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Abstract

We introduce stochastic activations. This novel strategy randomly selects
between several non-linear functions in the feed-forward layer of a large
language model. In particular, we choose between SILU or RELU depending
on a Bernoulli draw. This strategy circumvents the optimization problem
associated with RELU, namely, the constant shape for negative inputs that
prevents the gradient flow. We leverage this strategy in two ways:

(1) We use stochastic activations during pre-training and fine-tune the
model with RELU, which is used at inference time to provide sparse latent
vectors. This reduces the inference FLOPs and translates into a significant
speedup in the CPU. Interestingly, this leads to much better results than
training from scratch with the RELU activation function.

(2) We evaluate stochastic activations for generation. This strategy per-
forms reasonably well: it is only slightly inferior to the best deterministic
non-linearity, namely SILU combined with temperature scaling. This of-
fers an alternative to existing strategies by providing a controlled way to
increase the diversity of the generated text.
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Figure 1: Stochastic activation randomly selects one of two activations when x < 0:
(1) RELU selected with probability 1− p; otherwise (2) another activation, in particular SILU.

1 Introduction

Large language models (LLMs) (Devlin et al., 2019; Chowdhery et al., 2022; Brown et al.,
2020; Vaswani et al., 2017) have revolutionized natural language processing, enabling un-
precedented capabilities in text generation, comprehension, and reasoning. Their success
stems from scaling model parameters and leveraging vast amounts of data, but this comes
with a significant computational complexity. As the demand for more efficient and powerful
models grows, researchers are increasingly focused on optimizing their training processes to
balance performance with resource constraints.

The majority of the LLM parameters are in the Feed-Forward Network (FFN) layers, where
they memorize the training data. FFNs are two linear layers separated by an activation
function, and sometimes an additional linear layer that serves as a gating operation. The
activation is a R → R non-linear function. In this context, the choice of activation function
plays a crucial role for both the model’s expressivity and efficiency. The simplest activation
is RELU (Rectified Linear Unit), that allows positive values to pass through and forces
negative inputs to zero. RELU is sparsity-inducing, since, on average, half of its outputs
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are zero (in practice significantly more). Within a two-layer Multilayer Perceptron, this
means that inference on the second layer is a matrix-sparse vector multiplication, so it can
be implemented with fewer FLOPs than a matrix-dense vector multiplication. Note that
effectively improving the runtime with this sparsity pattern remains challenging.

In practice, the Sigmoid Linear Unit (SILU) activation, combined with a gated design, has
consistently outperformed RELU in terms of model accuracy (Shazeer, 2020). Unfortunately,
SILU does not induce sparsity. One plausible explanation for RELU’s underperformance is
that its gradient for negative input values is zero, which hinders optimization by preventing
weight updates in a significant portion of the network. Solutions like Leaky RELU (Maas
et al., 2013) circumvent this problem by ensuring non-zero gradient almost everywhere, but
they are inferior to SILU and involve abandoning sparsity. In contrast, if the so-called “dying
RELU problem” optimization challenge could be effectively addressed, RELU’s theoretical
advantages – such as sparsity and computational efficiency – may translate into performance
comparable to SILU for a lower number of FLOPs. This disparity presents a challenge: how
to harness the efficiency benefits of sparse activations, such as RELU, without sacrificing
the empirical advantages of SILU. This motivates our exploration of alternative training
strategies that mitigate RELU’s limitations while preserving its benefits.

In this work, we consider two ways to approach this problem. The first approach is activation
fine-tuning, denoted Swi+FT: we pre-train the model with an activation that facilitates
efficient large language model optimization, then we change the activation to RELU and adapt
the model by fine-tuning it further. Our second approach, referred to as StochA (stochastic
activations), is a novel technique that randomly selects between multiple activations, either
at train or test time. Both approaches allow models to benefit from the superior optimization
properties of SILU. These hybrid strategies combine the best of both worlds – maintaining
high model performance while unlocking the computational efficiency of sparse activations.

In summary, this paper makes the following contributions:

• We introduce and analyze two strategies that employ different activation functions
at training and inference time, namely Swi+FT and StochA. Both are complementary
and make it possible to use activations at inference time that differ from those
employed during pre-training.

• We produce RELU-based models that are much better than those obtained with
regular training, i.e., our methods significantly outperform training with RELU only.

• We show that stochastic activations, when used at inference time, provides an al-
ternative way to generate diverse sequences compared to traditional temperature
sampling or other variants.

