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Abstract

Many real-world learning tasks have an underlying hierarchical and modular structure,
composed of smaller sub-functions. Traditional neural networks (NNs) often disregard
this structure, leading to inefficiencies in learning and generalization. Prior work has
demonstrated that leveraging known structural information can enhance performance by
aligning NN architectures with the task’s inherent modularity. However, the extent of prior
structural knowledge required to achieve these performance improvements remains unclear.
In this work, we investigate how modular NNs can outperform traditional dense NNs on tasks
with simple yet known modular structure by systematically varying the degree of structural
knowledge incorporated. We compare architectures ranging from monolithic dense NNs,
which assume no prior knowledge, to hierarchically modular NNs with shared modules that
leverage sparsity, modularity, and module reusability. Our experiments demonstrate that
module reuse in modular NNs significantly improves learning efficiency and generalization.
Furthermore, we find that module reuse enables modular NNs to excel in data-scarce scenarios
by promoting functional specialization within modules and reducing redundancy.

1 Introduction

Real-world learning tasks often exhibit an inherent hierarchical and modular structure, where a complex
target function can be decomposed into smaller, hierarchically organized sub-functions (Simon, 1991).
Traditional neural networks (NNs), such as multilayered perceptrons (MLPs), however, treat target functions
as undifferentiated input-output mappings, disregarding any underlying modular structure. This leads to
higher training costs and increased data requirements. By exploiting the task structure in NN architecture
design, efficiency and generalization can be significantly improved. For instance, in domains like vision and
language, prior structural knowledge such as spatial locality and temporal coherence are well understood.
These priors, when encoded using convolutional or recurrent architectures, are known to significantly improve
generalization performance and training efficiency.

On the other hand, the precise hierarchical and modular structure underlying a given task is often unknown.
To address this, previous work has explored explicit hierarchical and modular architectures that incorporate
partial knowledge of the task structure (Fernando et al., 2017; Rosenbaum et al., 2017; Shazeer et al., 2017;
Kirsch et al., 2018; Goyal et al., 2019; 2021; Ponti et al., 2022). These architectures break the NN into sparsely
connected sub-networks or modules, each learning a distinct sub-function, and organize them hierarchically,
where the organization itself is learned.
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Figure 1: Overview of the models, highlighting varying levels of structural knowledge assumed at initialization.
The associated task for these architectures is depicted in Figure 2 (depth 2). From top left to bottom
right: Monolithic dense NN: Unknown task structure. Monolithic random sparse NN: Sparsity in task
structure. Hierarchically modular NN: Modular sparsity pattern. Hierarchically modular NN (fixed inter-
module connectivity): Modular sparsity with known sub-function connectivity. Hierarchically modular NN
with shared modules: Modular sparsity and module reusability. Hierarchically modular NN with shared
modules (fixed inter-module connectivity and module selection): Modular sparsity, module reusability, known
sub-function connectivity and reuse.

The variety of specific architectural choices tailored to different tasks raise questions about the extent of prior
knowledge required for performance improvements. For instance, architectures designed for tasks like visual
question answering (VQA) often depend on a high degree of prior knowledge about the task’s modularity
(Andreas et al., 2016; Hu et al., 2017). Conversely, generic configurations like mixture-of-experts (MoE) or
routing networks excel in domains such as multi-task learning (Rosenbaum et al., 2017; Purushwalkam et al.,
2019; Hazimeh et al., 2021; Ponti et al., 2022; Chen et al., 2023), transfer / continual learning (Terekhov
et al., 2015; Wang et al., 2020; Veniat et al., 2020; Mendez & Eaton, 2020; Ostapenko et al., 2021), and
compositional generalization (Bahdanau et al., 2018; Lake & Baroni, 2018; Chang et al., 2018; Hupkes et al.,
2020; Rahaman et al., 2021). In these domains, where sub-functions are dynamically organized or selected
based on input-dependent cues, modular designs enable flexible function representation by adapting the
organization or selection of modules for different inputs. Even in these settings, previous analysis suggests
that knowing specific input components influencing module organization (Mittal et al., 2022), as well as
understanding module architecture (such as input dimensions) or identifying input bottlenecks, improves
generalization (Bahdanau et al., 2019; Goyal et al., 2021; Ostapenko et al., 2022).

Our work contributes to this line of inquiry (Pathak et al., 2019; D’Amario et al., 2021; Mittal et al., 2022;
Ostapenko et al., 2022; Schug et al., 2023; Jarvis et al., 2024; Lippl & Stachenfeld, 2024) by systematically
studying how different degrees of structural knowledge impact NN generalization and training efficiency.
We consider tasks with fixed and known hierarchically modular structure, particularly those derived from
Boolean functions. Unlike prior works that focus on input-dependent modular structure, a static modular
structure provides a controlled environment for evaluating key architectural principles such as sparsity,
modularity, and module reusability, while isolating those factors from principles used to learn input-dependent
hierarchical organization. Additionally, the synthetic Boolean tasks with completely known structure allows
for systematically varying the degree of prior knowledge encoded in the architecture, from assuming no prior
knowledge to complete structural knowledge.
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Figure 2: Function graphs with varying complexity used to generate the truth tables.

We start with dense NNs that make no structural assumptions, followed by random sparse NNs that assume
sparsity without a specific pattern, classifying them as monolithic NNs. We then examine hierarchically
modular NNs, where modules are explicitly defined and organized hierarchically (Fernando et al., 2017;
Ostapenko et al., 2021). In these networks, both module weights and inter-module connections are learned
without assuming prior knowledge of specific connectivity. We extend this exploration to modular NNs with
fixed inter-module connectivity, where the exact sub-function connectivity is known. Finally, we introduce
module reusability, where the same module can be used in multiple locations within the hierarchy, reflecting
the idea that sub-functions may recur throughout the task (Goyal et al., 2021; Ostapenko et al., 2022). In
this setup, the NN must dynamically learn both connectivity and module selection from a shared pool of
modules. We also explore a variant with fixed connectivity and module selection, representing complete
structural knowledge.

All architectures studied are implemented using multi-layer perceptrons (MLPs) and involve learning functional
components, regardless of the degree of structural knowledge incorporated. We systematically analyze the
effects of sparsity, modularity, and module reusability on generalization and training efficiency. Our findings
demonstrate that hierarchically modular NNs with shared modules consistently outperform dense NNs,
especially in data-scarce scenarios. Furthermore, module reuse through sharing facilitates the accurate
learning of inter-module connectivity while promoting functional specialization within modules, ultimately
leading to improved generalization. These results are demonstrated on simple, hierarchically modular tasks
with fully known structure, primarily Boolean functions and are further validated on a visual recognition task
using the MNIST dataset.

2 Preliminaries

2.1 Hierarchically Modular Boolean Functions

In this work, we construct hierarchical and modular tasks using Boolean functions (Malakarjun Patil et al.,
2024). A Boolean function f : {0, 1}n → {0, 1}m maps n input bits to m output bits. The set of gates G
includes {∧, ∨, ⊕} (AND, OR, XOR), with edges representing direct connections.

A function graph for a Boolean function is represented as a directed acyclic graph (DAG) consisting of n
input nodes with zero in-degree, k gate nodes with non-zero in-degree (associated with gates from G), and
m output nodes with zero out-degree. A truth table is a tabular representation of a Boolean function that
enumerates all possible input combinations and their corresponding outputs.

