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Abstract

mRNA-based vaccines and therapeutics are gaining popularity and usage across a
wide range of conditions. One of the critical issues when designing such mRNAs
is sequence optimization. Even small proteins or peptides can be encoded by an
enormously large number of mRNAs. The actual mRNA sequence can have a large
impact on several properties including expression, stability, immunogenicity, and
more. To enable the selection of an optimal sequence, we developed CodonBERT,
a large language model (LLM) for mRNAs. Unlike prior models, CodonBERT
uses codons as inputs which enables it to learn better representations. CodonBERT
was trained using more than 10 million mRNA sequences from a diverse set of or-
ganisms. The resulting model captures important biological concepts. CodonBERT
can also be extended to perform prediction tasks for various mRNA properties.
CodonBERT outperforms previous mRNA prediction methods including on a new
flu vaccine dataset.

1 Introduction

mRNA vaccines have emerged as a high potency, fast production, low-cost, and safe alternative to
traditional vaccines [1–4]. The expression level of a vaccine directly affects its potency, ultimate
immunogenicity, and efficacy [5]. The higher the level of expression of the antigenic protein encoded
by the mRNA sequence, the smaller amount of the vaccine is needed to achieve the desired immune
response, which can make the vaccine more cost-effective and easier to manufacture [1].
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A human protein with an average length of 500 amino acids can be encoded by roughly 3500 different
codon sequences. While only one of those is encoded in the virus or DNA of interest, this is not
necessarily the optimal sequence for a vaccine. The classical method to find the optimal mRNA
sequence is codon optimization, which selects the most optimal codon for each amino acid using the
codon bias in the host organism [6]. This method has been widely applied for optimizing recombinant
protein drugs, nucleic acid therapies, gene therapy, mRNA therapy, and DNA/RNA vaccines [7–9].
However, codon optimization alone does not consider several key properties that impact protein
expression [10]. For instance, RNA structural motifs (e.g., stem loops and pseudoknots) have been
shown to play a major role for non-coding RNAs (such as riboswitches or aptamers) [11, 12].

Pre-training a large language model (LLM) has been scaled to biological sequences (protein, DNA,
and RNA) [13–17]. However, as we show, such LLMs may not be ideal for predicting protein
expression due to their focus on individual nucleotides and non-coding regions.

We developed CodonBERT, an LLM which extends the BERT model [18] and applies it to the
language of mRNAs, which uses a multi-head attention transformer architecture framework. The
pre-trained model can also be generalized to a diverse set of supervised-learning tasks. We pre-trained
CodonBERT using 10 million mRNA coding sequences spanning an evolutionarily diverse set of
organisms. Next, we used it to perform several mRNA prediction tasks, including protein expression
and mRNA degradation prediction. As we show, both the pre-trained and fine-tuned version of
models can learn biological information and improve on current state-of-the-art methods for mRNA
vaccine design.
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Figure 1: (a) Hierarchically classified mRNA sequences for pre-training. All the 13 leaf-level classes
are numbered. The angle of each segment is proportional to the number of sequences belonging to
this group. (b) Model architecture and training scheme deployed for two tasks of CodonBERT. (c) A
stack of 12 transformer blocks employed in CodonBERT model.

2 Methods

2.1 Data for pre-training and evaluation
We collected mRNA sequences across diverse organisms for pre-training from NCBI [19]. The
datasets included mammalian reference sequences 1, bacteria (Escherichia coli) reference sequences 2,

1https://www.ncbi.nlm.nih.gov/datasets/taxonomy/40674/
2https://www.ncbi.nlm.nih.gov/datasets/taxonomy/562/
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and homo sapiens virus complete nucleotides 3. To evaluate the prediction accuracy of the LLM,
we collected several functional mRNA datasets. We also generated a new dataset consisting of
mRNA sequences that encode the Influenza H3N2 A/Tasmania/503/2020 hemagglutinin protein.
As illustrated in Fig. S5, sequences corresponding to these candidates were synthesized as gene
fragments and PCR amplified to generate template DNA for high-throughput in vitro transcription
reactions. HeLa cells were used to evaluate the expression of the protein encoded by different mRNA
sequences.

