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2.8x️
 Speedup

Figure 1: We introduce a new distributed acceleration paradigm that attains a 2.8x speed-up on Stable
Diffusion XL while maintaining pixel-level consistency, using four NVIDIA A5000 GPUs.

Abstract

Diffusion models have garnered significant interest from the community for their
great generative ability across various applications. However, their typical multi-
step sequential-denoising nature gives rise to high cumulative latency, thereby
precluding the possibilities of parallel computation. To address this, we introduce
AsyncDiff, a universal and plug-and-play acceleration scheme that enables model
parallelism across multiple devices. Our approach divides the cumbersome noise
prediction model into multiple components, assigning each to a different device.
To break the dependency chain between these components, it transforms the con-
ventional sequential denoising into an asynchronous process by exploiting the high
similarity between hidden states in consecutive diffusion steps. Consequently, each
component is facilitated to compute in parallel on separate devices. The proposed
strategy significantly reduces inference latency while minimally impacting the gen-
erative quality. Specifically, for the Stable Diffusion v2.1, AsyncDiff achieves a 2.7x
speedup with negligible degradation and a 4.0x speedup with only a slight reduction
of 0.38 in CLIP Score, on four NVIDIA A5000 GPUs. Our experiments also demon-
strate AsyncDiff can be readily applied to video diffusion models with encouraging
performances. Code is available at https://github.com/czg1225/AsyncDiff

1 Introduction

Diffusion models [13] stand out in generative modeling and have significantly advanced various
fields including text-to-image [43, 41, 45, 46, 72, 78] and text-to-video generation [64, 9, 61, 21, 2],
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Figure 2: By preparing each component’s input beforehand, we enable parallel computation of the
denoising model, which substantially reduces latency while minimally affecting quality.

image translation [49, 56, 23], audio generation[22, 14, 44], style transfer[62, 4, 17], low-level vision
tasks [47, 60, 40, 26, 8, 70, 3], image editing [19, 66, 51, 77], and 3D model generation [42, 18, 37],
among others. However, their widespread application is hindered by the high latency inherent in their
multi-step sequential denoising process. This issue becomes more pronounced as the complexity and
size of the models increase to enhance generative quality.

In response to these challenges, significant research efforts are directed toward enhancing the effi-
ciency of diffusion models. Notably, training-free acceleration methods have garnered increasing
popularity due to their low cost and convenience. Numerous studies [35, 63, 76, 67, 53, 25, 33, 57, 34]
improve inference speed by skipping redundant calculations in the denoising process. As computa-
tional resources grow rapidly, distributing computations across multiple devices has become a more
promising approach. Recent advances [52, 24, 58] demonstrate that using distributed computing
to parallelize inference effectively increases the acceleration ratio for diffusion models while main-
taining acceptable generative quality. Though these methods succeed in parallelizing the diffusion
models, they require iterative refining [52] or displaced patch parallelism [24], resulting in a larger
number of model evaluations or low GPU utilization correspondingly.

Thus, we wish to propose a new parallel paradigm for diffusion, akin to the model parallelism
in distributed computing [15, 38, 28, 16, 39, 65], which divides the denoising model into several
components to be distributed on different GPUs. The primary challenge lies in the inherent sequential
denoising process of diffusion models. Each step in this process depends on the completion of its
predecessor, forming a dependency chain that impedes parallelization and significantly increases
inference latency. Our approach seeks to disrupt this chain, allowing for the parallel execution of the
denoising model while closely approximating the results of the sequential process.

In this paper, we introduce AsyncDiff, a universal, distributed acceleration paradigm that innovatively
explores model parallelism in diffusion models. As shown in Fig 2, our method sequentially partitions
the heavyweight denoising model ϵθ into multiple components {ϵnθ }Nn=1 based on computational
load, assigning each to a separate device. Our core idea lies in decoupling the dependencies between
these cascaded components by leveraging the high similarity in hidden states across consecutive
diffusion steps. After the initial warm-up steps, each component takes the output from the previous
component’s prior step as the approximation of its original input. This transforms the traditional
sequential denoising into an asynchronous process, allowing components to predict noise for different
time steps in parallel. Additionally, we incorporate stride denoising to skip redundant calculations
and reduce the frequency of communication between devices, further enhancing efficiency.

Through extensive testing across multiple base models, our method effectively distributes the com-
putational burden across various devices, substantially boosting inference speed while maintaining
quality. Specifically, with the text-to-image model Stable Diffusion v2.1 [43], our method achieves a
1.8x speedup with only a marginal 0.01 drop in CLIP Score [11], and a 4.0x speedup with a slight 0.38
reduction in CLIP Score on two and four NVIDIA A5000 GPUs, respectively. For video diffusion
models, AnimateDiff [9] and Stable Video Diffusion [2], our approach significantly reduces latency
by tens of seconds, effectively preserving video quality.
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In summary, we present a novel distributed acceleration method for diffusion models that significantly
reduces inference latency with minimal impact on generation quality. This is achieved by replacing
the sequential denoising process with an asynchronous process, allowing each component of the
denoising model to run independently across different devices. Extensive experiments on both image
and video diffusion models strongly demonstrate the effectiveness and versatility of our method.

2 Related Works

Diffusion Models. Diffusion models have attracted significant attention due to their powerful
generative capabilities across various tasks. Sohl-Dickstein et al. [54] first proposed diffusion
probabilistic models. Ho et al. [13] with the introduction of Denoising Diffusion Probabilistic Models
(DDPM), enhancing training efficiency and generation quality. Rombach et al. [43] advanced these
models by incorporating latent spaces, enabling high-resolution image generation. Despite these
advancements, the high latency of the iterative denoising process remains a limitation.