2 related work

Standard activation functions Activations are at the core of deep learning, in that
they are needed to depart from defining a linear function with limited expressivity. While
early neural network architectures were inspired by logistic regression, such as sigmoidal and
tanh activations, many activation functions have been evaluated for the Feed Forward layers
(FFNs) of transformers. Vaswani et al. (2017) used RELU (Glorot et al., 2011). However,
using the RELU activation function leads to some neurons getting stuck in the negative
region. As a consequence, they stop learning entirely, since the gradient is zero for negative
inputs, and their weights do not get updated. In contrast, Touvron et al. (2023) used
SILU as the activation function for the FFN layers of the transformer for the first Llama
models. Shazeer (2020) discusses the benefits of SWIGLU, which consists of SILU with
gating. There exist many other activation functions such as the Gaussian Error Linear Unit
(GELU) (Hendrycks & Gimpel, 2016), Scaled Exponential Linear Unit (SELU) (Klambauer
et al., 2017), Swish (Ramachandran et al., 2018) and gated SILU, among others.

In particular, the Leaky RELU (Maas et al., 2013; Redmon et al., 2015; Ridnik et al., 2021;
Guo et al., 2024) tried tackling the dying RELU problem by allowing a small, non-zero
gradient when the input is negative in order to keep the neurons active and the gradients
flowing, reducing the risk of dead neurons.
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Adaptive activation functions Lee et al. (2022) propose an activation, called Adaptive
Swish (ASH), that uses stochastic sampling of the top-k percentile elements. It is a gener-
alization of the Swish (Ramachandran et al., 2018) activation function, that uses adaptive
thresholding and selects only the values in the top percentiles and sets these to zero other-
wise. The threshold is not fixed but depends on the distribution of the input making it an
example of a stochastic activation.

Dropout and structured Dropout variants In the original dropout paper (Srivastava
et al., 2014), the authors propose a regularization technique to reduce overfitting and improve
generalization of a neural network. It consists of setting to zero a subset of neurons at each
training step. Consequently, the dropped neurons do not contribute to the forward pass or
receive weight updates during back-propagation. At inference time, all neurons are used
and their outputs are scaled by the dropout probability.

LayerDrop (Fan et al., 2019) randomly drops entire layers during training, hence, it en-
courages the model to be robust to missing layers. At inference time, some layers can be
pruned, trading off between speed and accuracy as needed. While the method does not
make the model sparse in the usual sense, it induces structured sparsity in the computa-
tion graph during training. Other works also introduce structured dropout variants such as
DropBlock (Ghiasi et al., 2018), Bayesian dropout (Gal & Ghahramani, 2016), or Beit (Bao
et al., 2021) and masked-autoencoder (He et al., 2022) in computer vision, among others.

Quantization approaches Fan et al. (2020) propose Quant-noise, that mimicks quanti-
zation during training by introducing noise to a random subset of weights for each forward
pass enabling high compression ratios while maintaining the original model performance.
It uses the Straight-Through estimator (STE) (Bengio et al., 2013; Hinton, 2012) to com-
pute the gradients. This training technique ensures that the model is pretrained to observe
both the train-time (unquantized) and the inference-time (quantized) models. This ensures
proper optimization, bypassing the flat gradient caused by quantization and reducing the
discrepancy that results from the late quantization of the model weights.

Sparsity by design Some works propose to enable sparsity directly in the architecture,
for instance, the Mixture of Experts (MoE) or the Product-Key Memory (PKM). The PKM
architecture (Lample et al., 2019) uses a memory layer for neural networks which enables the
model to access a large learnable memory and thus, it enables long term memory capabilities.
It leverages product quantization (PQ) (Jégou et al., 2011) by splitting the key in two parts
and using each part in separate codebooks. The combination of each PQ index enables the
model to access a larger memory space efficiently. At each forward pass, only a small subset
of the memory is accessed, making it computationally efficient. [H: Cite recent works built
upon this: bytedance, Google and Meta/MCU]

Mixture of Expert (MoE) models (Yang et al., 2024; Wei et al., 2024; DeepSeek-AI et al.,
2024; Jiang et al., 2024) dynamically select and activate the relevant subset of parameters
based on the characteristics of the input data. The MoE approach allows MoE models to
expand their capacity without proportionally increasing computational complexity. See Mu
& Lin (2025) for an overview of the MoE and references therein.

3 Using different activations at train and test time

This section introduces two strategies for improving the optimization during pretraining
using an optimization-compliant activation, while preparing the model to a potentially dif-
ferent activation at test time. First we introduce the Swi+FT fine-tuning approach. Then
we introduce our Stochastic Activation StochA.

