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Abstract— Multimodule and multisensor data with different
characteristics can reflect the overall operating status of the
equipment from different angles. It is far from enough to monitor
the operating status of equipment from a single perspective for
this fails to take all valid information into account. However,
data integration may face problems such as the curse of
dimensionality and scale mismatches. Therefore, decision fusion,
which needs to measure and manage evidence conflicts, has
attracted extensive attention from scholars. However, most of
the state-of-art methods focus on conflict management based
on evidence itself and ignore the irrationality of conflict factor
K in measuring conflicts and the reliability of evidence sources
in conflict management. In order to solve the above problems,
a novel hybrid decision fusion approach is proposed in this
article. First, divide data into modules and use the models in
the model library to conduct cross-validation, thus obtaining
the performance ranking. Then, select the optimal classifier of
each module to obtain the evidence for decision fusion. Given
the conflict of evidences, the Jensen–Shannon (JS) divergence is
used to measure the conflict, and those high-conflict evidences
will be revised through sensitivity and support analyses. Finally,
the Dempster–Shafer (DS) evidence theory is used to integrate
multimodule evidences to assess the status. To prove the feasibility
and effectiveness of this approach, a realistic operational shield
case in China is used.

Index Terms— Conflict management, conflict measurement,
decision fusion, Dempster–Shafer (DS) evidence theory, multi-
module, operational status monitoring, sensitivity, support.

I. INTRODUCTION

FROM the perspective of safety, schedule, and economy,
it is critical to monitor the operating status of equip-

ment during construction or production [1], [2]. In recent
years, developments in sensor and data analysis technology
have made operational status monitoring possible, which has
attracted widespread attention from scholars [3], [4]. The
articles dedicated to review and analyze the state-of-the-art
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data-based status monitoring techniques can be found in [5]
and [6]. However, due to the proliferation of sensor types and
data volumes, it is still extremely necessary and challenging
to conduct timely and accurate operational status monitoring
with data-driven methods [7], [8].

There are numerous modules inside large-scale equipment,
plant-wide processes, and so on, while the distribution and
characteristics of sensors in each module are different. More-
over, some heterogeneous data from different sources are
presented in multimodality [9]–[11]. There are two common
ways to deal with these issues: feature fusion and decision
fusion [12]. Poria et al. [13] used feature- and decision-level
fusions to conduct sentiment analysis on audio, video, and
text. Their study proved that decision fusion is superior to
feature fusion in dealing with this issue. Liu et al. [14] used
the Bayesian fusion and the Dempster–Shafer (DS) evidence
theory to make local and global decisions, respectively. In an
attempt to achieve a more accurate spectrum sensing, they
integrated the information of energy, power spectrum, and
signal wave. Zhong et al. [15] used minimum redundancy and
maximum relevance (mRMR) to establish variable subblocks
and then fused distributed monitoring results by the Bayesian
inference. As the volume of operational data collected is
huge, dimensionality reduction or feature selection is often
required when using a single model for status monitoring
[16], [17]. During this process, some details will inevitably be
ignored. Therefore, it is necessary to prevent the omission of
local information through module partitioning and decision-
level fusion, thus improving computational efficiency and
circumventing laborious feature fusion.

For multimodule, the best classifiers that can capture the
module information may be inconsistent due to different char-
acteristics [18]–[20]. Calikus et al. [21] point out that there
is no single superior model which works perfectly for every
case. Yu and Zhao [22] proposed a multimodel exponential
discriminant analysis (MEDA) algorithm to deal with the
problem that a single model cannot accurately describe the
fault information. He et al. [23] proposed a fusion strategy
based on multicriteria decision-making (MCDM) to integrate
different classifiers. Zhou et al. [24] compared and verified
different classification methods and, finally, found the optimal
classifier for rockburst prediction. Therefore, it is necessary
to select the optimal classifier for each module to improve
the credibility of the evidence used for subsequent decision
fusion.

For decision fusion, the DS evidence theory has been widely
applied in this field, in which prior knowledge is not strictly
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required [25], [26]. However, Wu and Jahanshahi [27] and
Liu [28] pointed out two of the outstanding issues: 1) conflict
factor K is not competent to measure conflict and 2) it is
prone to counterintuitive results when dealing with conflicting
evidence. Many scholars have conducted research on the above
issues [7], [29]. For the former, Deng and Wang [30] designed
a Tanimoto-based evidence consistency description method.
Xiao et al. [26] measured conflict by evidence correlation
coefficient (ECC). For the latter, Li et al. [31] took the
consistency of evidence as the weighting index and modified
the rules of fusion. Both Xiao [25] and Song and Deng [32]
considered the divergence between evidences and informa-
tion volume to weigh the evidence. Khan and Anwar [33]
used entropy-based reward and penalty factors to revise the
evidence. Ma and An [34] used fuzzy proximity and cor-
relation coefficient to discount the evidence and discussed
the irrationality of the conflict factor K to measure conflict.
However, most state-of-the-art methods consider only part of
the above issues, in which case no amount of revision is
worthwhile if the evidence is not contradictory or its source is
unreliable [35]. Therefore, a complete conflict measurement
and management scheme should be developed. Based on
achieving accurate identification of conflicting evidence, the
reliability of the evidence producer and the relevance between
the evidence should be comprehensively considered to manage
the high-conflict evidence, thus eliminating the concerns of DS
evidence theory.