Inference Acceleration. Training-based acceleration methods focus on reducing sampling steps
[48, 71, 32, 50, 69] or optimizing model architectures [27, 80, 7, 73, 68, 6]. However, these methods
incur high training costs and complexity. Training-free methods are gaining popularity due to their
ease of use. Some approaches develop fast solvers for SDE or ODE to improve sampling efficiency
[31, 1, 30, 74, 81]. Other works [35, 63, 76, 67, 53, 25, 33, 79] observed special characteristics of
diffusion models and skipped the redundant computation within the denoising process.

Parallelism. The parallelism strategy presents a promising yet underexplored approach to accelerating
diffusion models. ParaDiGMS [52] implements Picard iterations for parallel sampling, yet its
practical speed-up ratio is modest, and it struggles to maintain consistency with original outputs.
Faster Diffusion [25] introduces encoder propagation but significantly compromises quality, and
its parallelization remains theoretical. Distrifusion [24] adopts patch parallelism, dividing high-
resolution images into sub-patches to facilitate parallel inference on each patch by reusing stale
activation maps from each layer. However, this approach lacks flexibility across different data types
or tasks, often encountering low resource utilization. Furthermore, its reliance on reusing per-layer
activation maps greatly increases GPU memory demands thus introducing additional challenges
for realistic applications. In contrast, our method uniquely implements model parallelism through
asynchronous denoising, achieving substantial acceleration while maintaining a stable resource usage
ratio and minimal impact on quality.

3 Methods

3.1 Preliminary

Diffusion models [13] are a dominant class of generative models that transform Gaussian noise into
complex data distributions via a Markov process. The forward process is defined by:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where {βt} progressively increases noise until the data becomes indistinguishable from noise. The
reverse process, essential for data reconstruction, involves iterative denoising:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I), (2)

where µθ(xt, t) is the predicted mean and σ2
t is the variance. For DDIMs [55], the reverse update is

deterministic:

xt−1 =

√
αt−1

αt
xt +

√
1− αt−1

(
1−

√
1− αt

αt−1

)
ϵθ(xt, t), (3)

where αt is the cumulative product of (1 − βt). These processes are computationally intensive,
influencing the quality of generated samples and necessitating efficient inference methods for practical
applications.

3.2 Asynchronous Diffusion Model

Traditional diffusion models employ a sequential and synchronous denoising process. At each time
step t, the noise-prediction model ϵθ estimates the noise ϵt based on the noisy image xt and the time
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Figure 3: Overview of the asynchronous denoising process. The denoising model ϵθ is divided
into four components {ϵnθ }4n=1 for clarity. Following the warm-up stage, each component’s input is
prepared in advance, breaking the dependency chain and facilitating parallel processing.

embedding t. The image for the next step, xt−1, is then generated using a sampler function S(xt, ϵt, t).
This process is iterative, where the generation of ϵt at each step is dependent on the completion of the
previous denoising step, making the process slow, particularly when ϵθ is computationally intensive.

To address the limitations of high latency in diffusion models, leveraging multiple GPUs for distributed
inference is a promising solution. Existing studies primarily focus on patch parallelism [24], where
the input image is divided into patches, each processed on a different GPU. While this strategy
efficiently distributes computational loads, it still retains the bottleneck of sequential denoising, as
each patch must undergo the complete denoising process iteratively. In contrast, our asynchronous
diffusion model innovatively introduces a model parallelism strategy. By approximating the sequential
denoising as an asynchronous process, this approach enables parallel inference of the noise prediction
model, effectively reducing latency and breaking the constraints of sequential execution.

Asynchronous Denoising. Figure 3 illustrates our approach to the asynchronous denoising. For
a denoising process consisting of T steps, the initial w steps are designated as a warm-up phase,
where w is significantly smaller than T . During this phase, the denoising model ϵθ operates using
standard sequential inference. After warm-up steps, rather than splitting the input image, we partition
the denoising model ϵθ into N sequential components, expressed as ϵθ = {ϵ1θ, ϵ2θ, ..., ϵNθ }. Each
component is divided to handle a comparable computational load and assigned to a distinct device.
This equitable division aims to equalize the time cost of each component to approximately l(ϵθ)/N ,
thus minimizing the overall maximum latency. In this setup, original noise prediction for xt can be
represented as a cascading operation through these sub-models, defined mathematically as:

ϵt = ϵθ(xt, t) = ϵNθ (ϵN−1
θ (. . . ϵ2θ(ϵ

1
θ(xt, t), t) . . . , t), t). (4)

Although each device can independently compute its assigned component, the dependency chain
persists because the input for each component ϵθ,n is derived from the output from its preceding
component ϵθ,n−1. Therefore, despite the distribution of model components across multiple devices,
full parallelization is constrained by these sequential dependencies.

Our principal innovation is to break the dependency between cascaded components by utilizing
hidden features from previous steps. Observations indicate that the hidden states of each block in the
denoising model always exhibit substantial similarity across adjacent time steps. Leveraging this,
each component at time step t can take the output from the preceding component at time step t− 1 as
the approximation of its original input. Specifically, the n-th component ϵnθ (, t) receives the output of
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Figure 4: Illustration of stride denoising. The model ϵθ is divided into three components {ϵnθ }3n=1,
with a stride S of 2 for clarity. Components ϵ1θ and ϵ2θ are skipped at time step t. A single parallel
batch results in the completion of denoising for two steps, producing xt−1 and xt−2.

