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Abstract

Code pre-trained models (CodePTMs) have sig-
nificantly advanced the field of neural code
intelligence. Despite their capabilities, these
models are susceptible to adversarial attacks
that subtly modify the model inputs, result-
ing in incorrect outputs or predictions. Pre-
vious methods of robustness evaluation for
CodePTMs primarily stem from a textual per-
spective, without explicitly taking into account
the structure of the code. Furthermore, prior
studies fail to encompass a broad enough spec-
trum of tasks and models. In this paper, we
propose a set of novel robustness evaluation
methods based on the intrinsic structure of the
code. Specifically, we first launch adversarial
attacks on crucial identifier tokens and sub-tree
structures to explore the impact of impercep-
tible perturbation. Then, we perform global
restructuring of the code using different traver-
sal methods for abstract syntax trees, aiming
to explore the model’s sensitivity to input sam-
ples with equivalent information. Moreover, for
each scenario, we employ adversarial training
methods to explore the possibility of restoring
the performance of perturbed models. For both
code understanding and generation, our pro-
posed method has demonstrated its effective-
ness across a wide range of models and tasks,
thereby allowing us to make one step forward
in our understanding of the inner mechanisms
of CodePTMs. Our codes and data are publicly
available at https://github.com/nchen909/
CodeRobustness.

1 Introduction

Pre-trained language models have revolutionized
the landscape of natural language processing
(NLP) (Devlin et al., 2019; Radford et al., 2019;
Liu et al., 2019; Qiu et al., 2020, inter alia). While
these transformer-based models (Vaswani et al.,

∗ Work done while interning at Institute for Infocomm
Research, A*STAR.

† Equal advising.

2017) have achieved great success in NLP, their
counterparts trained on code (Feng et al., 2020;
Guo et al., 2021) have also made remarkable strides
in the field of neural code intelligence (Xu and Zhu,
2022; Xu et al., 2022; Zan et al., 2023). Despite
their impressive capabilities, CodePTMs still retain
prevalent weaknesses inherent in language mod-
els: they are sensitive to the input sequence and
are susceptible to adversarial attacks. The model’s
vulnerability to variations in input can impair its
generalization (Wang et al., 2022; Baniecki and
Biecek, 2023). Adversarial examples, though im-
perceptible to humans, can deceive CodePTMs into
generating incorrect predictions or code sequences
in downstream tasks (e.g., clone detection, code
summarization). Unlike similar attacks for images,
audio, and natural languages, the structured nature
of programming languages introduces distinct and
novel challenges. While methods have been pro-
posed by researchers as potential countermeasures
against attacks (Szegedy et al., 2014; Goodfellow
et al., 2015; Jia and Liang, 2017; Kang et al., 2018;
Zhou et al., 2021), the construction of adversarial
samples remains an ongoing concern. Adversar-
ial training often involves exposing the model to
adversarial examples during training so that the
model learns to defend itself against such examples
when it encounters them in the future. However,
for CodePTMs, an approach that incorporates code
structure is yet to be substantially established.

In representative works on robustness analysis
targeting code scenarios, Yang et al. (2022) pio-
neer an example generation method that balances
both natural semantic and operational semantics.
Recently, Jha and Reddy (2023) leverage the struc-
ture of code to propose code-specific adversarial
samples generation, which can be used to evalu-
ate the vulnerabilities of CodePTMs. While these
studies concentrate on generating adversarial code
samples, there is an absence of explicit modeling
of the structure of code. Furthermore, the existing
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analyses remain inadequate in examining differ-
ent architectures of CodePTM and corresponding
downstream tasks, which in turn, hampers the gen-
eralizability of the conclusions drawn.

In this paper, we propose a comprehensive frame-
work based on the structural information of the
code, which integrates sample generation and ad-
versarial training, aiming to conduct a thorough
evaluation of the robustness of CodePTMs.

We first conduct an assessment through the per-
turbation of model inputs. Specifically, we propose
two strategies: (1) Generating adversarial samples
that are imperceptible to humans to launch adver-
sarial attacks on the model. (2) Leveraging the
syntax of the code, namely, the structural informa-
tion of AST to reconstruct the input sequence into
a new one that preserves equivalent information to
probe models’ sensitivity to input.
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Figure 2: A Python code snippet with its parsed AST.

Then, inspired by adversarial training, we trained
our model on samples constructed from code struc-
tures, significantly enhancing the model’s robust-
ness in the face of structural attacks. Additionally,
we conduct an in-depth analysis of the experimen-
tal results and validate that the methods to counter
various types of attacks are generalizable.

Our contributions can be summarized as follows:
• By perturbing text while maintaining equiva-

lent information, and leveraging adversarial
attacks, we unveil both the vulnerabilities and
sensitivities of various CodePTMs.

• We utilize a range of adversarial training ap-
proaches to recover the performance of dis-
turbed models and conduct an in-depth exam-
ination of the unique attributes displayed by
different models across a spectrum of tasks.

• Experiments on extensive code-related tasks
across different programming languages

demonstrate the effectiveness of our method.