A sub-function or sub-task corresponds to a gate node within the function graph that applies an operation on
its specific inputs. Sub-functions are organized hierarchically, with outputs from certain sub-functions serving
as inputs for others. These sub-functions have three fundamental properties:

1. Input Connectivity and Separability: Sub-functions operate on outputs from previous sub-functions or
input nodes. This connectivity is sparse—each sub-function relies on a subset of preceding outputs. In our
experiments, each sub-function takes exactly two inputs to maintain uniformity across graphs.

2. Output Connectivity and Reusability: Outputs produced by a sub-function can be reused by multiple
sub-functions at higher hierarchical levels, similar to feature reuse in NNs.
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3. Sub-Function Reusability: The functional operation of a sub-function can be reused at multiple locations
in the function graph. For instance, an XOR gate might be reused in various parts of the graph.

A task’s hierarchical structure or sub-function organization is defined by the relationships among these
underlying sub-functions.

2.2 Neural Network Architectures

In this section we describe various NN architectures used in our experiments.

Monolithic NNs: We consider dense multi-layer perceptrons (MLPs) and sparse MLPs. Sparse MLPs are
created by random pruning to introduce sparsity, leveraging a notion of sparsity in the function graph but
without its specific pattern.

Hierarchically Modular NNs (modular): The modular architecture is arranged in L hierarchical layers,
each containing Ml modules, denoted as mi

l, where i represents the module’s position within layer l. Each
module includes a small MLP and an input selection vector si

l ∈ RMl−1 . The MLP learns the functional
component, while the input selection vector governs inter-module connectivity by selecting module inputs
from the outputs of modules in the previous layer. The final outputs of the NN are selected from the set of
all modules in the last layer using an output selection vector.

We explore two scenarios: 1. Modular: Both inter-module connectivity and module MLP weights are learned.
2. Modular-FC: Inter-module connectivity is fixed, inferred from the function graph, while module MLP
weights are learned.

Learning Inter-Module Connectivity: Given outputs from layer l − 1, xl−1 ∈ RMl−1 , the Sigmoid function is
applied to si

l to produce a score for each potential input, selecting the top-k inputs. We use the straight-
through estimator (Bengio et al., 2013) to propagate gradients through non-differentiable selections, facilitating
effective learning of inter-module connectivity. See Appendix A for additional implementation details and
Appendix F.1 for experiments related to learning inter-module connectivity.

Hierarchically Modular NNs with Shared Modules (modular-shared): The modular-shared architecture
extends the modular architecture, treating module positions as slots filled by modules from a shared pool
of M modules. Each slot has an input selection vector si

l ∈ RMl−1 and a module selection vector vi
l ∈ RM ,

which determines the module used in that slot. The final outputs are selected from the set of slots in the last
layer using an output selection vector.

We explore two scenarios: 1. Modular-shared: The network learns both inter-module connectivity and
module selection dynamically, alongside module weights. 2. Modular-shared-FCMS: Connectivity and module
selection are fixed, with only the module weights being learned.

Learning Inter-Module Connectivity and Module Selection: Outputs from slots at layer l − 1, xl−1 ∈ RMl−1 ,
are selected as inputs similar to the previous architecture. The chosen inputs are passed to a module
determined by the selection vector vi

l ∈ RM , which is first transformed via a Softmax function to assign
probabilities to each module in the shared pool. The module with the highest probability is selected (top-1).
The straight-through estimator is used to compute gradients for both si

l and vi
l (see Appendix A).

Hereafter, "hierarchically modular NNs" refers to both modular and modular-shared unless otherwise specified.

3 Learning Modular Boolean Tasks

We evaluate the performance of different NN architectures by learning Boolean functions represented as
function graphs. The truth table derived from these graphs serves as the dataset. Our evaluation focuses
on the models’ generalization and learning efficiency when only a fraction of the truth table is available for
training.

Experiment Details: We use three function graphs, each with 6 input nodes and 2 output nodes, as
depicted in Figure 2. The complexity is controlled by the number of hierarchical levels—greater depth implies
increased dependence on intermediate sub-functions, making the task more intricate.
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Figure 3: Test and train accuracy of different NNs relative to training size. For each datapoint, we report the
mean and combined standard error (shaded region).

The NN architectures are trained on different portions of the truth table, with training sizes ranging from
0.1 to 0.7 of the total rows. The remaining rows are split evenly between validation and test sets. For each
training size, we create three random partitions of the truth table, and each partition is trained with three
additional random seeds, resulting in a total of nine training runs per architecture per training size. We
report the mean and combined standard error, calculated from the three separate means corresponding to the
three dataset partitions. To enhance robustness, random noise from N (0, 0.1) is added to the inputs during
training for data augmentation. All models are trained using the Adam optimizer for 1000 epochs.

To ensure consistency, modular and modular-FC architectures use the same number of modules as there
are gate nodes at each level of the function graph (Mittal et al., 2022). Similarly, modular-shared and
modular-shared-FCMS architectures align the number of slots with the number of gate nodes, and the count
of shared modules matches the number of distinct gates in the graphs. Appendix C demonstrates that varying
the number of modules or slots has minimal impact on performance. All module MLPs have a uniform
structure, with 2 input units, a hidden layer with 12 units, and 1 output unit. We fix the number of inputs to
modules in hierarchically modular NNs to 2, ensuring structural consistency while preventing module collapse
and optimizing module utilization (Goyal et al., 2021; Ostapenko et al., 2022). Additional experiments,
presented in Appendix D, explore varying module input dimensions. These results demonstrate that precise
knowledge of the module input size has minimal impact on generalization performance.

Monolithic NNs are configured with 1, 3, or 5 hidden layers to match the depth of the hierarchically modular
NNs, with each hidden layer containing 36 units. Further architectural and training details can be found in
Appendix A.

3.1 Generalization Performance

Comparing Architectures: Figure 3 shows the generalization performance of different NN architectures
relative to the training size.

1. Monolithic Dense vs. Monolithic Sparse: The performance of monolithic NNs is heavily influenced by
parameter count. As sparsity increases, test accuracy declines significantly.

2. Modular vs. Monolithic: Modular NNs possess only 30%, 7.1%, and 5.9% of the weights compared to
monolithic dense NNs for functions with depth 1, 2, and 3, respectively. They outperform monolithic sparse
NNs with similar parameter counts (see Appendix Table 1 for details). As the parameter count of monolithic
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Figure 4: FLOPs required to train various NNs as compared to the ratio of truth table available.

NNs increases, their test accuracy converges with that of modular NNs, indicating that prior knowledge of
modular sparsity is most beneficial when parameter counts are similar.

3. Modular-Shared vs. Monolithic and Modular: Modular-shared NNs consistently outperform both monolithic
and modular NNs, benefiting from module reuse that artificially increases the number of samples per module
and leads to efficient learning of sub-functions. For depth-1 and depth-2 functions, modular-shared NNs
significantly outperform the others. However, for depth-3 functions, the performance gap narrows, suggesting
that for highly complex tasks, the benefits of modularity and reuse diminish, especially with limited training
data.

4. Fixed Connectivity and Module Selection: Modular-FC and modular-shared-FCMS NNs demonstrate
superior performance compared to all other NNs. Modular-shared-FCMS NNs are particularly effective with
minimal training data, highlighting the value of reusability and fixed structure, which reduces the complexity
associated with concurrently learning both the sub-functions and their organization.

