
STOCHASTIC ACTIVATIONS

000
001
002
003 **Anonymous authors**
004 Paper under double-blind review
005
006
007
008

ABSTRACT

009
010 We introduce stochastic activations. This novel strategy randomly selects
011 between several non-linear functions in the feed-forward layer of a large
012 language model. In particular, we choose between **SILU** or **RELU** depending
013 on a Bernoulli draw. Our strategy circumvents the optimization problem
014 associated with **RELU**, namely, the constant shape for negative inputs that
015 prevents the gradient flow. We leverage this strategy in two ways:
016
017 (1) We use stochastic activations during pre-training and fine-tune the
018 model with **RELU**, which is used at inference time to provide sparse latent
019 vectors. This reduces the inference FLOPs and translates into a significant
020 speedup in the CPU. Interestingly, this leads to much better results than
021 training from scratch with the **RELU** activation function.
022
023 (2) We evaluate stochastic activations for generation. This strategy per-
024 forms reasonably well: it is only slightly inferior to the best deterministic
025 non-linearity, namely, **SILU** combined with temperature sampling. This of-
026 fers an alternative to existing strategies by providing a controlled way to
027 increase the diversity of the generated text.
028
029
030
031
032
033
034
035

036 Figure 1: Stochastic activation randomly selects one of two activations when $x < 0$:
037 (1) **RELU** selected with probability $1 - p$; otherwise (2) another activation, in particular **SILU**.
038

1 INTRODUCTION

039 Large language models (LLMs) (Devlin et al., 2019; Chowdhery et al., 2022; Brown et al.,
040 2020; Vaswani et al., 2017) have revolutionized natural language processing, enabling un-
041 precedented capabilities in text generation, comprehension, and reasoning. Their success
042 stems from scaling model parameters and leveraging vast amounts of data, but this comes
043 with a significant computational complexity. As the demand for more efficient and powerful
044 models grows, researchers are increasingly focused on optimizing their training processes to
045 balance performance with resource constraints.
046

047 The majority of the LLM parameters are in the Feed-Forward Network (FFN) layers, where
048 they primarily serve to store and recall information from the training data. FFNs are two
049 linear layers separated by an *activation function*, and sometimes an additional linear layer
050 that serves as a gating operation. The activation is a non-linear function from \mathbb{R} to \mathbb{R} . In this
051 context, the choice of activation function plays a crucial role for both the model’s expressivity
052 and efficiency. The simplest choice of activation is **RELU** (Rectified Linear Unit), that allows
053 positive values to pass through and forces negative inputs to zero. **RELU** is *sparsity-inducing*,

054 since, on average, half of its outputs are zero (in practice significantly more). Within a two-
055 layer Multilayer Perceptron, this means that inference on the second layer is a matrix-sparse
056 vector multiplication, hence, it can be implemented with fewer FLOPs than a matrix-dense
057 vector multiplication. Note that effectively improving the runtime with this sparsity pattern
058 remains challenging.

059 In practice, the Sigmoid Linear Unit (**SILU**) activation, combined with a gated design, has
060 consistently outperformed **RELU** in terms of model accuracy (Shazeer, 2020). Unfortunately,
061 **SILU** does not induce sparsity. One plausible explanation for **RELU**’s underperformance is
062 that its gradient for negative input values is zero, which hinders optimization by preventing
063 weight updates in a significant portion of the network. Solutions like Leaky **RELU** (Maas
064 et al., 2013) circumvent this problem by ensuring non-zero gradient almost everywhere, but
065 they are inferior to **SILU** and involve abandoning sparsity. In contrast, if the so-called “dying
066 **RELU** problem” optimization challenge could be effectively addressed, **RELU**’s theoretical
067 advantages – such as sparsity and computational efficiency – may translate into performance
068 comparable to **SILU** for a lower number of FLOPs. This disparity presents a challenge: how
069 to harness the efficiency benefits of sparse activations, such as **RELU**, without sacrificing
070 the empirical advantages of **SILU**. This motivates our exploration of alternative training
071 strategies that mitigate **RELU**’s limitations while preserving its benefits.

072 In this work, we consider two ways to approach this problem. The first approach is ac-
073 tivation fine-tuning, denoted by **Swi+FT**: we pre-train the model with an activation that
074 facilitates efficient large language model optimization, then, we change the activation to
075 **RELU** and adapt the model by fine-tuning it further. Our second approach, referred to as
076 **StochA** (stochastic activations), is a novel technique that randomly selects between multiple
077 activations, either at train or test time. Both approaches allow models to benefit from the
078 superior optimization properties of **SILU**. These hybrid strategies combine the best of both
079 worlds – maintaining high model performance while unlocking the computational efficiency
080 of sparse activations.

081 In summary, this paper makes the following contributions:

- 082 • We introduce two strategies that employ different activation functions at training
083 and inference time, namely **Swi+FT** and **StochA**. Both are complementary and make
084 it possible to use activations at inference time that differ from those employed during
085 pre-training.
- 086 • We produce **RELU**-based models that are much better than those obtained with
087 regular training, i.e., our methods significantly outperform training with **RELU** only.
- 088 • We show that stochastic activations, when used at inference time, provide an al-
089 ternative way to generate diverse sequences compared to traditional temperature
090 sampling or other variants.

092 2 RELATED WORK 093

094 **Standard activation functions** Activations are at the core of deep learning, they are
095 fundamental to enable deep learning models to go beyond linear function with limited ex-
096 pressivity. While early neural network architectures were inspired by logistic regression,
097 such as sigmoidal and tanh activations, many activation functions have been evaluated for
098 the FFN layers of transformers. Vaswani et al. (2017) used **RELU** (Glorot et al., 2011)
099 initially. However, using the **RELU** activation function leads to some neurons getting stuck
100 in the negative region. As a consequence, models stop learning entirely, since the gradient is
101 zero for negative inputs, and their weights do not get updated. In contrast, Touvron et al.
102 (2023) used **SILU** as the activation function for the FFN layers of the transformer for the first
103 Llama models. Shazeer (2020) discusses the benefits of **SWIGLU**, which consists of **SILU** with
104 gating. There exist many other activation functions such as the Gaussian Error Linear Unit
105 (**GELU**) (Hendrycks & Gimpel, 2016), Scaled Exponential Linear Unit (**SELU**) (Klambauer
106 et al., 2017), **Swish** (Ramachandran et al., 2018) and gated **SILU**, among others.