Overall, the main purpose of this study is to develop a
generic multimodule decision fusion framework for solving
the problem of operational status monitoring of large-scale
equipment, plant-wide processes, and so on. The main contri-
butions of the research are: 1) a module division and model
selection strategy is proposed to reduce the complexity of
the data during processing, thus ensuring the accuracy and
reliability of the primary conclusions from each module and
2) an evidence conflict measurement and management strategy
is proposed, which takes the Jensen–Shannon (JS) divergence
as the conflict metric and takes evidence support and model
sensitivity into consideration to eliminate the inevitable con-
flict between evidences.

The remainder of this article is structured as follows.
Section II provides an introduction to the issues and novel
solutions in the acquisition and utilization of evidence.
Section III gives a detailed description of the overall frame-
work of the solution. Section IV applies the proposed method
to a real shield case in China and produces the experimental
results. Section V is the conclusion and research prospect.

II. EVIDENCE ACQUISITION AND UTILIZATION

A. Obtaining Evidence

In decision fusion, the decision can be taken as the ultimate
decision or the evidence of the next level decision [36]. The
acquisition of primary decisions, e.g., evidence, is always the
basis of fusion. The evidence in this article exists in the form
of the probability distribution, and the classification decision
is made according to the maximum probability. The diversified
data collected from different modules and perspectives make

the evidence complementary to each other. The integration of
diversified evidence through decision fusion helps to accu-
rately access the overall operating state of the equipment.
Due to the complexity and diversity of the underground
environment, as well as the wear and tear of equipment,
the operating state of equipment changes dynamically. Based
on expert knowledge, the operating status is divided into
normal, medium, and poor (I, II, and III), and thus, the
evaluation of the equipment operating status can be regarded
as a multiclassification task.

Numerous classification algorithms have their own charac-
teristics, and algorithms that can obtain classification results in
the form of probability distributions are also emerging [37].
The common ways to obtain probability distribution are as
follows: 1) establish a model for each category and then
use the matching degree between the test sample and the
model as the classification probability, such as the hidden
Markov model (HMM) [38]; 2) use the obtained posterior
probabilities as category distributions, such as the quadratic
discriminant analysis (QDA) and the probability support vector
machine (PSVM) [39]; 3) map categories into one-hot codes
and take them as classification probabilities, such as XGBoost
and multilayer perceptrons (MLPs) [40], [41]; and 4) obtain
probability distribution through soft voting, such as decision
tree (DT) and random forest (RF) [42].

The conclusions of these probability distributions can be
used as evidence for decision fusion. However, there are
multiple segments or modules in complex process or large-
scale equipment, which together affects the operating status
of the entire system. Due to the proliferation of sensors and
differences in location or function, the collected data are
often characterized by large volumes and diverse features.
In response to the above issues, a module division and model
selection strategy is proposed, which partitions the data by
mechanism and automatically adapts the optimal classifiers for
each module through cross-validation. Then, each module can
capture its own unique information through its own optimal
classifier and obtain the primary conclusion, i.e., evidence.

Given the input data normalized by Z -score, it is tabulated
to n samples and m variables X = {x j , j = 1, 2, . . . , m}
and output data y = {yi , i = 1, 2, . . . , n}. Assume that
the multisensor input data are divided into N modules from
variable dimensions according to the type, function, and
distribution of sensors: Module1, Module2, . . . , ModuleN , and
then, the data of each module are split into training set and
test set by 8:2.

By cross-validating the models in the model library (models
included in the Library: HMM, QDA, PSVM, XGBoost,
MLP, DT, and RF) on the training set of each module, the
performance ranking matrices can be obtained

Ranki =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ri
11 · · · Ri

1 j · · · Ri
1J

...
...

...
...

...
Ri

g1 · · · Ri
g j · · · Ri

gJ
...

...
...

...
...

Ri
G1 · · · Ri

G j · · · Ri
G J

⎤
⎥⎥⎥⎥⎥⎥⎦ (1)
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where i = 1, 2, . . . , N , Ri
g j represents the performance

ranking of the j th algorithm in the i th module during the gth
cross-validation, G represents the number of cross-validation,
i.e., the number of groups into which the training data is
divided, and J represents the number of models in the model
library.

The ranking is based on the average of the G-fold cross-
validated performance metrics for each model. The higher
the average score, the higher the ranking. The multicategory
metrics used in this study include accuracy, Jaccard similarity
coefficient, and area under the curve (AUC), which are
common. The accuracy is the percentage of correct predictions
in total predictions. The AUC is often used to evaluate the
generalization ability of a model. It indicates the probability
that the positive case score is higher than the negative case
score for two randomly selected heterogeneous samples in the
current model. The Jaccard correlation coefficient performs
well as a weighted measure of model performance under the
class-imbalance problem. The range of AUC, accuracy, and
Jaccard correlation coefficient is [0, 1]. The closer to 1, the
better the model performance. For details, please refer to [43]
and [44].

