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Abstract

Protein-ligand binding prediction is a fundamental problem in AI-driven drug dis-
covery. Previous work focused on supervised learning methods for small molecules
where binding affinity data is abundant, but it is hard to apply the same strategy
to other ligand classes like antibodies where labelled data is limited. In this paper,
we explore unsupervised approaches and reformulate binding energy prediction
as a generative modeling task. Specifically, we train an energy-based model on a
set of unlabelled protein-ligand complexes using SE(3) denoising score matching
(DSM) and interpret its log-likelihood as binding affinity. Our key contribution is a
new equivariant rotation prediction network for SE(3) DSM called Neural Euler’s
Rotation Equations (NERE). It predicts a rotation by modeling the force and torque
between protein and ligand atoms, where the force is defined as the gradient of an
energy function with respect to atom coordinates. Using two protein-ligand and
antibody-antigen binding affinity prediction benchmarks, we show that NERE out-
performs all unsupervised baselines (physics-based potentials and protein language
models) in both cases and surpasses supervised baselines in the antibody case.

1 Introduction

One of the challenges in drug discovery is to design ligands (small molecules or antibodies) with high
binding affinity to a target protein. In recent years, many protein-ligand binding prediction models
have been developed for small molecules [13, 19, 43]. These models are typically trained on a large
set of crystal structures labeled with experimental binding data. However, it is difficult to apply this
supervised learning approach to other ligand classes like antibodies where binding affinity data is
limited. For example, the largest binding affinity dataset for antibodies [31] has only 566 data points.
Transfer learning from small molecules to antibodies is also hard as their structures are very different.

Given this data scarcity challenge, we aim to develop a general unsupervised binding energy prediction
framework for small molecules and antibodies. The basic idea is to learn an energy-based model
(EBM) [16] of protein-ligand complexes by maximizing the log-likelihood of crystal structures in the
Protein Data Bank (PDB). This generative modeling approach is motivated by recent advances of
protein language models (PLMs) which show that the likelihood of protein sequences is correlated
with protein mutation effects [20, 11]. However, PLMs are not applicable to small molecules and
they model the likelihood of protein sequences rather than structures. We suppose the likelihood of
protein complex structures is a better predictor of binding affinity, which is determined by the relative
orientation between a protein and a ligand. Indeed, our method shares the same spirit as traditional
physics-based energy functions [1] designed by experts so that crystal structures have low binding
energy (i.e., high likelihood). Our key departure is to use neural networks to learn a more expressive
energy function in a data-driven manner. Importantly, our model is applicable to large-scale virtual
screening because it does not require expensive molecular dynamic simulations [21].
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Specifically, we train EBMs using SE(3) denoising score matching (DSM) [33, 15] as maximum
likelihood estimation is hard. For each training example, we create a perturbed protein-ligand complex
by randomly rotating/translating a ligand and ask our model to reconstruct the rotation/translation
noise. The main challenge of SE(3) DSM in our context is how to predict rotation noise from the
score of an EBM in an equivariant manner. Motivated by physics, we develop a new equivariant
rotation prediction network called Neural Euler’s Rotation Equation (NERE). The key observation is
that the score of an EBM equals the force of each atom, which further defines the torque between a
protein and a ligand. Using Euler’s rotation equation, we convert this torque into the angular velocity
of a ligand and its corresponding rotation matrix to calculate SE(3) DSM loss. Importantly, NERE
is compatible with any SE(3)-invariant networks and guarantees equivariance without any further
requirement on network architectures.

We evaluate NERE on two protein-ligand and antibody-antigen binding affinity benchmarks from
PDBBind [36] and Structural Antibody Database (SAbDab) [31]. We compare NERE with unsu-
pervised physics-based models like MM/GBSA [21], protein language models (ESM-1v [20] and
ESM-IF [11]), and a variety of supervised models regressed on experimental binding affinity data. To
simulate real-world virtual screening scenarios, we consider two settings where input complexes are
crystallized or predicted by a docking software. NERE outperforms all unsupervised baselines across
all settings and surpasses supervised models in the antibody setting, which highlights the benefit of
unsupervised learning when binding affinity data is limited.