107 In particular, the Leaky **RELU** (Maas et al., 2013; Redmon et al., 2015; Ridnik et al., 2021;
108 Guo et al., 2024) tried tackling the dying **RELU** problem by allowing a small, non-zero

108 gradient when the input is negative in order to keep the neurons active and the gradients
109 flowing, reducing the risk of dead neurons.
110

111 **Adaptive activation functions** Lee et al. (2022) propose the Adaptive Swish(ASH) ac-
112 tivation, which uses stochastic sampling of the top-k percentile elements. It generalizes the
113 Swish (Ramachandran et al., 2018), which uses adaptive thresholding to select the values in
114 the top percentiles and is set to zero otherwise. It is an example of a stochastic activation.
115

116 **Dropout and structured Dropout variants** In the original dropout paper (Srivastava
117 et al., 2014), the authors propose a regularization technique to reduce overfitting and improve
118 generalization of a neural network. It consists of setting to zero a subset of neurons at each
119 training step. Consequently, the dropped neurons do not contribute to the forward pass or
120 receive weight updates during back-propagation. At inference time, all neurons are used
121 and their outputs are scaled by the dropout probability.
122

123 LayerDrop (Fan et al., 2019) randomly drops entire layers during training, hence, it encour-
124 ages the model to be robust to missing layers. At inference time, some layers can be pruned,
125 trading off speed and accuracy as needed. While the method does not make the model sparse
126 in the usual sense, it induces structured sparsity in the computation graph during train-
127 ing. Other works also introduce structured dropout variants such as DropBlock (Ghiasi
128 et al., 2018), Bayesian dropout (Gal & Ghahramani, 2016), or Beit (Bao et al., 2021) and
129 masked-autoencoder (He et al., 2022) in computer vision, among others.
130

131 **Quantization approaches** Fan et al. (2020) propose Quant-noise, that mimicks quanti-
132 zation during training by introducing noise to a random subset of weights for each forward
133 pass enabling high compression ratios while maintaining the original model performance.
134 It uses the Straight-Through estimator (STE) (Bengio et al., 2013; Hinton, 2012) to com-
135 pute the gradients. This training technique ensures that the model is pretrained to observe
136 both the train-time (unquantized) and the inference-time (quantized) models. This ensures
137 proper optimization, bypassing the flat gradient caused by quantization and reducing the
138 discrepancy that results from the late quantization of the model weights.
139

140 **Sparsity by design** Some works propose to enable sparsity directly in the architecture,
141 for instance, the Mixture of Experts (MoE) or the Product-Key Memory (PKM). The PKM
142 architecture (Lample et al., 2019) uses a memory layer for neural networks which enables the
143 model to access a large learnable memory and thus, it enables long term memory capabilities.
144 It leverages product quantization (PQ) (Jégou et al., 2011) by splitting the key in two parts
145 and using each part in separate codebooks. The combination of each PQ index enables the
146 model to access a larger memory space efficiently. At each forward pass, only a small subset
147 of the memory is accessed, making it computationally efficient.
148

149 Mixture of Expert (MoE) models (Yang et al., 2024; Wei et al., 2024; DeepSeek-AI et al.,
150 2024; Jiang et al., 2024) dynamically select and activate the relevant subset of parameters
151 based on the characteristics of the input data. The MoE approach allows MoE models to
152 expand their capacity without proportionally increasing computational complexity. See Mu
153 & Lin (2025) for an overview of the MoE and references therein.
154

155 3 USING DIFFERENT ACTIVATIONS AT TRAIN AND TEST TIME

156 This section introduces two strategies for improving the optimization during pretraining
157 using an optimization-compliant activation, while preparing the model to a potentially dif-
158 ferent activation at test time. First we introduce the **Swi+FT** fine-tuning approach. Then
159 we introduce our Stochastic Activation **StochA**.
160

161 3.1 FINE-TUNING WITH RELU: **Swi+FT**

162 In the following, we use **SILU** and **RELU** as our training and inference activations. For
163 reference, they are defined in $\mathbb{R} \rightarrow \mathbb{R}$ as:
164

$$\text{RELU}(x) = \max(x, 0) \quad \text{SILU}(x) = x\sigma(x), \quad (1)$$

Figure 2: **Swi+FT**: Training loss. Most of the training is carried out with **SILU**, with $\alpha * 100\% = 5\%$, 10% and 20% of the final steps using **RELU**. Note the loss spike when we switch the activation. The model rapidly recovers and converges to a regime where **RELU** is performing well while providing sparsity.

where $\sigma(x) = 1/(1 + \exp(-x))$ is the sigmoid function. We choose these two activations because **SILU** is one of the best options in terms of accuracy, while **RELU** is simple and sparse. The two activations are also similar: same asymptotes at $-\infty$ and $+\infty$, and the same value at 0. **SILU** is differentiable twice (unlike **RELU**) and, interestingly, non-monotonous.

In our proposed approach, the training operates as follows:

- Most of the training steps (during a proportion $1 - \alpha$ of the total number of iterations) are carried out with a first activation that is deemed preferable for training. We typically employ **SILU** for this stage.
- We then switch the activation to that used for inference for the rest of the training.

We mostly set $\alpha = 0.05$ or $\alpha = 0.1$, which mean that only 5% or 10% of the training steps are carried out using the inference-time activation. We do not re-initialize the parameters of the optimizer when switching between activations, and similarly we do not use any warm-up. This does not disrupt the optimization because the **SILU** and **RELU** activations are relatively similar. We observe a spike in the loss at the time we change the activation, see Figure 2. However, the optimization rapidly recovers. In practice, the fine-tuning replaces the last iterations of the pretraining. The learning rate follows a cosine schedule which gradually reduces it to 1/100th of its peak value. Therefore, at 5% or 10% of the end of the training, the learning rate is already 60 \times or 29 \times lower than its peak, which is compatible with a fine-tuning regime.

3.2 STOCHASTIC ACTIVATION: STOCHA

A stochastic function, parametrized by a random variable ω , is a function

$$y = \Psi(x, \omega) \quad (2)$$

that maps inputs $x \in \mathbb{R}$ to output $y \in \mathbb{R}$ with randomness involved. The dependence on ω emphasizes that the outcome depends on an underlying probability space. In that sense, the function $\Psi(\cdot, \omega)$ is deterministic for each realization of ω , but is stochastic overall. In particular, we consider the case depicted in Figure 1, where $\omega \sim \text{Bernoulli}(p)$ is a binary random variable parametrized by a parameter p : $\omega \in \{0, 1\}$ such that $\mathbb{P}(\omega = 1) = p$ and $\mathbb{P}(\omega = 0) = 1 - p$. In that case, the stochastic function $\Psi_p(\cdot)$ is defined such that

$$\text{if } x < 0, \quad \Psi_p(x) = (1 - \omega) \times \text{RELU}(x) + \omega \times \text{SILU}(x), \quad (3)$$

216 which corresponds to randomly selecting between the `RELU` and `SILU` activations for $x < 0$.
 217 If $x \geq 0$ we choose $\Psi_p(x) = x$ or $\Psi_p(x) = \text{SILU}(x)$, see the baselines description below.
 218

219 This strategy ensures that the network is compatible with two regimes. The first one, drawn
 220 with probability $1 - p$, is the inference-time mode, where we prepare the network to employ
 221 `RELU` during generation, in order to exhibit sparsity. The second mode aims to facilitate
 222 optimization during training. The choice of the `SILU` activation is motivated by the regular
 223 deterministic gated design by (Shazeer, 2020) adopted by most state-of-the-art LLMs.
 224

225 **Notation** To specify an activation, we separately define the function for the positive and
 226 negative range of inputs. For example `R-S+` means that `RELU` is used for the negative range
 227 and `SILU` for the positive. When `StochA` is used, we indicate `[S|R]-S+`, which means that
 228 for the negative range, we sample `SILU` with probability p and `RELU` with probability $1 - p$.
 229

230 **Baselines** The two natural baselines are the deterministic functions `SILU` and `RELU`. We also introduce two non-
 231 stochastic baselines in order to disentangle the effect that
 232 could come from combining `SILU` and `RELU` separately in the
 233 positive and negative domain: these baselines are denoted
 234 by `S-R+` and `S-R-`.
 235

	$x < 0$	$x \geq 0$
<code>RELU</code>	0	x
<code>SILU</code>	$x \cdot \sigma(x)$	$x \cdot \sigma(x)$
<code>R-S+</code>	0	$x \cdot \sigma(x)$
<code>S-R+</code>	$x \cdot \sigma(x)$	x