According to the performance ranking, the optimal model
of each module can be selected

Classifieri = arg min
j

⎛
⎝ 1

J

G∑
g=1

Ri
g j

⎞
⎠, i = 1, 2, . . . , N (2)

where Classifieri represents the classifier with the highest
performance ranking in the i th module. When a new test
sample arrives, the best classifier selected by each module can
obtain its own evidence: M1, M2, . . . , MN .

B. DS Evidence Theory

The application of the DS evidence theory in decision fusion
has become more widespread. It combines multiple specific
evidences to derive abstract fusion conclusions within the
framework of discernment [34]. Let D be the sample space,
also known as the recognition frame. There are m elements E
in D, and these elements are mutually exclusive, expressed as
follows:

D = {E1, E2, . . . , Em}. (3)

The number of subsets of D is 2m , � is the empty set, and
2D represents the set of all subsets, as follows:
2D = {�, {E1}, {E2}, . . . , {Em}, {E1, E2},

. . . , {E1, Em}, . . . , {D}}. (4)

A basic belief assignment (BBA) is a mapping
M: 2D → [0, 1], which satisfies⎧⎪⎨

⎪⎩
M(�) = 0∑
Ai ∈2D

M(Ai) = 1 (5)

where M(Ai ) represents the degree of trust in proposition Ai .
M is also called as the mass function.

Fig. 1. Conflict measurement curve for BBAs M1 and M2.

Dempster’s combination rule is defined as follows:

M(A)= M1 ⊕ M2 =

⎧⎪⎨
⎪⎩

1

1 − K

∑
B∩C=A

M1(B)M2(C), A �= �

0, A = �

(6)

where ⊕ represents the operator of combination, B and C are
subsets of 2D , and K is conflict factor in the range of [0, 1],
denoted as follows:

K =
∑

B∩C=�

M1(B)M2(C). (7)

C. Issue Analysis and Novel Solution of Conflict Metric

The conflict factor K in (7) defined by DS evidence theory
cannot well describe the degree of conflict between evi-
dences [45]. Assume that the following two status assessment
evidences have been obtained:

{M1(I), M1(II), M1(III)} = {0.97, 0.01, 0.02}
{M2(I), M2(II), M2(III)} = {0.01, 0.01, 0.98}

where I, II, and III represent three different states. The
conflict factor K of the above evidences is 0.9706, indicating
high conflict. Also, this result is consistent with the facts.
However, when the conflict of evidence is not so significant,
the conflict factor K may fail to measure the conflict. For
simplicity, take two identical evidences, i.e., M1 = M2, and
let their probability in state I increase from 0 to 1 at an
interval of 0.1. At the same time, take half of the remaining
probability in the other two states (the sum of probabilities is
1). The blue markers in Fig. 1 show the degree of conflict
measured by K . It can be seen that, when K is used to
measure conflict, the conflict measurement is related not only
to similarity but also to the trust degree of the proposition
for two identical evidences. These inconclusive results are
obviously unsatisfactory.

JS divergence is widely used to measure the similarity
between two probability distributions due to its excellent
properties, such as symmetry, boundedness, and satisfying
triangular inequalities [25]. The larger the divergence, the
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lower the similarity. In view of the above issues, this article
takes JS divergence as a new conflict metric. The JS divergence
between M1 and M2 is formulated as follows:
J S(M1, M2) = 1

2

[
S

(
M1,

M1 + M2

2

)
+ S

(
M2,

M1 + M2

2

)]
(8)

S(M1, M2) =
L∑

l=1

M1l log2(M1l/M2l ) (9)

L∑
l=1

Mil = 1, i = 1, 2 (10)

where L is the length of evidence, which is the total number
of categories, replacing with 10−12 when ∗ is 0 in log2(∗), and
S(M1, M2) is the Kullback–Leibler (KL) divergence. Since
KL divergence has no symmetry, JS divergence is selected
as the metric. The orange markers in Fig. 1 show the results
of conflict measurement using JS divergence, which are more
reasonable than those measured by the conflict factor K .

D. Issue Analysis and Novel Solution of Conflict
Management

The DS evidence theory will produce counterintuitive
results when dealing with high-conflict evidence [7], [29].
There are two views on the above issue. One is that the DS
fusion rules should be modified because the discarding method
used in handling conflicts is the culprit for unreasonable
results. The other is that evidence conflict should be eliminated
before fusion, i.e., conflict management. It is obvious that the
latter is more reasonable because the modification of rules
usually breaks both commutative and associative laws in fusion
rules. In fact, fusion rules are not to blame for counterintuitive
results if the evidence conflict is due to sensor failure or
inaccurate reports [46].

While most research considers correlations between evi-
dence, the credibility of the sources of evidence is
ignored [35]. In this case, no amount of revision is worthwhile
if the sources of evidence are unreliable. Therefore, this article
proposes a novel revision strategy where both the reliability of
evidences and the similarity between evidences are included.
Regarding the reliability of the evidences, i.e., the accuracy
of the sources, the model sensitivity is used to modify the
evidence, as detailed in Section II-D1. As for the similarity
between the evidences, i.e., the supporting relationship, the
supporting degree is used to modify the evidence, as detailed
in Section II-D2.

