
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Stochastic activations

Anonymous authors
Paper under double-blind review

Abstract

We introduce stochastic activations. This novel strategy randomly selects
between several non-linear functions in the feed-forward layer of a large
language model. In particular, we choose between SILU or RELU depending
on a Bernoulli draw. This strategy circumvents the optimization problem
associated with RELU, namely, the constant shape for negative inputs that
prevents the gradient flow. We leverage this strategy in two ways:

(1) We use stochastic activations during pre-training and fine-tune the
model with RELU, which is used at inference time to provide sparse latent
vectors. This reduces the inference FLOPs and translates into a significant
speedup in the CPU. Interestingly, this leads to much better results than
training from scratch with the RELU activation function.

(2) We evaluate stochastic activations for generation. This strategy per-
forms reasonably well: it is only slightly inferior to the best deterministic
non-linearity, namely SILU combined with temperature scaling. This of-
fers an alternative to existing strategies by providing a controlled way to
increase the diversity of the generated text.

4 2 0 2 4

0

2

4
RELU: 1− p

4 2 0 2 4

0

2

4
SILU: p

Figure 1: Stochastic activation randomly selects one of two activations when x < 0:
(1) RELU selected with probability 1− p; otherwise (2) another activation, in particular SILU.

1 Introduction

Large language models (LLMs) (Devlin et al., 2019; Chowdhery et al., 2022; Brown et al.,
2020; Vaswani et al., 2017) have revolutionized natural language processing, enabling un-
precedented capabilities in text generation, comprehension, and reasoning. Their success
stems from scaling model parameters and leveraging vast amounts of data, but this comes
with a significant computational complexity. As the demand for more efficient and powerful
models grows, researchers are increasingly focused on optimizing their training processes to
balance performance with resource constraints.

The majority of the LLM parameters are in the Feed-Forward Network (FFN) layers, where
they memorize the training data. FFNs are two linear layers separated by an activation
function, and sometimes an additional linear layer that serves as a gating operation. The
activation is a R → R non-linear function. In this context, the choice of activation function
plays a crucial role for both the model’s expressivity and efficiency. The simplest activation
is RELU (Rectified Linear Unit), that allows positive values to pass through and forces
negative inputs to zero. RELU is sparsity-inducing, since, on average, half of its outputs

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

are zero (in practice significantly more). Within a two-layer Multilayer Perceptron, this
means that inference on the second layer is a matrix-sparse vector multiplication, so it can
be implemented with fewer FLOPs than a matrix-dense vector multiplication. Note that
effectively improving the runtime with this sparsity pattern remains challenging.

In practice, the Sigmoid Linear Unit (SILU) activation, combined with a gated design, has
consistently outperformed RELU in terms of model accuracy (Shazeer, 2020). Unfortunately,
SILU does not induce sparsity. One plausible explanation for RELU’s underperformance is
that its gradient for negative input values is zero, which hinders optimization by preventing
weight updates in a significant portion of the network. Solutions like Leaky RELU (Maas
et al., 2013) circumvent this problem by ensuring non-zero gradient almost everywhere, but
they are inferior to SILU and involve abandoning sparsity. In contrast, if the so-called “dying
RELU problem” optimization challenge could be effectively addressed, RELU’s theoretical
advantages – such as sparsity and computational efficiency – may translate into performance
comparable to SILU for a lower number of FLOPs. This disparity presents a challenge: how
to harness the efficiency benefits of sparse activations, such as RELU, without sacrificing
the empirical advantages of SILU. This motivates our exploration of alternative training
strategies that mitigate RELU’s limitations while preserving its benefits.

In this work, we consider two ways to approach this problem. The first approach is activation
fine-tuning, denoted Swi+FT: we pre-train the model with an activation that facilitates
efficient large language model optimization, then we change the activation to RELU and adapt
the model by fine-tuning it further. Our second approach, referred to as StochA (stochastic
activations), is a novel technique that randomly selects between multiple activations, either
at train or test time. Both approaches allow models to benefit from the superior optimization
properties of SILU. These hybrid strategies combine the best of both worlds – maintaining
high model performance while unlocking the computational efficiency of sparse activations.

In summary, this paper makes the following contributions:

• We introduce and analyze two strategies that employ different activation functions
at training and inference time, namely Swi+FT and StochA. Both are complementary
and make it possible to use activations at inference time that differ from those
employed during pre-training.

• We produce RELU-based models that are much better than those obtained with
regular training, i.e., our methods significantly outperform training with RELU only.

• We show that stochastic activations, when used at inference time, provides an al-
ternative way to generate diverse sequences compared to traditional temperature
sampling or other variants.

2 related work

Standard activation functions Activations are at the core of deep learning, in that
they are needed to depart from defining a linear function with limited expressivity. While
early neural network architectures were inspired by logistic regression, such as sigmoidal and
tanh activations, many activation functions have been evaluated for the Feed Forward layers
(FFNs) of transformers. Vaswani et al. (2017) used RELU (Glorot et al., 2011). However,
using the RELU activation function leads to some neurons getting stuck in the negative
region. As a consequence, they stop learning entirely, since the gradient is zero for negative
inputs, and their weights do not get updated. In contrast, Touvron et al. (2023) used
SILU as the activation function for the FFN layers of the transformer for the first Llama
models. Shazeer (2020) discusses the benefits of SWIGLU, which consists of SILU with
gating. There exist many other activation functions such as the Gaussian Error Linear Unit
(GELU) (Hendrycks & Gimpel, 2016), Scaled Exponential Linear Unit (SELU) (Klambauer
et al., 2017), Swish (Ramachandran et al., 2018) and gated SILU, among others.

In particular, the Leaky RELU (Maas et al., 2013; Redmon et al., 2015; Ridnik et al., 2021;
Guo et al., 2024) tried tackling the dying RELU problem by allowing a small, non-zero
gradient when the input is negative in order to keep the neurons active and the gradients
flowing, reducing the risk of dead neurons.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Adaptive activation functions Lee et al. (2022) propose an activation, called Adaptive
Swish (ASH), that uses stochastic sampling of the top-k percentile elements. It is a gener-
alization of the Swish (Ramachandran et al., 2018) activation function, that uses adaptive
thresholding and selects only the values in the top percentiles and sets these to zero other-
wise. The threshold is not fixed but depends on the distribution of the input making it an
example of a stochastic activation.