236 **Discussion** The stochastic strategy resembles activation dropout (Srivastava et al., 2014),
 237 which can be regarded as a particular case of our method where one of the activations is
 238 the null function. However, the objective of dropout is to avoid overfitting. Our motiva-
 239 tion is closer to Quantization-aware training (Jacob et al., 2017), more specifically, to the
 240 QuantNoise strategy of Fan et al. (2020), where the model is pretrained to observe both the
 241 train-time (unquantized) and the inference-time (quantized) models. In QuantNoise, using
 242 these two modes during training time ensure both the proper optimization, without suffering
 243 the flat gradient inherent to quantization, while reducing the discrepancy that results from
 244 the late-quantization of the model weights.
 245

246 **Alternative construction of a stochastic activation.** An alternative construction is
 247 to randomly select between the identity function $x \mapsto x$ and the constant zero function
 248 $x \mapsto 0$ with a sigmoidal probability $\sigma(x)$. As a result, in expectation this function is given
 249 by

$$\mathbb{E}[\text{sa}(x)] = (1 - \sigma(x)) \cdot 0 + \sigma(x) \cdot x = \sigma(x) \cdot x, \quad (4)$$

250 where we recognize the `SILU`(x) function. While the simplicity of this construction is math-
 251 ematically appealing, our preliminary experiments revealed that it does not work very well.
 252

253 3.3 INFERENCE-TIME STRATEGIES AND EVALUATION

254 At test time, we evaluate and analyze models trained with `Swi+FT` and/or `StochA` as follows:
 255

256 **RELU at test time** This is how we can enable sparsity. The corresponding evaluations
 257 therefore measure the performance on benchmarks when using this activation at test time.
 258

259 **Exploiting sparsity** On an input $x \in \mathbb{R}^D$, the gated FFN computes:

$$y = W_2 \times (\text{RELU}(W_1 \times x) \odot (W_3 \times x)) \text{ with } W_1, W_3 \in \mathbb{R}^{N \times D} \text{ and } W_2 \in \mathbb{R}^{D \times N}, \quad (5)$$

260 assuming column vectors and noting \odot the element-wise multiplication. When the activation
 261 `RELU`($W_1 \times x$) has a fraction s of zeros, the multiplications by W_2 and W_3 can exploit this
 262 sparsity: the baseline of $3ND$ FLOPS reduces to $(3 - 2s)ND$.
 263

264 Note that exploiting the sparsity to increase the computational throughput is not straight-
 265 forward. At training time, the runtime is dominated by matrix-matrix multiplications,
 266 where even a 90% sparsity rate is not guaranteed to yield efficiency gains. At inference time
 267 with one prompt at a time, the bottleneck is the memory access used during matrix-vector
 268 multiplications. When W_2 is stored by rows and W_3 by columns, the sparsity can be ex-
 269 ploited to avoid a fraction s of the memory reads, that are contiguous. This implementation
 nearly yields the expected speedup (see experimental section).
 270

270 **Stochastic activation at test time** The following only applies to the `StochA` strategy:
271 we evaluate the performance by leveraging the randomness at test time, i.e., in this case,
272 we do not use `RELU`. This choice is interesting for two reasons:
273

- 274 1. To quantify the effect of the activation discrepancy between train and test.
275 2. To generate multiple outputs from the same prompt with the randomness of `StochA`.
276

277 For the second usage, the standard way to generate multiple outputs from the same prompt
278 is to replace the greedy decoding with a random sampling of the token from its probability
279 distribution. This sampling can be tuned by setting a softmax temperature T which adjusts
280 between completely uniform sampling ($T \rightarrow \infty$) and strict maximum sampling ($T \rightarrow 0$). In
281 both cases, we keep the one generated output with the highest normalized log likelihoods,
282 *i.e.*, the per-token average log-likelihood, as predicted by the model.
283

284 4 EXPERIMENTS WITH LARGE LANGUAGE MODELS

285 4.1 EXPERIMENTAL SETTING

286 **Model architecture** We train dense decoder-only models. The transformer blocks use
287 grouped-query attention (Ainslie et al., 2023). These models use RMSNorm (Zhang &
288 Senrich, 2019) with prenormalization, rotary positional positional encoding (RoPE) (Su
289 et al., 2021) with $\theta = 500000$ and train with document causal masking. We use the `SILU`
290 activation (Shazeer, 2020) for the `SILU` baseline. The structure of our `LM1.5B` and `LM3B`
291 models is detailed in Table 4 in Appendix A.
292

293 **Training hyper-parameters** We train the models with AdamW optimizer (Loshchilov & Hutter, 2017) with $\beta_1 = 0.9$, $\beta_2 = 0.95$, learning rate of $lr = 3 \times 10^{-3}$, weight decay of 0.1, and gradient clipping at norm 1.0. After 2000 steps of linear warm-up, we use a cosine decay learning rate schedule with peak learning rate 8×10^{-4} and decay by a factor of 1/100 over the training horizon.
294

295 **Tokenizer** We use the Llama3 (Dubey et al., 2024) tokenizer, which is a fast Byte-Pair
296 Encoding tokenizer implemented with TikToken.2 The vocabulary contains 128 000 regular
297 tokens as well as 256 reserved tokens.
298

299 **Pre-training** We pre-train the `LM1.5B` and `LM3B` models with 47B and 80B tokens, respectively, from a diverse collection of mostly English natural language and coding data. We use a batch size of 1M tokens and a context length of 8192 tokens.
300

301 **Evaluation Benchmarks** We employ two types of benchmarks for zero or few-shot evaluation,
302 which we describe in more detail in Appendix F and Table 8. The first type is
303 code generation tasks: HumanEval+ (Liu et al., 2023) and MBPP (Chen et al., 2021). The
304 second type consists of common sense and general reasoning: HellaSWAG (Zellers et al.,
305 2019), ARC (Clark et al., 2018), PIQA (Bisk et al., 2020), OBQA (Mihaylov et al., 2018),
306 WinoGrande (Sakaguchi et al., 2020), NQ (Kwiatkowski et al., 2019), RACE (Lai et al.,
307 2017), TQA (Joshi et al., 2017) and GSM8K (Cobbe et al., 2021).
308

309 4.2 PERFORMANCE ANALYSIS OF `SWI+FT` AND `STOCHA` WITH `RELU` AT INFERENCE TIME

310 In this section we analyze the effect of our proposal when using `RELU` at test time. In
311 Appendix B, we provide a complementary analysis of the sparsity. Depending on the setting,
312 the average rate of 0s can be higher than 90%, when using the `RELU` at test time.
313

314 **Cross-entropy performance** Table 1 provides the impact on the training and validation
315 losses of multiple choices with the `LM1.5B` and `LM3B` models. We observe that the training
316 loss using stochastic activation at train time is lower than that obtained with `RELU`. How-
317 ever the validation entropy is not competitive per se, due to the remaining train-inference
318