1) Sensitivity Analysis: This article proposes a method of
evidence revision based on sensitivity. In binary classification,
sensitivity refers to the ratio of correctly identified positive
samples to all true positive samples. In this article, the
predictive sensitivity in multiclassification is defined as the
ratio of correctly identified samples in each prediction category
to the total samples predicted to be in this category. The metric
can be used to describe the recognition ability of the classifier
in each prediction category. When the model obtains a piece of
evidence, the credibility of the evidence can be reflected from
the sensitivity of this model. The higher the corresponding

sensitivity, the higher the credibility of the evidence. The
proposed method modifies the individual evidence according
to the sensitivity corresponding to the predicted state of each
module. Note that each probability value of the same piece of
evidence is multiplied by the same sensitivity.

For evidences, M1, M2, . . . , MN , the purpose of sensi-
tivity analysis is to obtain the correction weight: ŵ0 =
[ŵ0

1, ŵ
0
2, . . . , ŵ

0
N ], where ŵ0

i represents the correction weight
of the i th evidence, the superscript 0 indicates that the weight
is obtained by sensitivity analysis, and N represents the
number of evidence to be fused. The sensitivity of each module
is obtained by the following average confusion matrix of the
G-fold cross-validation:

Coni =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ci
11 · · · Ci

1l · · · Ci
1L

...
...

...
...

...
Ci

h1 · · · Ci
hl · · · Ci

hL
...

...
...

...
...

Ci
L1 · · · Ci

Ll · · · Ci
L L

⎤
⎥⎥⎥⎥⎥⎥⎦ (11)

where i = 1, 2, . . . , N , and Coni represents the average
confusion matrix obtained by the classifier selected by the i th
module in the cross-validation phase. Ci

hl represents the
number of samples with the true sample label of h and
the predicted label of l in the average confusion matrix of
the i th module, and L represents the number of categories of
operation status.

If the true historical operating status is available before
the next monitoring, the above confusion matrices can be
updated online. Considering the time cost, the online version
no longer performs cross-validation but updates the confusion
matrix based on the true and predicted status of the historical
data for each module. Taking the i th module as an example,
if the status of the device at moment t is to be evaluated, and
assuming that the true label of the sample at moment t − 1 is
h and the prediction obtained by Classifieri is l, then update
Ci

hl to Ci
hl + 1.

Next, the sensitivity matrix can be obtained according to
the average confusion matrix of each module

Sen =

⎡
⎢⎢⎢⎢⎢⎢⎣

S1
1 · · · S1

l · · · S1
L

...
...

...
...

...
Si

1 · · · Si
l · · · Si

L
...

...
...

...
...

SN
1 · · · SN

l · · · SN
L

⎤
⎥⎥⎥⎥⎥⎥⎦ (12)

where Si
l represents the sensitivity of the classifier selected

by the i th module to the lth state, which can be calculated
according to the following equation:

Si
l = e

Ci
ll∑L

s=1 Ci
sl . (13)

Finally, the correction weight of the i th evidence obtained
through sensitivity analysis is given as follows:

ŵ0
i = Si

l , l = Statei (14)

where i = 1, 2, . . . , N , and Statei represents the label corre-
sponding to the maximum predicted probability of evidence
obtained in the i th module.
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2) Support Analysis: The multiple evidences obtained from
different modules can support each other. For a piece of
evidence, the greater the number of similar evidences, the
higher the degree of similarity. Also, the more support it
receives from other evidences, the higher its credibility.

For evidences, M ′
1, M ′

2, . . . , M ′
N , the purpose of sup-

port analysis is to obtain the correction weight: ŵ1 =
[ŵ1

1, ŵ
1
2, . . . , ŵ

1
N ], where ŵ1

i represents the correction weight
of the i th evidence, and the superscript 1 indicates that the
weight is obtained by support analysis.

The similarity matrix between evidence pairs can be
obtained through (8)

DMM =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · JS1i · · · JS1N
...

...
...

...
...

JSi1 · · · 0 · · · JSi N
...

...
...

...
...

JSN1 · · · JSNi · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦ (15)

where JSi j represents the JS divergence between the i th
evidence and the j th evidence. Then, the average difference
between the i th evidence and other evidence bodies is calcu-
lated as follows:

J̃Si =
∑N

j=1, j �=i JSi j

N − 1
, i = 1, 2, . . . , N. (16)

Finally, the correction weight of the i th evidence can be
calculated by normalizing the support degree as follows:

Supi = 1

J̃ Si
, i = 1, 2, . . . , N (17)

ŵ1
i = Supi∑N

i=1 Supi

, i = 1, 2, . . . , N. (18)

III. SOLUTION APPROACH

To address the problems of the high complexity of diverse
data, the irrationality of conflict factor K in measuring conflict,
and counterintuitiveness of the DS evidence theory in dealing
with high-conflict evidence, this article proposes a novel
hybrid decision fusion method. The proposed method adopts
the following hierarchical stepwise strategy.

At Level 1, data are partitioned into modules through
mechanism analysis and expert knowledge, such as the func-
tion and distribution of sensors. In different modules, HMM,
QDA, SVM, XGBoost, MLP, RF, and DT are used for
cross-validation on the training set. In this way, the model
performance and average confusion matrix can be obtained.
Then, the performance of the models in each module is ranked
to select the best classifier, and the sensitivity is obtained by
the average confusion matrix. After the arrival of the samples,
a preliminary status assessment is performed on each module.
The results of the assessment, i.e., the evidences for decision
fusion, are fed into Level 2 along with sensitivity, i.e., the
correction weights.