Dropout and structured Dropout variants In the original dropout paper (Srivastava
et al., 2014), the authors propose a regularization technique to reduce overfitting and improve
generalization of a neural network. It consists of setting to zero a subset of neurons at each
training step. Consequently, the dropped neurons do not contribute to the forward pass or
receive weight updates during back-propagation. At inference time, all neurons are used
and their outputs are scaled by the dropout probability.

LayerDrop (Fan et al., 2019) randomly drops entire layers during training, hence, it en-
courages the model to be robust to missing layers. At inference time, some layers can be
pruned, trading off between speed and accuracy as needed. While the method does not
make the model sparse in the usual sense, it induces structured sparsity in the computa-
tion graph during training. Other works also introduce structured dropout variants such as
DropBlock (Ghiasi et al., 2018), Bayesian dropout (Gal & Ghahramani, 2016), or Beit (Bao
et al., 2021) and masked-autoencoder (He et al., 2022) in computer vision, among others.

Quantization approaches Fan et al. (2020) propose Quant-noise, that mimicks quanti-
zation during training by introducing noise to a random subset of weights for each forward
pass enabling high compression ratios while maintaining the original model performance.
It uses the Straight-Through estimator (STE) (Bengio et al., 2013; Hinton, 2012) to com-
pute the gradients. This training technique ensures that the model is pretrained to observe
both the train-time (unquantized) and the inference-time (quantized) models. This ensures
proper optimization, bypassing the flat gradient caused by quantization and reducing the
discrepancy that results from the late quantization of the model weights.

Sparsity by design Some works propose to enable sparsity directly in the architecture,
for instance, the Mixture of Experts (MoE) or the Product-Key Memory (PKM). The PKM
architecture (Lample et al., 2019) uses a memory layer for neural networks which enables the
model to access a large learnable memory and thus, it enables long term memory capabilities.
It leverages product quantization (PQ) (Jégou et al., 2011) by splitting the key in two parts
and using each part in separate codebooks. The combination of each PQ index enables the
model to access a larger memory space efficiently. At each forward pass, only a small subset
of the memory is accessed, making it computationally efficient. [H: Cite recent works built
upon this: bytedance, Google and Meta/MCU]

Mixture of Expert (MoE) models (Yang et al., 2024; Wei et al., 2024; DeepSeek-AI et al.,
2024; Jiang et al., 2024) dynamically select and activate the relevant subset of parameters
based on the characteristics of the input data. The MoE approach allows MoE models to
expand their capacity without proportionally increasing computational complexity. See Mu
& Lin (2025) for an overview of the MoE and references therein.

3 Using different activations at train and test time

This section introduces two strategies for improving the optimization during pretraining
using an optimization-compliant activation, while preparing the model to a potentially dif-
ferent activation at test time. First we introduce the Swi+FT fine-tuning approach. Then
we introduce our Stochastic Activation StochA.

3.1 Fine-tuning with RELU: Swi+FT

In the following, we use SILU and RELU as our training and inference activations. For
reference, they are defined in R → R as:

RELU(x) = max(x, 0) SILU(x) = xσ(x), (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

0 10000 20000 30000 40000
iteration

2.5

4

8

12

lo
ss

RELU training
SILU training
Swi+FT 5%
Swi+FT 10%
Swi+FT 20%

Figure 2: Swi+FT: Training loss. Most of the training is carried out with SILU, with α=5%, 10% and
20% of the final steps using RELU. Note the loss spike when we switch the activation. The model
rapidly recovers and converges to a regime where RELU is performing well while providing sparsity.
This strategy needs to be combined with StochA to provide good models operating with RELU.

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function. We choose these two activations
because SILU is one of the best options in terms of accuracy, while RELU is simple and sparse.
The two activations are also similar: same asymptotes at −∞ and +∞, and the same value
at 0. SILU is differentiable twice (unlike RELU) and, interestingly, non-monotonous.

In our proposed approach, the training operates as follows:

• Most of the training steps (during a proportion 1− α of the total number of itera-
tions) are carried out with a first activation that is deemed preferable for training.
We typically employ SILU for this stage.

• We then switch the activation to that used for inference for the rest of the training.

We mostly set α = 0.05 or α = 0.1, which mean that only 5% or 10% of the training steps
are carried out using the inference-time activation. We do not re-initialize the parameters of
the optimizer when switching between activations, and similarly we do not use any warm-up.
This does not disrupt the optimization because the SILU and RELU activations are relatively
similar. We observe a spike in the loss at the time we change the activation, see Figure 2.
However, the optimization rapidly recovers. In practice, the fine-tuning replaces the last
iterations of the pretraining. The learning rate follows a cosine schedule which gradually
reduces it to 1/100th of its peak value. Therefore, at 5% or 10% of the end of the training,
the learning rate is already 60× or 29× lower than its peak, which is compatible with a
fine-tuning regime.

3.2 Stochastic activation: StochA

A stochastic function, parametrized by a random variable ω, is a function

y = Ψ(x, ω) (2)

that maps inputs x ∈ R to output y ∈ R with randomness involved. The dependence on
ω emphasizes that the outcome depends on an underlying probability space. In that sense,
the function Ψ(·, ω) is deterministic for each realization of ω, but is stochastic overall. In
particular, we consider the case depicted in Figure 1, where ω ∼ Bernoulli(p) is a binary
random variable parametrized by a parameter p: ω ∈ {0, 1} such that P(ω = 1) = p and
P(ω = 0) = 1− p. In that case, the stochastic function Ψp(·) is defined such that

if x < 0, Ψp(x) = (1− ω)× RELU(x) + ω × SILU(x), (3)

which amounts to randomly selecting between the RELU and SILU activations for x < 0. If
x ≥ 0 we choose either Ψp(x) = x or Ψp(x) = SILU(x), see the baseline paragraph below.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

This strategy ensures that the network is compatible with two regimes. The first one, drawn
with probability 1− p, is the inference-time mode, where we prepare the network to employ
RELU during generation, in order to exhibit sparsity. The second mode aims to facilitate
optimization during training. The choice of the SILU activation is motivated by the regular
deterministic gated design by (Shazeer, 2020) adopted by most state-of-the-art LLMs.