2 Related Work

Protein-ligand binding models fall into two categories: supervised and unsupervised learning.
Supervised models are trained on binding affinity data from PDBBind [36, 29, 3, 32, 40, 19, 43].
They typically represent protein-ligand 3D complex represented as a geometric graph and encode it
into a vector representation using a neural network for affinity prediction. Unsupervised models are
either based on physics or statistical potentials. For example, molecular mechanics generalized Born
surface area (MM/GBSA) [21] calculates binding energy based on expensive molecular dynamics.
Our work is closely related to statistical potentials like DrugScore2018 [6]. It learns an energy score
for each atom pair independently based on their atom types and distance alone, which ignores the
overall molecular context. Our key departure is to use neural networks to learn a more expressive
energy function powered by context-aware atom representations.

Antibody-antigen binding models are traditionally based on scoring functions in protein docking
programs [25, 1, 10, 39, 2]. They are typically weighted combinations of physical interaction terms
whose weights are tuned so that crystal structures have lower energy than docked poses. Recently,
protein language models like ESM-1v [20] and ESM-IF [11] have been successful in predicting
mutation effects for general proteins and we evaluate their performance for antibodies in this paper.
Due to scarcity of binding affinity data, very few work has explored supervised learning for antibody
binding affinity prediction. Existing models [23] are based on simple hand-crafted features using
binding affinity data from SAbDab. For fair comparison, we implement our own supervised baselines
using more advanced neural architectures [38, 28].

Denoising score matching (DSM) is a powerful technique for training score-based generative models
[33] and has been applied to protein structure prediction [41] and protein-ligand docking [5]. Our
departure from standard DSM is two fold. First, standard DSM is based on Gaussian noise while our
method uses rigid transformation noise based on an isotropic Gaussian distribution for SO(3) rotation
group [15]. Second, we parameterize the score as the gradient of an energy-based model rather than
the direct output of a neural network. We choose this parameterization scheme because we need to
predict energy and score at the same time.

Equivariant rotation prediction. Motivated by molecular docking, there has been a growing interest
in predicting rotations with equivariant neural networks. For instance, Ganea et al. [9], Stärk et al.
[35] developed a graph matching network that first predicts a set of key points between a protein and
a ligand, and then uses the Kabsch algorithm [14] to construct a rigid transformation. Corso et al. [5]
predicted rotations based on tensor field networks [37] and spherical harmonics. Our method (NERE)
has two key differences with prior work. First, it does not require key point alignment and directly
outputs an rotation matrix. Second, NERE does not require spherical harmonics and can be plugged
into any SE(3)-invariant encoder architectures for equivariant rotation prediction.
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Figure 1: The architecture of E(A,X) for small molecules (left) and antibodies (right). For small
molecules, the input is a binding pocket and a molecular graph encoded by a message passing network
(MPN). For antibodies, the input contains antibody CDR residues and epitope residues, where residue
features A come from an ESM2 protein language model.

3 Unsupervised Binding Energy Prediction

A protein-ligand (or an antibody-antigen) complex is a geometric object that involves a protein and
a ligand (a small molecule or an antibody). It is denoted as a tuple (A,X), with atom features
A = [a1, · · · ,an] and atom coordinates X = [x1, · · · ,xn] (column-wise concatenation). The key
property of a complex is its binding energy E(A,X). A lower binding energy means a ligand binds
more strongly to a protein. In this section, we describe how to parameterize E(A,X) and design
proper training objectives to infer the true binding energy function from a list of crystal structures
without binding affinity labels.

3.1 EBM Architecture

An energy function E(A,X) is composed of a protein encoder and an output layer. The encoder is a
frame averaging neural network [28] that learns a SE(3)-invariant representation hi for each atom.
We choose this architecture because of its simplicity (detailed in the appendix). The output layer ϕo

is a feed-forward neural network with one hidden layer. It predicts the interaction energy ϕo(hi,hj)
for each pair of atoms. Finally, we define E(A,X) as the sum of pairwise interaction energies:

E(A,X) =
∑

i,j:dij<d

ϕo(hi,hj) (1)

Since atomic interaction vanishes beyond certain distance, we only consider atom pairs with distance
dij < d. So far, we have described our method in generic terms. We now specify the input features
and preprocessing steps tailored to small molecules and antibodies.

Small molecules. When the ligand is a small molecule, the input to our model is a protein-ligand
complex where the protein is cropped to its binding pocket (residues within 10Å from the ligand).
The model architecture is illustrated in Figure 1a. On the protein side, each atom in the binding
pocket is represented by a one-hot encoding of its atom name (Cα, Cβ , N, O, etc.). We consider all
backbone and side-chain atoms. On the ligand side, the atom features A are learned by a message
passing network (MPN) [42] based on a ligand molecular graph. The MPN and energy function are
optimized jointly during training.