At Level 2, the degree of conflict between the evidences is
measured by JS divergence, and the thresholds are determined
by grid search. For those evidences with a high-conflict degree,

the sensitivity analysis and the support analysis are used
to modify the evidences. The original conflicting evidences
will be replaced by the weighted average evidences. Then,
Dempster’s combination rule is used to fuse them N −1 times.
For those evidences with a low-conflict degree, Dempster’s
combination rule is directly used for fusion. The overall
framework with N = 3 is shown in Fig. 2. The processing
procedures are given as follows.

Step 1: According to Section II-A, divide the data into
modules, and select the optimal classifier for each
module to obtain evidence: M1, M2, . . . , MN .

Step 2: For evidences, M1, M2, . . . , MN , calculate the JS
divergence between the evidence pairs by (8) as
the conflict measure. If the JS divergence between
each evidence pair does not exceed threshold, the
conflict is low, and Dempster’s combination rule
can be used directly for fusion. Otherwise, go to
Step 4.

Step 3: Perform N − 1 fusions by (6), the first two pieces
of evidence are fused for the first time, and the
last fusion result is fused with the next piece of
evidence each time. The final fusion result is given
as follows:

F(M) = M1 ⊕ M2 ⊕ · · · ⊕ MN . (19)

Then, go to Step 7.
Step 4: The sensitivity correction weights can be obtained

through Section II-D1, and the correction opera-
tions are given as follows:

M ′
i = ŵ0

i × Mi . (20)

Recalculate JS divergence between M ′
i . If the JS

divergence between each evidence pair does not
exceed threshold′, go to Step 6. threshold′ >
threshold is mainly caused by ŵ0

i greater than 1,
which increases the corrected evidences.

Step 5: The support correction weights can be obtained
through Section II-D2, and the correction opera-
tions are given as follows:

M ′′
i = ŵ1

i × M ′
i . (21)

Step 6: Sum and normalize the revised evidences

M̃ = norm

(
N∑

i=1

M ′
i or

N∑
i=1

M ′′
i

)
. (22)

Fuse the weighted average results N − 1 times
through Dempster’s combination rule

F(M̃) = M̃ ⊕ M̃ ⊕ · · · ⊕ M̃︸ ︷︷ ︸
N−1

. (23)

Step 7: State assessment

State = arg max{F(M) or F(M̃)}. (24)
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Fig. 2. Overall framework of the proposed method: (a) Level 1 and (b) Level 2.

IV. APPLICATION

A. Case Background

The application case in this study is the shield tunneling
project of the Yellow River Jiluo Road Tunnel in Jinan,
China. The tunnel is located on the central axis of the city,
connecting two stations A and B from north to south. The
total length of the tunnel is 4760 m, including a 3890-m
tunnel crossing the Y River and 870-m connecting roads and
related ancillary works. The length of the shield section is
about 2519.2 m, and the diameter of the shield excavation is
15.76 m. The tunnel stratum is mainly clay and silty clay,
so the excavation equipment is a mud-water tunnel boring
machine (TBM). Since the operating status of the TBM
directly affects the quality and speed of tunnel advancement,
an accurate assessment of the current operating status is
of great necessity. In this way, timely guidance can be
provided to operators in operation adjustments and equipment
maintenance.

Based on on-site experience and professional knowledge,
the operating status of TBM can be divided into normal,

medium, and poor. TBM includes multiple modules, such as
excavation, main drive, propulsion, grouting, hydraulic, and
electrical. There are a total of 152 variables, all sampled
at a frequency of 0.1 Hz. Mechanism analysis shows that
these modules can be classified into three main categories.
Module1 is the main drive electrical module. It is at the
heart of the power output of TBM, which is mainly for
power conversion and output, and supports the cutter head
of TBM for rotating rock breaking. Module2 is the tunneling
module. This module mainly controls the excavation progress
of TBM. For example, when the driving direction deviates
due to force imbalance, TBM can move forward following
the prescribed route through coordination with the advance
cylinder. Module3 is the mud conveying module. It is used to
transport the excavated muck to the ground treatment station.
Meanwhile, this module can maintain the stability of the
excavation surface pressure by adjusting the mud inflow and
outflow.

The positions of each module in TBM are shown in Fig. 3,
and the information of the sensors in each module is illustrated
in Table I.
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Fig. 3. Module division of the shield machine.

TABLE I

INFORMATION OF SENSORS

B. State Assessment Based on the Proposed Method

As in Section II-A, the models in the model library are
first used to perform fivefold cross-validation on the training
sets of the three modules to obtain the respective performance
ranking matrices: Ranki , i = 1, 2, 3. According to (2), the
optimal classifier of each module can be determined and
used as the state assessment model of the corresponding
module for evidence generation. Then, the conflict analysis
can be conducted for the evidence obtained from each state
assessment model according to Section III, and Dempster’s
combination rule is used to fuse either the evidence with low
conflict without correction or the evidence with high conflict
after correction. Ultimately, the evaluation of the operational
status is achieved.