2.2 Model architecture
As shown in Figure 1(b), CodonBERT takes a sequence pair as input and concatenates them using
a separator token ([SEP]). It then adds a classifier token ([CLS]) and a separator token ([SEP]) at
the beginning and end of the combined sequence, respectively. CodonBERT constructs the input
embedding by concatenating codon, position, and segment embeddings.

The combined input embedding is fed into the CodonBERT model, which consists of a stack of 12
layers of bidirectional transformer encoders [20] as shown in Figure 1(c). Each transformer layer
processes its input using 12 self-attention heads, and outputs a representation for each position with
hidden size 768. In each layer, the multi-head self-attention mechanism captures the contextual
information of the input sequence by considering all the other codons in the sequence. A key benefit
of self-attention mechanism is the connection learned between all pairs of positions in an input
sequence using parallel computation which enables CodonBERT to model not only short-range
but also long-range interactions, which impact translation efficiency and stability [21]. Next a
feed-forward neural network is added to apply a non-linear transformation to the output hidden
representation from the self-attention network. A residual connection is employed around each of the
multi-head attention and feed-forward networks. After processing the input sequence with a stack of
transformer encoders, CodonBERT produces the final contextualized codon representations, which is
followed by a classification layer to produce probability distribution over the vocabulary.

2.3 Pre-training CodonBERT
Pre-training CodonBERT performs two tasks: Masked Language Model (MLM) and Homologous
Sequences Prediction (HSP). A fraction of input codons (15%) are randomly selected and replaced
by the masking token ([MASK]). The self-training loop optimizes CodonBERT to predict the masked
codons based on the remaining ones. A probability distribution over 64 possible codons is produced
by CodonBERT for the masked positions. The average cross entropy loss of the masked language
model LMLM over the masked positions M is calculated by the optimization function:

LMLM = − 1

|X|
1

|M |
∑
x∈X

∑
i∈M

log p(xi | xM ) (1)

Where X represents a batch of sequences, x is one sequence and xi is the original codon for the
position i. xM is the masked input with a set of positions M masked. p(xi | xM ) indicates the output
probability of the real codon xi given all the remaining codons in the masked sequence xM .

Besides, The output embedding of the classifier token ([CLS]) is used for predicting whether these
two input sequences belong to the same class, i.e., homologous sequences. The average cross entropy
loss of the homologous sequences prediction task LHSP is computed as:

LHSP = − 1

N

N∑
n=1

[yn log pn + (1− yn) log(1− pn)] (2)

Where N represents the number of sequence pairs. yn is the expected value, which is 1 when two
sequences are homologous and 0 when they are not. pn indicates the predicted probability of two
sequences belonging to the same category. Thus, the total loss is LMLM + LHSP.

CodonBERT was also applied to a wide range of downstream tasks. For this we can use either a
single or a pair of sequences as input (Figure 1(b) and Figure S3(c)). To perform supervised analysis,
the output embedding is followed by an output layer which is trained for the specific task.
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Figure 2: Genetic code and evolutionary homology information learned by pre-trained, unsupervised
CodonBERT model. High-dimensional codon (a) and sequence (b) embeddings were projected into
2-dimensional space using UMAP [22]. (a) Each point represents a codon with different contexts,
and its color corresponds to the type of amino acid accordingly. (b) Each point is a mRNA sequence,
and its color represents the sequence label.

3 Results

3.1 Pre-trained Representation Model

We pre-trained CodonBERT using 10 million mRNA sequences (Methods). Pre-training on 4 A10G
GPUs with 96 GB GPU memory and 192 GB memory took roughly two weeks. To assess the
pre-trained CodonBERT model, we built a held-out dataset by randomly leaving out 1% of mRNA
sequences for each category and trained the model with the remaining sequences. During the pre-
training phase, the model performance on two tasks (MLM and HSP) is substantially improved on
the losses and accuracies of the model prediction as shown in Fig. S1.