ϵn−1
θ (·, t− 1). This alteration allows the noise prediction for xt to be represented as follows:

ϵt = ϵNθ (ϵN−1
θ (. . . ϵ2θ(ϵ

1
θ(xt+N−1, t+N − 1), t+N − 2) . . . , t+ 1), t). (5)

In this new framework, noise prediction ϵt is derived from components executed across N previous
time steps. This transforms the denoising process from sequential to asynchronous, as the prediction
of noise ϵt already begins before denoising at step t + 1 is completed. At each time step, the N
components are running as parts of the noise prediction model for the next N steps. Specifically,
the n-th component ϵnθ , computed in parallel at time t, contributes to the noise prediction for the
future time step t−N + n. Figure 3 depicts this asynchronous process using a U-net model with N
set to 4. The strong resemblance of hidden states between consecutive diffusion steps enables the
asynchronous process to closely mimic the denoising results of the original sequential process.

Model Parallelism. By transitioning to an asynchronous denoising strategy, the dependencies among
components within the same time step are eliminated. This adjustment allows each component’s
input for time step t to be prepared in advance, enabling the N split components to be processed
concurrently across multiple devices. Once computed, the outputs from each component must be
stored and then broadcasted to other devices to facilitate parallel processing for subsequent time steps.
In contrast, in the traditional sequential denoising process, the time cost for each step accumulates as
follows:

Cseq(t) = C(ϵ1θ) + C(ϵ2θ) + . . .+ C(ϵNθ ). (6)
By adopting asynchronous denoising to enable parallel computation of each component, the cost for
each time step is now given by:

Casy(t) = max(C(ϵ1θ), C(ϵ2θ), ..., C(ϵNθ )) + C(comm.), (7)

where max() represents taking the maximum value, and C(comm.) indicates the communication
cost across multiple GPUs. As the model components are equally divided by computational load,
their time costs are similar, allowing us to approximate the overall cost of each time step as:

Casy(t) ≈
Cseq(t)

N
+ C(comm.). (8)

Since the communication overhead C(comm.) is generally much lower than the model’s execution
time, it leads to significant overall cost reductions. Moreover, increasing N further reduces time costs
but complicates the accurate approximation of the original denoising process.

Stride Denoising. While asynchronous denoising reduces latency by parallelizing the denoising
model, it completes only one denoising step at a time. To enhance efficiency, we introduce stride
denoising, which completes multiple denoising steps simultaneously through a single parallel com-
putation. The diagram is illustrated in Figure 4, where we set the stride to 2 for clarity. Unlike the
continuous broadcasting of hidden states at each time step, stride denoising broadcasts them every
two steps. As depicted, at time step t, we conduct denoising alone, and at time step t−1, we compute
and broadcast the hidden states for the next parallel computation round. Consequently, the hidden
states from time step t are not required, allowing us to skip the calculations for ϵ1θ and ϵ2θ at this step.
In this stride, only ϵ3θ(·, t), ϵ1θ(·, t− 1), ϵ2θ(·, t− 1), and ϵ3θ(·, t− 1) need computing, all receiving the
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(a) Qualitative Results on SDXL with different configurations

(b) Qualitative Results on SDXL with different warm-up steps (N=3 S=2)

Figure 5: Qualitative Results. (a) Our method significantly accelerates the denoising process with
minimal impact on generative quality. (b) Increasing warm-up steps achieves pixel-level consistency
with the original output while maintaining a high speed-up ratio.

previously broadcast hidden states, enabling their parallel processing. Both ϵ3θ(·, t) and ϵ3θ(·, t− 1)
share the same feature from ϵ2θ(·, t+ 1), so the stride should be kept small to maintain quality. Stride
denoising effectively reduces both computational load and communication demands by decreasing the
parallel computing rounds needed to complete the process. Compared to the significant improvements
it brings in efficiency, the quality sacrifice is minimal and can be entirely compensated for by slightly
increasing the warm-up steps. We also illustrate the full schematic of it in Appendix Figure 7.

Multi-Device Communication. Parallel inference of the model necessitates efficient communication
between devices, as each component ϵnθ must access the cached hidden state from the preceding
component ϵn−1

θ , which resides on a different device. Post each parallel computation batch, each
device stores the current hidden state needed for the next parallel batch. These states, encompassing all
component outputs, are then broadcast to all participating devices before the next parallel computation
batch. Although each component ϵnθ primarily uses the cached output of ϵn−1

θ for its input, it may
require residual features [10] from other components. Therefore, it’s crucial to broadcast the stored
states from every component across all devices before each round of parallel computation.

4 Experiments

4.1 Implementation Details

Base models. We validated the broad applicability of AsyncDiff through extensive testing on
several diffusion models. For text-to-image tasks, we experimented with three versions of Stable
Diffusion: SD 1.5, SD 2.1 [43], and Stable Diffusion XL (SDXL) [41]. Additionally, we explored the
effectiveness of AsyncDiff on video diffusion models using Stable Video Diffusion (SVD) [2] and
AnimateDiff [9]. All models were evaluated using 50 DDIM steps. We facilitated communication
across multiple GPUs using the broadcast operation from torch.distributed, powered by the NVIDIA
Collective Communication Library (NCCL) backend.
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Table 1: Quantitative evaluations of AsyncDiff on three text-to-image diffusion models, showcasing
various configurations. ’N’ indicates the number of components into which the model is divided, and
’S’ represents the denoising stride. MACs quantifies the computational load per device for generating
a single image throughout the denoising process.