2 Related Works

2.1 Code Pre-trained Models

Following the success of pre-trained language mod-
els (Qiu et al., 2020) in NLP, code pre-trained mod-
els (CodePTMs) have recently demonstrated re-
markable success in a wide range of downstream
tasks in the domain of neural code intelligence.
By pretraining on massive code-based data (e.g.
GitHub repositories), these models can learn rich
contextual representations that can be transferred to
code-related downstream tasks. Feng et al. (2020)
use bimodal data from CodeSearchNet (Husain
et al., 2019) to train CodeBERT that shares the
same model architecture as RoBERTa (Liu et al.,
2019). Then, GraphCodeBERT also uses the same
architecture while additionally considering the in-
herent structure of code, specifically, the data flow
graph. There are also models with encoder-decoder
architectures, such as CodeT5 (Wang et al., 2021)
and PLBART (Ahmad et al., 2021), which inherit
the multi-task training strategies of T5 (Raffel et al.,
2020) and BART (Lewis et al., 2020). UniX-
coder (Guo et al., 2022) harness the UniLM (Dong
et al., 2019) architecture and is pre-trained on cross-
modal data to support both code understanding and
generation. Moreover, decoder-only CodePTMs
are crafted to generate high-quality code sequences,
which can be utilized for program synthesis (Chen
et al., 2021) and even excel in programming com-
petitions (Li et al., 2022).

2.2 Adversarial Attacks for Language Models

Despite the remarkable achievements of language
models existing literature reveals their suscepti-
bility to adversarial samples, which involve sub-
tle perturbations to initial inputs (Chakraborty
et al., 2018). In NLP, this technique was ini-
tially employed to evaluate the robustness of mod-
els across different tasks (Jia and Liang, 2017;
Iyyer et al., 2018; Belinkov and Bisk, 2018, in-
ter alia). With the rise of pre-training, BERT-
Attack (Li et al., 2020) is first proposed that uses
pre-trained language models to generate adversar-
ial samples. For the scenario of code-related tasks,
methods for AST-based neural networks was first
proposed (Yefet et al., 2020; Zhang et al., 2020).
Then, Yang et al. (2022) adversarially transform
inputs to make victim CodePTMs produce wrong
outputs while considering the natural semantics



# Attacked Code
def1 sum2 (3 a4 ,5  b6 )7 :8

     x9  =10  b11 if12 b13 >14 a15 else16  a17

     return18 x19

# Source Code
def1 max2 (3 a4 ,5  b6 )7 :8

     x9  =10  b11 if12 b13 >14 a15 else16  a17

     return18 x19

Summarize

Attack

Sum of two Terms.Returns the maximum of two integers.

Summarize

# Golden Output
Returns the maximum of two integers.

Figure 1: Illustration of curating adversarial samples based on the structure of code to attack CodePTMs. For
brevity, we employ the CodeT5 model backbone, showcasing the strategy of signature attack in code summarization
tasks using Python code snippets from training sets.

of code. Recently, CodeAttack (Jha and Reddy,
2023) utilizes code structure to generate adversar-
ial samples for evaluating the vulnerabilities of
CodePTMs. Zhang et al. (2023) harnesses the un-
certainty of CodePTMs’ output, utilizing it to guide
searching for adversarial examples through variable
name substitution. Distinct from these methods,
we have adapted various attack strategies to fit the
code scenarios. Moreover, we concurrently exam-
ine the vulnerabilities of both code generation and
understanding tasks for CodePTMs across different
architectures.

3 Method

3.1 Adversarial Attacks on Code Pre-trained
Models

Subtree Attack. Randomly drop a non-leaf node
and its descendants from a code snippet’s parsed
AST. In the AST, non-leaf nodes typically repre-
sent higher-level constructs of the code, such as
conditional statements, function definitions, and so
forth. Deleting a non-leaf node along with all its
child nodes may imply the disruption of a part of
the code, such as a loop, a branch of a conditional
statement, or a function call. Specifically, as shown
in Algorithm 1, a code snippet is first parsed into an
AST with all non-leaf nodes identified. Then, one
of them is randomly selected and dropped, along
with all of its child nodes. Following this, the mod-
ified AST is re-converted back into code snippets.
In the rare cases where the AST has no non-leaf
nodes, the original code snippet is directly returned.

Signature Attack. Unlike natural language, the
signature of a function often contains more infor-
mation than other tokens in the sequence. Thus, we

Algorithm 1 Subtree Attack
Input: Code snippet c
Output: Modified code snippet c′

1: procedure DROPSUBTREE(c)
2: T ← GetAST(c)
3: leaf_parents ← GetLeafnodesParents(T )
4: if leaf_parents ≠ None then
5: parent_to_drop ← RandomChoose

(leaf_parents)
6: RemoveChildrens(T, parent_to_drop)
7: c

′
← ASTtoCode(T )

8: return c
′

9: else
10: return c
11: end if
12: end procedure

propose another approach to straightforwardly con-
structing adversarial samples that involve randomly
replacing the signature of an input function with an-
other word from the vocabulary. Although altering
the function signature does not change the intrin-
sic logic of the function, it can modify the code
snippets’ context. This subtle change could present
challenges to CodePTMs that seek to understand
code at a semantic level. For instance, suppose
we have a function with the signature add(a, b),
which is used in the code to perform additional
operations. If we change this function’s signature
to subtract(a, b), the intrinsic logic of the func-
tion (performing addition operations) remains un-
changed. However, the semantics of the function
undergoes a significant transformation. Sequential
models would typically expect the subtract function
to perform subtraction operations, not addition.
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Figure 3: Schematic illustration of four different adversarial sample construction methods, which include strategies
based on subtrees of AST, function signatures, and two distinct methods of reconstruction derived from AST
traversal. These newly generated samples all exert varying degrees of impact on the model’s output (or prediction).
However, compared to the original output and golden data, their semantic accuracy is inferior.