Train Accuracy vs. Test Accuracy: Modular and modular-shared NNs tend to have closely aligned train
and test accuracy, while monolithic NNs often exhibit overfitting, particularly with limited training data.
This suggests that the inherent inductive bias of hierarchically modular NNs effectively prevents overfitting
by aligning the learned representations with the true task structure.

Generalization Relative to Function Complexity: As function complexity increases, all NNs require
larger training sizes for effective generalization. A minimum threshold of training data exists for each
architecture, determined by its level of prior knowledge, to generalize to unseen samples. This threshold
increases with complexity, but decreases with greater structural knowledge, such as module reuse and fixed
connectivity.

3.2 Training Efficiency

We next evaluate training efficiency based on the number of floating-point operations (FLOPs) required
for training. FLOPs are calculated considering the number of training iterations to reach peak validation
accuracy, training size, and the number of weights used in forward and backward passes, as well as in
optimization updates. We compare architectures in two groups, including only those that generalize effectively
(see Appendix B for further details).

Comparing Architectures: Figure 4 presents the FLOPs required for training different NNs.
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Figure 5: Minimum graph edit distance between the learned connectivity in modular and modular-shared
NNs and the ground truth function graphs.

1. Monolithic Dense vs. Monolithic Sparse: Monolithic sparse NNs achieve better training efficiency due to
reduced parameter counts. There exists a range of densities for which sparse NNs match the generalization of
dense NNs while reducing training costs.

2. Modular vs. Monolithic: Modular NNs use only 30%, 7.1%, and 5.9% of the weights of monolithic dense
NNs for depths 1, 2, and 3, respectively, leading to improved training efficiency. However, with sufficient
training data, monolithic dense NNs can converge more quickly for simpler tasks, ultimately showing better
efficiency, as seen for the depth-1 and depth-2 functions at high training sizes. Monolithic sparse NNs (25%
density) can also match the generalization performance of modular NNs with similar training efficiency but
lack the convergence speed-up seen in dense NNs, likely due to reduced parameterization. See Appendix B
for NN convergence performance.

3. Modular-Shared vs. Monolithic and Modular: Modular-shared NNs consistently demonstrate superior
training efficiency compared to monolithic dense NNs, although dense NNs eventually catch up with increasing
training size for simpler tasks. Modular-shared NNs require similar FLOPs to monolithic sparse and modular
NNs but outperform them in generalization.

Also, hierarchically modular NNs do not achieve faster convergence with larger training size – possibly because
they need to explore and determine the inter-module connectivity.

4. Fixed Connectivity and Module Selection: Modular-FC and modular-shared-FCMS NNs achieve the highest
training efficiency. Modular-shared-FCMS NNs perform particularly well, underscoring the computational
advantage of focusing on learning only the sub-functions as compared to learning the sub-functions along
with exploring and determining their organization. Further analysis in Appendix F.2 shows that structural
parameters require higher learning rates than module MLPs.

Efficiency Relative to Function Complexity: As function complexity increases, training all architectures
requires more operations. For low-complexity functions, monolithic dense NNs are more efficient compared to
others. However, as complexity grows, NNs with prior structural knowledge (e.g., sparsity, modularity, and
reuse) achieve better efficiency. This improvement is directly tied to their ability to generalize effectively
as compared to dense NNs with increasing task complexity. Modular-FC and modular-shared-FCMS NNs
particularly benefit from prior knowledge of connectivity and module selection, significantly enhancing training
efficiency.

3.3 Factors Influencing Generalization in Modular NNs

In this section, we analyze two key factors influencing the generalization of modular and modular-shared
NNs: learning the sub-function organization through inter-module connectivity and achieving functional
specialization within modules, particularly under limited data conditions.

Learning the Sub-Function Organization: Unlike monolithic dense NNs, which directly learn input-
output mappings, modular and modular-shared NNs need to identify the underlying task structure to perform
effectively. We measure how well these NNs capture the true task structure using minimum graph edit
distance (Abu-Aisheh et al., 2015), comparing the learned inter-module connectivity to the ground truth
function graph.
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Figure 6: Magnitude of the correlation coefficient between NN module output and the XOR truth table
output. Larger values indicate greater functional specialization.

(a) MNIST task (b) Generalization performance of various NN architectures.

Figure 7: Hierarchically modular task based on MNIST and generalization performance of various NN
architectures on unseen digit combinations and seen digit combinations.

The learned connectivity is represented as a graph with NN input units, output units, and all modules as
nodes. The input and output nodes must match, while modules can align with any gate node at the same
hierarchical level, ensuring permutation invariance. Figure 5 shows that modular-shared NNs consistently
achieve lower graph edit distances compared to modular NNs, indicating a closer match to the ground truth.
Notably, the graph edit distance is zero when both modular and modular-shared NNs achieve 100% train and
test accuracy.

Learning the Underlying Sub-Function: The superior generalization of modular-shared NNs, particularly
with lower truth table ratios, suggests an advantage due to module reuse across multiple locations, enabling
modules to learn sub-functions more effectively with fewer samples. To quantify functional specialization, we
use a metric based on Pearson’s correlation coefficient between module outputs and truth table outputs for a
specific sub-function.

Let X represent all truth table rows for a specific sub-function. We collect the corresponding module outputs
and calculate the correlation coefficient ρ between these outputs and the ground truth. A higher magnitude
of ρ indicates greater alignment between the module’s function and the ground truth sub-function.

Figure 6 shows the correlation coefficients for the XOR sub-function in the first hierarchical level of all three
functions. Modules in modular-shared NNs exhibit consistently higher correlation with the ground truth
compared to modular NNs, with ρ values closely aligning with generalization performance.

4 Visual Modular Task Based on MNIST

We present results for a modular task constructed using the MNIST handwritten digits dataset, as shown in
Figure 7a. In this task, two MNIST images, each selected from digits between 0 and 7, serve as input. These
images are classified into their corresponding 3-bit binary representations, which are then concatenated and
passed to a Boolean task. The NNs must first classify each image independently before performing additional
operations.
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Figure 8: Generalization performance of different NNs trained on the hierarchically modular MNIST task,
evaluated across varying proportions of digit combinations used for training and different numbers of samples
per combination. Plots show results for: a. modular NN, b. modular-FC NN, c. modular-shared NN, and d.
modular-shared-FCMS NN.

We vary the ratio of unique digit combinations used for training. For each training size, a random subset
of all possible digit combinations is chosen, with the remaining combinations evenly divided between test
and validation sets. We also present results on a test set constructed using seen digit combinations but
with unseen digit images. Each training combination contains 1000 samples, while the test and validation
sets contain 100 samples per combination. We also examine the effect of different numbers of samples per
combination for training.

We adapted the NNs for handling image inputs: in modular NNs, the first hierarchical level contains MLP
modules designed for image processing, with 784 input units, two hidden layers (128 and 64 units), and 3
output units. Each module processes one of the two images, and the outputs are concatenated and passed to
higher levels, where modules learn Boolean functions, similar to previous experiments. In modular-shared NNs,
two sets of shared modules are employed—one set for image processing and another for Boolean functions.
The first layer contains two slots, each selecting an image-processing module from the shared pool, with
outputs concatenated and passed to higher layers that use shared Boolean modules. For monolithic NNs, the
input size was increased to 784 × 2, and the architecture was adjusted to match the depth and number of
hidden units in the modular NN. All models were trained for 200 epochs using the Adam optimizer, with
three dataset splits and three different seeds for each split (see Appendix Section A for additional details).