Base Model Configuration Devices MACs↓ latency↓ Speed up↑ CLIP Score↑ FID↓ LPIPS↓

SD 2.1
(Text-to-Image)

Original Model 1 76T 5.51s 1.0x 31.60 27.89 –
+ Ours (N=2 S=1) 2 38T 3.03s 1.8x 31.59 27.79 0.2121
+ Ours (N=3 S=1) 3 25T 2.41s 2.3x 31.56 28.00 0.2755
+ Ours (N=4 S=1) 4 19T 2.10s 2.6x 31.40 28.28 0.3132
+ Ours (N=2 S=2) 3 19T 1.82s 3.0x 31.43 28.55 0.3458
+ Ours (N=3 S=2) 4 13T 1.35s 4.0x 31.22 29.41 0.3778

SD 1.5
(Text-to-Image)

Original Model 1 34T 2.70s 1.0x 30.63 29.96 –
+ Ours (N=2 S=1) 2 17T 1.52s 1.8x 30.62 29.94 0.1988
+ Ours (N=3 S=1) 3 11T 1.23s 2.2x 30.58 29.87 0.2645
+ Ours (N=4 S=1) 4 9T 1.01 2.6x 30.52 30.10 0.3073
+ Ours (N=2 S=2) 3 9T 0.94s 2.9x 30.46 30.98 0.3232
+ Ours (N=3 S=2) 4 6T 0.72s 3.7x 30.17 30.89 0.3811

SDXL
(Text-to-Image)

Original Model 1 299T 13.81s 1.0x 32.33 27.43 –
+ Ours (N=2 S=1) 2 150T 8.00s 1.7x 32.21 27.79 0.2509
+ Ours (N=3 S=1) 3 100T 5.84s 2.4x 32.05 28.03 0.2940
+ Ours (N=4 S=1) 4 75T 5.12s 2.7x 31.90 29.12 0.3157
+ Ours (N=2 S=2) 3 75T 4.91s 2.8x 31.70 28.99 0.3209
+ Ours (N=3 S=2) 4 49T 3.65s 3.8x 31.40 30.27 0.3556

Table 2: Quantitative evaluations of the effect of increasing warm-up steps. More warm-up steps can
achieve pixel-level consistency with the original output while slightly reducing processing speed.

Configuration SD 2.1 SD 1.5 SDXL

Speedup↑ CLIP↑ LPIPS↓ Speedup↑ CLIP↑ LPIPS↓ Speedup↑ CLIP↑ LPIPS↓

Original Model 1.0x 31.60 – 1.0x 30.63 – 1.0x 32.33 –
Warm-up = 3 3.5x 31.26 0.3289 3.3x 30.16 0.3676 3.8x 31.40 0.3556
Warm-up = 5 3.1x 31.27 0.2769 3.0x 30.14 0.3304 3.4x 31.60 0.2993
Warm-up = 7 2.9x 31.32 0.2309 2.7x 30.10 0.2839 3.0x 31.77 0.2521
Warm-up = 9 2.7x 31.40 0.1940 2.5x 30.17 0.2354 2.8x 31.92 0.2095
Warm-up = 11 2.4x 31.45 0.1628 2.4x 30.22 0.1927 2.5x 32.01 0.1740

Dataset and Evaluation Metrics. We assess the zero-shot generation capability using the MS-COCO
2017 [29] validation set, which comprises 5,000 images and captions. For image generation, quality
is measured by the CLIP Score (on ViT-g/14) [11] and Fréchet Inception Distance (FID) [12], with
LPIPS [75] used to check consistency with original outputs. In video generation, quality is evaluated
by averaging the CLIP Score across all frames of a video. We also report MACs per device and
latency to gauge efficiency comprehensively. All latency measurements were conducted on NVIDIA
A5000 GPUs equipped with NVLINK Bridge.

4.2 Experimental Results on Image Diffusion Models

Improvements on Base Models. Table 1 displays our acceleration outcomes for three fundamental
image diffusion models under various configurations. In this context, ’N’ represents the number of
segments into which the denoising model is divided, and ’S’ denotes the stride of denoising for each
parallel computation batch. Our approach, AsyncDiff, not only significantly accelerates processing
but also minimally impacts generative quality. The speedup ratio is almost proportional to the number
of devices used, demonstrating efficient resource utilization. Visualization results in Figure 5 (a)
illustrate the high generative quality achieved even with substantially reduced latency. Although
achieving pixel-level consistency with the original output is challenging at high acceleration ratios,
the generated image still effectively conveys the semantic information in the prompt, which is crucial
for generative results.

Pixel-level Consistency by Warm-up. In Table 2, we explore the balance between pixel-level
consistency and processing speed by adjusting the warm-up steps in the diffusion models. As the
initial steps of these models play a crucial role in reconstructing the global structure based on text
prompts [76], a modest increase in warm-up steps can significantly enhance consistency with the
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Table 3: Quantitative comparison with other parallel acceleration methods. To ensure a fair compari-
son with Distrifusion, we increased the warm-up steps in our method to match the speedup ratio of
Distrifusion, allowing us to fairly compare generation quality and resource costs.