Antibodies. When the ligand is an antibody, the input to our model is an antibody-antigen binding
interface. The binding interface is composed of residues in the antibody complementarity-determining
region (CDR) of both heavy and light chains and top 50 antigen residues (epitope) closest to the
CDR. The model architecture is depicted in Figure 1b. Different from the small molecule case, we
only consider Cα atoms of each antibody/antigen residue. Each residue is represented by a 2560
dimensional pre-trained ESM-2 embedding [18]. For computational efficiency, we freeze ESM-2
weights during training.

3.2 Training EBMs with Denoising Score Matching

Given that our training set does not have binding affinity labels, we need to design an unsupervised
training objective different from a supervised regression loss. Our key hypothesis is that we can infer
the true binding energy function (up to affine equivalence) by maximizing the likelihood of crystal

3



Algorithm 1 Training procedure (single data point)
Require: A training complex (A,X).

1: Sample a noise level σ.
2: Sample rotation vector ω ∼ NSO(3) with variance σ2

3: Sample translation vector t ∼ N (0, σ2I).
4: Perturb the coordinates X̃ by applying rigid transformation (ω, t) to the original complex.
5: Compute the score of energy function (ω̃, t̃) based on its gradient (force) −∂E/∂X̃ .
6: Minimize DSM objective ℓdsm.

structures in our training set. The motivation of our hypothesis is that a crystal structure is the lowest
energy state of a protein-ligand complex. The maximum likelihood objective seeks to minimize the
energy of crystal structures since the likelihood of a complex is p(A,X) ∝ exp(−E(A,X)).

While maximum likelihood estimation (MLE) is difficult for EBMs due to marginalization, recent
works [33, 34] has successfully trained EBMs using denoising score matching (DSM) and proved
that DSM is a good approximation of MLE. In standard DSM, we create a perturbed complex by
adding Gaussian noise to ligand atom coordinates, i.e., X̃ = X + ϵ, where ϵ ∼ p(ϵ) = N (0, σ2I).
DSM objective tries to match the score of our model−∂E/∂X̃ and the score of the noise distribution
∇ϵ log p(ϵ) = −ϵ/σ2:

ℓg = E
[
∥∂E(A, X̃)/∂X̃ − ϵ/σ2∥2

]
(2)

Intuitively, ℓg forces the gradient to be zero when the input complex is a crystal structure (ϵ = 0). As
a result, a crystal structure pose will be at the local minima of an EBM under the DSM objective.

3.3 Perturbing a Complex with Rigid Transformation Noise

Nevertheless, adding Gaussian noise is not ideal for protein-ligand binding because it may create
nonsensical conformations that violate physical constraints (e.g., an aromatic ring must be planar). A
better solution is to create a perturbed complex (A, X̃) via random ligand rotation and translation,
similar to molecular docking. To construct a random rotation, we sample a rotation vector ω from
NSO(3), an isotropic Gaussian distribution over SO(3) rotation group [15] with variance σ2. Each
ω ∼ NSO(3) has the form ω = θω̂, where ω̂ is a vector sampled uniformly from a unit sphere and
θ ∈ [0, π] is a rotation angle with density

f(θ) =
1− cos θ

π

∞∑
l=0

(2l + 1)e−l(l+1)σ2 sin((l + 1/2)θ)

sin(θ/2)
(3)

Likewise, we sample a random translation vector t from a normal distribution t ∼ N (0, σ2I). Finally,
we apply this rigid transformation to the ligand and compute its perturbed coordinates X̃ = RωX+t,
where Rω is the rotation matrix given by the rotation vector ω = (ωx,ωy,ωz).

Rω = exp(Wω), Wω =

(
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

)
. (4)

Here exp means matrix exponentiation and Wω is an infinitesimal rotation matrix. Since Wω is a
skew symmetric matrix, its matrix exponential has the following closed form

Rω = exp(Wω) = I + c1Wω + c2W
2
ω (5)

c1 =
sin ∥ω∥
∥ω∥

, c2 =
1− cos ∥ω∥
∥ω∥2

(6)

Moreover, we do not need to explicitly compute the matrix exponential Rω since Wω is the linear
mapping of cross product, i.e. ω × r = Wωr. Therefore, applying a rotation matrix only involves
cross product operations that are very efficient:

Rωxi = xi + c1ω × xi + c2ω × (ω × xi) (7)
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Figure 2: NERE predicts a rotation in three steps. It first calculates pairwise residue force based
on the gradient fi = (−∂E/∂x)⊤. It then predicts the corresponding torque and angular velocity
by solving Euler’s rotation equation. Lastly, it converts the angular velocity vector to a rotation via
matrix exponential map.