Notation To specify an activation, we separately define the function for the positive and
negative range of inputs. For example R-S+ means that RELU is used for the negative range
and SILU for the positive. When StochA is used, we indicate [S|R]-S+, which means that
for the negative range, we sample SILU with probability p and RELU with probability 1− p.

Baselines The two natural baselines are the determinis-
tic functions SILU and RELU. We also introduce two non-
stochastic baselines in order to disentangle the effect that
could come from combining SILU and RELU separately in the
positive and negative domain: these baselines are denoted
by S-R+ and S-R+.

x < 0 x ≥ 0

RELU 0 x
SILU x · σ(x) x · σ(x)
R-S+ 0 x · σ(x)
R+S- x · σ(x) x

Discussion The stochastic strategy resembles activation dropout (Srivastava et al., 2014),
which can be regarded as a particular case of our method where one of the activations is
the null function. However, the objective of dropout is to avoid overfitting. Our motiva-
tion is closer to Quantization-aware training (Jacob et al., 2017), more specifically, to the
QuantNoise strategy of Fan et al. (2020), where the model is pretrained to observe both the
train-time (unquantized) and the inference-time (quantized) models. In QuantNoise, using
these two modes during training time ensure both the proper optimization, without suffering
the flat gradient inherent to quantization, while reducing the discrepancy that results from
the late-quantization of the model weights.

Alternative construction of a stochastic activation. An alternative construction is
to randomly select between the identity function x 7→ x and the constant zero function
x 7→ 0 with a sigmoidal probability σ(x). As a result, in expectation this function is given
by

E[sa(x)] = (1− σ(x)) · 0 + σ(x) · x = σ(x) · x, (4)

where we recognize the SILU(x) function. While the simplicity of this construction is math-
ematically appealing, our preliminary experiments revealed that it does not work very well.

3.3 Inference-time strategies and evaluation

At test time, we evaluate and analyze models trained with Swi+FT and/or StochA as follows:

RELU at test time. This is how we can enable sparsity. The corresponding evaluations
therefore measure the performance on benchmarks when using this activation at test time.

Exploiting sparsity On an input x ∈ RD, the gated FFN computes:

y = W2 × (RELU(W1 × x)⊙ (W3 × x)) with W1,W3 ∈ RN×D and W2 ∈ RD×N , (5)

assuming column vectors and noting ⊙ the element-wise multiplication. When the activation
RELU(W1 × x) has a fraction s of zeros, the multiplications by W2 and W3 can exploit this
sparsity: the baseline of 3ND FLOPS reduces to (3− 2s)ND.

Note that exploiting the sparsity to increase the computational throughput is not straight-
forward. At training time, the runtime is dominated by matrix-matrix multiplications,
where even a 90% sparsity rate is not guaranteed to yield efficiency gains. At inference time
with one prompt at a time, the bottleneck is the memory access used during matrix-vector
multiplications. When W2 is stored by rows and W3 by columns, the sparsity can be ex-
ploited to avoid a fraction s of the memory reads, that are contiguous. This implementation
nearly yields the expected speedup (see experimental section).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Stochastic activation at test time. The following only applies to the StochA strategy:
we evaluate the performance when if leverage the randomness at test time, i.e., in this case,
we do not use RELU. This choice has two interests:

1. To quantify the effect of the activation discrepancy between train and test.

2. To generate multiple outputs from the same prompt with the randomness of StochA.

For the second usage, the standard way to generate multiple outputs from the same prompt
is to replace the greedy decoding with a random sampling of the token from its probability
distribution. This sampling can be tuned by setting a softmax temperature T which adjusts
between completely uniform sampling (T → ∞) and strict maximum sampling (T → 0). In
both cases, we keep the one generated output with the highest normalized log likelihoods,
i.e., the per-token average log-likelihood, as predicted by the model.

4 Experiments with large language models

4.1 Experimental setting

Model architecture We train dense decoder-only models. The transformer blocks use
grouped-query attention (Ainslie et al., 2023). These models use RMSNorm (Zhang &
Sennrich, 2019) with prenormalization, rotary positional positional encoding (RoPE) (Su
et al., 2021) with θ = 500000 and train with document causal masking. We use the SILU
activation (Shazeer, 2020) for the SILU baseline. The structure of our LM1.5B and LM3B
models is detailed in Table 4 in Appendix A.

Training hyper-parameters We train the models with AdamW optimizer (Loshchilov
& Hutter, 2017) with β1 =0.9, β2 =0.95, learning rate of lr=3× 10−3, weight decay of 0.1,
and gradient clipping at norm 1.0. After 2000 steps of linear warm-up, we use a cosine decay
learning rate schedule with peak learning rate 8× 10−4 and decay by a factor of 1/100 over
the training horizon.

Tokenizer We use the Llama3 (Dubey et al., 2024) tokenizer, which is a fast Byte-Pair
Encoding tokenizer implemented with TikToken.2 The vocabulary contains 128 000 regular
tokens as well as 256 reserved tokens.

Pre-training We pre-train the LM1.5B and LM3B models with 47B and 80B tokens, re-
spectively, from a diverse collection of mostly English natural language and coding data.
We use a batch size of 1M tokens and a context length of 8192 tokens.