Activation	Training activation				Swi+FT	LM1.5B			LM3B			
	$x < 0$		$x > 0$			p	train	val	val	train	val	
	p	$1 - p$	x	x								
SILU	SILU	SILU	-	x		2.105	2.122*		1.966	1.974*		
RELU	RELU	RELU	-	x		2.140	2.161		2.027	2.043		
S-R+	SILU	RELU	-	x		2.101	2.124*		1.970	1.980*		
R-S+	RELU	SILU	-	x		2.123	2.151*		2.016	2.033*		
[S R]-R+	SILU	RELU	RELU	0.3	x	2.120	2.363	2.146	1.993	2.257	2.006	
[S R]-R+	SILU	RELU	RELU	0.5	x	2.120	2.507	2.145	1.990	2.889	1.999	
[S R]-S+	SILU	RELU	SILU	0.3	x	2.115	2.305	2.143	1.987	2.257	1.996	
[S R]-S+	SILU	RELU	SILU	0.5	x	2.115	2.530	2.143	1.984	2.753	1.995	
[S R]-R+	SILU	RELU	RELU	0.3	\checkmark	2.123	2.141	2.251	1.988	1.998	2.177	
[S R]-R+	SILU	RELU	RELU	0.5	\checkmark	2.129	2.148	2.307	1.989	2.002	2.306	
[S R]-S+	SILU	RELU	SILU	0.3	\checkmark	2.120	2.138	2.221	1.982	1.992	2.103	
[S R]-S+	SILU	RELU	SILU	0.5	\checkmark	2.125	2.144	2.301	1.985	1.994	2.234	

Table 1: The train loss is computed over the last 500 steps of the training of LM1.5B, the val loss is measured after training, on a different set of text and code, using the RELU activation* or StochA, i.e. the same activation used at train time (possibly deterministic). If Swi+FT is enabled, we switch to RELU for the last 5% steps. *: for the deterministic baselines SILU, S-R+ and S+R-, we do the inference with the same activation used at train-time (not RELU).

Figure 3: Total inference time for 1 token on CPU, as a function of the activation sparsity, with a LM3B model trained with Swi+FT. The “other operations” include the attention layers (they are not dominant because the generation is limited to 200 tokens), the normalization and the execution overheads. At 90% sparsity the speedup is $\times 1.65$. The timings are measured on a single core of a Xeon 8462Y+ machine.

discrepancy of activation. This is solved by Swi+FT: switching to the RELU activation function and fine-tuning for the last 5% or 10% steps of the training steps drastically boosts the test-time inference. These results outperform the results obtained with regular RELU training, while using the same activation at test time.

Fast inference with RELU sparsity The activation sparsity can be exploited to avoid fetching 90% of the matrices W_1 and W_3 of the FFN (see Eq. 5 and detailed sparsity rates in Appendix B). As a consequence, we observe a direct benefit on CPU: Figure 3 shows that 90% sparsity directly translates into a 65% speedup. On GPU, the additional challenge is to make the computation sufficiently predictable to balance the load between CUDA threads.

Absence of dead neurons with Swi+FT Figure 7(left) shows a sudden jump in the RELU CDF, which indicates there are many activations that are exactly zero *on input* of RELU. The RELU plot in Figure 7(right) shows that a large fraction of the rows of the linear layer W_1 (Eq 5) are near zero (*i.e.* their norm is less than 1/1000 the average row norm of the matrix). This means that these rows are unused: they are “dead neurons”. In contrast, the Swi+FT plot in Figure 7(right) we observe that using SILU at pre-training prevents these dead neurons appearing. This explains why our approach obtains significantly better results with RELU than the vanilla training of the model using the RELU from scratch.

Complementarity between StochA and Swi+FT when fine-tuned with RELU Figure 4 shows the training loss when using StochA and Swi+FT jointly. When switching the activation to RELU, we observe a spike in the loss, but the optimization rapidly recovers, and converges to a model that has better performance than the one trained with RELU from scratch. In contrast, in the case where we employ Swi+FT alone (Figure 2), fine-tuning

378 with **RELU** after pretraining with **SILU** is not enough to obtain performance improvements.
 379 As a consequence, the **StochA** and **Swi+FT** approaches are complementary.
 380

381 **Impact of fine-tuning with **RELU** for the last $\alpha * 100\%$ steps** In Figure 4, we compare
 382 the final loss reported for different values of α . In that case, setting $\alpha = 0.1$ is a good
 383 trade-off since the corresponding loss is lower than the **RELU** loss.
 384

385 **Continuous pre-training with **StochA** and **Swi+FT**** Starting from a pre-trained LM1.5B
 386 model with **SILU**, we can leverage either **StochA** or **Swi+FT** methods for continuous pretrain-
 387 ing (CPT), see Appendix D for experimental details. In such case, the best strategy is to
 388 use **Swi+FT**, i.e., simply fine-tune with **RELU** the model initially trained with **SILU** to obtain
 389 the best trade-off between sparsity and loss (Table 6). This pattern is the opposite of what
 390 we observe for LMs trained from scratch, where the **StochA** and **StochA +Swi+FT** offer the
 391 best trade-off between sparsity and loss (Table 1).
 392

393 **Generalizability of **StochA** and **Swi+FT** for any pair of activations** In Appendix E,
 394 we explain how our methods can be generalized for any pair of activation functions and
 395 include an illustrative example with the (TANH,RELU) activations.
 396

397 4.3 PERFORMANCE ON DOWNSTREAM TASKS

398 **Detailed results per benchmark** Table 2 reports the results for standard code genera-
 399 tion, common sense and general reasoning benchmarks detailed in Appendix F. We consider
 400 multiple **StochA** models using few-shot or zero shot prompting, see Table 8 in Appendix F
 401 for more details. The model with **SILU** (topline) is significantly better than a regular model
 402 with **RELU**. However, our models trained with **StochA** are slightly better or on par with
 403 **SILU**: either the model fine-tuned with **Swi+FT** and using **RELU** at inference time, or even
 404 the model that uses **StochA** at test time.
 405

406 **Performance when varying α with **Swi+FT**** Figure 5 shows that we can slightly surpass
 407 the **SILU** baseline average performance if we first use a stochastic activation function during
 408 the LM1.5B model training and then switch to the **RELU** activation for the last $\alpha * 100\%$ of
 409 the training steps, for $\alpha \in \{0.05, 0.1, 0.2\}$. The best performance is obtained with $\alpha = 0.05$
 410 or $\alpha = 0.1$ for the LM1.5B model.
 411

412 4.4 EXPLOITING **STOCHA** AT TEST TIME

413 **Effectiveness of **StochA** a test time** In Table 1, in addition to the results with **RELU** at
 414 test time, we also report the train and validation losses obtained when employing **StochA** at
 415 test time. We observe that (1) using stochastic activations for inference works surprisingly
 416 well in spite of the randomness. The results are between **RELU** and **SILU** in most configu-
 417 rations; (2) When using **StochA** at test time, there is no need to fine-tune the model with
 418 **Swi+FT**. This is expected since this strategy is intended to decrease the discrepancy with the
 419

α	final loss	
	train	val (RELU)
0	2.115	2.530
0.05	2.125	2.144
0.10	2.119	2.145
0.20	2.126	2.155

420
 421
 422
 423
 424
 425
 426
 427
 428
 429 Figure 4: Training loss with **Swi+FT** and **StochA**: **[S|R]-S+** activation with $p = 0.5$ for $\alpha * 100\% = 5\%$,
 430 **10%** and **20%**, relative to **RELU** and **SILU**. This shows that the **Swi+FT** strategy needs to be combined
 431 with **StochA** to provide good models operating with **RELU** compared to finetuning **SILU** with **RELU**
 alone (Figure 2). This plot this is zoomed in relative to Figure 2.
 432