3.1 Fine-tuning with RELU: Swi+FT

In the following, we use SILU and RELU as our training and inference activations. For
reference, they are defined in R → R as:

RELU(x) = max(x, 0) SILU(x) = xσ(x), (1)
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Figure 2: Swi+FT: Training loss. Most of the training is carried out with SILU, with α=5%, 10% and
20% of the final steps using RELU. Note the loss spike when we switch the activation. The model
rapidly recovers and converges to a regime where RELU is performing well while providing sparsity.
This strategy needs to be combined with StochA to provide good models operating with RELU.

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function. We choose these two activations
because SILU is one of the best options in terms of accuracy, while RELU is simple and sparse.
The two activations are also similar: same asymptotes at −∞ and +∞, and the same value
at 0. SILU is differentiable twice (unlike RELU) and, interestingly, non-monotonous.

In our proposed approach, the training operates as follows:

• Most of the training steps (during a proportion 1− α of the total number of itera-
tions) are carried out with a first activation that is deemed preferable for training.
We typically employ SILU for this stage.

• We then switch the activation to that used for inference for the rest of the training.

We mostly set α = 0.05 or α = 0.1, which mean that only 5% or 10% of the training steps
are carried out using the inference-time activation. We do not re-initialize the parameters of
the optimizer when switching between activations, and similarly we do not use any warm-up.
This does not disrupt the optimization because the SILU and RELU activations are relatively
similar. We observe a spike in the loss at the time we change the activation, see Figure 2.
However, the optimization rapidly recovers. In practice, the fine-tuning replaces the last
iterations of the pretraining. The learning rate follows a cosine schedule which gradually
reduces it to 1/100th of its peak value. Therefore, at 5% or 10% of the end of the training,
the learning rate is already 60× or 29× lower than its peak, which is compatible with a
fine-tuning regime.

3.2 Stochastic activation: StochA

A stochastic function, parametrized by a random variable ω, is a function

y = Ψ(x, ω) (2)

that maps inputs x ∈ R to output y ∈ R with randomness involved. The dependence on
ω emphasizes that the outcome depends on an underlying probability space. In that sense,
the function Ψ(·, ω) is deterministic for each realization of ω, but is stochastic overall. In
particular, we consider the case depicted in Figure 1, where ω ∼ Bernoulli(p) is a binary
random variable parametrized by a parameter p: ω ∈ {0, 1} such that P(ω = 1) = p and
P(ω = 0) = 1− p. In that case, the stochastic function Ψp(·) is defined such that

if x < 0, Ψp(x) = (1− ω)× RELU(x) + ω × SILU(x), (3)

which amounts to randomly selecting between the RELU and SILU activations for x < 0. If
x ≥ 0 we choose either Ψp(x) = x or Ψp(x) = SILU(x), see the baseline paragraph below.
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This strategy ensures that the network is compatible with two regimes. The first one, drawn
with probability 1− p, is the inference-time mode, where we prepare the network to employ
RELU during generation, in order to exhibit sparsity. The second mode aims to facilitate
optimization during training. The choice of the SILU activation is motivated by the regular
deterministic gated design by (Shazeer, 2020) adopted by most state-of-the-art LLMs.

Notation To specify an activation, we separately define the function for the positive and
negative range of inputs. For example R-S+ means that RELU is used for the negative range
and SILU for the positive. When StochA is used, we indicate [S|R]-S+, which means that
for the negative range, we sample SILU with probability p and RELU with probability 1− p.

Baselines The two natural baselines are the determinis-
tic functions SILU and RELU. We also introduce two non-
stochastic baselines in order to disentangle the effect that
could come from combining SILU and RELU separately in the
positive and negative domain: these baselines are denoted
by S-R+ and S-R+.

x < 0 x ≥ 0

RELU 0 x
SILU x · σ(x) x · σ(x)
R-S+ 0 x · σ(x)
R+S- x · σ(x) x

Discussion The stochastic strategy resembles activation dropout (Srivastava et al., 2014),
which can be regarded as a particular case of our method where one of the activations is
the null function. However, the objective of dropout is to avoid overfitting. Our motiva-
tion is closer to Quantization-aware training (Jacob et al., 2017), more specifically, to the
QuantNoise strategy of Fan et al. (2020), where the model is pretrained to observe both the
train-time (unquantized) and the inference-time (quantized) models. In QuantNoise, using
these two modes during training time ensure both the proper optimization, without suffering
the flat gradient inherent to quantization, while reducing the discrepancy that results from
the late-quantization of the model weights.

Alternative construction of a stochastic activation. An alternative construction is
to randomly select between the identity function x 7→ x and the constant zero function
x 7→ 0 with a sigmoidal probability σ(x). As a result, in expectation this function is given
by

E[sa(x)] = (1− σ(x)) · 0 + σ(x) · x = σ(x) · x, (4)

where we recognize the SILU(x) function. While the simplicity of this construction is math-
ematically appealing, our preliminary experiments revealed that it does not work very well.

