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Abstract

One of the important tasks in cancer research is to identify biomarkers and build classifica-

tion models for clinical outcome prediction. In this paper, we develop a CyNetSVM software

package, implemented in Java and integrated with Cytoscape as an app, to identify network

biomarkers using network-constrained support vector machines (NetSVM). The Cytoscape

app of NetSVM is specifically designed to improve the usability of NetSVM with the following

enhancements: (1) user-friendly graphical user interface (GUI), (2) computationally efficient

core program and (3) convenient network visualization capability. The CyNetSVM app has

been used to analyze breast cancer data to identify network genes associated with breast can-

cer recurrence. The biological function of these network genes is enriched in signaling path-

ways associated with breast cancer progression, showing the effectiveness of CyNetSVM for

cancer biomarker identification. The CyNetSVM package is available at Cytoscape App Store

and http://sourceforge.net/projects/netsvmjava; a sample data set is also provided at source-

forge.net.

Introduction

Genes usually work collaboratively as modules, networks or pathways, and different modules

can interact with each other to take effect [1]. The nature of complex interactions makes it dif-

ficult to elucidate biological mechanisms from individual gene-based approaches [2]. Several

approaches have been proposed to identify gene sets, networks or pathways involved in can-

cers, e.g., gene set enrichment [3], network-constrained linear regression [4] and mutual infor-

mation-based network scoring [5]. More recently, NetSVM [6] has been developed to identify

predictive biomarkers (i.e., gene networks) by integrating gene expression data and protein-

protein interactions (PPI) data. Specifically, the NetSVM approach takes into account the

dependency of genes in a network and incorporates it into the prediction scheme of support
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vector machine (SVM) for improved performance in identifying network biomarkers (as pre-

viously demonstrated in [6]).

In this paper, we present a Cytoscape [7] app, called CyNetSVM, that implements the NetSVM

method, an integrated approach to predict clinical outcome of patients and to identify biologically

meaningful networks. The core (analytic) program is implemented in Java so as to analyze large-

scale biomedical data efficiently. To further support the ease of use of NetSVM, a user-friendly

graphical user interface (GUI) is developed. The data and necessary options can be easily set

through the GUI. Both the core analytic program and GUI are integrated with Cytoscape using

Cytoscape application program interface (API). The CyNetSVM app not only provides the pre-

diction performance (i.e., sensitivity and specificity) but also generates a network view of the

identified biomarkers in Cytoscape. We first use a simulation study to show the correctness of

implementation and the advantage of incorporating network information. To demonstrate the

capability of CyNetSVM in real biomedical applications, we further use the CyNetSVM app to

analyze breast cancer data for clinical outcome prediction and network biomarker identification.

The experimental result demonstrates that CyNetSVM can provide high sensitivity and specificity

for clinical outcome prediction. Furthermore, functional analyses of the identified gene networks

show a significant enrichment in breast cancer-related signaling pathways.

Materials and Methods

An overview of the CyNetSVM package is shown in Fig 1. The core program of the CyNetSVM

app is implemented in Java and integrated with Cytoscape using Cytoscape API. After input

data is collected (i.e. protein-protein interaction (PPI) data and gene expression data), the core

program first pre-processes the data through standardization and then identifies the networks

from the processed data. Once the core program completes, the gene network is created, and

the node color is set based on the log2 fold change between the two phenotypes. Along with

the network, CyNetSVM also reports the sensitivity, specificity, ROC curve and AUC values

for the classification.

The NetSVM Method

NetSVM [6] is a computational method to predict clinical outcome and identify network bio-

markers by integrating gene expression data and PPI data. As an extension of the conventional

support vector machine (SVM), NetSVM also exploits the decision hyperplane to predict the

clinical outcome of patients. The gene dependency in a network is incorporated as a constraint

upon the objective function of conventional SVM. The network constraint is formulated by a

Laplacian matrix, which is calculated from PPI data. By utilizing the smoothing property of

the Laplacian matrix, genes in a network tend to have a similar contribution to the decision

hyperplane. The objective function of NetSVM can be rewritten in the same form as that of

conventional SVM by transforming the hyperplane parameters or rotating the hyperplane.