In addition to the quantitative evaluation of model predictions, we also performed several quali-
tative analyses of the embeddings provided by CodonBERT. To decipher what kind of biological
information has been learned by the model and encoded in the codon and sequences representations.
2D projections of the codon and sequence embeddings for the held-out dataset is presented in Fig-
ure 2(a–b). As can be seen, codons that encode the same amino acid, i.e., synonymous codons,
are spatially close to each other, which indicates that CodonBERT learns the genetic code from the
large-scale training set. Figure 2(b) shows clusters for five high-level sequence categories: E. coli,
human virus, and three subgroups of mammals. Homologous sequences are clustered together with
clear boundaries between the homology classes. As the largest and most developed group within
mammals, placentals are further split into eight specific categories (Figure 1(a)). Clustering of the
embeddings corresponding to these eight subgroups is compact and well-separated. These clear
cluster patterns implies that CodonBERT can learn the homologous information from the millions of
mRNA sequences across diverse families and organisms.

3.2 Evaluating CodonBERT and comparison to prior methods on supervised learning tasks

CodonBERT can be extended to perform supervised learning for specific mRNA prediction tasks. To
evaluate the use of our LLM for downstream tasks and to compare it to prior methods, we collected
several mRNA property prediction datasets. Table S1 presents a diverse set of downstream tasks
related to mRNA translation, stability, and regulation [23–28]. In addition, these datasets represent a
range of molecules, including newly published data sets for recombinant protein, bio-computing, and
SARS-CoV-2 vaccine design. Finally, we generated a new dataset to test CodonBERT in the context
of mRNAs encoding the influenza hemagglutinin antigen for Flu vaccines (Fig. S5).

3https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
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Model Flu
Vaccines

mRFP
Expression

Fungal
Expression

E. coli
Proteins

mRNA
Stability

Tc-
Riboswitch

SARS-CoV-2
Vaccine

Degradation

Nucleotide
-based

plain TextCNN 0.72 0.62 0.53 0.39 0.01 0.41 0.55
RNABERT 0.65 0.40 0.41 0.39 0.16 0.47 0.64
RNA-FM 0.71 0.80 0.59 0.43 0.34 0.58 0.74

Codon
-based

TF-IDF 0.68 0.57 0.68 0.44 0.54 0.49 0.69
plain TextCNN 0.71 0.78 0.76 0.36 0.26 0.43 0.80
Codon2vec 0.72 0.77 0.61 0.43 0.33 0.56 0.70
CodonBERT 0.78 0.88 0.89 0.57 0.35 0.48 0.78

Table 1: Comparison of CodonBERT to prior methods on seven downstream tasks. For regression
tasks, the corresponding Spearman’s rank correlation values are listed. For the classification task
(E. coli proteins data set), classification accuracy is calculated. The best values of correlation and
accuracy for each task are in bold. The corresponding MSE loss and cross entropy loss is listed in
Table S2.

To assess CodonBERT’s performance on these tasks, we have also applied several other state-
of-the-art methods that have been previously used for mRNA property prediction with different
model complexities, including TF-IDF [29], TextCNN [30], Codon2vec [31], RNABERT [15], and
RNA-FM [16]. Detailed training information for these models are shown in Fig. S3. Table 1 presents
the performance of CodonBERT and other six methods on these downstream tasks. Note that the first
three rows are nucleotide-based methods , while the rest are codon-based methods.

Overall, we see that codon-based methods outperform nucleotide-based methods on most tasks
(Fig. S4). This is in part due to the critical role of codons on the protein expression. For example, and
CodonBERT improved on RNABERT and RNA-FM, which are nuecleotide-based LLMs trained on
non-coding RNAs, on protein expression tasks. Moreover, the codon-based variant of TextCNN also
outperforms the original nucleotide implementation on most tasks. As for the detailed comparison,
we observe that CodonBERT performed best on four of the seven tasks and second best (in most
cases with very small difference) on two of the remaining three tasks.