3.4 Training EBMs with SE(3) Denoising Score Matching

Under this perturbation scheme, DSM aims to match the model score −∂E/∂X̃ and the score of
rotation and translation noise∇ω log p(ω),∇t log p(t). Our SE(3) DSM objective is a sum of two
losses: ℓdsm = ℓt + ℓr, where ℓt and ℓr correspond to a translation and a rotation DSM loss. The
translation part is straightforward since t follows a normal distribution and∇t log p(t) = −t/σ2:

ℓt = E
[
∥t̃−∇t log p(t)∥2

]
, t̃ = − 1

n

∑
i
∂E/∂x̃i (8)

The rotation part of DSM is more complicated. As ω̂ is sampled from a uniform distribution over a
sphere (whose density is constant), the density and score of p(ω) is

p(ω) ∝ f(θ), ∇ω log p(ω) = ∇θ log f(θ) · ω̂ (9)

In practice, we calculate the density and score by precomputing truncated infinite series in f(θ).
However, the main challenge is that the model score −∂E/∂X̃ ∈ Rn×3 is defined over atom coordi-
nates, which is not directly comparable with ∇ω log p(ω) ∈ R3 as they have different dimensions.
To address this issue, we need to map −∂E/∂X̃ to a rotation vector ω̃ via a rotation predictor F and
perform score matching in the rotation space:

ℓr = E
[
∥ω̃ −∇ω log p(ω)∥2

]
, ω̃ = F (−∂E/∂X̃) (10)

The rotation predictor F is based on Neural Euler’s Rotation Equation, which will be described in the
next section. The overall training procedure is summarized in Algorithm 1 and Figure 2.

4 Neural Euler’s Rotation Equation

In this section, we present Neural Euler’s Rotation Equation (NERE), which can be used in SE(3)
DSM to infer rotational scores from the gradient −∂E/∂X̃ . To motivate our method, let us first
review some basic concepts related to Euler’s Rotation Equation.

4.1 Euler’s Rotation Equations

In classical mechanics, Euler’s rotation equation is a first-order ordinary differential equation that
describes the rotation of a rigid body. Suppose a ligand rotates around its center mass µ with angular
velocity ω. Euler’s rotation equation in an inertial reference frame is defined as

IN
dω

dt
= τ , τ =

∑
i
(xi − µ)× fi (11)

where IN ∈ R3×3 is the inertia matrix of a ligand, τ is the torque it received, and fi is the force
applied to a ligand atom i. The inertia matrix describes the mass distribution of a ligand and the
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torque needed for a desired angular acceleration, which is defined as

IN =
∑

i
∥xi − µ∥2I − (xi − µ)(xi − µ)⊤ (12)

For a short period of time ∆t, we can approximate the new angular velocity ωt=∆t by
dω

dt
≈ ωt=∆t − ωt=0

∆t
= I−1

N τ (13)

Since we assume the system is in an inertial reference frame (ωt=0 = 0), we have ωt=∆t = I−1
N τ∆t

(we set ∆t = 0.1). We note that calculating the inverse I−1
N is cheap because it is a 3× 3 matrix.

4.2 Applying NERE to SE(3) DSM

In SE(3) DSM, our goal is to map the gradient −∂E/∂xi to a rotation vector ω. In physics, the
gradient −∂E/∂xi is the force fi of atom i. Therefore, the rotation predictor F in Eq.(10) is a
simple application of the Euler’s Rotation Equation

ω = F (−∂E/∂X) = I−1
N τ∆t, τ =

∑
i
(xi − µ)× (−∂E/∂xi) (14)

A nice property of NERE is that it is equivariant under SO(3) rotation group because it is derived
from physics. We formally state this proposition as follows and its proof in the appendix.
Proposition 1. Suppose we rotate a ligand so that its new coordinates become x′

i = Rxi. The new
force f ′, torque τ ′, inertia matrix I ′

N , and angular velocity ω′ for the rotated complex are

f ′
i = Rfi, τ

′ = Rτ , I ′
N = RINR⊤,ω′ = Rω

In other words, NERE is equivariant under SO(3) rotation group.