3.2 Reconstruction
To investigate the sensitivity of CodePTMs to in-
puts, we considered a framework for introducing
perturbations to the code while maintaining an
equivalent amount of information. The primary
difference between the sequences generated from
AST traversal and the original code lies in their
structure and order. In the original code, tokens ap-
pear in the order they are found in the source code.
However, in the sequence generated by traversing
the AST using DFS or BFS, the order of the tokens
reflects the structure of the code. In a DFS traver-
sal, the order of the tokens is closer to the actual
execution order, while in a BFS traversal, the or-
der mainly reflects the hierarchical structure of the
code. Furthermore, although the sequence gener-
ated by traversing the AST contains all tokens from
the original code, it may not fully retain the seman-
tic information of the original code due to the loss
of original structural information. For instance, the
condition of a conditional statement and its body
might be separated, making their relationship less
apparent in the sequence.

Previous work has repeatedly demonstrated that
code models can capture structural information be-
neath the textual level (Wan et al., 2022; Chen et al.,
2022). Thus, we believe that robust models should
be able to extract the necessary information from
these “reconstructed” sequences. The procedure is
demonstrated in Algorithm 2, where m indicates
using BFS or DFS for traversal. The details of AST
traversal are shown in Algorithm 3.

3.3 Adversarial Training
Following the algorithms proposed in section 3.1,
we now introduce adversarial samples during the

Algorithm 2 Reconstruction By Traversal

Input: Code snippet c, Traversal mode m
Output: Modified code snippet c′

1: procedure TRAVERSAL RECONSTRUC-
TION(c,m)

2: T ← GetAST(c)
3: token_list ← list()
4: for node in traverse(c, m) do
5: if node.out_degree = 0 and

node.in_degree = 1 then
6: token_list.append(node.value)
7: end if
8: end for
9: c

′
← ListtoCode(token_list)

10: return c
′

11: end procedure

training process, enabling the model to be robust
enough to make reliable predictions or generate
correct sequences when confronted with these in-
tentionally designed perturbations.

We first denote the CodePTM as M . Given
an input x and corresponding target label or se-
quence y, we define the loss function on original
inputs as L(M,x, y) and on adversarial examples
as Ls(M,x, y). The construction of adversarial ex-
amples, e.g., the use of sub-tree attack to generate
samples, is represented by s, which transforms x
into a new sample while keeping y unchanged. In
the procedure of adversarial training, our goal is
to find model parameters that minimize the sum
of losses on the original inputs and the structured
adversarial examples. This objective can be repre-
sented as follows:



min
M

{L(M,x, y) + Ls(M,x, y)} (1)

The sum of these two losses signifies the total
loss of the model under both normal and adver-
sarial conditions, aiming to enhance the model’s
robustness against adversarial attacks. To enhance
model robustness more effectively, we shuffle the
generated adversarial samples randomly and then
proceed with training, preventing them from form-
ing dependencies with the original samples during
the training process.

4 Experiments

4.1 Experimental Setup

Tasks and Datasets We conduct our experiments
on four tasks related to code representation learn-
ing, as part of the CodeXGLUE benchmark (Lu
et al., 2021). In the realm of code generation, our
first trial is on code summarization (Alon et al.,
2019), a process aiming to generate natural lan-
guage comments for a given code snippet. The
second one within code generation is code transla-
tion (Nguyen et al., 2015), which involves translat-
ing a code snippet from one programming language
to another. For code understanding, we delve into
Clone detection (Svajlenko et al., 2014; Mou et al.,
2016), which quantifies the similarity between dif-
ferent code snippets, and defect detection (Zhou
et al., 2019), a task focused on predicting the pres-
ence of vulnerabilities in the source code, with the
potential to pose risks software systems.

Implementation Details In our experiments, we
utilized four representative code training models:
GraphCodeBERT, PLBART, CodeT5, and UniX-
coder. We employed Tree-sitter1 to parse the source
code into ASTs. The training procedure involved
using the Adam optimizer (Kingma and Ba, 2015)
with a warm-up period of 1,000 steps. Our exper-
iments were conducted using PyTorch 1.5.1 on 4
interconnected NVIDIA RTX 3090 GPUs. The
hyperparameters are listed in section B.

4.2 Main Results of Attack

Code Understanding As is shown in Table 1, for
both clone detection and defect detection tasks, the
models exhibit different behaviors under various
scenarios. In clone detection, GraphCodeBERT
and CodeT5 demonstrate the highest performance

1github.com/tree-sitter

Tasks Clone Defect Code Translation

Language Java C Java ↔ C#

Metrics F1 Acc BLEU EM

Full Fine-tuning

GraphCodeBERT 95.00 62.88 76.61 59.10
PLBART 93.60 63.16 80.69 64.80
CodeT5 95.00 65.78 81.95 66.45
UniXcoder 91.36 62.34 76.59 63.45

Reconstruction Attack: DFS

GraphCodeBERT 91.61 60.29 9.33 6.25
PLBART 93.32 59.37 3.36 0.35
CodeT5 91.66 56.88 8.70 0.75
UniXcoder 82.10 58.71 25.47 24.95

Reconstruction Attack: BFS

GraphCodeBERT 91.27 59.48 15.83 15.40
PLBART 94.12 59.41 1.76 0.10
CodeT5 92.37 57.39 11.94 12.95
UniXcoder 88.50 59.37 23.84 23.75

Subtree Attack

GraphCodeBERT 95.28 62.37 42.54 26.30
PLBART 93.98 62.26 10.53 6.85
CodeT5 95.29 62.77 47.69 31.85
UniXcoder 89.75 60.72 37.59 25.90

Signature Attack

GraphCodeBERT 95.26 62.84 73.53 57.50
PLBART 94.42 63.29 60.05 34.15
CodeT5 95.10 64.34 78.08 61.80
UniXcoder 91.32 62.36 72.26 60.75

Table 1: Comparative performance of different mod-
els on the tasks of clone detection, defect detection,
and code translation. Each model’s performance is pre-
sented under four different structural attacks. For Code
Translation, we report the average performance on the
tasks of C# - Java and Java - C# translations.

under full fine-tuning. However, when exposed to
various attack strategies, all models experience a
decrease in performance. Interestingly, PLBART
stands out by showing strong robustness, with its
performance being particularly resilient under the
bfs attack scenario.