Generalization on Unseen Digit Combinations: Figure 7b shows the generalization performance on
both unseen and seen digit combinations. At a training size of 0.4, all NNs show random test accuracy. As
the training size increases, modular, modular-shared, modular-FC, and modular-shared-FCMS NNs start to
generalize at different rates, while monolithic NNs do not improve and their test accuracy declines. This
decrease may be due to over-fitting on seen digit combinations given that, for larger training sizes, the test
accuracy of monolithic NNs on seen digit combinations improves.

The ability to generalize to unseen combinations, known as combinatorial generalization, is a persistent
challenge for monolithic NNs (Keysers et al., 2019; Csordás et al., 2020). However, for Boolean tasks,
monolithic NNs demonstrated the capacity to capture the underlying function and generalize as well as
modular NNs, suggesting that simpler tasks and higher data availability can enable generalization.

Modular-shared NNs outperform monolithic, modular, and modular-FC NNs for the MNIST-based task.
Additionally, modular and modular-shared NNs closely track their fixed-connectivity counterparts (modular-
FC and modular-shared-FCMS, respectively), with small accuracy differences. This may be attributed to the
large sample size used in the task, which facilitates better generalization.

Figure 8 presents the generalization performance of various NNs across different sample sizes per digit
combination. We observe that modular-shared-FCMS NNs consistently outperform other architectures when
the sample size is reduced to 500 and 100, supporting our previous hypothesis. Additionally, modular-shared
NNs exhibit superior generalization compared to modular and modular-FC NNs, emphasizing the advantage
of module reusability in low-sample training scenarios.

Generalization on Seen Digit Combinations: Figure 7b illustrates the generalization performance
on seen digit combinations. It is noteworthy that the validation set contains combinations distinct from
both the training and test sets. The overall trends observed in previous results are consistent here. With
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larger training sizes, monolithic NNs demonstrate effective generalization. Notably, the modular-FC and
modular-shared-FCMS architectures outperform the modular and modular-shared NNs at larger training sizes,
emphasizing the advantage of leveraging predefined connectivity to facilitate learning of the complete task,
encompassing both seen and unseen combinations.

Figure 9: FLOPs required to train vari-
ous NNs on the hierarchically modular
MNIST task.

Training Efficiency: The FLOPs required by various NNs during
training are shown in Figure 9. Monolithic dense NNs show lower
training costs at smaller training sizes, primarily because they reach
their highest validation accuracy after just one epoch for sizes 0.4,
0.5, and 0.6, indicating limited learning. While monolithic NNs
match the training efficiency of other NNs at larger training sizes,
they still fall short in generalization performance.

For larger training sizes, modular and modular-shared NNs achieve
training efficiencies comparable to those of modular-FC and
modular-shared-FCMS NNs. This suggests that when sufficient data
is available, the advantage of knowing the underlying sub-function
organization has a limited impact on training efficiency. However,
in data-scarce scenarios, this structural knowledge becomes crucial
for effective training and generalization.

Figure 10: Minimum graph edit dis-
tance between learned connectivity and
ground truth task connectivity

Learning the Sub-Function Organization: Similar to the
Boolean function graphs, we compare the learned inter-module
connectivity in modular and modular-shared NNs for the MNIST-
based task by computing the minimum graph edit distance between
the learned connectivity and the ground truth function graph.

The task graph includes two input nodes (one for each image), each
connected to three of six intermediate nodes in the first hierarchical
level, corresponding to six output bits (three per image). These
nodes are then connected to the rest of the Boolean function graph.
To construct the learned connectivity graph, we represent each
image module as three nodes, with incoming connections from
the input nodes and outgoing connections to subsequent modules.
Our results (Figure 10) indicate that modular-shared NNs more
accurately capture the underlying connectivity compared to modular NNs.

Figure 11: Function specialization in im-
age modules for modular and modular-
shared NNs.

Learning the Underlying Sub-Function: Next, we evalu-
ate the functional specialization of modules in both modular and
modular-shared NNs, focusing on the image classification modules.
We assess specialization using the magnitude of the Pearson cor-
relation coefficient. Each module produces three outputs, while the
ground truth classes are represented as 3-bit vectors.

We determine the optimal permutation of the output units by
maximizing the correlation coefficient and report the highest value
achieved. Our results, shown in Figure 11, reveal that modules in
modular-shared NNs exhibit a greater degree of functional specializa-
tion compared to those in modular NNs, reinforcing the advantage
of module reusability.

5 Conclusion

This work explored how varying degrees of structural knowledge about a task’s hierarchical modularity
impacts NN generalization performance and training efficiency. Through experiments involving Boolean
functions and a hierarchically modular MNIST task, we showed that NNs incorporating modularity and
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module reusability significantly outperform monolithic and sparse networks, particularly in data-limited
scenarios. The improved performance stems from the ability of these NNs to exploit task structure effectively
by learning both the specific sub-functions and their organization. Our findings emphasize the importance of
explicitly incorporating task structure through modularity and module reusability into NNs, indicating a
promising direction for scalable and efficient learning systems.

Our study is deliberately grounded in tasks with fully known, static modular structure, enabling isolation
of architectural factors such as sparsity, modularity, and module reuse. Extending these insights to more
complex, real-world domains—where task structure is implicit and must be inferred—remains an important
direction for future work. Future work could further explore the theoretical foundations of task learnability
with respect to function graph complexity and the degree of encoded structural knowledge. Additionally,
applying modular architectures in transfer learning settings and investigating how structural similarity
between pretraining and target tasks influences efficiency and generalization may offer valuable directions for
scalable learning systems.

Appendix Summary

The appendix provides additional details, results and experiments supporting the claims presented in the
main part of the paper.

• Technical Details: Appendix A provides implementation details for the datasets and NN architec-
tures, along with a link to the codebase. Appendix B describes how training operation counts are
computed for each architecture.

• Hierarchically Modular NN Ablations: In the main results, modular and modular-FC architec-
tures use the same number of modules as gate nodes in each level of the function graph. Likewise,
modular-shared and modular-shared-FCMS match the number of slots to gate nodes, and the number
of shared modules to distinct gates. Appendix C shows that varying the number of modules or slots
has minimal impact on performance. All module MLPs share a fixed architecture, and the number of
inputs to each module is kept constant. Appendix D further shows that generalization is robust to
changes in module input dimensionality.

• Multi-task Learning: Appendix E explores a multi-task learning setup where NNs are trained to
solve multiple Boolean functions simultaneously. This enables task-conditioned modularity, allowing
NNs to adapt connectivity and module usage based on a task identifier. Hierarchically modular NNs
naturally benefit from this flexibility. Our results show that in the multi-task case, both modular
and modular-shared NNs outperform dense monolithic NNs.

• Design Choices and Hyperparameters: Appendix F presents additional experiments supporting
the architectural and training choices for modular and modular-shared NNs. These include comparisons
of input selection strategies in modular NNs, and module selection mechanisms in modular-shared
NNs. We also examine the effect of different learning rates for structural and functional parameters,
finding that higher learning rates for structural parameters tend to improve generalization.