Method Speed up↑ Devices MACs↓ Memory↓ CLIP Score↑ FID↓ LPIPS↓

Original Model 1.0x 1 76T 5240MB 31.60 27.87 –

Faster Diffusion 1.6x 1 57T 9692MB 30.84 29.95 0.3477

Distrifusion 1.6x 2 38T 6538MB 31.59 27.89 0.0178
Ours (N=2 S=1) 1.6x 2 44T 5450MB 31.59 27.79 0.0944

Distrifusion 2.3x 4 19T 7086MB 31.43 27.97 0.2710
Ours (N=2 S=2) 2.3x 3 20T 5516MB 31.49 27.71 0.2117

Distrifusion 2.7x 8 10T 7280MB 31.31 28.12 0.2934
Ours (N=3 S=2) 2.7x 4 14T 5580MB 31.40 28.03 0.1940

Distrifusion 1.6x Speedup
2 Devices

Distrifusion 2.3x Speedup
4 Devices

Ours 1.6x Speedup
2 Devices

Ours 2.3x Speedup
3 Devices

Oiginal
1 Device

Ours 2.7x Speedup
4 Devices

Distrifusion 2.7x Speedup
8 Devices

Figure 6: Qualitative Comparison with Distrifusion on SD2.1. At the same acceleration ratio,
AsyncDiff outperforms in generating higher quality and more consistent images with the original.

original images. Figure 5(b) illustrates this trend with qualitative comparisons of generative results on
SDXL using gradually increasing warm-up steps. Increasing the warm-up steps to 9 achieves visual
indistinguishability from the original output while maintaining an impressive 2.8x acceleration ratio.

Comparison with Acceleration Baselines. We evaluated our AsyncDiff method on SD 2.1 against
two other parallel acceleration methods: Faster Diffusion [25] and Distrifusion [24]. Faster Diffusion
employs encoder propagation but compromises significantly on generative quality. As its parallelism
maintains theoretical and lacks a multi-device implementation, we cannot measure its realistic latency
with more than one GPU. Its ideal speed-up on 2 devices is about 1.9x. Distrifusion, on the other
hand, uses patch parallelism for distributed acceleration but faces potential issues with low resource
utilization and high GPU memory demands.

According to Table 3, our method achieves the same operational speed using only 4 GPUs and 3
GPUs as Distrifusion does with 8 GPUs and 4 GPUs, respectively. Additionally, our method requires
almost the same amount of memory as the original setup, whereas Distrifusion significantly increases
memory requirements, posing extra challenges for practical applications. In terms of generative
quality, AsyncDiff and Distrifusion both mirror the original diffusion model’s performance at a 1.6x
acceleration ratio. However, at higher speedup ratios of 2.3x and 2.7x, our method demonstrates
significantly superior generative quality. Qualitative comparisons in Fig 6 further show that AsyncDiff
maintains better pixel-level consistency with the original input compared to Distrifusion.

4.3 Experimental Results on Video Diffusion Models

As presented in Table 4, we conducted experiments with different configurations on two video
diffusion models: SVD [2] (25 frames), and AnimentDiff [9] (16 frames), to demonstrate the efficacy
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Table 4: Quantitative evaluations of AsyncDiff on text-to-video and image-to-video diffusion models.
We present the results with various configurations.

Base Model Configuration Devices MACs↓ latency↓ Speed up↑ CLIP Score↑

AnimateDiff
(Text-to-Video)

Original Model 1 786T 43.5s 1.0x 30.65
+ Ours (N=2 S=1) 2 393T 24.5s 1.8x 30.65
+ Ours (N=3 S=1) 3 262T 19.1s 2.3x 30.54
+ Ours (N=2 S=2) 3 197T 14.2s 3.0x 30.32
+ Ours (N=3 S=2) 4 131T 11.5s 3.8x 30.20

SVD
(Image-to-Video)

Original Model 1 3221T 184s 1.0x 26.88
+ Ours (N=2 S=1) 2 1611T 101s 1.8x 26.66
+ Ours (N=3 S=1) 3 1074T 80s 2.3x 26.56
+ Ours (N=4 S=1) 4 805T 68s 2.7x 26.19

Table 5: Effect of stride denoising on SD 2.1. Stride denoising significantly lowers overall latency
and the communication cost while only slightly compromising the generative quality

Configuration MACs↓ Latency↓ Speedup↑ Communication CLIP Score↑
Nums↓ Latency↓

AsyncDiff (3 devices) w/o stride denoising 25T 2.41s 2.3x Faster 49 times 0.23s(9.5%) 31.56
AsyncDiff (3 devices) w/ stride denoising 19T 1.82s 3.0x Faster 25 times 0.12s(6.6%) 31.43

AsyncDiff (4 devices) w/o stride denoising 19T 2.10s 2.6x Faster 49 times 0.40s(19.0%) 31.40
AsyncDiff (4 devices) w/ stride denoising 13T 1.35s 4.0x Faster 25 times 0.10s(7.4%) 31.22

of our method. Video generation, often constrained by exceptionally high latency and substantial
computation load, greatly benefits from our approach. For a 50-step video diffusion model, AsyncDiff
significantly reduces latency—by tens or even hundreds of seconds—while preserving the quality of
generated content. Qualitative results shown in the Appendix. D further corroborate the effectiveness
of our method. AsyncDiff achieves an impressive acceleration ratio of over three times while still
producing videos that closely match the prompt descriptions, ensuring the rationality of actions and
details. These findings highlight the substantial potential of AsyncDiff in accelerating the inference
process of video diffusion models.