From the perspective of attacking strategies, both
two reconstruction attacks significantly impact all
models in both tasks, indicating the models are
hard to understand the sequences with equivalent
information in other formats. While under the sub-
tree attack, all models’ performance in both tasks
is negatively impacted but not as severely as the
structural attacks. At last, the Signature attack has
variable effects on models. For Clone Detection,
GraphCodeBERT manages to maintain a high per-
formance. Notably, for defect detection, PLBART
significantly outperforms other models under this

https://github.com/tree-sitter


Languages Ruby JavaScript Go Python Java PHP Overall

Full Fine-tuning

GraphCodeBERT 11.94 15.05 18.43 19.27 18.72 25.37 18.13
PLBART 14.11 15.56 18.91 19.30 18.45 23.56 18.32
CodeT5 15.24 16.16 19.56 20.01 20.31 26.03 19.55
UniXcoder 14.87 15.65 19.07 19.13 20.31 26.54 19.26

Reconstruction Attack: DFS

GraphCodeBERT 9.35 9.54 8.97 12.43 11.61 12.47 10.73
PLBART 7.82 8.81 8.99 7.73 2.88 1.01 6.20
CodeT5 11.73 8.18 8.60 11.18 9.62 4.06 8.90
UniXcoder 8.97 8.30 6.92 11.86 12.02 11.43 9.92

Reconstruction Attack: BFS

GraphCodeBERT 10.06 11.26 11.40 14.23 11.46 12.49 11.82
PLBART 11.03 11.37 12.53 8.70 3.87 1.06 8.09
CodeT5 11.73 10.55 12.92 11.64 10.23 4.07 10.19
UniXcoder 9.97 11.15 12.77 13.55 12.67 11.47 11.93

Subtree Attack

GraphCodeBERT 12.09 14.64 18.20 18.03 15.76 24.81 17.26
PLBART 13.67 15.80 18.59 18.23 9.90 20.17 16.06
CodeT5 14.93 15.94 19.28 18.86 17.22 25.90 18.69
UniXcoder 14.45 15.43 19.12 18.59 16.45 25.31 18.23

Signature Attack

GraphCodeBERT 9.89 10.61 12.14 15.27 18.72 14.70 13.56
PLBART 10.77 11.25 12.24 15.43 19.17 14.26 13.85
CodeT5 12.13 11.91 13.44 15.84 20.34 15.36 14.84
UniXcoder 10.24 9.70 11.50 14.73 20.19 13.10 13.24

Table 2: Comparative analysis of code summarization performance across various attack strategies. Four representa-
tive CodePTMs are evaluated over six programming languages: The performance variation underscores the diverse
strengths and weaknesses of these models in the face of different adversarial strategies.

type of attack, achieving an accuracy of 94.42.

Code Generation In the task of code translation
for Java ↔ C#, CodeT5 performs best under nor-
mal fine-tuning scenarios. While under different at-
tack strategies, the performance of all models drops
drastically, with UniXcoder often presents the high-
est performance, especially under both BFS and
DFS attacks. This suggests UniXcoder is relatively
more robust against these types of structural attacks
for the code translation task.

Structural attacks of DFS and BFS cause a dras-
tic decline in performance for all models. Despite
this, UniXcoder exhibits relative resilience, manag-
ing to maintain the highest performance among all
models under these attack scenarios. This implic-
itly suggests that the training procedure of UniX-
coder, which models the AST directly is conducive
to model robustness. For the subtree and signature
attacks, all models see a decrease in performance,
but not as drastic as under the aforementioned DF-
S/BFS attacks. Nevertheless, CodeT5 consistently
outperforms other models under both these attack
types. Under the subtree attack, CodeT5 achieves
the highest performance, indicating strong robust-

ness. Similarly, for the signature attack, CodeT5
maintains a stable performance that holds the high-
est scores. These results suggest that CodeT5 may
have particular resistance to these types of attacks
in the context of code translation, likely due to its
pre-training with dataflow information.

In specific cases, it can be observed that the EM
metric in the code translation task drops to near
zero. Through case studies, we find that this occurs
when the model is confronted with a perturbed
sequence, its output can be an empty string.

The results of different attack strategies are given
in Table 2. Across all programming languages,
CodeT5 still consistently outperforms other mod-
els in terms of BLEU scores, suggesting its steady
performance under various scenarios. Interestingly,
the models appear to have difficulties summarizing
Ruby code compared to others, which might be
attributed to the modest dataset size for this lan-
guage. On the other hand, summarizing PHP codes
is clear to be a task in which all models excel under
all kinds of perturbations, likely due to the larger
volume of available data, offering models a richer
context for capturing the semantics.

Considering the viewpoint of attacking strate-



gies, traversal attacks, namely BFS and DFS, in-
flict significant damage to the models’ performance,
with BFS attacks typically causing a more profound
impact than DFS. This could be ascribed to the fact
that the sequences obtained through DFS have an
expression closer to the actual execution order of
the code, which aligns more closely with the se-
mantics of the code. Notwithstanding, the models
exhibit increased robustness against subtree and
signature attacks, maintaining higher performance
under these conditions.