Once we establish SO(3) equivariance, it is easy to satisfy SE(3) equivariance by first placing the
rotation center at the origin (xi ← xi − µ), applying the predicted rotation via NERE, and then
adding µ back to each atom.

5 Experiments

We evaluate our model on two drug discovery applications: protein-ligand binding and antibody-
antigen binding affinity prediction. The experimental setup is described as follows.

5.1 Protein-Ligand Binding

Data. Our training data has 5237 protein-ligand complexes from the refined subset of PDBbind v2020
database [36]. Our test set has 285 complexes from the PDBbind core set with binding affinity labels
converted into log scale. Our validation set has 357 complexes randomly sampled from PDBbind
by Stärk et al. [35] after excluding all test cases. The final training set has 4806 complexes (without
binding affinity labels) after removing all ligands overlapping with the test set.

Metric. We report the Pearson correlation coefficient between true binding affinity and predicted
energy E(A,X). We do not report root mean square error (RMSE) because our model does not
predict absolute affinity values. In fact, shifting E(A,X) by any constant will be equally optimal
under the DSM objective. We run our model with five different random seeds and report their average.

Baselines. We consider three sets of baselines for comparison:

• Physics-based potentials calculate binding affinity based on energy functions designed by ex-
perts. We consider four popular methods: Glide [8], AutoDockvina [7], DrugScore2018 [6], and
MM/GBSA [21]. Among these methods, MM/GBSA is the most accurate but computationally
expensive. It takes one hour to calculate energy for just one complex on a 64-core CPU server.

• Unsupervised models. Since unsupervised learning is relatively underexplored in this area, we
implement two unsupervised EBMs using the same encoder architecture as NERE but different
training objectives. The first baseline is the standard Gaussian DSM (see Section 3.2). The second
baseline is contrastive learning [4]. For each crystal structure (A,X), we apply K random rigid
transformations to obtain K perturbed protein-ligand complexes X1, · · · ,XK as negative samples.
Suppose −E(A,Xi) is the predicted energy for Xi, we train our EBM to maximize the likelihood
of the crystal structure exp(−E(A,X))/

∑
i exp(−E(A,Xi)).
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Sup Crystal Docked
IGN ✓ 0.837 0.780
TankBind ✓ n/a 0.824
PLANET ✓ 0.811 0.799
Glide × 0.467 0.478
Autodockvina × 0.604 0.578
DrugScore2018 × 0.602 0.540
MM/GBSA × 0.647 0.629
Contrastive × 0.625.002 0.623.002

Gauss DSM × 0.638.017 0.632.016

NERE DSM × 0.656.012 0.651.011

Sup Crystal Docked
FANNab ✓ 0.325.014 0.326.019

FANNtransfer ✓ 0.350.033 0.359.039

AP_PISA × 0.323 0.144
ZRANK × 0.318 0.163
PYDOCK × 0.248 0.164
ESM-1v × 0.038 0.038
ESM-IF × 0.024 0.025
Contrastive × 0.308.037 0.304.021

Gauss DSM × 0.335.038 0.330.022

NERE DSM × 0.361.051 0.360.051

Table 1: Pearson correlation on PDBBind (left) and SAbDab test sets (right). We report standard
deviations for all models implemented in this paper. “Sup” indicates whether a method is supervised
or unsupervised. “Crystal”/“Docked” means a model is evaluated on crystal or docked structures.
The performance of TankBind on crystal structures is not available because it performs docking and
affinity prediction simultaneously in one model.

• Supervised models. Most of the existing deep learning models for binding affinity prediction
belong to this category. They are typically trained on the entire PDBBind database with over 19000
binding affinity data points. The purpose of this comparison is to understand the gap between
supervised and unsupervised models when there is abundant labeled data. For this purpose, we
include three top-performing methods (IGN [13], TankBind [19], and PLANET [43]) taken from a
recent survey by Zhang et al. (2023).

Results (crystal structures). In our first experiment, we evaluate all methods on the crystal structure
of protein-ligand complexes. As shown in Table 1 (left, crystal column), NERE outperforms all
physics-based and unsupervised models. We note that NERE is orders of magnitude faster than the
second best method MM/GBSA (100ms v.s. 1hr per complex). As expected, the three supervised
models perform better than NERE because they are trained on 19000 labeled affinity data points.
Nonetheless, NERE recovers almost 80% of their performance without using any labeled data, which
implies that binding affinity is closely related to the geometric structure of an input complex.