• Additional Results: Appendix G provides supplementary visualizations offering alternative per-
spectives on generalization performance and training efficiency across the different architectures.
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A Implementation and Training Details

The GitHub repository can be accessed here: https://github.com/ShreyasMalakarjunPatil/
modular-NNs.

This section presents the implementation details for datasets, NN architectures, and training settings for all
architectures.

A.1 Dataset Construction and Hyperparameter Tuning

Boolean Functions: For Boolean functions, we generate a truth table of 64 rows (6 inputs). Rows are split
into training, validation, and test sets based on the specified training ratio and dataset seed. Each training
size has three different splits corresponding to three different dataset seeds.

MNIST Task: The MNIST task uses pairs of digits (0-7), resulting in 64 combinations. These combinations
are divided into training, validation, and test sets, similarly to the Boolean functions. For each combination,
we randomly select image pairs in the MNIST training set based on the specified sample size per combination.
Test sets use image pairs from the MNIST test split. Dataset splitting is performed using three different
seeds. When varying the number of samples per combination, the validation and test sets remain consistent.

Training and Hyperparameter Tuning: The NNs are trained using the Adam optimizer for 1000 epochs
for Boolean functions and 200 epochs for the MNIST task. The loss function is bitwise cross-entropy with
Sigmoid activation. A grid search over learning rate, batch size, and weight decay is used to select optimal
hyperparameters based on validation accuracy. We use seeds {40, 41, 42} for dataset splits and {0, 1, 2}
for NN initialization and training. We independently tune the hyperparameters for each dataset split and
training size by maximizing the validation accuracy, averaged over the three training seeds.

A.2 MLPs and Random Sparse MLPs

Architecture Details: We use MLPs with ReLU activations at the hidden layers, Sigmoid at the output
layers, and Xavier weight initialization (Glorot & Bengio, 2010). Sparsity in monolithic NNs is achieved by
pruning edges based on a uniform random score.

Boolean functions with depths of 1, 2, and 3 use MLPs with 1, 3, and 5 hidden layers (36 units each).
The MNIST-based task uses MLPs with 784 × 2 input units, 2 output units, and 6 hidden layers with
256, 128, 64, 36, 36, 36 units.

Hyperparameter Sets: For Boolean functions, we use learning rates {0.1, 0.01, 0.001}, batch sizes {4, 64},
and weight decay {0.001, 0.0001}. For MNIST, we test learning rates {0.01, 0.001}, batch sizes {128, 256, 512},
and weight decay {0.001, 0.0001}.

A.3 Hierarchically Modular NNs

Overall Architecture: The architecture has L hierarchical layers, each with Ml modules. Each module
mi

l has functional parameters (MLP) and structural parameters (input selection vector si
l ∈ RMl−1). The

input selection vector, initialized with values from a standard normal distribution, determines module input
connectivity.

Module Input Selection: For a module mi
l, we apply the Sigmoid function to the input selection vector si

l

to get pi
l, then select the top-2 values to generate one-hot encoded binary masks b1 ∈ {0, 1}Ml−1 and b2 ∈

{0, 1}Ml−1 . These masks isolate inputs from xl−1 using dot products, resulting in inputs x1(l, i) = b1 ⊙ xl−1
and x2(l, i) = b2 ⊙ xl−1. The straight-through estimator is used to estimate gradients.

For image modules, the Softmax function is applied to si
l and one input image is selected. A binary mask,

b ∈ {0, 1}2, is generated and applied to each pixel position across the two images.
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Task Hierarchical depth 1 Hierarchical depth 2 Hierarchical depth 3 MNIST Task
Number of weights F B U F B U F B U F B U

Monolithic 288 288 288 2880 2880 2880 5472 5472 5472 442,744 442,744 442,744
Modular 100 100 86 232 232 206 358 358 323 220,840 220,840 217,682

Modular-shared 102 102 52 422 242 108 958 382 167 221,036 220,676 108,850
Modular-FC 72 72 72 180 180 180 288 288 288 217,652 217,652 217,652

Modular-shared-FCMS 72 72 36 180 180 72 288 288 108 217,652 217,652 108,808

Table 1: Number of weights involved in forward pass (F), backward pass (B) and gradient based update (U)
of various NNs for different tasks.

Forward Pass: Each module’s input is processed by its MLP, and outputs are concatenated before passing
to the next layer. This is repeated until the final layer, where outputs are selected from the last set of modules
using input selection vectors.

Module MLP Architectures: For Boolean sub-functions, module MLPs have 2 input units, 1 output unit,
and a hidden layer with 12 units. For MNIST, module MLPs have 784 input units, 3 output units, and 2
hidden layers (128 and 64 units). Xavier initialization is used for weights.

Hyperparameter Sets: Hyperparameters include learning rates {0.1, 0.01}, batch sizes {4, 64}, and
weight decay {0.001, 0.0001} for Boolean functions. MNIST uses learning rates {0.01, 0.001}, batch sizes
{128, 256, 512}, and weight decay {0.001, 0.0001}. Structural and functional parameters use separate learning
rates, and activation function temperature (τ) for input selection vectors is also tuned ({1.0, 2.0, 5.0}).

The learning rate values tested here for Boolean functions is a subset of the one used for monolithic NNs
while the batch size and weight decay values are the same. The learning rates and temperatures used here
are selected from a broader range of values based on results in Appendix F.1 and F.2.

Fixed Connectivity: In fixed inter-module connectivity, input selection vectors are fixed, and gradients are
not computed for them. A single learning rate is used for functional parameters, and the hyper-parameter
sets tested are consistent with the setup for monolithic NNs.

A.4 Hierarchically Modular NNs with Shared Modules

Overall Architecture: The architecture consists of L layers with Ml slots, filled by modules from a shared
pool of M modules. Each slot has an input selection vector (si

l) and a module selection vector (vi
l). Both

vectors are initialized randomly with samples from the standard normal distribution.

Input and Module Selection: Input selection follows the same procedure as for standard hierarchically
modular NNs. For module selection, the Softmax function is applied to vi

l to select a module from the pool
and a binary mask, b ∈ {0, 1}M is constructed. The inputs to the slots are passed through all M modules,
and the slot output is computed using a dot product between the module outputs and the binary mask. The
straight-through estimator is used for gradient calculation. For image slots, the module selection mask is
applied independently at each module output position.

Forward Pass: Each slot processes inputs using a selected module, and the outputs are concatenated and
passed to subsequent layers. The module MLP architecture, training, and hyperparameters are consistent
with those used for hierarchically modular NNs.

Fixed Connectivity and Module Selection: In this variant, both input and module selection vectors are
fixed, with no gradients computed. The same hyperparameters are used as for monolithic NNs.

B Training Efficiency Details

This section describes the methodology used to calculate the number of floating-point operations (FLOPs)
required during training across various NN architectures. In practice, GPU hardware performs dense matrix
multiplications, even when the weight matrix is sparse. However, in the hierarchically modular architectures,
computational savings arise from modules that are small, independent MLPs—each with significantly fewer
parameters than their monolithic counterparts. These smaller MLPs naturally lead to reduced FLOP counts,
irrespective of GPU implementation details. In the case of sparse monolithic NNs, we report FLOP reductions
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Figure 12: Number of weight updates (training iterations) for various NNs to reach peak validation accuracy
on different Boolean functions as compared to the ratio of truth table available.

based on parameter sparsity; however, these do not translate to actual computational gains on GPUs due to
the lack of native support for sparse matrix operations.

