play in the right hand melody between
seconds 39 and 43 of the song?" (The album/track info is standard; e.g., Afternoon of an Elf lists “All My Loves Are You" and is widely available on streaming.

Answer set. {Chromatic, Major (Tonian), Dorian, Blues}

What our method expects from the query.
From the text, the query implies a short, typed procedure:
0(q) = search_track (Audio) — segment_audio (00:39-00:43) — compute_intervals (RH_melody) — verify_scale_pattern (theory_check)

This is exactly the kind of order- and type-aware sequence that our depth score compares against candidate execution chains (Definition 2 and Egq. 2).

Three competing candidate paths from the log and how S, is computed

We imagine three admissible (typed, unit/time-consistent) chains produced during a tool run. For each chain we compute Eq. (2):
Sp(tlg) = B R(») -W»

Path p, — predicts Chromatic

O(p,) = [search_track, segment_audio, compute_intervals, verify_scale_pattern]

Reliability: 0.96

Path p, — predicts Dorian

O(p.) = [search_track, segment_audio, estimate_key, classify_mode]

Reliability: 0.92, Depth score: 0.46.

Path p; — predicts Blues

O(ps) = [search_track, transcribe_chords, classify_blues_scale]

Reliability: 0.94, Depth score: 0.235.

Thus, the order- and type-aware depth similarity strongly favors Chromatic (0.96) over Dorian (0.46) and Blues (0.235). This follows our definition of depth retrieval and typed LCSt exactly.

Where the breadth channel points

On the breadth graph we include background nodes like:

"Chromatic scale = sequence of semitone steps” (music-theory node) — matches the query's "what type of scale (melodic pattern) in a 4-s excerpt,” and supports an interval-step interpretation.
(Definition pages as background.

In this example, “Chromatic scale” receives a higher breadth score than "Dorian” or “Blues” because the query explicitly targets semitone-based right-hand melody identificationin a tight fime

window—semantically closer to the chromatic definition than to modal/hexatonic summaries.

Fusion and final selection
Each channel produces a normalized answer distribution (Eq. 4). The entropy-gated fusion then up-weights the sharper (lower-entropy) channel (Egs. 6-7), amplifying agreement. Here, Depth is
very peaked on Chromatic, so a(H) leans toward Depth; the fused posterior's MAP is Chromatic Scale.

Final answer: Chromatic Scale.

Figure 5: Example for depth similarity.
B MORE RESULTS AND DETAILS FOR EXPERIMENTS

In this section, we present the performance improvements achieved by DualResearch when reusing
X-Masters logs. We then demonstrate how we configure prompts to enable the LLM to clean logs,
as well as evaluate on the HLE and GPQA datasets.

B.1 IMPROVEMENT IN X-MASTERS

As shown in Table[6] it is evident that after reusing the scientific logs generated by X-Masters during
problem solving, DualResearch demonstrates significant improvements. The accuracy increased
from 23.9% to 28.8%, yielding a gain of 4.9%. This finding is consistent with the conclusions
reported on InternAgent in the main text, providing strong evidence that DualResearch, as a post-
processing method for deep research, can deliver stable performance gains.
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Table 6: Compared with the baseline X-Masters, DualResearch shows improvements on HLE Text-
Only in the Bio/Med domain. Here, X-Masters refers to the originally reported results, while X-
Masters denotes the results we obtained from our reproduction. All frameworks employ DeepSeek-
R1-671B as the backbone model.

Methods X-Masters X-Masters* DualResearch Improvement
Acc. in Bio/Med | 27.6 239 28.8 14.9

B.2 PROMPT FOR TEST LLMS IN HLE AND GPQA

( )

SYSTEM_PROMPT

Your response should be in the following format:

Explanation: {your explanation for your answer choice}
Answer: {your chosen answer}
Confidence: {your confidence score between 0% and 100% for your answer}

User_PROMPT

Please answer the following question:

{question_text}
\ y,

Figure 6: The prompt used to call LLM to answer scientific questions in HLE and GPQA.

User_PROMPT
Your response should be in the following format:
Explanation: {your explanation for your answer choice}

Answer: {your chosen answer}
Confidence: {your confidence score between 0% and 100% for your answer} Judge whether the following [response] to
[question] is correct or not based on the precise and unambiguous [correct_answer] below.

[question]: {question}
[response]: {response}
Your judgement must be in the format and criteria specified below:

extracted_final_answer: The final exact answer extracted from the [response]. Put the extracted answer as '‘None' if
there is no exact, final answer to extract from the response.

[correct_answer]: {correct_answer}

reasoning: Explain why the extracted_final_answer is correct or incorrect based on [correct_answer], focusing only on
if there are meaningful differences between [correct_answer] and the extracted_final_answer. Do not comment on any
background to the problem, do not attempt to solve the problem, do not argue for any answer different than
[correct_answer], focus only on whether the answers match.

correct: Answer 'yes' if extracted_final_answer matches the [correct_answer] given above, or is within a small margin
of error for numerical problems. Answer 'no' otherwise, i.e. if there if there is any inconsistency, ambiguity, non-
equivalency, or if the extracted answer is incorrect.

confidence: The extracted confidence score between 0|\%| and 100|\%| from [response]. Put 100 if there is no
confidence score available.

Figure 7: The prompts used to invoke LLMs for evaluating response content all use 03-mini as the
judge model in this article.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this study, large language models (LLMs) were used only in a limited scope to assist with pe-
ripheral tasks. For code development, we occasionally employed Claude-4 to generate boilerplate
functions for data preprocessing and visualization, which were subsequently reviewed and adjusted
by the authors. For manuscript preparation, GPT-5 was used to provide minor linguistic suggestions
and stylistic improvements, while all conceptual content, methodological design, and experimental
analyses were entirely conducted by the authors.
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