4.4 Effect of Stride Denoising

We introduce stride denoising to further enhance the efficiency of the asynchronous denoising process.
Stride denoising completes multiple steps simultaneously through a single parallel computation,
reducing the number of parallel rounds and communication frequency across devices. For a diffusion
process with T steps and warm-up step W , the number of broadcasts decreases from T − W to
(T −W )//2 with a stride of 2. This strategy also reduces the computational load on each device
by skipping unnecessary calculations. Table 5 shows the effects of stride denoising in our parallel
framework with 3 and 4 devices. Stride denoising significantly lowers overall latency and the
proportion of communication time, especially as the number of devices used increases. While stride
denoising slightly impacts generation quality, this effect is minimal and can be mitigated by a modest
increase in warm-up steps, preserving efficiency and maintaining quality.

4.5 Compatibility with Various Samplers

With the recent rise of advanced sampling algorithms for diffusion models, a key concern is whether
the acceleration method can adapt to various samplers. AsyncDiff is a universal method that can
be combined with different samplers, such as the DDIM sampler [55] and DPM-Solver [31]. In
Table 7, we present the quantitative evaluation of AsyncDiff on SD 2.1 using the DDIM sampler.
Compared to using fewer DDIM steps, our method achieves significantly better generation quality
at similar speeds, with the improvement becoming more pronounced as speedup increases. Table 6
presents the quantitative evaluation of AsyncDiff on SD 2.1 with the DPM-Solver sampler. At the
same speedup ratio, AsyncDiff significantly enhances generation quality compared to the baseline.
Qualitative results are also provided in the Appendix figures, demonstrating that our method achieves
considerable acceleration while maintaining high consistency with the original output.
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Table 6: Quantitative evaluations of AsyncDiff using DPM-Solver sampler on SD 2.1

Method Speed up ↑ MACs ↓ CLIP Score ↑ FID ↓

DPM-Solver 25steps 1.0x 76T 31.57 28.37

DPM-Solver 15steps 1.6x 46T 31.52 28.89
Ours (N=2 S=1) 1.6x 38T 31.58 27.71

DPM-Solver 10steps 2.2x 30T 31.29 29.28
Ours (N=3 S=1) 2.2x 25T 31.36 28.20

Table 7: Quantitative evaluations of AsyncDiff using DDIM sampler on SD 2.1

Method Speed up ↑ MACs ↓ CLIP Score ↑ FID ↓

Original 1.0x 76T 31.60 27.89

DDIM 27steps 1.8x 41T 31.53 28.43
Our AsyncDiff (N=2 S=1) 1.8x 38T 31.59 27.79

DDIM 21steps 2.3x 32T 31.46 29.09
Our AsyncDiff (N=3 S=1) 2.3x 25T 31.56 28.00

DDIM 15steps 3.0x 23T 31.26 30.12
Our AsyncDiff (N=2 S=2) 3.0x 19T 31.43 28.55

DDIM 11steps 4.0x 17T 30.99 32.25
Our AsyncDiff (N=3 S=2) 4.0x 13T 31.22 29.41

Table 8: Acceleration Ratio and Latency on Different GPUs

GPU FP16 Compute Original N=2 S=1 N=3 S=1 N=2 S=2 N=3 S=2

NVIDIA RTX A5000 117 TFLOPS 1.0x(5.51s) 1.8x(3.03s) 2.3x(2.41s) 3.0x(1.82s) 4.0x(1.35s)
NVIDIA RTX 3090 71 TFLOPS 1.0x(5.61s) 1.8x(3.20s) 2.1x(2.65s) 2.9x(1.91s) 3.5x(1.60s)
NVIDIA RTX 2080Ti 54 TFLOPS 1.0x(8.20s) 1.7x(4.91s) 2.0x(4.08s) 2.8x(2.94s) 3.5x(2.35s)

5 Efficiency Analysis on Different Devices

As a hardware-friendly and versatile method, our acceleration technique delivers strong performance
on a wide range of GPUs. We tested inference speeds on the professional-grade NVIDIA RTX A5000,
as well as the consumer-grade NVIDIA RTX 2080 Ti and NVIDIA RTX 3090 GPUs. As shown
in Table 8, our method achieved a high acceleration ratio across all three GPUs. Furthermore, our
method can be applied as long as the devices have basic communication capabilities.

6 Conclusion

In this paper, we propose a new parallel paradigm, AsyncDiff, to accelerate diffusion models by
leveraging model parallelism across multiple devices. We split the denoising model into several
components, each assigned to a different device. We transform the conventional sequential denoising
into an asynchronous process by exploiting the high similarity of hidden states between consecutive
time steps, enabling each component to compute in parallel. Our method has been comprehensively
validated on three image diffusion models (SD 2.1, SD 1.5, SDXL) and two video diffusion models
(SVD, AnimateDiff). Extensive experiments demonstrate that our approach significantly accelerates
inference with only a marginal impact on generative quality. This work investigates the practical
application of model parallelism in diffusion models, establishing a new baseline for future research
in distributed diffusion models.
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❈ In this document, we provide supplementary materials that extend beyond the scope of the main
manuscript, constrained by space limitations.
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Figure 7: Schematic of the asynchronous diffusion model with stride denoising. The model ϵθ is
divided into three components {ϵnθ }3n=1, with a stride S of 2 for clarity. A single parallel batch results
in the completion of denoising for two steps

A More Implementation Details.