4.3 Main Results of Adversarial Training

The results of adversarial training are demonstrated
in Table 3 and Table 4. For code understanding
tasks, it is clear that significant robustness enhance-
ment can be observed for the tasks of clone detec-
tion and defect detection. The post-training perfor-
mance displays considerable resilience and recov-
ery after structural attacks across all CodePTMs.
CodeT5, GraphCodeBERT, and PLBART notably
improved their performance in both tasks, with
CodeT5 generally in the leading position. Although
UniXcoder trailed behind in terms of performance,
it still exhibited some improvement post-training.

For the cases of enhancing the robustness of
models performing the code translation task, all
the models demonstrate substantial improvement
after the adversarial training. The performance
rebound is especially significant in the signature at-
tack scenario where models like CodeT5 reach near
fine-tuning results when being exposed to adver-
sarial examples. Moreover, CodePTMs no longer
churn out empty strings when faced with perturbed
sequences, preventing the previous catastrophic
performance decline.

Finally, we can also observe notable improve-
ments after comparing Table 2 and Table 4, show-
casing the potential efficacy of adversarial train-
ing in enhancing model robustness for the code
summarization task. All four CodePTMs exhibit
enhancement in robustness, and it is noteworthy
that the improvements against the dfs and bfs at-
tacks are significant. These two structural attacks
can lead to more severe disruptions to the models,
causing larger drops in performance. Therefore,
when adversarial training is applied, the resulting
improvements can appear more noticeable.

In a nutshell, adversarial training serves as an
effective approach for strengthening model robust-
ness and recovery from adversarial attacks. The

Tasks Clone Defect Code Translation

Language Java C Java ↔ C#

Metrics F1 Acc BLEU EM

Full Fine-tuning

GraphCodeBERT 95.00 62.88 76.61 59.10
PLBART 93.60 63.16 80.69 64.80
CodeT5 95.00 65.78 81.95 66.45
UniXcoder 91.36 62.34 76.59 63.45

Adversarial Training: Reconstruction Attack (DFS)

GraphCodeBERT 93.99 57.47 35.31 28.90
PLBART 93.28 59.33 27.73 29.70
CodeT5 94.25 54.80 46.94 38.10
UniXcoder 65.28 58.21 46.21 37.20

Adversarial Training: Reconstruction Attack (BFS)

GraphCodeBERT 94.07 60.61 24.76 13.45
PLBART 94.82 62.19 26.25 18.55
CodeT5 95.01 60.51 34.94 20.50
UniXcoder 84.88 61.35 37.16 33.55

Adversarial Training: Subtree Attack

GraphCodeBERT 94.63 62.99 56.52 32.60
PLBART 94.08 61.68 55.34 30.90
CodeT5 95.23 63.07 66.07 39.45
UniXcoder 88.03 61.82 59.33 32.25

Adversarial Training: Signature Attack

GraphCodeBERT 94.38 62.63 78.10 60.50
PLBART 94.71 63.32 81.21 63.75
CodeT5 94.51 63.55 82.12 66.2
UniXcoder 90.21 62.52 76.63 63.35

Table 3: Results of adversarial training on clone detec-
tion, defect detection, and code translation task.

level of improvement, however, varies depending
on the model and the specific task. Despite these
variations, the trend of enhanced performance post-
training remains consistent across all models and
tasks, highlighting the value of our method in the
realm of programming language models.

4.4 Analysis
Transferability Adversarial examples con-
structed through exploiting code structures can
effectively enhance the robustness of the model.
However, considering that the model may face a
variety of adversarial examples concurrently, here
we examine its generalization capability. As is
demonstrated in Table 5, we evaluate the model
trained on adversarial examples constructed via
BFS reconstruction on samples reconstructed by
the DFS, and vice versa.

Learning Curve To validate the necessity of us-
ing adversarial examples during the training pro-
cess, in this part, we set different proportions of
adversarial training data to observe how the model



Languages Ruby JavaScript Go Python Java PHP Overall

Full Fine-tuning

GraphCodeBERT 11.94 15.05 18.43 19.27 18.72 25.37 18.13
PLBART 14.11 15.56 18.91 19.30 18.45 23.56 18.32
CodeT5 15.24 16.16 19.56 20.01 20.31 26.03 19.55
UniXcoder 14.87 15.65 19.07 19.13 20.31 26.54 19.26

Adversarial Training: Reconstruction Attack (DFS)

GraphCodeBERT 11.54 12.98 14.91 17.18 15.78 22.28 15.78
PLBART 12.21 14.06 15.38 17.01 14.72 15.99 14.90
CodeT5 14.93 15.59 18.13 18.01 17.32 23.31 17.88
UniXcoder 13.51 14.63 16.69 18.03 16.65 22.78 17.05

Adversarial Training: Reconstruction Attack (BFS)

GraphCodeBERT 10.37 10.94 12.78 14.79 14.66 19.57 13.85
PLBART 9.42 12.41 14.48 13.46 13.07 15.09 12.99
CodeT5 12.90 13.87 15.62 15.42 15.79 20.45 15.68
UniXcoder 11.34 9.57 13.33 14.91 15.46 19.53 14.02

Adversarial Training: Subtree Attack

GraphCodeBERT 11.77 15.23 17.81 18.02 16.26 24.59 17.28
PLBART 13.16 15.95 18.1 18.06 14.91 22.56 17.12
CodeT5 15.17 16.59 19.02 18.51 17.33 25.36 18.66
UniXcoder 14.46 15.14 18.59 18.40 16.95 25.20 18.12

Adversarial Training: Signature Attack

GraphCodeBERT 11.38 14.54 15.76 17.68 18.67 21.68 16.62
PLBART 11.68 14.00 15.68 17.66 18.66 20.38 16.34
CodeT5 14.34 15.79 17.08 18.17 20.44 22.16 18.00
UniXcoder 13.23 12.66 15.66 15.27 20.30 21.17 16.38

Table 4: Results of adversarial training on code summarization task.