Results (docked structures). The previous evaluation considers an idealistic setting because crystal
structures are not available in real-world virtual screening projects. To this end, we use AutoDock
Vina [7] to dock each ligand in the test set to its binding pocket and evaluate all methods on docked
protein-ligand complexes. As shown in Table 1 (left, docked column), NERE consistently outperforms
the baselines in this setting. Its performance is quite close to the crystal structure setting because
docking error is relatively low (median test RMSD=3.55). In summary, these results suggest that
NERE has learned an accurate binding energy function useful for structure-based virtual screening.

5.2 Antibody-Antigen Binding

Data. Our training and test data come from the Structural Antibody Database (SAbDab) [31], which
contains 4883 non-redundant antibody-antigen complexes. Our test set is a subset of SAbDab (566
complexes) that has binding affinity labels. Our training set has 3416 complexes (without binding
affinity labels) after removing antigen/antibody sequences that appear in the test set. Our validation
set comes from Myung et al. [23], which has 116 complexes after removing antibodies or antigens
overlapping with the test set.

Baselines. Similar to the previous section, we consider three sets of baselines for comparison:

• Physics-based models. We consider eight biophysical potentials implemented in the CCharPPI
webserver [22] and report the top three models (full results are listed in the appendix).

• Unsupervised models. Besides contrastive learning and Gaussian DSM baselines used in Sec-
tion 5.1, we consider two state-of-the-art protein language models (ESM-1v [20] and ESM-IF [11]).
These two models have been successful in predicting mutation effects or binding affinities for
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general proteins and we seek to evaluate their performance for antibodies. The input to ESM-1v is
the concatenation of an antibody and an antigen sequence and we take the pseudo log-likelihood of
antibody CDR residues as the binding affinity of an antibody-antigen pair. The input to ESM-IF is
the crystal structure of an antibody-antigen complex and we take the conditional log-likelihood of
antibody CDR residues given the backbone structure as its binding affinity.

• Supervised models. We also compare NERE with supervised models trained on external binding
affinity data. The model is based on the same frame-averaging neural network (FANN) [28] and
pre-trained ESM-2 residue embeddings used by NERE.1 Since all labeled data from SAbDab are
in the validation and test sets, we draw additional data from an protein-protein binding mutation
database (SKEMPI) [12]. We obtain 5427 binding affinity data points after removing all complexes
appeared in the test set, from which 273 instances are antibody-antigen complexes. We explore two
training strategies: 1) training on 273 antibody-antigen data points only (FANNab); 2) training on
5427 data points first and then finetuning on 273 antibody-antigen data points (FANNtransfer).

Results (Crystal structure). We first evaluate all models on crystal structures and report the Pearson
correlation between true and predicted binding energy. As reported in Table 1 (right, crystal column),
NERE significantly outperforms physics-based methods and protein language models. ESM-1v
and ESM-IF have almost zero correlation because they only model the likelihood of the antibody
sequence. ESM-IF models the conditional likelihood of a sequence given its structure while NERE
models the likelihood of the entire protein complex.It is crucial to model the likelihood of structures
because binding affinity depends on the relative orientation between an antibody and an antigen. We
also find that NERE outperforms the supervised models, even with a small gain over FANNtransfer
trained on 5427 labeled data points. Overall, these results highlight the advantage of unsupervised
learning in low-data regimes.

Results (Docked structure). In our second experiment, we evaluate all methods on docked complexes
to emulate a more realistic scenario. We use the ZDOCK program [26] to predict the structure of
all antibody-antigen complexes in the test set (its median RMSD is 19.4). As reported in Table 1
(right, docked column), our model still outperforms all the baselines in this challenging setting.
The performance of EBMs are quite robust to docking errors regardless of the training algorithm
(contrastive learning, Gaussian DSM, or NERE DSM). In summary, our model is capable to predict
antibody-antigen binding even when crystal structure is not available.

5.3 Ablation Studies and Visualization

Visualizing energy landscape. First, we study how the learned energy changes with respect to
ligand orientations. Given an input complex, we perform a grid search of ligand rotation angles
ω = [ω1,ω2,ω3] and plot the predicted energy for each pose. As 3D contour plot is hard to visualize,
we decompose it into three 2D contour plots by fixing one of the three axis (ω1,ω2,ω3) to zero.
Ideally, the crystal structure (ω = [0, 0, 0]) should be the local minimum because it is physically the
most stable conformation. Figure 3a-b show contour plots for small molecules and antibody-antigen
complexes. We find that their crystal structures are located relatively near the local minimum.