1) Model Selection: According to Section II-A, an optimal
classifier for each module is selected. The weighted average
of common multicategory metrics is used to evaluate the
performance of the models, such as accuracy, Jaccard simi-
larity coefficient, and AUC. These metrics adopt the concept

of macros in multicategory, i.e., calculating the unweighted
average of the indicators for each label. When the three
metrics are a weighted average, the appropriate weight can
be assigned according to the importance of the indicators.
If treated equally, 1/3 of the weight is assigned to each
indicator as in this experiment.

First, the whole dataset is divided into three modules, and
the data of each module are divided into the training set and
test set by 8:2. According to the fivefold cross-validation, the
training set is divided into five groups, and the ratio of training
to testing in each group is also 8:2.

Then, in each module, the models in the model library are
trained and tested on five groups of data. At the same time,
the performance ranking and the sensitivity of the optimal
classifier for subsequent evidence correction are obtained. The
model library includes seven models: HMM, QDA, SVM,
XGBoost, MLP, RF, and DT. That is to say, a module can
obtain 5×3×7 performance indicators, which are respectively
from five groups of data, three performance indicators, and
seven models to be sorted. Next, the weighted average of the
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Fig. 4. Friedman test charts: (a) Module1, (b) Module2, and (c) Module3.

three metrics is calculated to get three 5 × 7 performance
matrices (here, three represents three modules). The closer the
metric is to 1, the better the performance will be. The perfor-
mance matrix can be converted into three 5 × 7 performance
ranking matrices.

Finally, select a state evaluation model for each module,
i.e., the optimal model, according to the performance ranking
average value, i.e., the average value of the column. The
smaller the average order value, the higher the ranking and
the better the performance.

Through the above procedure, XGBoost, RF, and MLP
are, respectively, at the top of the performance rankings of
Modules1−3, so they can be used as the state evaluation
models of the corresponding modules. The Friedman test
and the Nemenyi post-hoc test are also used to measure the
performance of the models in the model library. Please refer
to [47] for theories about the above test methods. The results
of the Friedman test in the three modules are 96, infinity, and
171, respectively, and the critical value of the five datasets
and seven algorithms at the 0.05 significance level is 2.508,
which is much smaller than the above test results. Thus, the
hypothesis that the algorithms are significantly different is
accepted.

Nemenyi post-hoc test is used to further distinguish the dif-
ferences of algorithms, and the Friedman test charts are shown
in Fig. 4. The diamond point is the average ordinal value
of the algorithm ranking, and the corresponding horizontal
line is the critical range calculated by the Nemenyi post-hoc
test. The more the overlapping area between the horizontal
lines, the smaller the difference between the algorithms. It is
obvious that XGBoost, RF, and MLP rank relatively high on
Modules1−3, and they are significantly different from other
algorithms.

It is worth noting that the Friedman test and the Nemenyi
test are often used to compare the performance of algorithms
on different datasets. Since our purpose is to select the optimal
classifier for each module, five cross-validation sets are used to
verify differences among models rather than different datasets.

2) Evidence Revision and Fusion: The whole dataset has
been divided into three modules by the above procedure,
and the state evaluation model used in each module has
been determined. Thus, the preliminary state evaluation results
of different modules can be obtained, i.e., evidences. These

evidences may be conflicting with each other. Since the
conflict factor K cannot accurately measure the degree of
conflict, a novel decision fusion method using JS divergence
is proposed. It serves as a way to measure conflict and
combine sensitivity and support for conflict management. See
Section III for details of correction and fusion. The thresholds
for judging whether the evidences are highly conflicted are
set to 0.65 and 2.53 respectively through grid search. For the
revision and fusion of evidence, two actual cases are given,
which are, respectively, the 617th and 2467th samples of the
test set.

Case 1: The conflicts are low, and Dempster’s combination
rule is directly used to fuse the evidences.

Step 1-1: Obtain the evidence of each module and calculate
the JS divergence between evidence pairs by (8)

M1 = [0.1422, 0.1885, 0.6694]
M2 = [0.3292, 0.3452, 0.3256]
M3 = [0.0184, 0.0000, 0.9816]

⎫⎬
⎭→

⎡
⎣JS12

JS13

JS23

⎤
⎦

=
⎡
⎣0.0881

0.1547
0.4188

⎤
⎦

where JS12, JS13, and JS23 < threshold = 0.65.
Dempster’s combination rule is used directly with-
out modification.

Step 1-2: Obtain fusion results by (6)

F(M) = M1 ⊕ M2 ⊕ M3 = [0.0040, 0.0000, 0.9960].
Step 1-3: State assessment

State = III.

Case 2: The conflicts are high, and the evidences need to
be revised and then weighted and summed.

Step 2-1: Obtain the evidence of each module and calculate
the JS divergence between evidence pairs by (8)

M1 = [0.4749, 0.2903, 0.2347]
M2 = [0.7500, 0.0000, 0.2500]
M3 = [0.0016, 0.9983, 0.0001]

⎫⎬
⎭→

⎡
⎣JS12

JS13

JS23

⎤
⎦

=
⎡
⎣0.1678

0.4957
0.9911

⎤
⎦

Authorized licensed use limited to: East China Univ of Science and Tech. Downloaded on March 06,2022 at 01:24:31 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAN et al.: MULTI-MODULE DECISION FUSION IN OPERATIONAL STATUS MONITORING 9

Fig. 5. Confusion matrix for (a) Module1, (b) Module2, and (c) Module3.

where JS23 > 0.65. The correction of evidences is
required.