4 Discussion

To enable the analysis and prediction of mRNA properties, we utilized 10 million mRNA coding
sequences (CDS) from several species to train a large language model (CodonBERT), and to establish
a foundational model. Projection of codon embedding obtained from CodonBERT produces distinct
clusters that adhere to the amino acid types. In-depth analysis of CodonBERT representation of a set
of genes from different organisms revealed that CodonBERT autonomously learns the genetic code
and principles of evolutionary homology and aligns with our understanding of genetic evolution.

We also utilized CodonBERT to perform several supervised prediction tasks for mRNA properties.
Our results indicate that CodonBERT is the top performing method overall and ranks first or second
in performance for six of the seven tasks. The one exception in terms of performance was observed
for the mRNA stability tasks. Stability is known to be structure-dependent, and stable structures such
as stem-loops or hairpin structures can impede degradation enzymes, protecting the mRNA from
rapid decay. A possible reason for the reduction in performance for these datasets is that structural
properties are highly dependent on nucleotides whereas CodonBERT is a codon-based model. One
possible solution for this is a model that combines codon and nucleotide representation. Similarly,
mRNA modification events including capping at the 5′ end and polyadenylation at the 3′ end in
eukaryotes are not currently encoded in our model but can also impact mRNA stability.

To conclude, our findings suggest that CodonBERT could serve as a versatile and foundational model
for the development of new mRNA-based vaccines and the engineering and recombinant production
of industrial and therapeutic proteins.
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Figure S1: The pre-training curve of CodonBERT.
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Figure S2: (a) Projected sequence embedding from the pre-trained CodonBERT model. Each point
is a mRNA sequence, and its color represents the sequence label. (b) Projected codon embedding
from the pre-trained Codon2vec model. Each point shows a codon, and its color is the corresponding
amino acid.
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Data Set Target category # mRNAs seq length

MLOS Flu Vaccines (Sanofi-Aventis) Expression Regression 543 1698 – 1704

mRFP Expression Expression Regression 1459 678 – 678

Fungal expression Expression Regression 7056 150 – 3000

E. coli proteins Expression Classification 6348 171 – 3000

Tc-Riboswitches Switching factor Regression 355 67 – 73

mRNA stability Stability Regression 41123 30 – 1497

SARS-CoV-2 Vaccine Degradation Degradation Regression 2400 107 – 107

Table S1: The collection of the datasets with their corresponding mRNA source and property used
for method evaluation. Each dataset is split into training, validation, and test with 0.7, 0.15, 0.15 ratio.
All the methods were optimized on the same data split.
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Figure S3: Comparison to prior methods (TF-IDF, Codon2vec, RNABERT and RNA-FM) and fine-
tuning CodonBERT on downstream data sets. a) Given an input corpus with m mRNA sequences,
TF-IDF is used to construct a feature matrix followed by a random forest regression model. b) Use
a TextCNN model to learn task-specific nucleotide or codon representations. The model is able
to fine-tune pre-trained representations by initializing the embedding layers with stacked codon or
nucleotide embeddings extracted from pre-trained language models (Codon2vec, RNABERT, and
RNA-FM). n is the number of codons in the input sequence and d is the dimension of the token
embedding. As baseline, plain TextCNN initializes the embedding layer with a standard normal
distribution. c) Fine-tune the pre-trained CodonBERT model on a given downstream task directly by
keeping all the parameters trainable.
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Model / Dataset Flu
Vaccines

mRFP
Expression

Fungal
Expression

E. coli
Proteins

mRNA
Stability

Tc-
Riboswitch

CoV Vaccine
Degradation

number of seqs 538 1459 7553 6348 41123 355 2400

plain TextCNN 0.26 / 0.72 0.35 / 0.62 3.35 / 0.53 1.09 / 0.39 1.01 / 0.01 0.53 / 0.41 0.017 / 0.55