3.3 Inference-time strategies and evaluation

At test time, we evaluate and analyze models trained with Swi+FT and/or StochA as follows:

RELU at test time. This is how we can enable sparsity. The corresponding evaluations
therefore measure the performance on benchmarks when using this activation at test time.

Exploiting sparsity On an input x ∈ RD, the gated FFN computes:

y = W2 × (RELU(W1 × x)⊙ (W3 × x)) with W1,W3 ∈ RN×D and W2 ∈ RD×N , (5)

assuming column vectors and noting ⊙ the element-wise multiplication. When the activation
RELU(W1 × x) has a fraction s of zeros, the multiplications by W2 and W3 can exploit this
sparsity: the baseline of 3ND FLOPS reduces to (3− 2s)ND.

Note that exploiting the sparsity to increase the computational throughput is not straight-
forward. At training time, the runtime is dominated by matrix-matrix multiplications,
where even a 90% sparsity rate is not guaranteed to yield efficiency gains. At inference time
with one prompt at a time, the bottleneck is the memory access used during matrix-vector
multiplications. When W2 is stored by rows and W3 by columns, the sparsity can be ex-
ploited to avoid a fraction s of the memory reads, that are contiguous. This implementation
nearly yields the expected speedup (see experimental section).
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Stochastic activation at test time. The following only applies to the StochA strategy:
we evaluate the performance when if leverage the randomness at test time, i.e., in this case,
we do not use RELU. This choice has two interests:

1. To quantify the effect of the activation discrepancy between train and test.

2. To generate multiple outputs from the same prompt with the randomness of StochA.

For the second usage, the standard way to generate multiple outputs from the same prompt
is to replace the greedy decoding with a random sampling of the token from its probability
distribution. This sampling can be tuned by setting a softmax temperature T which adjusts
between completely uniform sampling (T → ∞) and strict maximum sampling (T → 0). In
both cases, we keep the one generated output with the highest normalized log likelihoods,
i.e., the per-token average log-likelihood, as predicted by the model.

4 Experiments with large language models

4.1 Experimental setting

Model architecture We train dense decoder-only models. The transformer blocks use
grouped-query attention (Ainslie et al., 2023). These models use RMSNorm (Zhang &
Sennrich, 2019) with prenormalization, rotary positional positional encoding (RoPE) (Su
et al., 2021) with θ = 500000 and train with document causal masking. We use the SILU
activation (Shazeer, 2020) for the SILU baseline. The structure of our LM1.5B and LM3B
models is detailed in Table 4 in Appendix A.

Training hyper-parameters We train the models with AdamW optimizer (Loshchilov
& Hutter, 2017) with β1 =0.9, β2 =0.95, learning rate of lr=3× 10−3, weight decay of 0.1,
and gradient clipping at norm 1.0. After 2000 steps of linear warm-up, we use a cosine decay
learning rate schedule with peak learning rate 8× 10−4 and decay by a factor of 1/100 over
the training horizon.

Tokenizer We use the Llama3 (Dubey et al., 2024) tokenizer, which is a fast Byte-Pair
Encoding tokenizer implemented with TikToken.2 The vocabulary contains 128 000 regular
tokens as well as 256 reserved tokens.

Pre-training We pre-train the LM1.5B and LM3B models with 47B and 80B tokens, re-
spectively, from a diverse collection of mostly English natural language and coding data.
We use a batch size of 1M tokens and a context length of 8192 tokens.

Evaluation Benchmarks We employ two types of benchmarks for zero or few-shot eval-
uation, which we describe in more detail in Appendix C and Table 6. The first type is
code generation tasks: HumanEval+ (Liu et al., 2023) and MBPP (Chen et al., 2021). The
second type consists of common sense and general reasoning: HellaSWAG(Zellers et al.,
2019), ARC(Clark et al., 2018), PIQA (Bisk et al., 2020), OBQA (Mihaylov et al., 2018),
WinoGrande (Sakaguchi et al., 2020), NQ (Kwiatkowski et al., 2019), RACE (Lai et al.,
2017), TQA (Joshi et al., 2017) and GSM8K (Cobbe et al., 2021).

4.2 Performance analysis of Swi+FT and StochA with RELU at inference time

In this section we analyze the effect of our proposal when using RELU at test time. In
Appendix B, we provide a complementary analysis of the sparsity. Depending on the setting,
the average rate of 0s can be higher than 90%, when using the RELU at test time.

