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Abstract
Neural symmetry detection can be defined as the deep learning-aided task of recovering both the
nature of the transformation that relates points in a data set and the distribution with respect to the
magnitude of the transformation. Applications range from automatic data augmentation to model
selection. In this work, we investigate how the matrix exponential can be leveraged to recover the
correct symmetry transformation, encoded as a generator of a Lie group for various transformations,
both affine and non-affine. In order to make the calculation of the matrix exponential tractable, this
operation is performed in a low-dimensional latent space. Additionally, a loss term is introduced to
enforce matching the generator in latent space to the one in pixel-space.

1. Introduction

In the depths of the transcendental deduction, Kant argues that at the basis of all understanding of
sensory input lies the ability to apply rules, rules which act according to the primal possibility to
define direction and magnitude through the fundamental properties of time and space [10]. Combined
in various ways, these produce the elementary building blocks for our understanding, the categories,
which are not unlike elementary logical operators. In machine learning, a similar philosophy persists.
From early vision scientists [9], to computational neurobiologists [23], and currently geometric deep
learning [2], the importance of designing and exploiting data-informed structural priors has been
identified with the presence of symmetries in certain tasks and raw data.

Modern approaches to symmetry detection focus on learning the most likely symmetry group
that relates points in a data set. In previous work [6, 27], the matrix exponential required to quantify
the continuous symmetry transformation has been approximated in various ways, which sacrifices
accuracy for tractability. We propose instead to evaluate the matrix exponential exactly while avoiding
the computationally expensive operation in pixel space by going to a low-dimensional latent space,
using a deep autoencoder-like architecture. Additionally, having more control over the behavior
of latent vectors and features in general by enforcing continuous transformations such as rotations
(i.e., example of compact groups) between them has shown to be advantageous for explainability
of deep models [16]. Using neural networks for the purposes of finding underlying invariances is
just one approach to what could be called neural symmetry detection. This has the added benefit of
learning suitable representations and has a possible extension to defining the connectivity matrix in
the context of structural prior learning. For more related work, we refer the reader to Appendix A.
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2. Theory: Symmetry Generators and Structural Priors

We focus on one-parameter groups for two reasons: Ease of implementation and the fact that one
such inductive bias is incredibly powerful already. One need not look further than CNNs to conclude
that identifying translation as a symmetry of a dataset immediately leads to equivariant models that
are superbly successful in practice. Multiple transformations also require additional considerations
that relate to the algebra itself, such as closure under commutators [24], an extension we leave for
future work.

2.1. Connectivity Matrices and Equivariance

Learning connectivity matrices for deep equivariant models, whether the symmetry group is given or
not, is not new [7, 13, 32, 37]. It is worth noting that generators can be related to the connectivity
matrix, explicitly so for translations, where the shift matrix determines a power series that tiles the
weight matrix accordingly. Formally, for the one-pixel shift matrix S = e∂x , we can write:

fLθ =
∑
i∈Z

θLi S
i. (1)

The above equation defines the weight matrix of one such convolutional layer L, with updatable
weights θLi . A collection of multiple power series applied in succession and interlaced with non-linear
activation functions is the neural network. Schematically, we have

fθ( · ) =
Λ

L=1

σL

(
fLθ ( · ) + bL

)
, (2)

with a total number of layers Λ, biases bL, and activation functions σ. Note that this does not work
for densely-connected layers, as all the elements in the basis need to be related by matrix powers.

In previous work, a main issue was overcoming the computational complexity associated with
high pixel count, especially in learning the exponent of a matrix exponential. A second potential
issue is introducing strong spatial correlations as a constraint a priori, defeating the purpose of
learning transformations from scratch. If it is already known that the data is spatially structured, one
could introduce continuous coordinates [20] or use spatial convolutions [13] immediately, without
conveniently ignoring the possibility of spatially unstructured data. This issue is partially alleviated
with the matrix exponential method, as learning a generator that corresponds to the zeros matrix
leads to the identity matrix, a trivial operation.