Tasks Clone Defect Translation Summarization

Metrics F1 Acc BLEU BLEU

BFS → DFS

CodeT5 93.45 61.02 67.55 17.94
UniXcoder 80.99 61.31 61.07 16.60

DFS → BFS

CodeT5 94.56 61.02 41.64 18.28
UniXcoder 88.86 61.72 44.27 16.35

Table 5: Comparing the generalization capability with
adversarial examples generated based on code structure.

learns from the adversarial examples.
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Figure 4: Learning curves of two CodePTMs with dif-
ferent ratios of adversarial examples.

We employ code summarization (Ruby) and de-
fect detection tasks. As clearly shown in Figure 4,

with the increase in the number of adversarial exam-
ples, the robustness can be significantly improved
for both generative and understanding tasks. This
further validates the rationality of our approach to
constructing samples based on code structure.

5 Conclusion

In this paper, we propose multiple novel attack
methods targeting source code from the perspec-
tive of code structure. By leveraging the AST of the
code, we not only consider constructing adversarial
samples that are imperceptible to humans but also
create perturbed sequences that preserve the same
information as the original samples through their
traversal. Then we validate its effectiveness on
several mainstream CodePTMs, covering both rep-
resentative code generation and code understanding
tasks. Subsequently, we enhance the model’s ro-
bustness using adversarial training and investigate
the generalizability of performance recovery un-
der different scenarios. Based on our extensive
experiments and observations, we provide a com-
prehensive analysis of the performance of different
CodePTMs across various tasks, considering both
the vulnerability to attacks, the potential for perfor-
mance recovery, and the impact on input sensitivity.



Limitations

• Metrics like BLEU (Papineni et al., 2002; Lin
and Och, 2004) and CodeBLEU (Ren et al.,
2020) predominantly rely on n-gram match-
ing and hence may not adequately consider se-
mantic similarity. Consequently, when evalu-
ating the code sequences generated by models
under attack, these metrics could potentially
underestimate their semantic correctness.

• Due to the constraints of resources, we con-
fine our backbone models to four representa-
tive CodePTMs. While other models (Kanade
et al., 2020; Ding et al., 2022) might exhibit
slight variance, we hold the view that our cur-
rent experiments sufficiently encapsulate the
most representative scenarios.

Ethics Statement

The models and data we utilize are all publicly
available; our method will not introduce additional
model bias and does not involve misuse of code
and natural language comments. By designing var-
ious attack methods based on code structure, we
quantitatively tested the robustness of CodePTMs.
Furthermore, we utilize adversarial training to re-
cover the performance of perturbed models and
also investigated the correlation between their per-
formance and the number of adversarial samples.
We hold the view that these contributions will ben-
efit the NLP research community.
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A Task Overview and Dataset Statistics

A.1 Defect Detection & Clone Detection

Dataset Language Training Dev Testing

BigCloneBench Java 900K 416K 416K
Devign C 21K 2.7K 2.7K

Table 6: BigCloneBench (Svajlenko et al., 2014) and
Devign (Zhou et al., 2019) datasets statistics for Clone
detection and Defect Detection tasks.

A.2 Code Generation & Translation

Dataset Language Training Dev Testing

CodeTrans Java - C# 10,300 500 1,000

Table 7: CONCODE (Iyer et al., 2018) and Code-
Trans (Nguyen et al., 2015) datasets statistics for code
generation and code translation tasks.

A.3 Code Summarization

Language Training Dev Testing

Go 167,288 7,325 8,122
Java 164,923 5,183 10,955
JavaScript 58,025 3,885 3,291
PHP 241,241 12,982 14,014
Python 251,820 13,914 14,918
Ruby 24,927 1,400 1,261

Table 8: CodeSearchNet (Husain et al., 2019) data statis-
tics for the code summarization task.

B Hyperparameters for Fine-tuning

The hyperparameters for tuning CodePTMs by both
gold data and adversarial examples are listed in
Table 9.

C Additional Experimental Results

We include additional experimental results in Ta-
ble 10 and Table 11.

Hyperparameter value

Batch Size 8,16,32
Learning Rate {8e-6, 2e-5, 5e-5}
Max Source Length {130, 240, 256, 320, 512}
Max Target Length {3, 120, 150, 240, 256, 512}
Epoch {2, 30, 50, 120}

Table 9: Hyperparameters for CodePTM fine-tuning

Tasks Clone Defect Code Translation

Language Java C Java - C# C# - Java

Metrics F1 Acc BLEU EM BLEU EM

Full Fine-tuning

GraphCodeBERT 95.00 62.88 80.58 59.40 72.64 58.80
PLBART 93.60 63.16 83.02 64.60 78.35 65.00
CodeT5 95.00 65.78 84.03 65.90 79.87 66.90
UniXcoder 91.36 62.34 78.95 63.30 74.22 63.60

Reconstruction Attack: DFS

GraphCodeBERT 91.61 60.29 10.18 0.10 8.47 12.40
PLBART 93.32 59.37 6.52 0.70 0.20 0.00
CodeT5 91.66 56.88 15.38 0.60 2.02 0.90
UniXcoder 82.10 58.71 32.32 24.40 18.62 25.50

Reconstruction Attack: BFS

GraphCodeBERT 91.27 59.48 24.39 8.80 7.27 22.00
PLBART 94.12 59.41 3.43 0.20 0.09 0.00
CodeT5 92.37 57.39 17.97 14.90 5.91 11.00
UniXcoder 88.50 59.37 32.07 25.10 15.60 22.40

Subtree Attack

GraphCodeBERT 95.28 62.37 50.13 24.90 34.95 27.70
PLBART 93.98 62.26 19.81 13.60 1.24 0.10
CodeT5 95.29 62.77 63.20 33.20 32.17 30.50
UniXcoder 89.75 60.72 54.68 30.10 20.50 21.70

Signature Attack

GraphCodeBERT 95.26 62.84 76.10 56.80 70.96 58.20
PLBART 63.29 94.42 64.73 33.90 55.37 34.40
CodeT5 64.34 95.10 80.92 62.70 75.23 60.90
UniXcoder 91.32 62.36 76.92 60.40 67.59 61.10

Table 10: Comparative performance of different models
on the tasks of clone detection, defect detection, and
code translation. Each model’s performance is presented
under four different structural attacks.