RNABERT 0.45 / 0.65 0.47 / 0.40 3.85 / 0.41 1.09 / 0.39 0.98 / 0.16 0.44 / 0.47 0.017 / 0.64

RNA-FM 0.36 / 0.71 0.21 / 0.80 3.06 / 0.59 1.05 / 0.43 0.89 / 0.34 0.45 / 0.58 0.015 / 0.74

TF-IDF 0.37 / 0.68 0.43 / 0.57 2.59 / 0.68 – / 0.44 0.68 / 0.54 0.46 / 0.49 0.017 / 0.69

plain TextCNN 0.37 / 0.71 0.21 / 0.78 1.83 / 0.76 1.09 / 0.36 0.59 / 0.26 0.64 / 0.43 0.009 / 0.80

Codon2vec 0.30 / 0.72 0.28 / 0.77 3.04 / 0.61 1.06 / 0.43 0.91 / 0.33 0.43 / 0.56 0.016 / 0.70

CodonBERT 0.28 / 0.78 0.11 / 0.88 0.64 / 0.89 0.92 / 0.57 0.94 / 0.35 0.44 / 0.48 0.012 / 0.78

Table S2: Results of our CodonBERT model against other benchmarks on the test set of seven
downstream tasks. For regression tasks, the MSE loss and the corresponding Spearman’s rank
correlation are listed. For the classification task (E. coli proteins data set), the cross entropy loss and
classification accuracy are calculated. The best values of loss, correlation and accuracy for each task
are in bold.

CodonBERT

Tex
tCNN-Nuc

Codon2vec

Tex
tCNN-Codon

RNA-FM
TF-

IDF

RNABERT

0.6

0.7

0.8

Sp
ea

rm
an

's 
ra

nk
 c

or
re

la
tio

n MLOS Flu Vaccines

CodonBERT
RNA-FM

Tex
tCNN-Codon

Codon2vec

Tex
tCNN-Nuc

TF-
IDF

RNABERT

0.4

0.6

0.8

Sp
ea

rm
an

's 
ra

nk
 c

or
re

la
tio

n mRFP Expression

CodonBERT

Tex
tCNN-Codon

TF-
IDF

Codon2vec

RNA-FM

Tex
tCNN-Nuc

RNABERT

0.4

0.6

0.8

Sp
ea

rm
an

's 
ra

nk
 c

or
re

la
tio

n Fungal expression

CodonBERT
TF-

IDF

Codon2vec

RNA-FM

RNABERT

Tex
tCNN-Nuc

Tex
tCNN-Codon

0.3

0.4

0.5

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

E. coli proteins

RNA-FM

Codon2vec
TF-

IDF

CodonBERT

RNABERT

Tex
tCNN-Codon

Tex
tCNN-Nuc

0.4

0.5

0.6

Sp
ea

rm
an

's 
ra

nk
 c

or
re

la
tio

n Tc-Riboswitches

TF-
IDF

CodonBERT
RNA-FM

Codon2vec

Tex
tCNN-Codon

RNABERT

Tex
tCNN-Nuc

0.2

0.4

Sp
ea

rm
an

's 
ra

nk
 c

or
re

la
tio

n mRNA Stability

Tex
tCNN-Codon

CodonBERT
RNA-FM

Codon2vec
TF-

IDF

RNABERT

Tex
tCNN-Nuc

0.5

0.6

0.7

0.8

Sp
ea

rm
an

's 
ra

nk
 c

or
re

la
tio

n CoV Vaccine Degradation
TextCNN-Nuc
RNABERT
RNA-FM
TF-IDF
TextCNN-Codon
Codon2vec
CodonBERT

Figure S4: Ranked results (Spearman’s rank correlation or classification accuracy, higher is better)
for CodonBERT model and other benchmarks. Nucleotide-based and codon-based methods are in
blue and orange colors, respectively. Shades represent model complexity.
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Figure S5: Experimental design for testing in-cell protein expression.
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