Visualizing interaction energy. Since the predicted energy is a summation of all pairwise interactions∑
i,j:di,j<20Å ϕo(hi,hj), we seek to visualize the contribution of different residues to predicted

binding energy. Figure 3c is one example. Each row and column in this heatmap represent an
epitope residue and an antibody CDR residue, respectively. Each entry in the heat map is the
interaction energy between two residue ϕo(hi,hj). An entry is left blank if the distance di,j > 20Å.
Interestingly, we find that the model pays the most attention to CDR-H3 and CDR-L3 residues. In
most test cases, their energy is much lower than other CDR residues. This agrees with the domain
knowledge that CDR-H3 and CDR-L3 residues are the major determinant of binding.

Ablation studies. Lastly, we perform four ablation studies to understand the importance of different
model components. We first replace our SE(3)-invariant protein encoder with a non-invariant neural
network where atom 3D coordinates are directly concatenated to atom features in the input layer.
As shown in Figure 3d, the model performance drops significantly when the encoder is not SE(3)
invariant. In addition, we run NERE DSM by removing the rotation ℓr or translation DSM term ℓt
from the objective ℓDSM = ℓt+ℓr. We find that removing either of them substantially hurts the model

1We have also tried other neural network architectures like 3D convolutional neural networks and graph
convolutional networks, but they did not achieve better performance. Their results are shown in the appendix.
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Figure 3: a-b) Visualizing learned energy landscape for small molecules and antibodies. We perform
a grid search of ligand rotation angles ω = [ω1,ω2,ω3] and plot the predicted energy as 2D contour
plots with one of the axis ωi fixed. The crystal structure is at the origin (marked with *) and supposed
to be the local minimum of the energy landscape. c) The heat map of our learned energy function.
Each entry represent the binding energy between residues (i, j) (the darker the stronger). An entry is
left blank (grey) if their distance dij > 20Å. Our model correctly puts more attention to CDR-H3/L3
residues. d) Ablation studies on different model components.

performance. Therefore, it is crucial to consider both rotation and translation degree of freedom in
unsupervised binding energy prediction. Lastly, we train NERE DSM by replacing ESM-2 amino
acid embedding with one-hot encoding (this change only applies to the antibody model). We find that
ESM-2 is helpful but NERE DSM is still able to infer binding affinity with reasonable accuracy after
removing language model features.

6 Discussion

In this paper, we developed an energy-based model for unsupervised binding affinity prediction. The
energy-based model was trained under SE(3) denoising score matching where the rotation score was
predicted by Neural Euler’s Rotation Equation. Our results show that the learned energy correlates
with experimental binding affinity and outperforms supervised models in the antibody case.

Limitations. Indeed, there are many ways to improve our model. Our current model for antibodies
only considers their backbone structure (Cα atoms) and ignores all side-chain atoms. While the
model for small molecules include all atoms, we have not incorporated the flexibility of side chains
in a protein or rotatable bonds in a ligand. Considering their interaction is crucial for protein-ligand
binding prediction. Our future work is to extend our encoder with all-atom structures and our NERE
DSM algorithm with side-chain torsional rotations.

Broader Impacts. Our method is applicable to a wide range of biological areas like drug discovery,
immunology, and structural biology. We believe our work does not have any potential negative
societal impacts since our aim is to accelerate scientific discovery.

Code and Data. Our code and data are available at github.com/wengong-jin/DSMBind.
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A NERE Rotational Equivariance

Proposition 1. Suppose we rotate a protein-ligand complex so that new coordinates become x′
i =

Rxi. The new force f ′, torque τ ′, inertia matrix I ′
N , and angular velocity ω′ under the rotated

complex are
f ′
i = Rfi, τ

′ = Rτ , I ′
N = RINR⊤,ω′ = Rω,

Proof. After rotating the whole complex, the energy function E(A,X ′) = E(A,X) since the
encoder is SE(3)-invariant. Given that xi = R⊤x′

i and ∂xi/∂x
′
i = R⊤, the new force becomes

f ′
i =

(
∂E(A,X ′)

∂x′
i

)⊤

=

(
∂E(A,X)