Cross-entropy performance. Table 1 provides the impact on the training and val-
idation losses of multiple choices with the LM1.5B and LM3B models. We observe that
the training loss using stochastic activation at train time is lower than that obtained with
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Training activation LM1.5B LM3B
x < 0 x > 0 p train val val train val val

Activation p 1− p Swi+FT RELU StochA RELU StochA

SILU SILU SILU - ✗ 2.105 2.122⋆ 1.966 1.974⋆

RELU RELU RELU - ✗ 2.140 2.161 2.027 2.043
S-R+ SILU RELU - ✗ 2.101 2.124⋆ 1.970 1.980⋆

R-S+ RELU SILU - ✗ 2.123 2.151⋆ 2.016 2.033⋆

[S|R]-R+ SILU RELU RELU 0.3 ✗ 2.120 2.363 2.146 1.993 2.257 2.006
[S|R]-R+ SILU RELU RELU 0.5 ✗ 2.120 2.507 2.145 1.990 2.889 1.999
[S|R]-S+ SILU RELU SILU 0.3 ✗ 2.115 2.305 2.143 1.987 2.257 1.996
[S|R]-S+ SILU RELU SILU 0.5 ✗ 2.115 2.530 2.143 1.984 2.753 1.995
[S|R]-R+ SILU RELU RELU 0.3 ✓ 2.123 2.141 2.251 1.988 1.998 2.177
[S|R]-R+ SILU RELU RELU 0.5 ✓ 2.129 2.148 2.307 1.989 2.002 2.306
[S|R]-S+ SILU RELU SILU 0.3 ✓ 2.120 2.138 2.221 1.982 1.992 2.103
[S|R]-S+ SILU RELU SILU 0.5 ✓ 2.125 2.144 2.301 1.985 1.994 2.234

Table 1: Losses: train is computed over the last 500 steps of the training loss of LM1.5B, val is
measured after training on a different set set of text and code using the RELU activation⋆ or StochA,
i.e., the same activation used at train time (possibly deterministic). If Swi+FT is enabled, we switch
to RELU for the last 5% steps. ⋆: for the deterministic baselines SILU, S-R+ and S+R-, we do the
inference with the same activation used at train-time (not RELU).
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Figure 3: Total inference time for 1 token on
CPU, as a function of the activation spar-
sity, with a LM3B model trained with Swi+FT.
The “other operations” include the attention
layers (they are not dominant because the
generation is limited to 200 tokens), the nor-
malization and the execution overheads. At
90% sparsity the speedup is ×1.65. The tim-
ings are measured on a single core of a Xeon
8462Y+ machine.

RELU. However the validation entropy is not competitive per se, due to the remaining train-
inference discrepancy of activation. This is solved by Swi+FT: switching to the RELU activa-
tion function and fine-tuning for the last 5% or 10% steps percentage of the training steps
drastically boosts the test-time inference. These results outperform the results obtained
with regular RELU training, while using the same activation at test time.

Fast inference with RELU sparsity The activation sparsity can be exploited to avoid
fetching 90% of the matrices W1 and W3 of the FFN (see Eq. 5 ands detailled sparsity rate
in Appendix B). This has a direct benefit on CPU, see Figure 3: the 90% sparsity provides
a 65% speedup. On GPU the additional challenge is to make the computation sufficiently
predictable to balance the load between CUDA threads.

Complementary of StochA and Swi+FT with RELU finetuning Figure 4 shows the
training loss when using StochA and Swi+FT jointly. When switching the activation to RELU,
we observe a spike in the loss, but the optimization rapidly recovers, and then converges
to a model having a better performance than the one produced when training with RELU
from scratch. In contrast, in the case where we employ Swi+FT alone (Figure 2), fine-tuning
with RELU after pretraining with SILU is not enough to obtain performance improvements.
This shows that both approaches are complementary.

The impact of α can also be seen in Figure 4, where we compare the final loss reported
for different fine-tuning values. In that case, setting α = 0.1 is a good trade-off since the
corresponding loss is lower than the RELU loss.
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↓ Benchmark/metric LM1.5B LM3B

baselines (a) Swi+FT (b) StochA baselines (a) Swi+FT (b) StochA
train activation → SILU RELU [S|R]-S+ [S|R]-S+ SILU RELU [S|R]-S+ [S|R]-S+