Therefore, the optimization problem of NetSVM can be solved as that of conventional SVM,

and the solution, i.e., the hyperplane, can then be rotated back. The final identified network

consists of the genes with higher contribution to the hyperplane.

Software Implementation

The CyNetSVM package has been implemented in Java as a Cytoscape app for network bio-

marker identification. A screenshot of the CyNetSVM app is shown in Fig 2. We designed a

user-friendly GUI in the left panel for users to access to the plugin. The following input files

are needed (described in Table 1)—gene expression data in standard GCT format, protein-

protein interaction (PPI) data (formatted as tab-separated values (TSV) format) and class label

CyNetSVM for Cancer Biomarker Identification
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indices of samples. Typically, gene expression data and PPI network data contain a large num-

ber of genes or proteins. In many cases, users are only interested in a selective set of genes,

such as genes of breast cancer pathways. For CyNetSVM, users can provide a subset of genes

selected from the original gene list. The subset of PPI network only with these genes will be

extracted to perform the analysis. To tune the weight of network constraint, we apply cross-

validation to find the parameters that provide the best accuracy. Users can set the number

of folds for the cross-validation. To visualize the identified network, users need to determine

the size of the network, which is the same as setting a threshold to select top-ranked genes.

Improved visualization of the identified network can be obtained by providing a file contain-

ing the mapping between gene symbol and protein’s cellular location. The genes shown in the

network will be grouped by the cellular location of proteins.

When running the CyNetSVM app, the GUI will pass all the input data and options to the

core program. The class diagram of the GUI component is shown in S1 Fig. The classes of

NetSVMParameterPanel and NetSVMDataPanel are responsible for collecting the parameters

and data files needed to run the plugin, respectively. The NetSVMRunPanel class is designed

to act as an interface bridging the input data and the core analytic program. Data preprocess-

ing, such as standardization, will be performed on the gene expression data. Cross-validation

will then start with the number of folds set by the user. As a final step, the specificity, sensitivity

and the area under the receiver operating characteristic (ROC) curve (AUC) will be calculated

and reported. Further, the CyNetSVM app will generate a network view of the identified bio-

markers in Cytoscape.

Fig 1. An overview of the CyNetSVM app.

doi:10.1371/journal.pone.0170482.g001
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Since Cytoscape uses the OSGi architecture (https://www.osgi.org), CyNetSVM has been

packaged as a bundle in Cytoscape. S2 Fig shows the class diagram of the CyNetSVM bundle

app. The core program of CyNetSVM is implemented as a Java program that can be run

through Cytoscape API. The CyActivator class is the Activator for the bundle, trigger every

time the bundle is started or stopped. To run the package, the bundle needs to be loaded in the

OSGi container and started. Additionally, the package uses CreateNetwork (a Cytoscape built-

in class) to obtain the results from the core program; it also uses CyNetworkFactory to con-

struct a network from the identified genes and CyNetworkManager to display (show) the

network.

Fig 2. Screenshot of the CyNetSVM app.

doi:10.1371/journal.pone.0170482.g002

Table 1. Input Data of CyNetSVM.

Data Format Description

Protein-protein

interaction data

TSV Protein interaction networks

Gene expression data GCT Microarray gene expression data

Group 1 index TSV Group 1 (e.g., early recurrence) (value = 1)

Group 2 index TSV Group 2 (e.g., late recurrence) (value = 2)

Gene id TSV Gene list of interest

Gene product location TSV File containing gene Entrez ID, gene symbol, gene product location,

and participated pathways in the cell

doi:10.1371/journal.pone.0170482.t001
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Results and Discussion

Simulation Data

We first compared CyNetSVM with NetSVM (implemented in MATLAB) and conventional

SVM using simulation data to prove the correctness of our implementation and demonstrate

the improvement of performance with network information incorporated. The simulation

data were generated on a breast cancer-related network with 584 genes and 2280 nodes follow-

ing the same strategy used in [6]. For each phenotype, we generated 100 samples for both

training and testing data. To evaluate the performance under different levels of noise, we simu-

lated 11 scenarios with different signal-to-noise ratios (SNR) ranging from -10 dB to 10 dB.