Model Segmentation. In our method, we partition the cumbersome denoising model into multiple
components, each assigned to a different device. After successfully parallelizing the computation of
each component, the time cost for each time step now corresponds to the maximum latency among
these components. To optimize parallel processing efficiency, we partition the model into segments
that each carry a roughly equal computational load. This arrangement allows all modules to finish
their computations nearly simultaneously, making full use of available computational resources. The
segmentation strategy is sequential except for SDXL [41]. For the denoising U-net within the SDXL
module, we group its first and last blocks into a single segment and apply sequential splitting to
the remaining blocks. This is because SDXL has specific needs for high-frequency details, and res
connections typically contain abundant high-frequency information.

Time Shifting. We introduce a technique called time shifting. Following the warm-up steps,
the time embedding for each step is shifted back by one step. For instance, in a 50-step asyn-
chronous denoising process with a warm-up of 2 steps, the original sequence of time embeddings is
{50, 49, 48, 47, ..., 3, 2, 1}. With time shifting, this sequence is adjusted to {50, 49, 49, 48, ..., 3, 2}.
In certain extreme cases, asynchronous denoising might leave residual noise in the output. Time
shifting addresses this by adjusting the time embeddings backward, enhancing the denoising effect.
It’s important to note that time shifting is not a standard component of our method but is employed
optionally. The quantitative results presented in this paper are achieved without the use of time
shifting.

Stride Denoising. To further enhance efficiency, we introduce stride denoising, which completes
multiple denoising steps simultaneously through a single parallel computation. Figure 7 illustrates
the full schematic of applying stride denoising to AsyncDiff. In this depiction, the denoising model ϵθ
is divided into three components ϵnθ

3
n=1, and for clarity, the stride S is set to 2. Unlike the continuous

broadcasting of hidden states at each time step, stride denoising broadcasts them every two steps.
As depicted, at time step {T − 1, T − 3, T − 5, T − 7}, we conduct denoising alone, and at time
step {T − 2, T − 4, T − 6, T − 8}, we compute and broadcast the hidden states for the next parallel
computation round. Consequently, the hidden states from time step {T − 1, T − 3, T − 5, T − 7}
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are not required, allowing us to skip the calculations for ϵ1θ and ϵ2θ at these steps. Stride denoising
effectively reduces both computational load and communication demands by decreasing the parallel
computing rounds needed to complete the process. Compared to the significant improvements it
brings in efficiency, the quality sacrifice is minimal and can be entirely compensated for by slightly
increasing the warm-up steps.

B More Analysis.

Time cost. In Table 9, we present the time costs associated with model running and inter-device
communication when using AsyncDiff on SD 2.1. Generally, communication expenses constitute
only a minor fraction of the total time cost, demonstrating that AsyncDiff is an effective distributed
acceleration technique suitable for practical application. It is important to note that as the number of
devices increases, the time needed for data broadcasting between devices also rises, thereby increasing
the proportion of communication costs. However, employing stride denoising can substantially reduce
these costs by decreasing the number of parallel rounds needed to complete the denoising process.

Table 9: Time cost comparisons on SD 2.1. ’Ratio’ in this table represents the proportion of
communication cost to overall latency. All measurements were conducted on NVIDIA A5000 GPUs
equipped with NVLINK Bridge

Config Time Cost

Overall Running Comm. Ratio

N=2 S=1 3.03s 2.90s 0.13s 4.30%
N=3 S=1 2.41s 2.18s 0.23s 9.54%
N=4 S=1 2.10s 1.80s 0.30s 14.29%
N=2 S=2 1.82s 1.70s 0.12s 6.59%
N=3 S=2 1.35s 1.25s 0.10s 7.40%

Speedup Ratio. We also evaluate the acceleration ratio on SD 2.1 with varying numbers of denoising
steps. As indicated in Table 10, AsyncDiff significantly enhances processing speed, even with a
denoising procedure consisting of only 25 steps. When the number of steps extends to 100, our
approach achieves a speedup of up to 4.3x, surpassing the ratio of devices employed.

Table 10: Acceleration ratio on SD 2.1 under different num of denoising steps

Config Speedup↑

25steps 50steps 100steps

Origin 1.0x (2.89s) 1.0x (5.51s) 1.0x (10.96s)
N=2 S=1 1.7x (1.70s) 1.8x (3.03s) 1.8x (6.04s)
N=3 S=1 2.1x (1.35s) 2.3x (2.41s) 2.3x (4.71s)
N=4 S=1 2.4x (1.21s) 2.6x (2.10s) 2.7x (4.01s)
N=2 S=2 2.7x (1.05s) 3.0x (1.82s) 3.2x (3.39s)
N=3 S=2 3.4x (0.86s) 4.0x (1.35s) 4.3x (2.52s)

C More Quantitative Results.

To thoroughly assess the quality of images produced following acceleration, we provide quantitative
analyses on three base models (SD 2.1 [43], SD 1.5 [43], SDXL [41]) using four additional metrics:
the full reference metric, DISTS [5], and no-reference metrics including MUSIQ [20], CLIP-IQA
[59], and NIQE [36]. The experimental results in Table 11 demonstrate that our method significantly
reduces inference latency while maintaining a high level of quality in diffusion model-generated
images. On SD 1.5, our approach not only accelerates the inference process but also brings the image
quality closer to the natural distribution.
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Table 11: Quantitative evaluations of AsyncDiff on three text-to-image diffusion models using more
metrics including DISTS [5], MUSIQ [20], CLIP-IQA [59], and NIQE [36].