inference activation → SILU RELU RELU [S|R]-S+ SILU RELU RELU [S|R]-S+

hellaswag/acc char 0.585 0.561 0.574 0.576 0.684 0.633 0.671 0.678
winogrande/acc char 0.593 0.571 0.568 0.568 0.657 0.615 0.630 0.620
arc easy/acc char 0.568 0.562 0.600 0.562 0.675 0.642 0.679 0.671
arc challenge/acc char 0.313 0.286 0.331 0.314 0.390 0.348 0.396 0.376
piqa/acc char 0.732 0.720 0.724 0.720 0.767 0.751 0.765 0.761
obqa/acc char 0.346 0.340 0.378 0.340 0.390 0.380 0.384 0.408
race.middle/acc char 0.518 0.516 0.509 0.498 0.565 0.538 0.559 0.549
race.high/acc char 0.382 0.379 0.372 0.375 0.414 0.402 0.407 0.416
human eval plus/pass@1 0.073 0.067 0.049 0.055 0.128 0.110 0.128 0.116
mbpp/compiles@1 0.978 0.970 0.960 0.980 0.992 0.980 0.990 0.982
tqa/f1 0.243 0.217 0.229 0.232 0.351 0.293 0.327 0.342
nq/f1 0.123 0.107 0.121 0.113 0.169 0.146 0.170 0.145

average performance 0.454 0.441 0.451 0.444 0.515 0.486 0.509 0.505

Table 2: Performance per benchmark of the RELU and SILU (a) baselines for LM1.5B and LM3B
compared to (b) models with StochA and Swi+FT at train time and RELU at test time, and (c)
models with StochA at train and test time. We use the model with the best perplexity on val
namely p = 0.3, α = 0.05 for Swi+FT and p = 0.5 for StochA.

4.3 Performance on downstream tasks

Detailed results per benchmark Table 2 reports the results for the standard code
generation, common sense and general reasoning benchmarks detailed in Appendix C. We
consider multiple StochA models using few-shot or zero shot prompting, see Table 6 in
the appendix for more details for each case. Observe first that the model with SILU is
significantly better that a regular model with RELU. However, our models trained with
StochA are slightly better or on par with SILU: either the model fine-tuned with Swi+FT
and using RELU at inference time, or even the model that uses StochA at test time.

Performance when varying α with Swi+FT. Figure 5 showcases that we can slightly
surpass the SILU baseline if we first use a stochastic activation function during the LM1.5B
model training and then switch to the RELU activation function for the last α% of the training
steps, for α ∈ {5%, 10%, 20%}. The best performance is typically obtained with α = 5% or
α = 10% for the LM1.5B model.

4.4 Exploiting StochA at test time

Effectiveness of StochA a test time. In Table 1, in addition to the results with
RELU at test time, we also report the train and validation losses obtained when employing
StochA at test time. We observe that (1) using stochastic activations for inference works
surprisingly well in spite of the randomness. The results are between RELU and SILU in most
configurations; (2) When using StochA at test time, there is no need to fine-tune the model

30000 32000 34000 36000 38000 40000 42000 44000
iteration

2.0

2.1

2.2

2.3

2.4

2.5

lo
ss

final loss
α train val (RELU)

0 2.115 2.530
0.05 2.125 2.144
0.10 2.119 2.145
0.20 2.126 2.155

Figure 4: Training loss with Swi+FT and StochA: [S|R]-S+ activation with p = 0.5 for α=5%, 10%
and 20%, relative to RELU and SILU. Note that this plot this is zoomed in relative to Figure 2.
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Figure 5: Swi+FT: analysis
of the fine-tuning rate α.
We plot the average perfor-
mance over the benchmarks
as we vary the percentage α
of steps for which we switch
to the RELU activation at the
end of training. We use RELU
at inference time.

p LM1.5B LM3B

0 (R-S+) 0.215 0.222
0.3 0.443 0.504
0.5 0.426 0.505
0.7 0.453 0.495
1.0 (SILU) 0.454 0.515

Table 3: StochA: Impact on benchmarks perfor-
mance (avg) as a function of the StochA p for
[S|R]-S+ used at test time. The case p = 0
corresponds to R-S+ while p = 1 corresponds to
the baseline SILU. The performance increases with
more SILU in the mix. However, the stochasticity
can be used to increase the generation diversity.

NQ TQA
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F1 SILU, temperature 0.1
SILU, temperature 0.2
SILU, temperature 0.5
[S|R]-S+ p=0.3
[S|R]-S+ p=0.5
[S|R]-S+ p=0.7
[S|R]-S+ p=0.85

Figure 6: Comparison of ways to generate diverse responses in Q&A benchmarks: by varying
the softmax temperature or by varying the [S|R]-S+ p. The multiple generations are scored by
normalized log likelihoods and the best generation is evaluated with an F1 score (y-axis).

with Swi+FT. This is expected since this strategy is intended to decrease the discrepancy
with the test-time activation choice. Table 3 shows that the average benchmark performance
generally increases when the stochastic mix approaches SILU. Therefore, StochA is primarily
useful as a way to generate multiple outputs for the same prompt.