D Detailed Algorithm for Reconstruction
Attack

Due to the space constraints, we put a simplified
version of the reconstruction attack in section 3.2.
Algorithm 3 is a more detailed version.

E Case Studies

To better understand the effect of adversarial sam-
ples generated through exploiting code structure in
specific tasks, we present a series of case studies
in Table 12, Table 13, and Table 14 for subtree
attack, signature attack, and reconstruction attack
respectively.



Tasks Clone Defect Code Translation

Language Java C Java - C# C# - Java

Metrics F1 Acc BLEU EM BLEU EM

Full Fine-tuning

PLBART 93.60 63.16 83.02 64.60 78.35 65.00
CodeT5 95.00 65.78 84.03 65.90 79.87 66.90
GraphCodeBERT 95.00 62.88 80.58 59.40 72.64 58.80
UniXcoder 91.36 62.34 78.95 63.30 74.22 63.60

Adversarial Training: Reconstruction Attack (DFS)

PLBART 93.28 59.33 34.20 31.70 21.26 27.70
CodeT5 94.25 54.80 54.88 42.00 39.00 34.20
GraphCodeBERT 93.99 57.47 43.20 30.6 27.41 27.20
UniXcoder 65.28 58.21 55.37 41.00 37.05 33.40

Adversarial Training: Reconstruction Attack (BFS)

PLBART 94.82 62.19 42.89 34.80 9.60 2.30
CodeT5 95.01 60.51 49.04 36.90 20.84 4.10
GraphCodeBERT 94.07 60.61 39.49 25.90 10.02 1.00
UniXcoder 84.88 61.35 46.25 37.80 28.06 29.30

Adversarial Training: Subtree Attack

PLBART 94.08 61.68 55.83 30.8 54.84 31.00
CodeT5 95.23 63.07 71.41 39.60 60.73 39.30
GraphCodeBERT 94.63 62.99 61.17 31.20 51.87 34.00
UniXcoder 88.03 61.82 63.36 34.30 55.29 30.20

Adversarial Training: Signature Attack

PLBART 94.71 63.32 82.34 61.00 80.07 66.50
CodeT5 94.51 62.55 84.77 66.7 79.46 65.70
GraphCodeBERT 94.38 62.63 80.61 60.20 75.58 60.80
UniXcoder 90.21 62.52 78.78 63.60 74.48 63.10

Table 11: Comparative performance of adversarial train-
ing of different models on the tasks of clone detection,
defect detection, and code translation.

Algorithm 3 Traverse Tree
Input: Code snippet c, Traversal mode m
Output: Modified code snippet c′

1: procedure TRAVERSAL(c,m)
2: node_type ← list()
3: T ← GetAST(c)
4: queue ← list()
5: queue.append(tree.root)
6: while queue do
7: if m = "DFS" then
8: current_node ← queue.pop()
9: else if m = "BFS" then

10: current_node ← queue.pop(0)
11: end if
12: node_type.append(current_node.type)
13: if m = "DFS" then
14: for child ∈

current_node.children[::-1] do
15: queue.append(child)
16: end for
17: else if m = "BFS" then
18: for child ∈ current_node.children

do
19: queue.append(child)
20: end for
21: end if
22: end while
23: return queue
24: end procedure



Original After Attack

1 public NotImplementedFunctionException(
String functionName,
NotImplementedException cause) {

2 super(functionName, cause);
3 this.functionName = functionName;
4 }

Code 1: Original input.

1 NotImplementedFunctionException ( String
functionName ,
NotImplementedException cause ) {

2 super ( functionName , cause ) ;
3 = functionName ;
4 }

Code 2: Input under subtree attack.

1 NotImplementedFunctionException ( String
functionName ,
NotImplementedException cause ) {

2 super ( functionName , cause ) ;
3 = functionName ;
4 }

Code 3: Generated codes based on original input.

1 FunctionException(string functionName,
NotImplementedException cause)

2 : base(functionName, cause)
3 {
4 _functionName = functionName;
5 }

Code 4: Generated codes based on input under sub-
tree attack.

Table 12: Case studies of code translation under subtree attack.

Original After Attack

1 def dailymotion_download(url, output_dir=
'.', merge=True, info_only=False, **
kwargs):

2 html = get_content(rebuilt_url(url))
3 info = json.loads(match1(html, r'

qualities":({.+?}),"'))
4 title = match1(html, r'"video_title"\

s*:\s*"([^"]+)"') or match1(html,
r'"title"\s*:\s*"([^"]+)"')

5 title = unicodize(title)
6

7 for quality in ['1080', '720', '480',
'380', '240', '144', 'auto']:

8 try:
9 real_url = info[quality][1]["

url"]
10 if real_url:
11 break
12 except KeyError:
13 pass
14

15 mime, ext, size = url_info(real_url)
16 print_info(site_info, title, mime,

size)
17

18 if not info_only:
19 download_urls([real_url], title,

ext, size, output_dir=
output_dir, merge=merge)

Code 5: Original input.