∂xi

∂xi

∂x′
i

)⊤

=

(
∂xi

∂x′
i

)⊤

fi = Rfi

Based on the definition of torque and the fact that cross products satisfy Rx×Ry = R(x× y), we
have

τ ′ =
∑
i

(x′
i − µ′)× f ′

i =
∑
i

(Rxi −Rµ)×Rfi

= R
∑
i

(xi − µ)× fi = Rτ

Likewise, using the fact that RR⊤ = I , the new inertia matrix becomes

I ′
N =

∑
i

∥x′
i − µ′∥2I − (x′

i − µ′)(x′
i − µ′)⊤

=
∑
i

∥xi − µ∥2I − (Rxi −Rµ)(Rxi −Rµ)⊤

=
∑
i

R∥xi − µ∥2IR⊤ −R(xi − µ)(xi − µ)⊤R⊤

= R

(∑
i

∥xi − µ∥2I − (xi − µ)(xi − µ)⊤

)
R⊤

= RINR⊤

For angular velocity, we have

ω′ = CI ′−1
N τ ′ = CRI−1

N R⊤Rτ = CRI−1
N τ = Rω

Therefore, NERE layer is equivariant under rotation.

B Experimental Details

Protein encoder architecture. The energy function needs to be SE(3)-invariant and differentiable
with respect to X . Thus, we adopt the frame averaging neural network [28] so that E directly
takes coordinates X as input rather than a distance matrix. To be specific, our energy function is
parameterized as follows

{h1, · · · ,hn} =
1

|G|
∑
gk∈G

ϕh(A, gk(X)) (15)

The encoder ϕh is a modified transformer network [17] that learns atom representations h1, · · · ,hn

based on atom features A and coordinates X . Specifically, the model first projects the coordinates xi

onto a set of eight frames {gk(xi)} defined in Puny et al. [28], concatenate the projected coordinates
with atom features ai, encode the vector sequence [a1, gk(x1)], · · · [an, gk(xn)] to their hidden
representations hk

1 , · · · ,hk
n, and then average the frame representations hi =

∑
k h

k
i /8 to maintain

SE(3) invariance.

Model hyperparameters. In the small molecule case, our model has two components: molecular
graph encoder (MPN) and frame-averaging encoder. For the MPN encoder, we use the default
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Crystal Docked
ZRANK 0.318 0.163
RosettaDOCK 0.064 0.025
PYDOCK 0.248 0.164
SIPPER -0.138 0.003
AP_PISA 0.323 0.144
FIREDOCK 0.101 -0.052
FIREDOCK_AB 0.199 0.042
CP_PIE 0.234 0.120
3D CNN 0.286.021 0.162.017

GNN 0.244.075 0.249.075

NERE (ours) 0.361.051 0.360.051

Table 2: Additional baselines on the SAbDab test set.

hyperparameter from Yang et al. [42]. For the protein encoder, we set hidden layer dimension to be
256 and try encoder depth L ∈ {1, 2, 3} and distance threshold d ∈ {5.0, 10.0}. In the antibody case,
we try encoder depth from L ∈ {1, 2, 3} and distance threshold d ∈ {10.0, 20.0}. In both cases, we
select the hyperparameter that gives the best Pearson correlation on the validation set.

Docking protocol. For Autodock Vina, we use its default docking parameters with docking grid
dimension of 20Å, grid interval of 0.375Å, and exhaustiveness of 32. For ZDOCK, we mark antibody
CDR residues as ligand binding site and generate 2000 poses for each antibody-antigen pair. We
re-score those 2000 poses by ZRANK2 and select the best candidate.

Additional results. We include additional results for the antibody-antigen binding task. We first
compare our method with additional physic-based potentials implemented in the CCharPPI web
server [22], including ZRANK [24], RosettaDock [1], PyDock [10], SIPPER [27], AP_PISA [39],
CP_PIE [30], FIREDOCK, and FIREDOCK_AB [2]. As shown in Table B, the performance of these
models are much lower than NERE.

We have also explored more protein encoder architecture as additional supervised learning baselines.
We consider a 3D convolutional neural network (3D CNN) and a graph convolutional network (GCN)
implemented in the Atom3D package [38]. For the GCN model, we extend its implementation to
include ESM-2 residue embedding. We find that the performance of these two models are much worse
than FANN when trained on 273 antibody-antigen complexes from SKEMPI. Therefore, we choose
the FANN architecture as our default supervised model architecture for the rest of our analysis.
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Figure 4: Correlation between predicted and experimental binding energy.
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