Step 2-2: Sensitivity analysis, see Section II-D1 for details.
Obtain the sensitivity matrix

Sen =
⎡
⎣2.6795 2.5828 2.5854

2.5082 2.4113 2.3972
2.6599 2.6709 2.7080

⎤
⎦.

Get the first correction weights

ŵ0 = [2.6795, 2.5082, 2.6709].
The results and the JS divergence after the first
revision are given as follows:

M ′
1 = [1.2726, 0.7779, 0.6290]

M ′
2 = [1.8812, 0.0000, 0.6271]

M ′
3 = [0.0043, 2.6665, 0.0003]

⎫⎬
⎭→

⎡
⎣JS′

12
JS′

13
JS′

23

⎤
⎦

=
⎡
⎣0.4316

1.3254
2.5659

⎤
⎦

where JS′
23 > 2.53. Evidence revision needs to

continue.
Step 2-3: Support analysis, see Section II-D2 for details.

Obtain the distance matrix between evidences

DMM =
⎡
⎣ 0 0.4316 1.3254

0.4316 0 2.5659
1.3254 2.5659 0

⎤
⎦.

Get the second correction weights

ŵ1 = [0.4908, 0.2877, 0.2216].
The results after the second correction are given as
follows:⎧⎪⎨
⎪⎩

M ′′
1 = [0.6244, 0.3817, 0.3087]

M ′′
2 = [0.5413, 0.0000, 0.1804]

M ′′
3 = [0.0009, 0.5908, 0.0001].

Step 2-4: Evidence summation and normalization

M̃ = [0.4439, 0.3700, 0.1861].
Step 2-5: Perform Dempster’s combination rule twice

F(M̃) = M̃ ⊕ M̃ ⊕ M̃

= [0.6049, 0.3504, 0.0446].

Step 2-6: State assessment

State = I.

3) Results and Analysis: The confusion matrix, receiver
operating characteristic (ROC) curve, and AUC are often
used in the performance analysis of multiclassification models.
The performance comparison of the state evaluation algo-
rithm based on decision fusion can also use these three
metrics. The confusion matrix is a matching array of predicted
labels and true labels. The horizontal and vertical axes of
ROC are false and true positive rates, respectively, which
is insensitivity to changes in sample distribution. The closer
the ROC curve is to the upper left corner, the closer the
confusion matrix is to the identity matrix, indicating better
model performance. For details, please refer to [48] and [49].
Fig. 5 shows the confusion matrix of the state evaluation
results from three modules using the optimal model. Fig. 6
shows the corresponding ROC curve and AUC. Fig. 7 shows
the confusion matrix, ROC curve, and AUC of the final fusion
result.

Through a comparison between Figs. 5–7, it can be seen that
the confusion matrix and AUC after fusion are significantly
improved compared to those in Modules1−3. Moreover, the
performances of Module1 and Module2 are relatively lower
than that of Module3, which is due to the module division.
It can be seen from Table I that there are more features in
Module3 than in Modules1−2, so this module contains more
information, thus possessing better performance.

4) Comparison of Results and Discussion: The proposed
method first divides the entire dataset into three modules
and then uses the corresponding optimal model to con-
duct the primary state assessment. Finally, the low-conflict
evidences without correction or the high-conflict evidences
after correction are fused. In order to prove the feasibility
and effectiveness of the proposed method, three groups of
comparative experiments are carried out. Our experiments are
conducted on a Windows Server with a dual −2.80-GHz CPU
and a RAM of 4 GB.

a) Experiment 1: In order to verify the effectiveness of
the module division strategy, the proposed method is compared
with the models in the model library. In the process of
evaluation, the entire data, instead of the divided data, are
divided into the training set and the test set for training and
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Fig. 6. ROC and AUC for (a) Module1, (b) Module2, and (c) Module3.

Fig. 7. Final fusion result: (a) confusion matrix and (b) ROC and AUC.

Fig. 8. Compare the results of (a) Experiment 1, (b) Experiment 2, and (c) Experiment 3.

classification, respectively. The comparison results are shown
in Fig. 8(a).

The proposed method takes the lead in accuracy, Jaccard
similarity coefficient, and AUC. RF, MLP, and XGBoost also
have relatively good performance without module partition.
This indicates that their information capture ability on this
dataset is in a leading position, which is consistent with the
model selection results of each module.

Without module partition, the entire dataset would contain
too many features, which makes it difficult to fully absorb such
enriched information during the training process. However,
it means a loss of data information when dimensionality
reduction or other data preprocessing methods are adopted.
The proposed method is unique in that it uses the selected
models to dig into the local details of each module. Through
decision fusion, the data complexity can be reduced, and the

information loss can be minimized. This reflects the main
advantages of data partitioning.

b) Experiment 2: In order to verify the effectiveness of
the optimal model selection and fusion strategy, it is compared
with other fusion strategies after module division. For a fair
comparison, we still use the data of TBM, and the module
division is also consistent with Table I. The comparison results
are shown in Fig. 8(b) and Table II.