↓ Benchmark/metric	LM1.5B						LM3B					
	(a) baselines		(b) Swi+FT		(c) StochA		(a) baselines		(b) Swi+FT		(c) StochA	
	SILU	RELU	[S R]-S+	RELU	[S R]-S+	[S R]-S+	SILU	RELU	[S R]-S+	RELU	[S R]-S+	
hellaswag/acc_char	0.585	0.561	0.574		0.576		0.684	0.633	0.671		0.678	
winogrande/acc_char	0.593	0.571	0.568		0.568		0.657	0.615	0.630		0.620	
arc_easy/acc_char	0.568	0.562	0.600		0.562		0.675	0.642	0.679		0.671	
arc_challenge/acc_char	0.313	0.286	0.331		0.314		0.390	0.348	0.396		0.376	
pica/acc_char	0.732	0.720	0.724		0.720		0.767	0.751	0.765		0.761	
obqa/acc_char	0.346	0.340	0.378		0.340		0.390	0.380	0.384		0.408	
race.middle/acc_char	0.518	0.516	0.509		0.498		0.565	0.538	0.559		0.549	
race.high/acc_char	0.382	0.379	0.372		0.375		0.414	0.402	0.407		0.416	
human_eval_plus/pass@10.073	0.067		0.049		0.055		0.128	0.110	0.128		0.116	
mbpp/compiles@1	0.978	0.970	0.960		0.980		0.992	0.980	0.990		0.982	
tqa/f1	0.243	0.217	0.229		0.232		0.351	0.293	0.327		0.342	
nq/f1	0.123	0.107	0.121		0.113		0.169	0.146	0.170		0.145	
average performance	0.454	0.441	<u>0.451</u>		0.444		0.515	0.486	<u>0.509</u>		0.505	

Table 2: Performance per benchmark of (a) **RELU** and **SILU** baselines for LM1.5B and LM3B compared to (b) models with **StochA +Swi+FT** at train time and **RELU** at test time, and (c) models with **StochA** at train and test time. We use the model with the best perplexity on val namely $p = 0.3, \alpha = 0.05$ for **Swi+FT** and $p = 0.5$ for **StochA**. The average performance for the topline (**SILU**) is in bold, second best (**StochA +Swi+FT**) is underlined.

Figure 5: **Swi+FT: analysis of the fine-tuning rate α .** Average performance over the benchmarks as a function of the percentage α of steps for which we switch to the **RELU** activation at the end of training. We use **RELU** at inference time.

test-time activation choice. Table 3 shows that the average benchmark performance generally increases when the stochastic mix approaches **SILU**. Therefore, **StochA** is primarily useful as a way to generate multiple outputs for the same prompt.

p	LM1.5B	LM3B
0 (R-S+)	0.215	0.222
0.3	0.443	0.504
0.5	0.426	0.505
0.7	0.453	0.495
1.0 (SILU)	0.454	0.515

Table 3: **StochA:** Impact on benchmarks performance (avg) as a function of the **StochA** p for **[S|R]-S+** used at test time. The case $p = 0$ corresponds to **R-S+** while $p = 1$ corresponds to the baseline **SILU**. The performance increases with more **SILU** in the mix. However, the stochasticity can be used to increase the generation diversity.

Figure 6: Comparison of diverse response generation methods in Q&A benchmarks. (a) F1 scores when varying the temperature with SILU or $[S|R]$ -S+ p with $\text{temp}=0$, the generations are scored by normalized log likelihoods. (b) TTR when varying the temperature in temperature sampling with SILU vs with $[S|R]$ -S+ for different values of p .

Diversity of generations ablation Figure 6 shows that leveraging the **StochA** activations stochasticity (combined with standard temperature sampling) generates more diverse answers compared to using **SILU** with standard temperature sampling. See Appendix C for the experimental setup and Appendix G for qualitative examples of such generations.

In Figure 6 (a), the curves are increasing, which means that (1) we obtain diverse generations and (2) that the normalized log-likelihood is a suitable scoring function. Specifically, for the NQ task, the **StochA** activation with $p = 0.7$ and temperature zero yields consistently higher performance than standard temperature sampling with the **SILU** activation (for temperatures in $\{0.1, 0.2, 0.5\}$). The **StochA** activation with $p = 0.3$ is also competitive for the number of generations up to five. In contrast, the results are subpar for the TQA task: standard temperature sampling with the **SILU** activation yields higher performances for all number of generations for temperatures in $\{0.1, 0.2\}$.

In Figure 6 (b), we observe that all the models that use **StochA** activation functions have consistently higher average TTR for both tasks, for each temperature in $\{0, 0.1, 0.2, 0.3\}$ compared to standard temperature sampling with **SILU**. This finding further confirms that the text diversity of generations is much better for these models.

5 CONCLUSION

This paper introduces a novel stochastic activation that preserves the performance of a non-sparse activation, such as **SILU**, while better adjusting to the behavior of a sparse one, such as **RELU**, at test time. This improves the inference times for the FFN layers of a transformer, translating into a speedup of typically $\times 1.65$ for the FFN processing on CPUs while almost preserving the accuracy of the non-sparse **SILU** activation. Finally, we explore how stochastic activations can be leveraged at test time to improve diversity in model generations.

540 REFERENCES

541

542 Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and
543 Sumit Sanghai. GQA: Training generalized multi-query transformer models from multi-
544 head checkpoints. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of*
545 *the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 4895–
546 4901, Singapore, December 2023. Association for Computational Linguistics. doi: 10.
547 18653/v1/2023.emnlp-main.298. URL <https://aclanthology.org/2023.emnlp-main.298/>.

548

549 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
550 Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton.
551 Program synthesis with large language models. *ArXiv*, abs/2108.07732, 2021. URL <https://api.semanticscholar.org/CorpusID:237142385>.

552

553 Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers. *ArXiv*,
554 abs/2106.08254, 2021. URL <https://api.semanticscholar.org/CorpusID:235436185>.

555

556 Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating
557 gradients through stochastic neurons for conditional computation. *ArXiv*, abs/1308.3432,
558 2013. URL <https://api.semanticscholar.org/CorpusID:18406556>.

559

560 Yonatan Bisk, Rowan Zellers, Ronan Le bras, Jianfeng Gao, and Yejin Choi. Piqa: Reason-
561 ing about physical commonsense in natural language. *Proceedings of the AAAI Conference*
562 *on Artificial Intelligence*, 34(05):7432–7439, Apr. 2020. doi: 10.1609/aaai.v34i05.6239.
563 URL <https://ojs.aaai.org/index.php/AAAI/article/view/6239>.

564

565 Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
566 Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
567 guage models are few-shot learners. *arXiv preprint arXiv:2005.14165*, 2020.

568

569 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
570 Jared Kaplan, and OpenAI team. Evaluating large language models trained on code.
571 2021.

572

573 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, and Google team. Palm: Scaling
574 language modeling with pathways, 2022. URL <https://arxiv.org/abs/2204.02311>.

575

576 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa
577 Schoenick, and Oyvind Tafjord. Think you have solved question answering? try
578 arc, the ai2 reasoning challenge. *ArXiv*, abs/1803.05457, 2018. URL <https://api.semanticscholar.org/CorpusID:3922816>.

579

580 Karl Cobbe, Vineet Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
581 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and
582 John Schulman. Training verifiers to solve math word problems. *ArXiv*, abs/2110.14168,
583 2021. URL <https://api.semanticscholar.org/CorpusID:239998651>.

584

585 DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao,
586 Chengqi Dengr, Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong,
587 economical, and efficient mixture-of-experts language model, 2024. URL <https://arxiv.org/abs/2405.04434>.

588

589 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
590 deep bidirectional transformers for language understanding, 2019. URL <https://arxiv.org/abs/1810.04805>.

591

592 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
593 Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama
3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

594

595 Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand
596 with structured dropout. *arXiv preprint arXiv:1909.11556*, 2019.