Figure 13: Number of weight up-
dates (training iterations) for various
NNs to reach peak validation accu-
racy on the MNIST-based task.

The three main factors determining the FLOP count are: the number
of samples or training size, the number of parameters, and the number
of training iterations (or weight updates) needed to reach the highest
validation accuracy (i.e., early stopping). Figures 12 and 13 present the
number of training iterations required by different NN architectures,
while Table 1 summarizes the weights involved in forward, backward,
and gradient update processes for various tasks.

In each training iteration, given a batch size b, there are b forward
passes, b backward passes, and one weight update. For a dataset of size
D over one epoch, this results in D forward passes, D backward passes,
and ⌊D/b⌋ + 1 weight updates. The total FLOP count is computed by
multiplying the number of epochs by the operations performed during
all forward passes, backward passes, and weight updates per epoch.
FLOPs related to activation functions and biases are excluded from this calculation.

Monolithic NNs: Let W be the number of weights in a dense, monolithic NN. The FLOP count for a single
forward pass through the linear layers is 2 × W . For the backward pass, this count is 4 × W . Weight updates
using the Adam optimizer require 18 × W operations.

For random sparse monolithic NNs, the number of weights is scaled according to the network’s density, and
FLOP calculations follow the same approach as for dense NNs.

Hierarchically Modular NNs: In hierarchically modular NNs, the total FLOP count includes both
operations from the forward pass through each module and those from the module input selection mechanism.
For Boolean function modules, input selection involves two dot products; for image modules, it involves 784
dot products, effectively introducing additional units (2 for Boolean modules and 784 for image modules) to
process the full output of the previous layer. The parameters for input selection vectors are also considered
in weight updates, and the FLOP counts for the forward and backward passes incorporate 2× or 784× the
parameters for the input selection vectors for Boolean and image processing modules, respectively. The rest
of the calculations follow the previously described procedures.

In the variant with fixed inter-module connectivity, we do not include any FLOPs related to input selection
and only consider the weights within the module MLPs for the FLOP calculations.
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Hierarchically Modular NNs with Shared Modules: For hierarchically modular NNs with shared
modules, each slot processes its specific inputs through all shared modules. A dot product is performed
between the activated module selection vector and the outputs of all modules, increasing the number of
parameters involved in the forward pass.

Let Wm represent the number of weights in each module MLP, Ns be the number of slots, and M the number
of shared modules. The number of weights used in the forward pass is Wm × Ns × M . In the backward pass,
the number of active weights is reduced to Wm × Ns because the module selection mask is binary, leading to
zero gradients for unselected modules in each slot.

For accounting for FLOPs associated with input selection vectors during forward and backward pass we utilize
the same procedure as described for hierarchically modular NN. Module selection involves a dot product
between the outputs of all modules and the module selection mask, effectively adding units (1 for Boolean
modules and 3 for image modules) at the top of each slot. The forward and backward pass incorporates 1×
or 3× the parameters for the module selection vectors for Boolean modules and image processing modules
respectively.

Finally, for weight updates using the Adam optimizer, we account for the parameters in the input selection
vectors, module selection vectors, and all shared modules.

The number of weights involved in the forward pass, backward pass, and optimizer updates is scaled according
to the respective operations (refer to details for monolithic NNs). The total FLOP count is then obtained by
multiplying these operations by the number of training epochs.

For the variant with fixed inter-module connectivity and module selection, FLOPs related to input and
module selection are excluded, and only the weights in the module MLPs are considered. During the forward
and backward passes, the number of active modules equals the number of slots, while weight updates are
applied only to the shared modules.

C Experiments with Arbitrary Modular Architectures

In this paper, we initialize modular NNs with a number of modules that matches the function graph at
each hierarchical level. For modular-shared NNs, we use the same number of slots per hierarchical level as
in the function graph, while the number of shared modules corresponds to the number of distinct gates in
the function graph. However, an important question arises: how effective are these hierarchically modular
architectures when such structural information is unknown, and an arbitrary number of modules or slots are
initialized?

Figure 14: Function graph

In this section, we present results for scenarios where we vary
the number of modules/slots at each hierarchical level, as well as
the number of shared modules for the modular-shared architecture.
These experiments provide insights into the flexibility and robustness
of hierarchically modular NNs under less structured initialization
conditions. We consider the Boolean function shown in Figure
14, and the hierarchically modular NNs are trained following the
methodology outlined in Section A.

C.1 Hierarchically Modular NNs

In the case of modular NNs, as depicted in the function graph in Figure 14, the NN requires three modules at
the first hierarchical level and two modules at the second. To evaluate the flexibility of the module count, we
experiment with three additional architectures, where each hierarchical level is assigned M modules, varying
M from 3 to 9.

Each architecture is trained independently using different training size ratios of the truth table, as described
in Section A. The resulting training and test accuracy values are shown in Figure 15.
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Figure 15: Train and test accuracy as compared to the number of modules defined in each layer of the modular
NN. The black lines represent the accuracy for the model with ground truth number of modules in each layer.

Interestingly, the performance across these architectures remains comparable to the NN that uses the ground
truth number of modules per hierarchical level. Furthermore, our analysis does not show a clear trend where
increasing or decreasing the number of modules consistently improves performance, suggesting that the
architecture is robust to variations in module count.

C.2 Hierarchically Modular NNs with Shared Modules

For modular-shared NNs, we explore architectural variations along two dimensions, organized in a grid. The
first dimension is the number of slots per hierarchical level, ranging from {3, 6, 9}, and the second is the total
number of shared modules, varying across {2, 4, 8}. This setup results in nine distinct architectures, each
defined by a unique combination of slot and shared module counts.

Each architecture is trained independently using different splits of the truth table, with varying fractions
allocated for training. The results are presented in Figure 16, with plots segmented by the ratio of the truth
table used for training. The horizontal black line in the figure indicates the performance of the architecture
configured with the ground truth number of slots and shared modules.

Consistent with our previous analysis, we observe that these architectures perform comparably to the ground
truth setup. However, modular-shared NNs with a larger number of slots outperform the ground truth
configuration at smaller training sizes. Additionally, modular-shared NNs with more shared modules than slots
(e.g., three slots per hierarchical level and two shared modules) exhibit reduced generalization performance
at larger training sizes, suggesting that an imbalance between slots and shared modules may limit effective
module reuse.

D Effect of module input size on generalization performance

Previous research has demonstrated that constraining module input dimensions or introducing input bot-
tlenecks enhances functional specialization, thereby improving generalization performance. The underlying
intuition is that by promoting sparsity—considering only a subset of outputs from preceding layers—the
modules more effectively capture the sub-function structure they are designed to learn. In our experiments,
we align the number of module inputs with the dimensions of their corresponding sub-functions: two inputs
for Boolean modules and one input for image modules. This section presents the experiment and results
obtained by varying the input dimensions of the modules in modular and modular-shared NNs. We consider
the Boolean function shown in Figure 14, and the hierarchically modular NNs are trained following the
methodology outlined in Section A.

Modular NNs: We evaluate modular NNs configured with 6 and 9 modules at each hierarchical level,
allowing the module input dimensions to vary between 2, 4, and 6. If the number of modules were reduced to
fewer than 3 or 2, the maximum possible input dimensions for modules at higher hierarchical levels would be
constrained by this reduced number.