For each scenario, we generated 100 simulation data sets to evaluate the variance of perfor-

mance. Table 2 shows the accuracy of phenotype prediction and the area under the ROC curve

(AUC) for network identification. It can be seen that the performance of CyNetSVM and

NetSVM are very close, which shows the correctness of our implementation. Note that the

minor difference of the performance between CyNetSVM and NetSVM is mainly caused by

the stochasticity of the cross-validation procedure. Furthermore, the significant improvement

of network identification of CyNetSVM and NetSVM compared with SVM demonstrates the

importance of incorporating network information.

Network Identification from Breast Cancer Data

To demonstrate the effectiveness of CyNetSVM for real biomedical applications, the

CyNetSVM app was used to analyze a breast cancer gene expression dataset (Loi et al. data)

[8]. The samples were divided into two groups, ‘early recurrence’ and ‘late recurrence,’ sepa-

rated by six years in survival time. We obtained 20 samples in the ‘early recurrence’ group and

27 samples in the ‘late recurrence’ group. In this study, we used the whole PPI network from

the HPRD database [9] (9673 nodes and 40563 edges after mapping to the microarray plat-

form) to evaluate the performance. We further applied the Bagging Markov Random Field

(BMRF) method [10, 11] on both networks and obtained networks of 484 genes and 2096

edges to start with the analysis. The program completed the network analysis less than 10 sec-

onds with 5-fold cross-validation. The identified network with top 100 genes is shown in Fig 3.

We further applied the DAVID [12] functional annotation tool (https://david-d.ncifcrf.gov/)

on the identified genes. The genes in the network are significantly enriched in breast cancer-

Table 2. Means and standard deviations of accuracy for phenotype prediction and AUC for network identification on simulation data with different

SNR.

SNR (dB) Phenotype prediction (accuracy) Network identification (AUC)

CyNetSVM NetSVM SVM CyNetSVM NetSVM SVM

10 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.86 ± 0.04 0.85 ± 0.03 0.76 ± 0.04

8 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.83 ± 0.05 0.84 ± 0.06 0.76 ± 0.04

6 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.83 ± 0.04 0.84 ± 0.04 0.77 ± 0.03

4 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.83 ± 0.06 0.84 ± 0.06 0.77 ± 0.03

2 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.83 ± 0.05 0.83 ± 0.06 0.76 ± 0.03

0 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.83 ± 0.04 0.83 ± 0.04 0.77 ± 0.04

-2 0.98 ± 0.02 0.98 ± 0.02 0.99 ± 0.01 0.81 ± 0.03 0.80 ± 0.04 0.74 ± 0.05

-4 0.91 ± 0.02 0.91 ± 0.03 0.91 ± 0.02 0.79 ± 0.04 0.79 ± 0.07 0.72 ± 0.02

-6 0.85 ± 0.03 0.85 ± 0.03 0.83 ± 0.04 0.79 ± 0.06 0.79 ± 0.06 0.71 ± 0.03

-8 0.77 ± 0.06 0.78 ± 0.06 0.78 ± 0.06 0.79 ± 0.06 0.79 ± 0.07 0.72 ± 0.04

-10 0.71 ± 0.06 0.70 ± 0.05 0.71 ± 0.05 0.70 ± 0.05 0.71 ± 0.05 0.68 ± 0.03

doi:10.1371/journal.pone.0170482.t002
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related pathways such as FOXO signaling pathway [13], MAPK signaling pathway [14], Ras

signaling pathway [15], TGF-Beta signaling pathway [16], Estrogen signaling pathway [17],

Wnt signaling pathway [18] and ErbB signaling pathway [19]. The detailed functional annota-

tion results are shown in Table 3. The p-value was calculated using the genes measured in

the PPI data as the background genes. For the prediction of recurrence status (i.e., ‘early

Fig 3. Network identified from Loi et al. data.

doi:10.1371/journal.pone.0170482.g003
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recurrence’ or ‘late recurrence’), CyNetSVM achieved a sensitivity of 0.73 and a specificity of

0.72. We also set a different threshold for the absolute weight of gene to conduct a ROC study

of the prediction. As shown in Fig 4, the AUC value is 0.80. The experimental results show that

the CyNetSVM app can be used as an effective tool for network biomarker identification.