594 Angela Fan, Pierre Stock, Benjamin Graham, Edouard Grave, Rémi Gribonval, Herve Jegou,
595 and Armand Joulin. Training with quantization noise for extreme model compression.
596 *arXiv preprint arXiv:2004.07320*, 2020.

597

598 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: representing
599 model uncertainty in deep learning. In *Proceedings of the 33rd International Conference
600 on International Conference on Machine Learning - Volume 48*, ICML'16, pp. 1050–1059.
601 JMLR.org, 2016.

602

603 Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. Dropblock: A regularization method for
604 convolutional networks, 2018. URL <https://arxiv.org/abs/1810.12890>.

605

606 Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks.
607 In *Proceedings of the fourteenth international conference on artificial intelligence and
608 statistics*, pp. 315–323. JMLR Workshop and Conference Proceedings, 2011.

609

610 Yinglong Guo, Shaohan Li, and Gilad Lerman. The effect of leaky relus on the training
611 and generalization of overparameterized networks. *CoRR*, abs/2402.11942, 2024. doi:
612 10.48550/ARXIV.2402.11942. URL <https://doi.org/10.48550/arXiv.2402.11942>.

613

614 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
615 Masked autoencoders are scalable vision learners. In *2022 IEEE/CVF Conference
616 on Computer Vision and Pattern Recognition (CVPR)*, pp. 15979–15988, 2022. doi:
617 10.1109/CVPR52688.2022.01553.

618

619 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv: Learning*,
620 2016. URL <https://api.semanticscholar.org/CorpusID:125617073>.

621

622 Geoffrey Hinton. Neural networks for machine learning. Coursera, video lectures, 2012.
623 Online course.

624

625 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G.
626 Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural
627 networks for efficient integer-arithmetic-only inference. *2018 IEEE/CVF Conference on
628 Computer Vision and Pattern Recognition*, pp. 2704–2713, 2017. URL <https://api.semanticscholar.org/CorpusID:39867659>.

629

630 Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary,
631 Chris Bamford, Devendra Singh Chaplot, Diego de Las Casas, Emma Bou Hanna, Florian
632 Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud,
633 Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang,
634 Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang,
635 Timothée Lacroix, and William El Sayed. Mixtral of experts. *ArXiv*, abs/2401.04088,
636 2024. URL <https://api.semanticscholar.org/CorpusID:266844877>.

637

638 as editor Johnson, Wendell. Studies in language behavior: A program of research. *Psychological
639 Monographs*, 56(2):1–15, 1944.

640

641 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. Triviaqa: A large scale
642 distantly supervised challenge dataset for reading comprehension. 05 2017. doi: 10.48550/
643 arXiv.1705.03551.

644

645 Herve Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
646 search. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 33(1):
647 117–128, 2011. doi: 10.1109/TPAMI.2010.57.

648

649 Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
650 normalizing neural networks. In *Neural Information Processing Systems*, 2017. URL
651 <https://api.semanticscholar.org/CorpusID:13713980>.

648 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh,
649 Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina
650 Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit,
651 Quoc Le, and Slav Petrov. Natural questions: A benchmark for question answering
652 research. *Transactions of the Association for Computational Linguistics*, 7:452–466, 2019.
653 doi: 10.1162/tacl_a_00276. URL <https://aclanthology.org/Q19-1026>.

654 Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard H. Hovy. Race: Large-
655 scale reading comprehension dataset from examinations. In *Conference on Empirical
656 Methods in Natural Language Processing*, 2017. URL <https://api.semanticscholar.org/CorpusID:6826032>.

657

658 Guillaume Lample, Alexandre Sablayrolles, Marc’Aurelio Ranzato, Ludovic Denoyer, and
659 Hervé Jégou. Large memory layers with product keys. *Advances in Neural Information
660 Processing Systems*, 32, 2019.

661

662 Kyungsu Lee, Jaeseung Yang, Haeyun Lee, and Jae Youn Hwang. Stochastic adaptive
663 activation function. In *Proceedings of the 36th International Conference on Neural Infor-
664 mation Processing Systems*, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc.
665 ISBN 9781713871088.

666

667 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
668 by chatGPT really correct? rigorous evaluation of large language models for code gen-
669 eration. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
670 URL <https://openreview.net/forum?id=1qvx610Cu7>.

671

672 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International
673 Conference on Learning Representations*, 2017. URL <https://api.semanticscholar.org/CorpusID:53592270>.

674

675 Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve
676 neural network acoustic models. In *Proc. icml*, volume 30, pp. 3. Atlanta, GA, 2013.

677

678 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor
679 conduct electricity? a new dataset for open book question answering. In Ellen Riloff,
680 David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of the 2018
681 Conference on Empirical Methods in Natural Language Processing*, pp. 2381–2391, Brus-
682 sels, Belgium, October–November 2018. Association for Computational Linguistics. doi:
683 10.18653/v1/D18-1260. URL <https://aclanthology.org/D18-1260/>.

684

685 Siyuan Mu and Sen Lin. A comprehensive survey of mixture-of-experts: Algorithms, theory,
686 and applications, 03 2025.

687

688 Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions.
689 *ArXiv*, abs/1710.05941, 2018. URL <https://api.semanticscholar.org/CorpusID:10919244>.

690

691 Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look
692 once: Unified, real-time object detection. *2016 IEEE Conference on Computer Vision and
693 Pattern Recognition (CVPR)*, pp. 779–788, 2015. URL <https://api.semanticscholar.org/CorpusID:206594738>.

694

695 Tal Ridnik, Hussam Lawen, Asaf Noy, Emanuel Ben, Baruch Gilad Sharir, and Itamar
696 Friedman. Tresnet: High performance gpu-dedicated architecture. In *2021 IEEE Winter
697 Conference on Applications of Computer Vision (WACV)*, pp. 1399–1408, 2021. doi:
698 10.1109/WACV48630.2021.00144.

699

700 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande:
701 An adversarial winograd schema challenge at scale. *Proceedings of the AAAI Conference
702 on Artificial Intelligence*, 34(05):8732–8740, Apr. 2020. doi: 10.1609/aaai.v34i05.6399.
703 URL <https://ojs.aaai.org/index.php/AAAI/article/view/6399>.

702 Noam M. Shazeer. Glu variants improve transformer. *ArXiv*, abs/2002.05202, 2020. URL
703 <https://api.semanticscholar.org/CorpusID:211096588>.
704

705 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
706 dinov. Dropout: a simple way to prevent neural networks from overfitting. *The journal*
707 *of machine learning research*, 15(1):1929–1958, 2014.