Base Model Configuration Devices DISTS↓ MUSIQ↑ CLIP-IQA↑ NIQE↓

SD 2.1

Original Model 1 – 69.95 0.6653 3.9675
+ Ours (N=2 S=1) 2 0.1041 69.55 0.6539 3.8850
+ Ours (N=3 S=1) 3 0.1280 69.04 0.6441 3.9438
+ Ours (N=4 S=1) 4 0.1419 68.58 0.6365 3.9724
+ Ours (N=2 S=2) 3 0.1556 68.03 0.6158 3.5761
+ Ours (N=3 S=2) 4 0.1689 67.13 0.5986 3.6761

SD 1.5

Original Model 1 – 71.98 0.6534 3.5517
+ Ours (N=2 S=1) 2 0.1169 72.21 0.6569 3.7448
+ Ours (N=3 S=1) 3 0.1434 71.73 0.6481 3.8023
+ Ours (N=4 S=1) 4 0.1599 71.51 0.6442 3.8620
+ Ours (N=2 S=2) 3 0.1668 71.14 0.6323 3.9613
+ Ours (N=3 S=2) 4 0.1905 69.42 0.6070 4.1047

SDXL

Original Model 1 – 71.58 0.6633 4.0743
+ Ours (N=2 S=1) 2 0.1038 70.56 0.6498 4.1139
+ Ours (N=3 S=1) 3 0.1211 69.88 0.6389 4.1585
+ Ours (N=4 S=1) 4 0.1391 67.70 0.6056 4.0927
+ Ours (N=2 S=2) 3 0.1329 69.56 0.6222 4.1685
+ Ours (N=3 S=2) 4 0.1527 68.16 0.5955 4.2745

D More Qualitative Results

Qualitative Results on Image Diffusion Models. As depicted in Figure 8, we present further
qualitative results for SD 2.1 and SDXL under various configurations. The speedup achieved is nearly
proportional to the number of devices utilized, indicating efficient resource usage by our method.
Moreover, the images generated by our approach closely match the text descriptions and are of high
quality.

Qualitative Results on Video Diffusion Models. We present qualitative evaluations of AsyncDiff
applied to the video diffusion models. Figures 9, 10, and 11 illustrate the generated results using
our method on the text-to-video model AnimateDiff [9]. Figure 12 displays results from applying
our method to the image-to-video model SVD [2]. For a 50-step video diffusion model, AsyncDiff
markedly decreases latency—saving tens or even hundreds of seconds—while maintaining the
integrity and quality of the generated videos.

E Limitations

As a distributed acceleration framework, AsyncDiff necessitates frequent communication between
devices throughout the denoising process. Consequently, if the devices lack the capability to com-
municate effectively or have subpar communication infrastructure, our method may not perform
optimally. Additionally, AsyncDiff operates as a plug-and-play acceleration solution that depends on
pre-trained diffusion models. Therefore, if the baseline quality of the original diffusion models is
unsatisfactory, achieving high-quality results with our method could be challenging.

F Societal impacts

In this paper, we introduce a universal distributed acceleration approach for diffusion models. This
method substantially speeds up the inference phase of diverse diffusion models by fully leveraging
computational resources. It holds significant potential for practical applications, particularly in
computationally intensive generation tasks like video and speech generation.
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Ours 3.8x Speedup
4 Devices (N=3 S=2)Original Ours 2.7x Speedup

4 Devices (N=4 S=1)
Ours 2.4x Speedup

3 Devices (N=3 S=1)
Ours 2.8x Speedup

3 Devices (N=2 S=2)
Ours 1.7x Speedup

2 Devices (N=2 S=1)

(b) More Qualitative Results on SDXL with different configurations

Ours 4.0x Speedup
4 Devices (N=3 S=2)Original Ours 2.6x Speedup

4 Devices (N=4 S=1)
Ours 2.3x Speedup

3 Devices (N=3 S=1)
Ours 3.0x Speedup

3 Devices (N=2 S=2)
Ours 1.8x Speedup

2 Devices (N=2 S=1)

(a) More Qualitative Results on SD 2.1 with different configurations

Figure 8: Qualitative results on SD 2.1 and SDXL with different configurations.Our method maintains
excellent generation quality even when achieving speedups of up to four times.
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Original  43.5s

Ours 23.5s  (2 devices)

Ours 11.5s  (4 devices)

Prompt: Brilliant fireworks on the town, Van Gogh style, digital artwork, illustrative, painterly, matte painting, highly detailed, cinematic 

Figure 9: Qualitative results on AnimateDiff (1)

Prompt: panda playing a guitar, on a boat, in the blue ocean, high quality
Original  43.5s

Ours 23.5s  (2 devices)

Ours 11.5s  (4 devices)

Figure 10: Qualitative results on AnimateDiff (2)

Ours 2.7x Speedup

Prompt: comic book style, Batman is walking, colored, dynamic background, full body view, clean sharp focus
Original  43.5s

Ours 23.5s  (2 devices)

Ours 11.5s  (4 devices)

Figure 11: Qualitative results on AnimateDiff (3)
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Figure 12: Qualitative results on Stable Video Diffusion
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in our abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitation of our work in the Appendix.E.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of our method along with extensive experi-
mental results.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We offer the full code along with relevant instructions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the details about the experiment in our paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the details about initialization and dataset split.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the details about the computation resources we used in the experi-
ments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We strictly adhere to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the societal impacts in the Appendix.F.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets (e.g., code, data, models) used in the
paper are properly credited, and the license and terms of use are explicitly mentioned and
properly adhered to.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New assets introduced in the paper are well documented, and the documenta-
tion is provided alongside the assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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