Diversity of generations ablations. Figure 6 shows how stochastic generation compares
to temperature sampling to generate diverse outputs, see Section D for examples. We plot
these on TQA and NQ, whose results are least noisy. For the best settings, the curves
are increasing, which means that (1) the generations are indeed diverse and (2) that the
normalized log likelihoods are a suitable scoring function. The StochA activations yield a
higher performance than vanilla temperature sampling on NQ but are sub-par for TQA.

5 Conclusion

This paper has introduced a novel stochastic activation that preserves the performance of
a non-sparse activation, such as SILU, while better adjusting to the behavior of a sparse
one, such as RELU, at test time. This improves the inference times for the FFN layers of
a transformer, translating into a speedup of typically ×1.65 for the FFN processing on
CPUs while almost preserving the accuracy of the non-sparse SILU activation. Finally, we
explore how stochastic activations can be leveraged at test time to improve diversity in
model generations.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

References

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and
Sumit Sanghai. GQA: Training generalized multi-query transformer models from multi-
head checkpoints. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 4895–
4901, Singapore, December 2023. Association for Computational Linguistics. doi: 10.
18653/v1/2023.emnlp-main.298. URL https://aclanthology.org/2023.emnlp-main.
298/.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton.
Program synthesis with large language models. ArXiv, abs/2108.07732, 2021. URL https:
//api.semanticscholar.org/CorpusID:237142385.

Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers. ArXiv,
abs/2106.08254, 2021. URL https://api.semanticscholar.org/CorpusID:235436185.
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Appendix

A Architecture detail

Parameter LM1.5B LM3B

Number of parameters 1.5B 3B
Layers 28 36
Hidden dimension 1536 2048
Intermediate dimension 8960 11008
Number of attention heads 12 16
Number of key-value heads 2 2

Table 4: LM1.5B and LM3B model parameters

B Sparsity Analysis

In Table 5, we report the sparsity rates resulting from the gating in the FFN layer, when
using the following activations: RELU, SILU, Swi+FT fine-tuning, and when using StochA
with Swi+FT for varying values p. In all cases except for the SILU baseline, we use RELU at
test time.

train inference Swi+FT StochA: p Swi+FT: α sparsity (%)

baselines SILU SILU 0.0002
RELU RELU 94.8

Swi+FT SILU RELU ✓ 0.05 79.9

StochA [S|R]-S+ RELU ✓ 0.3 0.05 88.5
+Swi+FT [S|R]-S+ RELU ✓ 0.5 0.05 86.5

[S|R]-S+ RELU ✓ 0.7 0.05 84.6

Table 5: Sparsity analysis: We plot the rate of the 0-valued activation after the SILU (not sparse)
and RELU activation, when training with the LM1.5B model with standard SILU and RELU. The
Swi+FT fine-tuning with RELU brings back a lot of sparsity (80%), yet the model is not competitive.
The combination of StochA with Swi+FT leads to models offering a high sparsity degree by using
RELU at test time and at the same time with competitive performance, see Tables 1 and 2.

C Benchmarks

Code generation We use two benchmarks that evaluate the code generation capabilities
of AI models: HumanEval+ and MBPP.

• The HumanEval+ (Liu et al., 2023) benchmark is an extension of HumanEval (Chen
et al., 2021), which is designed to evaluate the functional correctness of code gen-
erated by AI models.

• MBPP (Austin et al., 2021) is designed to evaluate the code generation abilities of
AI models, particularly for Python programming tasks.

Common sense and general reasoning We use benchmarks consisting of question-
answer or multiple-choice questions designed to evaluate the commonsense reasoning abilities
of AI models, particularly in the context of natural language understanding: HellaSWAG,
ARC, PIQA, OBQA, Winogrande, NaturalQuestions, RACE, TQA and GSM8K.

• HellaSWAG (Zellers et al., 2019) consists of multiple-choice questions where each
question contains a short context (a sentence or paragraph) followed by four possible
continuations. Only one continuation is correct and makes sense given the context.
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• The AI Reasoning Challenge (ARC) (Clark et al., 2018) benchmark consists of
multiple-choice science questions typically found in elementary and middle school
exams. The ARC questions require a mix of factual knowledge, commonsense rea-
soning, and multi-step inference.

• The Physical Interaction Question-Answering (PIQA) (Bisk et al., 2020) benchmark
consists of multiple-choice questions about how to accomplish simple physical tasks.
Each question presents a short scenario and two possible solutions; only one is
physically plausible.

• The OpenBook QA (OBQA) (Mihaylov et al., 2018) benchmark consists of 6,000
multiple-choice questions based on elementary science facts. Each question is de-
signed to require combining a provided “open book” science fact with additional
commonsense or general knowledge.