708 Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
709 transformer with rotary position embedding. *ArXiv*, abs/2104.09864, 2021. URL
710 <https://api.semanticscholar.org/CorpusID:233307138>.
711

712 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
713 Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aur’élien
714 Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and
715 efficient foundation language models. *ArXiv*, abs/2302.13971, 2023. URL <https://api.semanticscholar.org/CorpusID:257219404>.
716

717 Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
718 Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Neural Infor-
719 mation Processing Systems*, 2017. URL <https://api.semanticscholar.org/CorpusID:13756489>.
720

721 Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao
722 Zhang, Xiaoyu Zhang, Liang Zeng, Xiaokun Wang, Yutuan Ma, Rui Hu, Shuicheng Yan,
723 Han Fang, and Yahui Zhou. Skywork-moe: A deep dive into training techniques for
724 mixture-of-experts language models, 2024. URL <https://arxiv.org/abs/2406.06563>.
725

726 Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
727 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian
728 Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang
729 Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue,
730 Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
731 Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao Zhang, Yunyang Wan, Yuqi Liu, Zeyu
732 Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and Zekun Wang. Qwen2.5 tech-
733 nical report. *ArXiv*, abs/2412.15115, 2024. URL <https://api.semanticscholar.org/CorpusID:274859421>.
734

735 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag:
736 Can a machine really finish your sentence? In *Annual Meeting of the Association for
737 Computational Linguistics*, 2019. URL <https://api.semanticscholar.org/CorpusID:159041722>.
738

739 Biao Zhang and Rico Sennrich. Root mean square layer normalization. *ArXiv*,
740 abs/1910.07467, 2019. URL <https://api.semanticscholar.org/CorpusID:113405151>.
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

APPENDIX

In this appendix, we add some details that did not fit in the main paper. Appendix A gives architectural details for the models used in the paper. Appendix B gives additional details of the sparsity produced by the models that use the **StochA** and **Swi+FT** activations. Appendix C provides the experimental details for the diversity of generations ablation. Appendix D gives some details for the CPT experiment with **StochA** and **Swi+FT**. Appendix E discusses how to generalize the **StochA** and **Swi+FT** methods for any pair of non-sparse and sparse activations. Appendix F gives the references for all the benchmarks used in the experiments. The final Appendix G gives some examples of multiple answers generated by **StochA**.

A ARCHITECTURE DETAIL

The model architectures we use in the paper are loosely inspired by Llama 3. Table 4 summarizes their main parameters.

Parameter	LM1.5B	LM3B
Number of parameters	1.5B	3B
Layers	28	36
Hidden dimension	1536	2048
Intermediate dimension	8960	11008
Number of attention heads	12	16
Number of key-value heads	2	2

Table 4: LM1.5B and LM3B model parameters

B SPARSITY ANALYSIS

In Table 5, we report the sparsity ratios resulting from the gating in the FFN layer, when using the following activations: **RELU**, **SILU**, **Swi+FT** fine-tuning, and when using **StochA** with **Swi+FT** for varying values p . In all cases, except for the **SILU** baseline, we use **RELU** at test time. We observe that **Swi+FT** fine-tuning with **RELU** brings back a lot of sparsity (80%), yet the model is not competitive. The combination of **StochA** with **Swi+FT** leads to models offering a high sparsity degree by using **RELU** at test time and simultaneously achieving competitive performance, see Tables 1 and 2.

In Figure 7 (left), we observe that $P(X \leq 0)$ is the highest for **RELU** since most of its mass is concentrated around zero as in Table 5. For $x < 0$, the probability $P(X \leq x)$ is lower for **SILU** than for both **Swi+FT** and when we combine **StochA** with **Swi+FT** for different values of p . This shows that combining **StochA** with **Swi+FT** enables to control how much mass we assign to negative values of x depending on p .

	train	inference	Swi+FT	StochA: p	Swi+FT: α	sparsity (%)
baselines	SILU	SILU	✗	-		0.0002
	RELU	RELU	✗	-		94.8
Swi+FT	SILU	RELU	✓	-	0.05	79.9
StochA +Swi+FT	[S R]-S+	RELU	✓	0.3	0.05	88.5
	[S R]-S+	RELU	✓	0.5	0.05	86.5
	[S R]-S+	RELU	✓	0.7	0.05	84.6

Table 5: We report the rate of the 0-valued activation after the **SILU** (not sparse) and **RELU** activation, when training with the LM1.5B model with the following activations: **RELU**, **SILU**, **Swi+FT** fine-tuning, and when using **StochA** with **Swi+FT** for varying values of p .

Figure 7: *Left*: empirical cumulative distribution functions for the inputs to the activation functions when training the LM1.5B model with one of the following activations: SILU, ReLU, Swi+FT fine-tuning and the combination of StochA with Swi+FT for different values of p . *Right*: fraction of near-zero rows of the W_1 matrix, indicating useless neurons for two types of activations.

C DIVERSITY OF GENERATIONS ABLATION EXPERIMENTAL SETUP

We use the LM3B models trained with the StochA activation $[\mathbf{S|R}]-\mathbf{S+}$ with p in $\{0.3, 0.5, 0.7, 0.85\}$. At inference time, the probability p is set to be the same as the one during training. We generate twenty answers for the NQ and TQA generation tasks, compute the Ff1 and Type-token ratio (TTR) metrics of n generated answers (samples) and average over all datapoints for a given number of samples n in $\{2, 3, 4, 5, 10, 20\}$.

In Figure 6 (b) we report the type-token ratio metric (Johnson, 1944), a simple and widely used metric in linguistics and natural language processing to measure lexical diversity in a text. In this context, a *type* consists of a unique word in the text and a *token* consists of any word occurrence in the text (including repetitions). The Type-Token Ratio is then $TTR = \text{Number of Types} / \text{Number of Tokens}$.

D CONTINUOUS PRETRAINING LM1.5B MODELS

We can leverage the StochA and Swi+FT methods for continuous pretraining (CPT) language models, besides using these activations to train LMs from scratch. In this experiment, we start from the LM1.5B models pretrained with the SILU activation. During CPT, we use i) Swi+FT ii) StochA with $p = 0.3$ or $p = 0.5$ or iii) StochA and Swi+FT with $p = 0.5$ and $\alpha = 0.1$. We use the same number of steps used in the pretraining experiments: 45,629 steps. We compare the training losses against the baseline model that keeps SILU during CPT.

	pretrain	CPT	inference	StochA: p	sparsity (%)	train loss
baseline	SILU	SILU	SILU	-	0.0002	2.076
Swi+FT	SILU	RELU	RELU	-	90.96	2.086
StochA	SILU	StochA	RELU	0.5	41.02	2.095
	SILU	StochA	RELU	0.3	57.93	2.095
StochA +Swi+FT	SILU	StochA +Swi+FT	RELU	0.5	81.61	2.096

Table 6: We report the rate of the 0-valued activations and training losses when doing CPT with the LM1.5B model with the following activations: RELU, SILU, Swi+FT, StochA and when using StochA with Swi+FT for varying values p .

	Training activation				LM1.5B		
	$x < 0$	$x > 0$	p	Swi+FT	train	val	val
Activation	p	$1 - p$				RELU	StochA
TANH	TANH	TANH	-	X	2.133	2.155	
RELU	RELU	RELU	-	X	2.140	2.162	
Tanh+FT	TANH	TANH	-	✓	2.193	2.224	
$[\text{T} \text{R}]$ -T+	TANH	RELU	TANH	0.3	X	2.368	10.803
$[\text{T} \text{R}]$ -T+	TANH	RELU	TANH	0.5	X	2.314	10.997
							2.359

Table 7: Losses: train is computed over the last 500 steps of the training loss of LM1.5B, val is measured after training on a different set of text and code using the RELU activation* or StochA, i.e., the same activation used at train time (possibly deterministic). If Swi+FT is enabled, we switch to RELU for the last 10% steps.

E STOCHA AND SWI+FT FOR (TANH, RELU) ACTIVATIONS

Our StochA and Swi+FT methods can be generalized, starting with any pair of non-sparse, sparse activations, in the following way:

1. **StochA**: the non-sparse (activation which takes non-zero values on the negative side) and sparse activation pair can be used as a stochastic activation function that takes the form of either of the activations on the positive side, and, on the negative side, it either takes the non-zero value of the non-sparse variant with probability p or is set to zero with probability $1 - p$.
2. **Swi+FT**: we start with an LM with a non-sparse activation and train it for $(1 - \alpha)\%$ steps. Successively, we finetune the LM with the sparse activation for $\alpha\%$ of the final steps.