Table 3. Functional enrichment of genes identified from Loi et al. data in signaling pathways and

associated p-values.

Pathway Genes P-value

FOXO signaling pathway AKT1,CREBBP,SMAD2,SMAD4,FOXO3,IGF1R,MAPK10,MAPK9,

PLK1,USP7

1.1E-6

MAPK signaling pathway AKT1,RASA1,CDC42,FLNA,FLNB,HSPA1B,HSPA8,HSPB1,

MAPK10,MAPK9

1.2E-4

Ras signaling pathway AKT1,RASA1,CDC42,GRIN1,GRIN2B,IGF1R,MAPK10,MAPK9 1.1E-3

TGF-Beta signaling

pathway

CREBBP,SMAD2,SMAD4,SP1,THBS1 1.3E-3

Estrogen signaling

pathway

AKT1,GNAI2,SP1,HSPA1B,HSPA8 2.3E-3

Wnt signaling pathway CREBBP,SMAD4,DVL2,MAPK10,MAPK9 6.9E-3

ErbB signaling pathway AKT1,ERBB2,MAPK10,MAPK9 1.2E-2

doi:10.1371/journal.pone.0170482.t003

Fig 4. ROC curve of the classification of patients in Loi et al. data.

doi:10.1371/journal.pone.0170482.g004
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Network Analysis Using METABRIC Data

We further applied CyNetSVM to the METABRIC data [20] to demonstrate the effective-

ness of network analysis on independent data sets. The METABRIC data were divided into

a discovery dataset (997 samples) and validation dataset (989 samples). The samples were

further selected by ER status (ER positive), treatment method (hormone treatment) and

survival status (death), resulting in 208 samples in the discovery dataset and 220 samples in

the validation dataset. The samples were further classified into ‘early recurrence’ group (< 3

years) and ‘late recurrence’ (> 9 years and < 12 years) by survival time. Finally, the discov-

ery dataset consisted of 41 samples in the ‘early recurrence’ group and 44 samples in the

‘late recurrence’ group; the validation dataset consisted of 37 samples in the ‘early recur-

rence’ group and 29 samples in the ‘late recurrence’ group. In this study, we also used the

whole PPI network from the HPRD database. After mapping the genes to the microarray

platform, we obtained 9579 nodes and 40281 edges in the network. We further applied the

BMRF method onto the network to identify subnetworks with 597 nodes and 2828 edges.

Based on the network, CyNetSVM took about 10 seconds to train on the discovery data and

test on the validation data. Fig 5 shows the identified networks with top 100 genes. We fur-

ther used the DAVID functional analysis tool to analyze the genes in the network. The

results showed that the genes are significantly enriched in breast cancer-related pathways

such as Estrogen signaling pathway [17], Ras signaling pathway [15], ErbB signaling path-

way [19], MAPK signaling pathway [14], TGF-Beta signaling pathway [16], Wnt signaling

pathway [18] and FOXO signaling pathway [13]. Table 4 lists the genes and corresponding

significance level in signaling pathways. As the reproducibility of biomarker identification

has been a challenging problem in the field [21], the genes identified from the Loi et al. data

and the discovery data are quite different, with only seven genes (i.e., CREBBP, DVL2,

AKT1, GNAI2, UBE2I, CAPN1 and CASP8) in common. However, enriched signaling

pathways are consistent (as we can see from Tables 3 and 4), showing a convergent point of

the identified networks at the functional level. Regarding recurrence status prediction,

CyNetSVM achieved AUC of 0.7372 with sensitivity of 0.6216 and specificity of 0.6552. The

ROC curve is shown in Fig 6.