When the module input dimension matches the number of outputs from the previous layer, we explore two
approaches: 1. Feeding the entire output directly into the modules without leveraging the module’s input
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Figure 16: Train and test accuracy as compared to the number of slots defined in each layer and the number
of modules in the modular-shared NN. The black curve represents the accuracy for the model with ground
truth number of slots in each layer and the ground truth number of shared modules.
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Figure 17: Train and test accuracy as compared to the number of module inputs in the modular NN.

selection vectors; 2. Utilizing input selection vectors to rank and reorder inputs. Figure 17 presents the
training and testing accuracy for modular NNs with varying numbers of modules and input dimensions.

Our findings indicate that a module input dimension of 4 yields the highest training and testing accuracy.
However, configurations with 2 inputs (aligned with the sub-functions in the function graph) or 6 inputs
(matching the overall input dimension of the NN) perform comparably at higher training sizes. Notably, when
the input dimension is set to 2, performance slightly surpasses that of 6 at lower training sizes. Conversely,
modules with 6 inputs achieve better training accuracy than those with 2 inputs, indicating that larger input
dimensions may facilitate over-fitting.

This result indicates that knowledge of the exact module input size (ground truth of 2) does not significantly
impact the generalization performance of modular NNs. However, introducing some form of input sparsity
appears to provide a slight improvement in generalization performance, likely by promoting better specialization
and alignment with the underlying task structure.

Modular-shared NNs: For modular-shared NNs, we experimented with architectures comprising 6 and 9
slots at each hierarchical level and module input dimensions of 2, 4, and 6. The corresponding results are
illustrated in Figure 18.

The results show that module input sizes of 2 and 4 yield significantly higher test accuracy compared to
an input size of 6 when slots are not allowed to reorder or permute their inputs. However, when slots are
permitted to perform input permutations, the advantage of input sparsity (input sizes of 2 and 4) diminishes,
with only a slight margin of improved performance over input size 6.

Effect of Permutations with Full Module Inputs: A key observation is that when a module’s input
dimension equals the full output of the previous layer (i.e., no input sparsity), allowing modules to permute
their inputs significantly improves performance in modular-shared NNs. For example, consider a module with
more than two input units tasked with learning the XOR function for two inputs. If the module learns the
XOR gate for two specific input positions, it can only be reused in slots requiring XOR computation for those
same positions. By enabling input permutation, the module generalizes and can be reused across any slot
where XOR functionality is needed, regardless of input order. This enhanced flexibility improves module
reuse and contributes to better generalization.
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Figure 18: Train and test accuracy as compared to the number of module or slot inputs in the modular-shared
NN.

Overall, the results indicate that knowledge of the exact module input size (ground truth of 2) does not
significantly affect the generalization performance of modular-shared NNs when input reordering is allowed,
facilitating effective module reuse. Nevertheless, introducing input sparsity (e.g., input dimensions of 2 or 4)
provides a slight improvement in generalization, likely due to better functional specialization and alignment
with the task’s modular structure. These findings suggest that the superior generalization performance of
modular-shared NNs is primarily driven by module reuse, with input sparsity acting as a complementary
factor that refines specialization.

E Multi-task learning

We extend our experimental setup to explore multi-task learning scenarios where each neural network (NN)
architecture is trained to perform multiple Boolean functions simultaneously. This allows us to evaluate
task-conditioned modularity by enabling networks to adjust connectivity and module selection based on a
task identifier provided with each input sample.

E.1 Experimental set-up

Consider a set of n Boolean function graphs (or tasks), and their corresponding truth tables Ti, for i ∈
{1, 2, . . . , n}. Consider the experimental setup described in Section 3 of the paper. For each task i, we sample
an r-fraction of rows from Ti, prepend a one-hot encoded task identifier t = i to each row, and combine these
samples from all tasks into a unified training set. This process is repeated to create the validation and test
sets.

We train three architectures:

Monolithic dense: The input dimension of the architecture is expanded to include the task identifier. The
network is then trained using standard methods.

Modular: The modular NN is configured similarly to the single task setting, with L modular layers, containing
Ml modules at layer l. Each module consists of an MLP comprising 2 input units, 12 hidden units, and 1
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Figure 19: Function graphs used in the multi-task learning setting.

output unit, along with an input selection vector. The input selection vector is a two-dimensional matrix of
size n × Ml−1, where n represents the number of tasks.

Given the one-hot encoded task identifier associated with each input sample, the corresponding row of the
input selection vector is used to determine the module’s inputs or inter-module connectivity. The input
selection vector can be interpreted as the weight matrix of a single linear layer that takes the task identifier
as input and generates the input selection vector specific to the module and task.

Please note that the input selection vectors for all the modules are learned or trained along with all the MLP
weights.

Modular-shared: Similar to the single-task modular-shared NN, this architecture replaces individual modules
with Ml slots in each hierarchical layer l and employs a pool of M shared modules. Each slot is defined by
an input selection vector of size n × Ml−1 and a module selection vector of size n × M .

For each input sample, the task identifier determines the corresponding rows of these matrices, specifying
both the inter-module connectivity and the module selection at each slot. The input selection and module
selection vectors for all the slots are learned or trained along with all the MLP weights.

E.2 Results

We consider the three function graphs shown in Figure 19 in the multi-task setting.

Learning two tasks (1 & 2): First, we present results for learning two of the three tasks. Here, the
monolithic dense NN consists of 8 input units, 2 output units, and 3 hidden layers with 60 units in each
layer. The modular NN comprises 5 modules in the first layer and 4 modules in the second layer. The
modular-shared NN consists of 4 slots in the first layer, 2 slots in the second layer, and 3 shared modules.

The test accuracy and the training efficiency are presented in Figure 20(column 1). Both modular and
modular-shared NNs consistently outperform the monolithic dense NN. The accuracy gap between modular
and modular-shared NNs is low, likely due to the sub-function output reuse across the two tasks (e.g., 2
sub-function outputs with XOR gates are common or reused between tasks 1 and 2). Modular NNs with
their fixed module positions, are particularly effective in capturing sub-function output reuse both across and
within tasks. (See section 2 of the paper for definition)

In terms of training efficiency, both modular and modular-shared NNs require significantly fewer operations
to learn the two tasks effectively. Additionally, modular NNs are able to match the training efficiency of
modular-shared NNs.

Learning two tasks (1 & 3): Next, we present results for a multi-task setting where tasks 1 and 3 are
learned simultaneously. The monolithic NN consists of 8 input units, 2 output units, and 3 hidden layers
with 72 units in each layer. The modular NN consists of 6 modules in the first layer and 4 modules in the
second layer. Finally, the modular-shared NN comprises 3 slots in the first layer, 2 slots in the second layer,
and 3 shared modules.

The test accuracy and the training efficiency are presented in Figure 20(column 2). Both modular and
modular-shared NNs again outperform the monolithic dense NN in terms of test accuracy and training
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Figure 20: Test accuracy, train accuracy, and training efficiency results of various NN architectures relative
to training size in the multi-task learning set-up. For each datapoint, we report the mean and combined
standard error (shaded region).

efficiency. However, there is a more significant performance gap between modular-shared and modular NNs in
this case. Since tasks 1 and 3 do not share sub-function outputs, the performance advantage of modular NNs
due to common sub-function outputs is absent, leading to a larger difference in accuracy and efficiency.