To illustrate how the StochA and Swi+FT methods are generalizable, we use the pair of (TANH, RELU) activations. We pretrain a LM1.5B with TANH as the non-sparse activation and RELU as the sparse one for 1) and 2). We compare these versus the losses to the corresponding baselines: using only the TANH or only the RELU activations, respectively. We denote the activation for 1) as Tanh+FT with parameter α and for 2), with $[\text{T}|\text{R}]$ -T+ with parameter p .

We observe that there is barely any gap between the train loss of the non-sparse (TANH, bolded) and the sparse (RELU, in red) activations, hence, there is no trade-off between sparsity and performance, in contrast to the (SILU, RELU) case.

F BENCHMARKS

Code generation We use two benchmarks that evaluate the code generation capabilities of AI models: HumanEval+ and MBPP.

- The HumanEval+ (Liu et al., 2023) benchmark is an extension of HumanEval (Chen et al., 2021), which is designed to evaluate the functional correctness of code generated by AI models.
- MBPP (Austin et al., 2021) is designed to evaluate the code generation abilities of AI models, particularly for Python programming tasks.

Common sense and general reasoning We use benchmarks consisting of question-answer or multiple-choice questions designed to evaluate the commonsense reasoning abilities of AI models, particularly in the context of natural language understanding: HellaSWAG, ARC, PIQA, OBQA, Winogrande, NaturalQuestions, RACE, TQA and GSM8K.

- HellaSWAG (Zellers et al., 2019) consists of multiple-choice questions where each question contains a short context (a sentence or paragraph) followed by four possible continuations. Only one continuation is correct and makes sense given the context.
- The AI Reasoning Challenge (ARC) (Clark et al., 2018) benchmark consists of multiple-choice science questions typically found in elementary and middle school exams. The ARC questions require a mix of factual knowledge, commonsense reasoning, and multi-step inference.
- The Physical Interaction Question-Answering (PIQA) (Bisk et al., 2020) benchmark consists of multiple-choice questions about how to accomplish simple physical tasks. Each question presents a short scenario and two possible solutions; only one is physically plausible.
- The OpenBook QA (OBQA) (Mihaylov et al., 2018) benchmark consists of 6,000 multiple-choice questions based on elementary science facts. Each question is designed to require combining a provided “open book” science fact with additional commonsense or general knowledge.
- WinoGrande (Sakaguchi et al., 2020) benchmark consists of multiple-choice questions. Each question presents a sentence with a pronoun and two possible antecedents; the task is to choose the correct referent for the pronoun.
- Natural Questions (NQ) (Kwiatkowski et al., 2019) benchmark is designed to evaluate the ability of an AI model to answer real user questions using information from Wikipedia.
- The Reading Comprehension from Examinations (RACE) (Lai et al., 2017) benchmark consists of passages and multiple-choice questions to assess how well AI models can comprehend and reason about written passages.
- The Trivia QA benchmark (TQA) (Joshi et al., 2017) is a reading comprehension dataset that pairs trivia questions with evidence documents from which answers can be derived.
- The Grade School Math 8k (GSM8k) (Cobbe et al., 2021) benchmark is a dataset of 8,500 high-quality, linguistically diverse grade school math word problems. The benchmark is designed to test multi-step mathematical reasoning capabilities in language models.

Benchmark	Metric	Few Shot	Type
hellaswag	acc_char	0	choice
winogrande	acc_char	0	choice
arc_easy	acc_char	0	choice
arc_challenge	acc_char	0	choice
piqa	acc_char	0	choice
obqa	acc_char	0	choice
race.middle	acc_char	0	choice
race.high	acc_char	0	choice
human_eval_plus	pass@1	0	generation
mbpp	compiles@1	3	generation
tqa	f1	5	generation
nq	f1	5	generation

Table 8: Summary of benchmarks used for evaluation. We few-shot prompt the LM1.5B and LM3B models. The metric depends on the benchmark as well as the average performance.

G EXAMPLES OF VARIOUS SEQUENCES GENERATED WITH **STOCHA**

Using a pre-trained LM3B model with **StochA**, we can use the **StochA** activation at test time to generate multiple predictions by leveraging the randomness from the activation function. We provide two examples of the generations obtained using questions from the TQA benchmark (Joshi et al., 2017):

	question and accepted answers	generated answers	number of times	NLL score	F1 score
972		1988	4	1.002	0
973		1982	11	1.004	0
974		1980	1	1.030	0
975	When did ibuprofen become available over the counter?	1995	2	1.019	0
976	A: 1983	2001	1	1.017	0
977	A: 1984	1983	1	1.024	1
978					
979	Who played michael jackson in jackson 5 movie?	Michael Jackson	19	0.948	0
980	A:alex burrall	Michael jackson	1	0.792	0
981	A:abolade david olatunde				
982	A:wylie draper				
983	A:jason weaver				
984		Greenwich	9	0.896	0
985	Where is the meridian that is opposite the prime meridian located?	Greenwich, England	11	0.551	0
986	A:180th meridian				
987	A:antimeridian				
988		Siberian	7	1.099	0
989	The cold dry winds that blow over northern india in winter are called?	Siberian winds	6	0.970	0
990	A:northeast monsoon	Ganges	1	1.617	0
991	A:retreating monsoon	monsoon	2	1.051	2/3
992	A:northeast monsoon or	katabatic winds	3	0.738	0
993	retreating monsoon	Ganga	1	1.643	0
994					
995		Blood	6	1.262	0
996	Where can you find dna in the body?	Hair	12	1.393	0
997	A:chromosomes in cell	Mitochondria	1	0.700	0
998	A:inside cell nucleus	In the nucleus	1	1.437	2/5
999					
1000	Who is often associated with printing the first book using moveable type in germany?	Johannes Gutenberg	20	0.205	1
1001	A:johannes gutenberg				
1002					
1003		Kentucky	15	1.852	0
1004	Who won the womens 2017 ncaa basketball tournament?	Kentucky Wildcats	1	1.304	0
1005	A:south carolina	North Carolina	4	1.342	1/2
1006					
1007		USA	14	0.818	0
1008	Country with most olympic gold medals all time?	United States	6	0.614	1
1009	A:united states				
1010					
1011	The atomic number of indium which belongs to 5th period is?	5	14	0.579	0
1012	A:49	49	5	0.650	1
1013		84	1	0.695	0
1014					
1015	Who appoints the members of the board of governors of the federal reserve?	The president	16	0.602	1
1016	A:president	The president of the United States	4	0.431	2/5
1017					
1018					
1019					
1020	What age do you need to be to buy a bb gun?	14	17	0.660	0
1021	A:18	10	2	0.680	0
1022		18	1	0.728	1
1023					
1024	What genre is the magic tree house books?	Fantasy	14	1.038	1/2
1025	A:childrens historical fantasy	Children's fiction	1	1.051	2/5
1026		Children's	3	1.245	1/2
1027		Children's books	2	1.067	2/5
1028					
1029	What is the name of the skin between your nostrils?	Nasal septum	17	0.707	1
1030	A:nasal septum	Nasion	3	1.224	0
1031	A:septum				

Table 9: Example generations. For each question, we indicate the ground-truth answers (from the dataset). We generate 20 answers per question with $[S|R]-S+$, $p=0.7$. We list the de-duplicated answers, with the NLL score (used to sort the results) and the F1 score (used to evaluate the result, it is computed as the intersection of bags-of-words).