Evaluation Benchmarks We employ two types of benchmarks for zero or few-shot eval-
uation, which we describe in more detail in Appendix C and Table 6. The first type is
code generation tasks: HumanEval+ (Liu et al., 2023) and MBPP (Chen et al., 2021). The
second type consists of common sense and general reasoning: HellaSWAG(Zellers et al.,
2019), ARC(Clark et al., 2018), PIQA (Bisk et al., 2020), OBQA (Mihaylov et al., 2018),
WinoGrande (Sakaguchi et al., 2020), NQ (Kwiatkowski et al., 2019), RACE (Lai et al.,
2017), TQA (Joshi et al., 2017) and GSM8K (Cobbe et al., 2021).

4.2 Performance analysis of Swi+FT and StochA with RELU at inference time

In this section we analyze the effect of our proposal when using RELU at test time. In
Appendix B, we provide a complementary analysis of the sparsity. Depending on the setting,
the average rate of 0s can be higher than 90%, when using the RELU at test time.

Cross-entropy performance. Table 1 provides the impact on the training and val-
idation losses of multiple choices with the LM1.5B and LM3B models. We observe that
the training loss using stochastic activation at train time is lower than that obtained with

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Training activation LM1.5B LM3B
x < 0 x > 0 p train val val train val val

Activation p 1− p Swi+FT RELU StochA RELU StochA

SILU SILU SILU - ✗ 2.105 2.122⋆ 1.966 1.974⋆

RELU RELU RELU - ✗ 2.140 2.161 2.027 2.043
S-R+ SILU RELU - ✗ 2.101 2.124⋆ 1.970 1.980⋆

R-S+ RELU SILU - ✗ 2.123 2.151⋆ 2.016 2.033⋆

[S|R]-R+ SILU RELU RELU 0.3 ✗ 2.120 2.363 2.146 1.993 2.257 2.006
[S|R]-R+ SILU RELU RELU 0.5 ✗ 2.120 2.507 2.145 1.990 2.889 1.999
[S|R]-S+ SILU RELU SILU 0.3 ✗ 2.115 2.305 2.143 1.987 2.257 1.996
[S|R]-S+ SILU RELU SILU 0.5 ✗ 2.115 2.530 2.143 1.984 2.753 1.995
[S|R]-R+ SILU RELU RELU 0.3 ✓ 2.123 2.141 2.251 1.988 1.998 2.177
[S|R]-R+ SILU RELU RELU 0.5 ✓ 2.129 2.148 2.307 1.989 2.002 2.306
[S|R]-S+ SILU RELU SILU 0.3 ✓ 2.120 2.138 2.221 1.982 1.992 2.103
[S|R]-S+ SILU RELU SILU 0.5 ✓ 2.125 2.144 2.301 1.985 1.994 2.234

Table 1: Losses: train is computed over the last 500 steps of the training loss of LM1.5B, val is
measured after training on a different set set of text and code using the RELU activation⋆ or StochA,
i.e., the same activation used at train time (possibly deterministic). If Swi+FT is enabled, we switch
to RELU for the last 5% steps. ⋆: for the deterministic baselines SILU, S-R+ and S+R-, we do the
inference with the same activation used at train-time (not RELU).

0.0 0.2 0.4 0.6 0.8 1.0
sparsity

0

100

200

300

400

500

600

ge
ne

ra
tio

n
tim

e
pe

r t
ok

en
 (m

s)

sparse FFN
default FFN
other operations

Figure 3: Total inference time for 1 token on
CPU, as a function of the activation spar-
sity, with a LM3B model trained with Swi+FT.
The “other operations” include the attention
layers (they are not dominant because the
generation is limited to 200 tokens), the nor-
malization and the execution overheads. At
90% sparsity the speedup is ×1.65. The tim-
ings are measured on a single core of a Xeon
8462Y+ machine.

RELU. However the validation entropy is not competitive per se, due to the remaining train-
inference discrepancy of activation. This is solved by Swi+FT: switching to the RELU activa-
tion function and fine-tuning for the last 5% or 10% steps percentage of the training steps
drastically boosts the test-time inference. These results outperform the results obtained
with regular RELU training, while using the same activation at test time.

Fast inference with RELU sparsity The activation sparsity can be exploited to avoid
fetching 90% of the matrices W1 and W3 of the FFN (see Eq. 5 ands detailled sparsity rate
in Appendix B). This has a direct benefit on CPU, see Figure 3: the 90% sparsity provides
a 65% speedup. On GPU the additional challenge is to make the computation sufficiently
predictable to balance the load between CUDA threads.

Complementary of StochA and Swi+FT with RELU finetuning Figure 4 shows the
training loss when using StochA and Swi+FT jointly. When switching the activation to RELU,
we observe a spike in the loss, but the optimization rapidly recovers, and then converges
to a model having a better performance than the one produced when training with RELU
from scratch. In contrast, in the case where we employ Swi+FT alone (Figure 2), fine-tuning
with RELU after pretraining with SILU is not enough to obtain performance improvements.
This shows that both approaches are complementary.

The impact of α can also be seen in Figure 4, where we compare the final loss reported
for different fine-tuning values. In that case, setting α = 0.1 is a good trade-off since the
corresponding loss is lower than the RELU loss.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

↓ Benchmark/metric LM1.5B LM3B

baselines (a) Swi+FT (b) StochA baselines (a) Swi+FT (b) StochA
train activation → SILU RELU [S|R]-S+ [S|R]-S+ SILU RELU [S|R]-S+ [S|R]-S+

inference activation → SILU RELU RELU [S|R]-S+ SILU RELU RELU [S|R]-S+

hellaswag/acc char 0.585 0.561 0.574 0.576 0.684 0.633 0.671 0.678
winogrande/acc char 0.593 0.571 0.568 0.568 0.657 0.615 0.630 0.620
arc easy/acc char 0.568 0.562 0.600 0.562 0.675 0.642 0.679 0.671
arc challenge/acc char 0.313 0.286 0.331 0.314 0.390 0.348 0.396 0.376
piqa/acc char 0.732 0.720 0.724 0.720 0.767 0.751 0.765 0.761
obqa/acc char 0.346 0.340 0.378 0.340 0.390 0.380 0.384 0.408
race.middle/acc char 0.518 0.516 0.509 0.498 0.565 0.538 0.559 0.549
race.high/acc char 0.382 0.379 0.372 0.375 0.414 0.402 0.407 0.416
human eval plus/pass@1 0.073 0.067 0.049 0.055 0.128 0.110 0.128 0.116
mbpp/compiles@1 0.978 0.970 0.960 0.980 0.992 0.980 0.990 0.982
tqa/f1 0.243 0.217 0.229 0.232 0.351 0.293 0.327 0.342
nq/f1 0.123 0.107 0.121 0.113 0.169 0.146 0.170 0.145