Learning three tasks: Finally, we examine the multi-task setting where all three tasks are learned
simultaneously. The monolithic NN has 9 input units, 2 output units, and 3 hidden layers with 72 units per
layer. The modular NN is configured with 6 modules in both hierarchical layers. The modular-shared NN has
4 slots in the first layer, 2 slots in the second layer, and 3 shared modules.

Both modular and modular-shared NNs significantly outperform the monolithic dense NN in terms of
generalization performance and training efficiency.

Across all training sizes, modular and modular-shared NNs show comparable test accuracy. This similarity
can be attributed to the substantial amount of sub-function output reuse, which modular NNs can exploit
due to their fixed module positions. However, modular-shared NNs consistently achieve superior training
efficiency due to their reduced number of trainable parameters and the abundant sub-function operation
reuse across the three tasks. (See section 2 of the paper for definition)

E.3 Observations and implications

The input or task-identifier-conditioned connectivity inherently favors hierarchically modular NNs, as their
input-output function can adapt based on the task. In a single-task setting, where the input-output function
is fixed, this advantage is less apparent. For this reason, we focused on a single-task or static setting earlier
and found that modularity without module reusability does not improve generalization performance. However,
in a multi-task setting where the task identifier is available, even modular NNs outperform monolithic dense
NNs.
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Figure 21: Train and test accuracy of modular NNs as compared to the ratio of the truth table used for
training. The various bars indicates the addition of Gumbel noise or direct top-k for module input selection.

F Hyperparameter tuning and selection

In this section, we present additional results to support the architectural and training choices for modular and
modular-shared NNs. These experiments are based on the function graph shown in Figure 14, with varying
proportions of the truth table used for training. Dataset details remain consistent with those described in
Section A.

We perform a grid search over learning rates for both structural and functional parameters, as well as weight
decay values. Tested learning rates include {0.1, 0.01, 0.001}, while weight decay values are {0.001, 0.0001}.
The batch size is set to use all available training samples in a single batch, and all networks are trained for
1000 epochs using the Adam optimizer.

F.1 Connectivity and Module Selection

In Section A, we described the process of learning structural parameters in modular and modular-shared NNs.
Here, we present experiments to justify the use of the top-k operation for input connectivity and module
selection in both network types.

Figure 22: Train and test accuracy of modular NNs as compared to the temperature (tau) values used for
module input selection using Gumbel noise.
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Figure 23: Train and test accuracy of modular-shared NNs as compared to the ratio of the truth table used for
training. The various bars indicates the addition of Gumbel noise or direct top-k for module input selection.

F.1.1 Hierarchically Modular NNs

Consider the input selection vector for module mi
l, denoted as si

l. The goal is to use this vector to score
and select k indices along with their corresponding input values for the specific module. First, the Sigmoid
function is applied to the vector, yielding pi

l = σ(si
l).

Previous training methods for hierarchically modular NNs have enhanced the exploration of different
connectivity patterns by adding Gumbel-distributed noise to the input selection vector before applying
a normalization function. This process allows for the effective selection of the top-k indices, promoting
exploration during training.

We investigate a variant of this process where Gumbel noise is added to si
l before selecting the top-k indices

from pi
l. A grid search over the temperature parameter (τ) used to normalize the vector after adding Gumbel

noise was also performed to identify the best configuration. This approach aims to balance exploration and
exploitation, reducing the likelihood of premature convergence to suboptimal input configurations while
improving learning capability.

The results are shown in Figure 21. We observe that the standard top-k selection method significantly
outperforms the Gumbel noise-based variants. We also evaluate the effect of temperature on input selection
performance. As depicted in Figure 22, higher temperature values yield better results. Increased temperature
facilitates more uniform exploration of the input selection vector, contributing to improved learning outcomes.

F.1.2 Hierarchically Modular NNs with Shared Modules

We now present the results for the modular-shared architecture. Let si
l and vi

l denote the input and module
selection vectors for a given slot, respectively. The goal is to select k inputs and one module for each slot. The
Sigmoid function is applied to si

l and the Softmax function is applied to vi
l to compute the selection scores.

We compare direct top-k selection to a variant that uses Gumbel noise to enhance exploration. In this variant,
Gumbel noise is added to the selection vectors before applying the normalization functions, which aims to
avoid immediate convergence to a specific set of inputs or modules, promoting broader exploration during
training.

Figure 23 demonstrates that Gumbel noise-based variants perform worse than the standard top-k selection.
Furthermore, as shown in Figure 24, higher temperature values during input selection improve the model’s
performance, consistent with the findings for hierarchically modular NNs. This effect is due to increased
exploration, preventing premature convergence and enhancing learning outcomes.

F.2 Learning Rate Analysis for Structural and Functional Parameters

We analyze the impact of learning rates on both the structural and functional parameters in hierarchically
modular NNs. For both the modular and modular-shared architectures, we begin by fixing the learning rate
combinations and then fine-tuning other hyperparameters, including weight decay and temperature values.
The batch size is kept constant so that all available samples are used in each training iteration.
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Figure 24: Train and test accuracy of modular-shared NNs as compared to the temperature (tau) values used
for module input selection using Gumbel noise.

Figure 25: Test and train accuracy of modular NNs as compared to learning rates for structural and functional
parameters. The various columns show the results for different truth table ratios for training.

Figures 25 and 26 show the training and test accuracy for various learning rates across different training
sizes for the modular and modular-shared NNs, respectively. We consistently find that the best-performing
combination of learning rates is 0.1 for structural parameters and 0.01 for functional parameters across
both architectures. This suggests that learning inter-module connectivity and module selection requires a
more aggressive optimization strategy compared to learning sub-functions within the modules. Structural
parameters seem to benefit from a higher learning rate, which may be due to the need for broader exploration
during training.

Moreover, larger learning rates generally improve performance on tasks involving Boolean functions. Thus, for
both modular and modular-shared NNs, we focus on learning rate combinations of {0.1, 0.01}. This approach
reduces the complexity of the hyperparameter search space while still achieving high performance across
different training data sizes.
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Figure 26: Test and train accuracy of modular-shared NNs as compared to learning rates for structural and
functional parameters. The various columns show the results for different truth table ratios for training.

G Additional results: generalization and training efficiency

In this section, we present additional visualizations that provide alternative perspectives on the generalization
performance and training efficiency of the various architectures.

Figure 27: Generalization performance on seen combinations of different NNs trained on the hierarchically
modular MNIST task, evaluated across varying proportions of digit combinations used for training and
different numbers of samples per combination. Plots show results for: a. modular NN, b. modular-FC NN, c.
modular-shared NN, and d. modular-shared-FCMS NN.

Figure 28: Training efficiency of different NNs trained on the hierarchically modular MNIST task, evaluated
across varying proportions of digit combinations used for training and different numbers of samples per
combination. Plots show results for: a. modular NN, b. modular-FC NN, c. modular-shared NN, and d.
modular-shared-FCMS NN.
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Figure 29: Test accuracy, train accuracy and FLOPs count of NNs as compared to the complexity or
hierarchical depth of the Boolean function graphs and the ratio of truth table used for training. First
column indicates the results for dense monolithic NNs, second column for modular NNs and third column
for modular-shared NNs. We can clearly see a trend where the top right of the heatmap has better values
indicating that larger training size and lower complexity functions are an easier combination to learn.
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