• WinoGrande (Sakaguchi et al., 2020) benchmark consists of multiple-choice ques-
tions. Each question presents a sentence with a pronoun and two possible an-
tecedents; the task is to choose the correct referent for the pronoun.

• Natural Questions (NQ) (Kwiatkowski et al., 2019) benchmark is designed to evalu-
ate the ability of an AI model to answer real user questions using information from
Wikipedia.

• The Reading Comprehension from Examinations (RACE) (Lai et al., 2017) bench-
mark consists of passages and multiple-choice questions to assess how well AI models
can comprehend and reason about written passages.

• The Trivia QA benchmark (TQA) (Joshi et al., 2017) is a reading comprehension
dataset that pairs trivia questions with evidence documents from which answers
can be derived.

• The Grade School Math 8k (GSM8k) (Cobbe et al., 2021) benchmark is a dataset
of 8,500 high-quality, linguistically diverse grade school math word problems. The
benchmark is designed to test multi-step mathematical reasoning capabilities in
language models.

Benchmark Metric Few Shot Type
hellaswag acc char 0 choice
winogrande acc char 0 choice
arc easy acc char 0 choice
arc challenge acc char 0 choice
piqa acc char 0 choice
obqa acc char 0 choice
race.middle acc char 0 choice
race.high acc char 0 choice
human eval plus pass@1 0 generation
mbpp compiles@1 3 generation
tqa f1 5 generation
nq f1 5 generation

Table 6: We few-shot prompt the LM1.5B and LM3B models and the given metric per benchmark as
well as the average performance.

D Examples of various sequences generated with StochA

Using a pre-trained LM3B model with StochA, we can use the StochA activation at test
time to generate multiple predictions by leveraging the randomness from the activation
function. We provide two examples of the generations obtained using questions from the
TQA benchmark (Joshi et al., 2017):
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question and generated number of NLL F1
accepted answers answers times score score

When did ibuprofen become
available over the counter?
A: 1983
A: 1984

1988 4 1.002 0
1982 11 1.004 0
1980 1 1.030 0
1995 2 1.019 0
2001 1 1.017 0
1983 1 1.024 1

Who played michael jackson
in jackson 5 movie?
A:alex burrall
A:abolade david olatunde
A:wylie draper
A:jason weaver

Michael Jackson 19 0.948 0
Michael jackson 1 0.792 0

Where is the meridian that
is opposite the prime
meridian located?
A:180th meridian
A:antimeridian

Greenwich 9 0.896 0
Greenwich, England 11 0.551 0

The cold dry winds that
blow over northern india in
winter are called?
A:northeast monsoon
A:retreating monsoon
A:northeast monsoon or
retreating monsoon

Siberian 7 1.099 0
Siberian winds 6 0.970 0

Ganges 1 1.617 0
monsoon 2 1.051 2/3

katabatic winds 3 0.738 0
Ganga 1 1.643 0

Where can you find dna in
the body?
A:chromosomes in cell
A:inside cell nucleus

Blood 6 1.262 0
Hair 12 1.393 0

Mitochondria 1 0.700 0
In the nucleus 1 1.437 2/5

Who is often associated
with printing the first book
using moveable type in
germany?
A:johannes gutenberg

Johannes Gutenberg 20 0.205 1

Who won the womens 2017
ncaa basketball
tournament?
A:south carolina

Kentucky 15 1.852 0
Kentucky Wildcats 1 1.304 0

North Carolina 4 1.342 1/2

Country with most olympic
gold medals all time?
A:united states

USA 14 0.818 0
United States 6 0.614 1

The atomic number of
indium which belongs to
5th period is?
A:49

5 14 0.579 0
49 5 0.650 1
84 1 0.695 0

Who appoints the members
of the board of governors of
the federal reserve?
A:president

The president 16 0.602 1
The president of the United States 4 0.431 2/5

What age do you need to be
to buy a bb gun?
A:18

14 17 0.660 0
10 2 0.680 0
18 1 0.728 1

What genre is the magic
tree house books?
A:childrens historical fantasy

Fantasy 14 1.038 1/2
Children’s fiction 1 1.051 2/5

Children’s 3 1.245 1/2
Children’s books 2 1.067 2/5

What is the name of the
skin between your nostrils?
A:nasal septum
A:septum

Nasal septum 17 0.707 1
Nasion 3 1.224 0

Table 7: Example generations. For each question, we indicate the ground-truth answers (from the
dataset). We generate 20 answers per question with [S|R]-S+, p=0.7. We list the de-duplicated
answers, with the NLL score (used to sort the results) and the F1 score (used to evaluate the result,
it is computed as the intersection of bags-of-words).
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