average performance 0.454 0.441 0.451 0.444 0.515 0.486 0.509 0.505

Table 2: Performance per benchmark of the RELU and SILU (a) baselines for LM1.5B and LM3B
compared to (b) models with StochA and Swi+FT at train time and RELU at test time, and (c)
models with StochA at train and test time. We use the model with the best perplexity on val
namely p = 0.3, α = 0.05 for Swi+FT and p = 0.5 for StochA.

4.3 Performance on downstream tasks

Detailed results per benchmark Table 2 reports the results for the standard code
generation, common sense and general reasoning benchmarks detailed in Appendix C. We
consider multiple StochA models using few-shot or zero shot prompting, see Table 6 in
the appendix for more details for each case. Observe first that the model with SILU is
significantly better that a regular model with RELU. However, our models trained with
StochA are slightly better or on par with SILU: either the model fine-tuned with Swi+FT
and using RELU at inference time, or even the model that uses StochA at test time.

Performance when varying α with Swi+FT. Figure 5 showcases that we can slightly
surpass the SILU baseline if we first use a stochastic activation function during the LM1.5B
model training and then switch to the RELU activation function for the last α% of the training
steps, for α ∈ {5%, 10%, 20%}. The best performance is typically obtained with α = 5% or
α = 10% for the LM1.5B model.

4.4 Exploiting StochA at test time

Effectiveness of StochA a test time. In Table 1, in addition to the results with
RELU at test time, we also report the train and validation losses obtained when employing
StochA at test time. We observe that (1) using stochastic activations for inference works
surprisingly well in spite of the randomness. The results are between RELU and SILU in most
configurations; (2) When using StochA at test time, there is no need to fine-tune the model

30000 32000 34000 36000 38000 40000 42000 44000
iteration

2.0

2.1

2.2

2.3

2.4

2.5

lo
ss

final loss
α train val (RELU)

0 2.115 2.530
0.05 2.125 2.144
0.10 2.119 2.145
0.20 2.126 2.155

Figure 4: Training loss with Swi+FT and StochA: [S|R]-S+ activation with p = 0.5 for α=5%, 10%
and 20%, relative to RELU and SILU. Note that this plot this is zoomed in relative to Figure 2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

0 5 10 20 50
0.38

0.40

0.42

0.44

0.46

av
er

ag
e

sc
or

e
ov

er
 ta

sk
s

1.5B model

RELU
SILU
[S|R]-R+ p=0.3
[S|R]-R+ p=0.5

S-R+
[S|R]-S+ p=0.3
[S|R]-S+ p=0.5
SILU Swi+FT

0 5 10
0.40

0.42

0.44

0.46

0.48

0.50

0.52
3B model

Figure 5: Swi+FT: analysis
of the fine-tuning rate α.
We plot the average perfor-
mance over the benchmarks
as we vary the percentage α
of steps for which we switch
to the RELU activation at the
end of training. We use RELU
at inference time.

p LM1.5B LM3B

0 (R-S+) 0.215 0.222
0.3 0.443 0.504
0.5 0.426 0.505
0.7 0.453 0.495
1.0 (SILU) 0.454 0.515

Table 3: StochA: Impact on benchmarks perfor-
mance (avg) as a function of the StochA p for
[S|R]-S+ used at test time. The case p = 0
corresponds to R-S+ while p = 1 corresponds to
the baseline SILU. The performance increases with
more SILU in the mix. However, the stochasticity
can be used to increase the generation diversity.

NQ TQA

1 2 5 10 20
number of predictions per question

0.14

0.15

0.16

0.17

0.18

m
ea

n
F1

1 2 5 10 20
number of predictions per question

0.30

0.31

0.32

0.33

0.34

0.35
m

ea
n

F1 SILU, temperature 0.1
SILU, temperature 0.2
SILU, temperature 0.5
[S|R]-S+ p=0.3
[S|R]-S+ p=0.5
[S|R]-S+ p=0.7
[S|R]-S+ p=0.85

Figure 6: Comparison of ways to generate diverse responses in Q&A benchmarks: by varying
the softmax temperature or by varying the [S|R]-S+ p. The multiple generations are scored by
normalized log likelihoods and the best generation is evaluated with an F1 score (y-axis).

with Swi+FT. This is expected since this strategy is intended to decrease the discrepancy
with the test-time activation choice. Table 3 shows that the average benchmark performance
generally increases when the stochastic mix approaches SILU. Therefore, StochA is primarily
useful as a way to generate multiple outputs for the same prompt.

Diversity of generations ablations. Figure 6 shows how stochastic generation compares
to temperature sampling to generate diverse outputs, see Section D for examples. We plot
these on TQA and NQ, whose results are least noisy. For the best settings, the curves
are increasing, which means that (1) the generations are indeed diverse and (2) that the
normalized log likelihoods are a suitable scoring function. The StochA activations yield a
higher performance than vanilla temperature sampling on NQ but are sub-par for TQA.

5 Conclusion

This paper has introduced a novel stochastic activation that preserves the performance of
a non-sparse activation, such as SILU, while better adjusting to the behavior of a sparse
one, such as RELU, at test time. This improves the inference times for the FFN layers of
a transformer, translating into a speedup of typically ×1.65 for the FFN processing on
CPUs while almost preserving the accuracy of the non-sparse SILU activation. Finally, we
explore how stochastic activations can be leveraged at test time to improve diversity in
model generations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

References

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and
Sumit Sanghai. GQA: Training generalized multi-query transformer models from multi-
head checkpoints. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 4895–
4901, Singapore, December 2023. Association for Computational Linguistics. doi: 10.
18653/v1/2023.emnlp-main.298. URL https://aclanthology.org/2023.emnlp-main.
298/.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton.
Program synthesis with large language models. ArXiv, abs/2108.07732, 2021. URL https:
//api.semanticscholar.org/CorpusID:237142385.

Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers. ArXiv,
abs/2106.08254, 2021. URL https://api.semanticscholar.org/CorpusID:235436185.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating
gradients through stochastic neurons for conditional computation. ArXiv, abs/1308.3432,
2013. URL https://api.semanticscholar.org/CorpusID:18406556.

Yonatan Bisk, Rowan Zellers, Ronan Le bras, Jianfeng Gao, and Yejin Choi. Piqa: Reason-
ing about physical commonsense in natural language. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(05):7432–7439, Apr. 2020. doi: 10.1609/aaai.v34i05.6239.
URL https://ojs.aaai.org/index.php/AAAI/article/view/6239.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, and OpenAI team. Evaluating large language models trained on code.
2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, and Google team. Palm: Scaling
language modeling with pathways, 2022. URL https://arxiv.org/abs/2204.02311.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa
Schoenick, and Oyvind Tafjord. Think you have solved question answering? try
arc, the ai2 reasoning challenge. ArXiv, abs/1803.05457, 2018. URL https://api.
semanticscholar.org/CorpusID:3922816.

Karl Cobbe, Vineet Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and
John Schulman. Training verifiers to solve math word problems. ArXiv, abs/2110.14168,
2021. URL https://api.semanticscholar.org/CorpusID:239998651.

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao,
Chengqi Dengr, Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong,
economical, and efficient mixture-of-experts language model, 2024. URL https://arxiv.
org/abs/2405.04434.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2019. URL https://arxiv.
org/abs/1810.04805.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama
3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand
with structured dropout. arXiv preprint arXiv:1909.11556, 2019.

10

https://aclanthology.org/2023.emnlp-main.298/
https://aclanthology.org/2023.emnlp-main.298/
https://api.semanticscholar.org/CorpusID:237142385
https://api.semanticscholar.org/CorpusID:237142385
https://api.semanticscholar.org/CorpusID:235436185
https://api.semanticscholar.org/CorpusID:18406556
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://arxiv.org/abs/2204.02311
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:239998651
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2407.21783

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Angela Fan, Pierre Stock, Benjamin Graham, Edouard Grave, Rémi Gribonval, Herve Jegou,
and Armand Joulin. Training with quantization noise for extreme model compression.
arXiv preprint arXiv:2004.07320, 2020.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: representing
model uncertainty in deep learning. In Proceedings of the 33rd International Conference
on International Conference on Machine Learning - Volume 48, ICML’16, pp. 1050–1059.
JMLR.org, 2016.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. Dropblock: A regularization method for
convolutional networks, 2018. URL https://arxiv.org/abs/1810.12890.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks.
In Proceedings of the fourteenth international conference on artificial intelligence and
statistics, pp. 315–323. JMLR Workshop and Conference Proceedings, 2011.

Yinglong Guo, Shaohan Li, and Gilad Lerman. The effect of leaky relus on the training
and generalization of overparameterized networks. CoRR, abs/2402.11942, 2024. doi:
10.48550/ARXIV.2402.11942. URL https://doi.org/10.48550/arXiv.2402.11942.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
Masked autoencoders are scalable vision learners. In 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 15979–15988, 2022. doi:
10.1109/CVPR52688.2022.01553.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv: Learning,
2016. URL https://api.semanticscholar.org/CorpusID:125617073.

Geoffrey Hinton. Neural networks for machine learning. Coursera, video lectures, 2012.
Online course.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G.
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2704–2713, 2017. URL https://api.
semanticscholar.org/CorpusID:39867659.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary,
Chris Bamford, Devendra Singh Chaplot, Diego de Las Casas, Emma Bou Hanna, Florian
Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud,
Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang,
Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. Mixtral of experts. ArXiv, abs/2401.04088,
2024. URL https://api.semanticscholar.org/CorpusID:266844877.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. Triviaqa: A large scale
distantly supervised challenge dataset for reading comprehension. 05 2017. doi: 10.48550/
arXiv.1705.03551.

Herve Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neigh-
bor search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1):
117–128, 2011. doi: 10.1109/TPAMI.2010.57.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. In Neural Information Processing Systems, 2017. URL
https://api.semanticscholar.org/CorpusID:13713980.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh,
Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina
Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszko-
reit, Quoc Le, and Slav Petrov. Natural questions: A benchmark for question answering
research. Transactions of the Association for Computational Linguistics, 7:452–466, 2019.
doi: 10.1162/tacl a 00276. URL https://aclanthology.org/Q19-1026.

11

https://arxiv.org/abs/1810.12890
https://doi.org/10.48550/arXiv.2402.11942
https://api.semanticscholar.org/CorpusID:125617073
https://api.semanticscholar.org/CorpusID:39867659
https://api.semanticscholar.org/CorpusID:39867659
https://api.semanticscholar.org/CorpusID:266844877
https://api.semanticscholar.org/CorpusID:13713980
https://aclanthology.org/Q19-1026

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard H. Hovy. Race: Large-
scale reading comprehension dataset from examinations. In Conference on Empirical
Methods in Natural Language Processing, 2017. URL https://api.semanticscholar.
org/CorpusID:6826032.

Guillaume Lample, Alexandre Sablayrolles, Marc’Aurelio Ranzato, Ludovic Denoyer, and
Hervé Jégou. Large memory layers with product keys. Advances in Neural Information
Processing Systems, 32, 2019.