Scalability

Given the Loi et al. dataset [8], we have also evaluated the scalability of CyNetSVM by mea-

suring the computational time on networks with a different number of nodes and edges up

to the whole HPRD PPI network. The results are shown in Table 5 (as tested on a DELL PC

Workstation (Precision T7600) with 2.9 GHz Intel Xeon CPU and 46 GB memory). It can

be seen from the table that the CyNetSVM app can complete the identification process

within 90 seconds on a relatively large network with 1000 nodes. The fast speed of the

CyNetSVM app makes it an efficient tool to help identify network biomarkers and visualize

the network in Cytoscape. We also measured the computational performance on networks

with the same number of nodes (1000) but with different average node degrees. The results

show that the computational time is robust against the average node degree. Theoretically,

the increase of average node degree will not lead to a significant increase of computational

time. The most time consuming calculation in the NetSVM method is the matrix decom-

position of the Laplacian matrix. The scale of the Laplacian matrix is determined only by

the size of nodes. For example, extremely large networks (i.e., Number of nodes > 5000)

will significantly increase the computational burden of the app while dealing with matrix

decomposition with dimension over 5000×5000. Also, directly applying CyNetSVM on

overwhelmed large networks will degrade the performance. In dealing with a large network,

CyNetSVM for Cancer Biomarker Identification
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we recommend users to construct a disease-related gene list from databases such as GO

database [22] and KEGG pathways [23] and input the gene list to the app. If the gene list is

not available, users can apply methods such as jActiveModule [24] and BMRF [10, 11] to

first select potential disease-related genes and networks as input.

Fig 5. Network identified from METABRIC discovery data.

doi:10.1371/journal.pone.0170482.g005
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Conclusions

The CyNetSVM app is a software tool that can be used to identify biologically meaningful net-

work biomarkers from PPI network and gene expression data. Equipped with user-friendly

GUI, computationally efficient core program (implemented in Java) and network visualization

Table 4. Functional enrichment of genes identified from the discovery dataset in signaling pathways

and associated p-values.

Pathway Genes P-value

Estrogen signaling pathway AKT1,GNAI1,GNAI2,JUN,SRC,ESR1,GRB2,MAPK1 5.6E-6

Ras signaling pathway AKT1,RELA,GRB2,KDR,MAPK1,NF1,PDGFB,PRKCB,RGL1 2.5E-4

ErbB signaling pathway AKT1,JUN,SRC,GRB2,MAPK1,PRKCB 3.2E-4

MAPK signaling pathway AKT1,JUN,RELA,GRB2,MAPK1,MAPKAPK2,NF1,PDGFB,

PRKCB

5.2E-4

TGF-Beta signaling

pathway

CREBBP,TGIF1,BMP6,GDF6,MAPK1 1.3E-3

Wnt signaling pathway CREBBP,JUN,CTNNB1,DVL2,PSEN1,PRKCB 1.4E-3

FOXO signaling pathway AKT1,CREBBP,GRB2,MAPK1,STAT3 9.0E-3

doi:10.1371/journal.pone.0170482.t004

Fig 6. ROC curve of the classification of patients in METABRIC validation data.

doi:10.1371/journal.pone.0170482.g006
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capability of Cytoscape, the CyNetSVM app can be applied to large-scale real biomedical data

to effectively identify biomarkers and conveniently visualize biomarker networks.

Supporting Information

S1 Fig. The class diagram of the CyNetSVM GUI.

(PDF)

S2 Fig. The class diagram of the CyNetSVM bundle application.

(PDF)
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Table 5. Computational time of the CyNetSVM app as tested with different network sizes and cross-validation folds.

No. of nodes No. of edges Average node degree Cross-validation folds Time (sec)

100 143 2.86 5 3.1

100 143 2.86 10 3.7

300 553 3.69 5 4.5

300 553 3.69 10 5.4

500 2162 8.65 5 8.3

500 2162 8.65 10 9.2

1000 2181 4.36 5 60.1

1000 2181 4.36 10 64.3

1000 3539 7.20 5 60.9

1000 3539 7.20 10 65.2

1000 4919 9.84 5 59.7

1000 4919 9.84 10 64.8

2545 15094 11.86 5 1856.3

2545 15094 11.86 10 1874.9

5000 19207 7.68 5 2980.3

5000 19207 7.68 10 2998.8

9673 40563 8.39 5 21653.5

9673 40563 8.39 10 21706.3

doi:10.1371/journal.pone.0170482.t005
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