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Extended Abstract

Centrality measures have found wide application in social network analysis in various fields
such as biology, epidemiology, management, computer science or logistics. Shortest path cen-
trality measures provide a framework for understanding relationships between nodes in net-
works that represent complex systems. Betweenness centrality is defined based on connections,
in the form of shortest paths, between pairs of nodes in the underlying network. Networks are
usually assumed to have a single cost measure associated with traversing an edge. While there
is a body of literature studying the multicriteria shortest path (MSP) problem, there is a lack of
MSP based centrality concepts, unless the criteria are combined into a single one by applying
a scalarisation [e.g. 1]. We introduce and apply such a MSP based centrality measure.

Background: Let .4 = (V,E,(c',...,c%)) denote a directed weighted graph consisting of
vertices V and edges (i, j) € E CV x V, where cf = (cf;) for r € {1,2,...,q} are vectors that
represent different costs associated with the edge (i, j). A directed path P in this network con-
sists of a sequence of consecutive edges (i, j) € E without repetition of vertices. A network is
multicriteria if there are ¢ > 2 cost vectors and single-criteria if there is only one (g = 1). In the
following we assume that path costs are minimised. For the single-criterion case Betweenness
centrality of a node k is determined based on the number of shortest paths in the graph that pass
through node %, i.e., the number of shortest paths with node k as an intermediary node. If we
denote by o (n,m) the number of shortest paths between the nodes n and m and by o (n,m);
the number of shortest paths between n and m that go through the node &, then the Between-
ness centrality of a node k is B(k) = Yiznm (;(("n’jfn))k [2]. Betweenness centrality captures the
opportunity that a node k has of being an intermediary between other nodes.

Here we propose an extension of Betweenness centrality to the multicriteria case (g > 2).
While in the single-criterion case there is an optimal shortest path (or there are multiple short-
est paths of the same shortest length), the MSP problem has a set of (Pareto) efficient so-
lutions. We denote by c¢*(P) = Y(ij)ep cifj the cost component k associated with path P. A

path cost vector (c!'(P),...,c4(P)) is called dominated if there exists another path cost vector
(c'(P"),...,c?(P*)) such that c*(P*) < cX(P) for all k € {1,...,k} with at least one strict in-
equality. Here path P* is at least as good as path P in all criteria and strictly better in at least
one, thereby making P* an objectively better choice than P. The solution of a MSP problem
is a set of (Pareto) efficient solutions with the property that there exists no other feasible path
that dominates any of the efficient path cost vectors. We denote by Ec(n,m) the number of
efficient paths between nodes n and m and by E 6 (n,m); the number of efficient paths between
n and m that pass through the node k. Multicriteria Betweenness is calculated as:

Eoc(n,m);

Ec(n,m)’ M

MB(k)= )
k#n#m

The computation of MB(k) is based on solving MSP for all pairs of vertices [e.g. 3]. MSP can
be more computationally expensive as network size increases.
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While (1) is a similar formulation to the original Betweenness centrality measure there are
significant differences in the multicriteria case. Figure 1 illustrates that there can be many dif-
ferent efficient paths in MSP that do not dominate each other, making them potential candidates
for a preferred path without prescribing the actual choice being made a priori. In the context of
a cycling network, for instance, one cyclist may choose a different trade-off between length of
a path and its overall elevation gain depending on their fitness or perhaps availability of shower
facilities when they get to their destination. The multicriteria centrality measure MB(k) cap-
tures the significance of a particular node & in its ability to facilitate connections across a range
of ¢ criteria without having to prescribe a potentially unrealistic weighting between them. A
high score MB(k) indicates that node k is traversed by many efficient paths indicating that the
network provides good connectivity with respect to the multiple criteria that are being consid-
ered. MB(k) can also capture lexicographically minimal paths, and so-called non-supported
paths that cannot be obtained by the popular weighted sum scalarisation [e.g. 1].

There are various transport networks that are multicriteria in nature, for instance public
transport networks where the total fare, the total travel time and the number of exchanges are
minimised. We will present a case study where commuter cyclist path choice is modelled
assuming cyclists aim to minimise distance travelled, elevation gain and a discomfort mea-
sure associated with the quality and safety of cycling infrastructure. A comparison between
distance-based single-criterion Betweenness and Multicriteria Betweenness can shed light on
areas of the network where the different criteria are aligned, and, on the other hand, highlight
areas where there is a need for infrastructure improvements. Based on the cycling application
we will compare the two Betweenness measures and discuss insights derived from them.
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Figure 1: Efficient paths. Left: Auckland network with a subset of the efficient paths, and
node color intensity indicating elevation; Right: Non-dominated cost vectors (distance and
total elevation gain) found for a cycling network. The purple path is non-supported.