Kyungsu Lee, Jaeseung Yang, Haeyun Lee, and Jae Youn Hwang. Stochastic adaptive
activation function. In Proceedings of the 36th International Conference on Neural Infor-
mation Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc.
ISBN 9781713871088.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code gen-
eration. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=1qvx610Cu7.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2017. URL https://api.semanticscholar.
org/CorpusID:53592270.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve
neural network acoustic models. In Proc. icml, volume 30, pp. 3. Atlanta, GA, 2013.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor
conduct electricity? a new dataset for open book question answering. In Ellen Riloff,
David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 2381–2391, Brus-
sels, Belgium, October-November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1260. URL https://aclanthology.org/D18-1260/.

Siyuan Mu and Sen Lin. A comprehensive survey of mixture-of-experts: Algorithms, theory,
and applications, 03 2025.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions.
ArXiv, abs/1710.05941, 2018. URL https://api.semanticscholar.org/CorpusID:
10919244.

Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 779–788, 2015. URL https://api.semanticscholar.
org/CorpusID:206594738.

Tal Ridnik, Hussam Lawen, Asaf Noy, Emanuel Ben, Baruch Gilad Sharir, and Itamar
Friedman. Tresnet: High performance gpu-dedicated architecture. In 2021 IEEE Winter
Conference on Applications of Computer Vision (WACV), pp. 1399–1408, 2021. doi:
10.1109/WACV48630.2021.00144.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande:
An adversarial winograd schema challenge at scale. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(05):8732–8740, Apr. 2020. doi: 10.1609/aaai.v34i05.6399.
URL https://ojs.aaai.org/index.php/AAAI/article/view/6399.

Noam M. Shazeer. Glu variants improve transformer. ArXiv, abs/2002.05202, 2020. URL
https://api.semanticscholar.org/CorpusID:211096588.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1):1929–1958, 2014.

12

https://api.semanticscholar.org/CorpusID:6826032
https://api.semanticscholar.org/CorpusID:6826032
https://openreview.net/forum?id=1qvx610Cu7
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
https://aclanthology.org/D18-1260/
https://api.semanticscholar.org/CorpusID:10919244
https://api.semanticscholar.org/CorpusID:10919244
https://api.semanticscholar.org/CorpusID:206594738
https://api.semanticscholar.org/CorpusID:206594738
https://ojs.aaai.org/index.php/AAAI/article/view/6399
https://api.semanticscholar.org/CorpusID:211096588

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. ArXiv, abs/2104.09864, 2021. URL
https://api.semanticscholar.org/CorpusID:233307138.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aur’elien
Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and
efficient foundation language models. ArXiv, abs/2302.13971, 2023. URL https://api.
semanticscholar.org/CorpusID:257219404.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Infor-
mation Processing Systems, 2017. URL https://api.semanticscholar.org/CorpusID:
13756489.

Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao
Zhang, Xiaoyu Zhang, Liang Zeng, Xiaokun Wang, Yutuan Ma, Rui Hu, Shuicheng Yan,
Han Fang, and Yahui Zhou. Skywork-moe: A deep dive into training techniques for
mixture-of-experts language models, 2024. URL https://arxiv.org/abs/2406.06563.

Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang
Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue,
Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao Zhang, Yunyang Wan, Yuqi Liu, Zeyu
Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and Zekun Wang. Qwen2.5 tech-
nical report. ArXiv, abs/2412.15115, 2024. URL https://api.semanticscholar.org/
CorpusID:274859421.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag:
Can a machine really finish your sentence? In Annual Meeting of the Association for
Computational Linguistics, 2019. URL https://api.semanticscholar.org/CorpusID:
159041722.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. ArXiv,
abs/1910.07467, 2019. URL https://api.semanticscholar.org/CorpusID:113405151.

13

https://api.semanticscholar.org/CorpusID:233307138
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://arxiv.org/abs/2406.06563
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:159041722
https://api.semanticscholar.org/CorpusID:159041722
https://api.semanticscholar.org/CorpusID:113405151

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Appendix

A Architecture detail

Parameter LM1.5B LM3B

Number of parameters 1.5B 3B
Layers 28 36
Hidden dimension 1536 2048
Intermediate dimension 8960 11008
Number of attention heads 12 16
Number of key-value heads 2 2

Table 4: LM1.5B and LM3B model parameters

B Sparsity Analysis

In Table 5, we report the sparsity rates resulting from the gating in the FFN layer, when
using the following activations: RELU, SILU, Swi+FT fine-tuning, and when using StochA
with Swi+FT for varying values p. In all cases except for the SILU baseline, we use RELU at
test time.

train inference Swi+FT StochA: p Swi+FT: α sparsity (%)

baselines SILU SILU 0.0002
RELU RELU 94.8

Swi+FT SILU RELU ✓ 0.05 79.9

StochA [S|R]-S+ RELU ✓ 0.3 0.05 88.5
+Swi+FT [S|R]-S+ RELU ✓ 0.5 0.05 86.5

[S|R]-S+ RELU ✓ 0.7 0.05 84.6

Table 5: Sparsity analysis: We plot the rate of the 0-valued activation after the SILU (not sparse)
and RELU activation, when training with the LM1.5B model with standard SILU and RELU. The
Swi+FT fine-tuning with RELU brings back a lot of sparsity (80%), yet the model is not competitive.
The combination of StochA with Swi+FT leads to models offering a high sparsity degree by using
RELU at test time and at the same time with competitive performance, see Tables 1 and 2.

C Benchmarks

Code generation We use two benchmarks that evaluate the code generation capabilities
of AI models: HumanEval+ and MBPP.

• The HumanEval+ (Liu et al., 2023) benchmark is an extension of HumanEval (Chen
et al., 2021), which is designed to evaluate the functional correctness of code gen-
erated by AI models.

• MBPP (Austin et al., 2021) is designed to evaluate the code generation abilities of
AI models, particularly for Python programming tasks.

Common sense and general reasoning We use benchmarks consisting of question-
answer or multiple-choice questions designed to evaluate the commonsense reasoning abilities
of AI models, particularly in the context of natural language understanding: HellaSWAG,
ARC, PIQA, OBQA, Winogrande, NaturalQuestions, RACE, TQA and GSM8K.