As shown in Fig. 8(b) and Table II, the proposed method
performs better than other decision fusion algorithms in terms
of accuracy and Jaccard similarity coefficient, while, in the
aspect of AUC and time consumption, the performance is
just mediocre. The proposed model selection and evidence
fusion strategy selects the optimal model for each module
and takes the entire probability distribution into consideration.
Compared with the method of Pan, which only used SVM,
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TABLE II

COMPARISON OF THE PROPOSED METHOD
WITH OTHER FUSION METHODS

the proposed method can provide more effective evidence
for the next level of fusion. Compared with the method of
He, where all classifiers are cross-validated both locally and
globally, it is more concise and efficient. It should be noted that
He used binary classification metrics to measure performance
in the original study, but this experiment replaced them
with multicategorical metrics, including accuracy, Jaccard’s
similarity coefficient, and AUC. Compared with Kuncheva’s
winner-takes-all voting method [50], it takes full account of
the trust shown by the evidence for each category.

In terms of time consumption, Pan’s method is mainly
limited by the long training time of the SVM algorithm, while
He’s time lost is mainly due to excessive cross-validation.
Kuncheva’s method is ahead due to its simple voting mecha-
nism. The optimal models selected for the proposed method
are XGBoost, RF, and MLP. Although MLP requires more
time, its data complexity of its module is relatively low
compared with the entire dataset, which makes the overall
time consumption acceptable. This further proves the supe-
riority of the proposed model selection and evidence fusion
strategy.

c) Experiment 3: In order to verify the effectiveness of
the proposed evidence correction method, it is compared with
other evidence correction methods. The results are shown in
Fig. 8(c). The comparison experiments all use the strategy of
module partition in Table I and the optimal classifier selection
result in Fig. 4.

As shown in Fig. 8(c), the proposed evidence correction
method performs better in accuracy and Jaccard similarity
coefficient, and is comparable to other methods in AUC.
The failure of Li et al.’s approach, in this case, mirrors
the fact that the approach of modifying DS fusion rules
is fragile, which is the reason why the revision strategy is
widely accepted. Although the other four methods revised the
evidence, none of them took into account the credibility of the
evidence sources. If the source of evidence is unreliable due
to anomalies in the sensor or model, no amount of correction
will help. Compared with the revision strategy that focuses
only on the evidence itself, the proposed method considers
not only the degree of support between evidences but also
the sensitivity of evidence sources, effectively reducing the
attention to unreliable evidence. In this way, the higher the
sensitivity of the evidence production model and the more
support it receives, the higher the credibility and weight of the
evidence, and the higher the dominance in the fusion stage,
which is in line with intuition. Overall, the feasibility and
effectiveness of this correction strategy have been proved in
this experiment.

TABLE III

COMPARISON OF THE ONLINE AND OFFLINE
VERSIONS OF THE SENSITIVITY ANALYSIS

d) Experiment 4: To illustrate the validity of the online
sensitivity analysis, we compared the offline and online
versions. It should be noted that the online strategy in
Section II-D1 requires that the true historical status is available
before the next status monitoring. If this is not the case,
it is sufficient to use the sensitivity revision weights derived
from the cross-validation phase. Table III shows the results of
the comparison between the two. Since the support revision
weights are always calculated in real time, the comparison
is only for the sensitivity analysis. As shown in Table III,
the online version achieves superior performance compared
to the offline version. Moreover, the strategy of updating
the confusion matrix and recalculating the sensitivity revision
weights in real time is not unduly time-consuming. The results
show that the performance of the classifier for unseen data is
somewhat different from that of the cross-validation phase.
However, the offline version is acceptable under the condition
that real labels are not available in time. Overall, the feasibility
and effectiveness of the proposed online sensitivity analysis
strategy were verified in this experiment.

V. CONCLUSION AND FUTURE WORKS

This research is devoted to developing a generic multimod-
ule decision fusion framework, which is suitable for handling
operational status monitoring of large-scale equipment, plant-
wide processes, and so on. The decision-making process
mainly involves four key steps: 1) divide input data into
multiple modules according to the mechanism and profes-
sional knowledge; 2) obtain the performance ranking of the
models in the model library in each module by performing
fivefold cross-validation, and select the corresponding optimal
classifier to obtain evidence for the next level of decision
fusion; 3) define JS divergence as the conflict metric of
evidences, and revise the evidences that exceed the conflict
threshold through sensitivity and support; and 4) for low-
conflict evidence without revision or high-conflict evidence
after revision, the DS evidence theory is used for decision
fusion to realize operational status monitoring. Ultimately, the
proposed method is applied to a shield machine case of a
Chinese tunnel excavation project to verify its feasibility and
effectiveness.

As technology evolves, and the variety and functionality of
sensors continue to enrich, nonhomogeneous or heterogeneous
data will become more prevalent. Information fusion is bound
to shine brilliantly. Indeed, further improvements are needed to
extend the application of the proposed approach. The method
in this study is competent for the fusion of multisource, het-
erogeneous, and unreliable information, but it cannot directly
deal with the unknown or incomplete information prevalent

Authorized licensed use limited to: East China Univ of Science and Tech. Downloaded on March 06,2022 at 01:24:31 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

in the open world, such as emerging unknown patterns and
ambiguous information descriptions. Therefore, on the basis
of this research, exploring information description, evidence
generation and fusion in the open world will be a major part
of our future work.
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