1 def sum (url, output_dir='.', merge=True,
info_only=False, **kwargs):

2 html = get_content(rebuilt_url(url))
3 info = json.loads(match1(html, r'

qualities":({.+?}),"'))
4 title = match1(html, r'"video_title"\

s*:\s*"([^"]+)"') or match1(html,
r'"title"\s*:\s*"([^"]+)"')

5 title = unicodize(title)
6

7 for quality in ['1080', '720', '480',
'380', '240', '144', 'auto']:

8 try:
9 real_url = info[quality][1]["

url"]
10 if real_url:
11 break
12 except KeyError:
13 pass
14

15 mime, ext, size = url_info(real_url)
16 print_info(site_info, title, mime,

size)
17

18 if not info_only:
19 download_urls([real_url], title,

ext, size, output_dir=
output_dir, merge=merge)

Code 6: Input under signature attack.

1 # Download a website .

Code 7: The summarization for original code.

1 # Summarize a URL .

Code 8: The summarization for the attacked code.

Table 13: Case studies of code summarization on Python under signature attack.



Original After Attack

1 def wix_light_extension(extension)
2 unless extension.is_a?(String)
3 raise InvalidValue.new(:

wix_light_extension, "be␣an␣
String")

4 end
5 wix_light_extensions << extension
6 end

Code 9: Original input.

1 end
2 wix_light_extension def ) extension (
3 extension << wix_light_extensions
4 end
5 unless is_a? . extension raise) String

(
6 new . InvalidValue ) , :

wix_light_extension ( "␣be␣an␣
String␣"

Code 10: Input under reconstruction attack.

1 # Adds a Wix Light Extension .

Code 11: The summarization for original code.

1 # wix_light_extension

Code 12: The summarization for the attacked code.

Table 14: Case studies of code summarization on Ruby under reconstruction attack (BFS).



Original Input1 Original Input2

1 private void download(String address,
String localFileName) throws
UrlNotFoundException, Exception {

2 String ext = G_File.getExtensao(
address);

3 if (ext.equals("jsp")) {
4 throw new Exception("Erro␣ao␣

baixar␣pagina␣JSP,␣tipo␣
negado." + address);

5 }
6 File temp = new File(localFileName +

".tmp");
7 if (temp.exists()) temp.delete();
8 OutputStream out = null;
9 URLConnection conn = null;

10 InputStream in = null;
11 try {
12 try {
13 URL url = new URL(address);
14 conn = url.openConnection();
15 in = conn.getInputStream();
16 } catch (FileNotFoundException e2)

{
17 throw new UrlNotFoundException

();
18 }
19 out = new BufferedOutputStream(

new FileOutputStream(temp));
20 byte[] buffer = new byte[1024];
21 int numRead;
22 long numWritten = 0;
23 while ((numRead = in.read(buffer))

!= -1) {
24 out.write(buffer, 0, numRead);
25 numWritten += numRead;
26 }
27 } catch (UrlNotFoundException

exception) {
28 throw exception;
29 } catch (Exception exception) {
30 throw exception;
31 } finally {
32 try {
33 if (in != null) {
34 in.close();
35 }
36 if (out != null) {
37 out.close();
38 }
39 } catch (IOException ioe) {
40 }
41 }
42 }

Code 13: Original input.

1 private static void copyFile(File src,
File dst) throws IOException {

2 FileChannel in = new FileInputStream(
src).getChannel();

3 FileChannel out = new
FileOutputStream(dst).getChannel
();

4 in.transferTo(0, in.size(), out);
5 in.close();
6 out.close();
7 }

Code 14: Original input.

Table 15: Case studies of clone detection under reconstruction attack (DFS), where model can accurately judge the
relation between two code snippets.



After Attack

1 }
2 }
3 }
4 { ) ioe IOException ( catch }
5 }
6 ; ) ( close . out
7 { ) null != out ( if
8 }
9 ; ) ( close . in

10 { ) null != in ( if
11 { try
12 { finally }
13 ; exception throw
14 { ) Exception ( catch }
15 ; exception throw
16 { ) UrlNotFoundException ( catch }
17 }
18 numRead += numWritten ;
19 ) numRead , 0 , buffer ( write . out
20 { ) 1 - != ) ) buffer ( read . in = numRead ( ( while
21 ; 0 = numWritten long
22 ; numRead int
23 ; ] 1024 [ byte new = buffer ] [ byte
24 ; ) ) temp ( FileOutputStream ( BufferedOutputStream

new = out
25 }
26 ) ( UrlNotFoundException new throw
27 { ) FileNotFoundException ( catch }
28 ; ) ( getInputStream . conn = in
29 ; ) ( openConnection . url = conn
30 ; ) address ( URL new = url URL
31 { try
32 { try
33 ; null = in InputStream
34 ; null = conn URLConnection
35 ; null = out OutputStream
36 ; ) ( delete . ) ) ( exists . temp ( if
37 ) "␣" + localFileName ( File new = temp File
38 }
39 ) address + "Erro␣ao␣baixar␣pagina␣JSP,␣tipo␣negado."

( Exception new throw
40 { ) ) "␣" ( equals . ext ( if
41 ; ) address ( getExtensao . G_File = ext String
42 { , UrlNotFoundException throws ) localFileName , address (

download void private

Code 15: Input1 under reconstruction attack (DFS)

Table 16: Case studies of clone detection under reconstruction attack (DFS). The prediction of the model is altered
after the attack, generating a wrong prediction for semantic similarity.