• HellaSWAG (Zellers et al., 2019) consists of multiple-choice questions where each
question contains a short context (a sentence or paragraph) followed by four possible
continuations. Only one continuation is correct and makes sense given the context.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

• The AI Reasoning Challenge (ARC) (Clark et al., 2018) benchmark consists of
multiple-choice science questions typically found in elementary and middle school
exams. The ARC questions require a mix of factual knowledge, commonsense rea-
soning, and multi-step inference.

• The Physical Interaction Question-Answering (PIQA) (Bisk et al., 2020) benchmark
consists of multiple-choice questions about how to accomplish simple physical tasks.
Each question presents a short scenario and two possible solutions; only one is
physically plausible.

• The OpenBook QA (OBQA) (Mihaylov et al., 2018) benchmark consists of 6,000
multiple-choice questions based on elementary science facts. Each question is de-
signed to require combining a provided “open book” science fact with additional
commonsense or general knowledge.

• WinoGrande (Sakaguchi et al., 2020) benchmark consists of multiple-choice ques-
tions. Each question presents a sentence with a pronoun and two possible an-
tecedents; the task is to choose the correct referent for the pronoun.

• Natural Questions (NQ) (Kwiatkowski et al., 2019) benchmark is designed to evalu-
ate the ability of an AI model to answer real user questions using information from
Wikipedia.

• The Reading Comprehension from Examinations (RACE) (Lai et al., 2017) bench-
mark consists of passages and multiple-choice questions to assess how well AI models
can comprehend and reason about written passages.

• The Trivia QA benchmark (TQA) (Joshi et al., 2017) is a reading comprehension
dataset that pairs trivia questions with evidence documents from which answers
can be derived.

• The Grade School Math 8k (GSM8k) (Cobbe et al., 2021) benchmark is a dataset
of 8,500 high-quality, linguistically diverse grade school math word problems. The
benchmark is designed to test multi-step mathematical reasoning capabilities in
language models.

Benchmark Metric Few Shot Type
hellaswag acc char 0 choice
winogrande acc char 0 choice
arc easy acc char 0 choice
arc challenge acc char 0 choice
piqa acc char 0 choice
obqa acc char 0 choice
race.middle acc char 0 choice
race.high acc char 0 choice
human eval plus pass@1 0 generation
mbpp compiles@1 3 generation
tqa f1 5 generation
nq f1 5 generation

Table 6: We few-shot prompt the LM1.5B and LM3B models and the given metric per benchmark as
well as the average performance.

D Examples of various sequences generated with StochA

Using a pre-trained LM3B model with StochA, we can use the StochA activation at test
time to generate multiple predictions by leveraging the randomness from the activation
function. We provide two examples of the generations obtained using questions from the
TQA benchmark (Joshi et al., 2017):

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

question and generated number of NLL F1
accepted answers answers times score score

When did ibuprofen become
available over the counter?
A: 1983
A: 1984

1988 4 1.002 0
1982 11 1.004 0
1980 1 1.030 0
1995 2 1.019 0
2001 1 1.017 0
1983 1 1.024 1

Who played michael jackson
in jackson 5 movie?
A:alex burrall
A:abolade david olatunde
A:wylie draper
A:jason weaver

Michael Jackson 19 0.948 0
Michael jackson 1 0.792 0

Where is the meridian that
is opposite the prime
meridian located?
A:180th meridian
A:antimeridian

Greenwich 9 0.896 0
Greenwich, England 11 0.551 0

The cold dry winds that
blow over northern india in
winter are called?
A:northeast monsoon
A:retreating monsoon
A:northeast monsoon or
retreating monsoon

Siberian 7 1.099 0
Siberian winds 6 0.970 0

Ganges 1 1.617 0
monsoon 2 1.051 2/3

katabatic winds 3 0.738 0
Ganga 1 1.643 0

Where can you find dna in
the body?
A:chromosomes in cell
A:inside cell nucleus

Blood 6 1.262 0
Hair 12 1.393 0

Mitochondria 1 0.700 0
In the nucleus 1 1.437 2/5

Who is often associated
with printing the first book
using moveable type in
germany?
A:johannes gutenberg

Johannes Gutenberg 20 0.205 1

Who won the womens 2017
ncaa basketball
tournament?
A:south carolina

Kentucky 15 1.852 0
Kentucky Wildcats 1 1.304 0

North Carolina 4 1.342 1/2

Country with most olympic
gold medals all time?
A:united states

USA 14 0.818 0
United States 6 0.614 1

The atomic number of
indium which belongs to
5th period is?
A:49

5 14 0.579 0
49 5 0.650 1
84 1 0.695 0

Who appoints the members
of the board of governors of
the federal reserve?
A:president

The president 16 0.602 1
The president of the United States 4 0.431 2/5

What age do you need to be
to buy a bb gun?
A:18

14 17 0.660 0
10 2 0.680 0
18 1 0.728 1

What genre is the magic
tree house books?
A:childrens historical fantasy

Fantasy 14 1.038 1/2
Children’s fiction 1 1.051 2/5

Children’s 3 1.245 1/2
Children’s books 2 1.067 2/5

What is the name of the
skin between your nostrils?
A:nasal septum
A:septum

Nasal septum 17 0.707 1
Nasion 3 1.224 0

Table 7: Example generations. For each question, we indicate the ground-truth answers (from the
dataset). We generate 20 answers per question with [S|R]-S+, p=0.7. We list the de-duplicated
answers, with the NLL score (used to sort the results) and the F1 score (used to evaluate the result,
it is computed as the intersection of bags-of-words).

16

	Introduction
	related work
	Using different activations at train and test time
	Fine-tuning with RELU: Swi+FT
	Stochastic activation: StochA
	Inference-time strategies and evaluation

	Experiments with large language models
	Experimental setting
	Performance analysis of Swi+FT and StochA with RELU at inference time
	Performance on downstream tasks
	Exploiting StochA at test time

	Conclusion
	Architecture detail
	Sparsity Analysis
	Benchmarks
	Examples of various sequences generated with StochA