3. Method: Matrix Exponentials and Latent Flow

Our dataset consists of MNIST and CIFAR-10 data, paired with an augmented version of the original
image. The original labels are not used in the current setting. The goal of this work is two-fold: (i)
extract the type of transformation G that was applied, and (ii) estimate the distribution of parameters
t of the seen transformations in the data, which are the magnitudes of the transformation (e.g.,
rotation angle, scaling factor, etc.).
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Figure 1: Latent model architecture. The image pair consists of an MNIST digit, its transformation
under a SCT, and the expected output.

3.1. Parametrizing the Generator

We can parametrize the generator with any given basis for the functional form of its components, to
allow for modelling a broad range of symmetry transformations [8]. In other words, regression is
performed on the coefficients of a basis, which can be chosen freely. We wish to have the ability
to detect the “typical" symmetries considered in the symmetry detection literature, such as rotation,
scaling, and translation, which will be referred to as the canonical symmetries, a subset of the affine
transformations. Therefore, we pick a quadratic basis, which includes affine transformations, such
that the functions Γi (from equation 8, see Appendix B for mathematical details) have the following
form:

Γx = α(x)
c + α(x)

x x+ α(x)
y y + α(x)

xx x2 + α(x)
xy xy + α(x)

yy y2,

Γy = α(y)
c + α(y)

x x+ α(y)
y y + α(y)

xx x2 + α(y)
xy xy + α(y)

yy y2,
(3)

with learnable coefficients αi. The above quadratic basis can capture the canonical symmetries but
others, such as shears, compositions, or special conformal transformations (which are manifestly
non-affine) as well. Note that one can pick an arbitrarily complicated basis for the expressions
given above. This is the major appeal of this approach, and we hope to explore the expressibility of
different bases in future work.

3.2. Latent Model

In our model, the autoencoder design allows for the model to keep relevant information in the
latent space and transform this according to a transformation, a result of the exponential map, it
shares with all other input pairs (Figure 1). The model takes an image as input and reconstructs the
transformed image as output. In order to get an estimate for the parameter (e.g. rotation angle) a
separate network is trained together with the autoencoder. The parameter estimate is then passed to
the matrix exponential function that is then used to matrix multiply the latent patch(es). Finally, the
latent patch(es) are decoded and a reconstruction loss is enforced on the output-transformed image
pair.

The loss function consists of a part that ensures both the n-dimensional pixel-space and d-
dimensional latent-space vectorized data pairs transform to each other. For images x0,xt ∈ Rn2

and
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Figure 2: Latent flow learned for various transformations on MNIST. From left to right: small
rotation angle, large rotation angle, scaling, translation, uniform and bimodal.

Gα ∈ Rd2×d2 , one can write these as:

LXT (x0,xt) = ∥gψ ◦ eTθ(x0,xt)Gα ◦ fϕ(x0)− xt∥2, (4)

LZT (x0,xt) = ∥eTθ(x0,xt)Gα ◦ fϕ(x0)− fϕ(xt)∥2. (5)

The model allows for various numbers of latent patches (cf. channels) to be transformed in parallel
in the latent space.

α-Matching Next to the above, we include a loss term that enforces the generator in the latent
space to be close to the one in pixel space is introduced. Since calculating the matrix exponential
in pixel space does not scale well w.r.t. data size, a different approach needs to be used (See
Appendix D). We also include the standard reconstruction loss term for each of the inputs in the
data pair individually, LR(x) = ∥gψ ◦ fϕ(x)− x∥2, to train the autoencoder. This loss term simply
encourages the encoder to learn to reconstruct individual image inputs well, as usually done with
autoencoders. Thus, this term ignores the exponential on the latent space. The total loss, therefore, is:

L(x0,xt) = LXT (x0,xt) + λZLZT (x0,xt) + λR[LR(x0) + LR(xt)] + λαLα + λL||α||1. (6)

4. Results

A transformation and parameter distribution are chosen and fed to the data generator. This produces
data pairs {x0,xt} in which the first image is the original and the second is the transformed image.
The transformation is applied using the affine function from the torchvision library [17] and
our own implementation of more complicated non-affine transformations. The magnitude of the
transformation is the parameter sampled from the chosen distribution. This procedure allows for a lot
of flexibility in testing a neural symmetry detector, as the distribution can be arbitrary and, in theory,
so can the transformations. In these experiments, we will focus on detecting combinations of various
affine transformations and a non-affine transformation, the SCT. Additional implementation details
of the MLPs can be found in the appendix D.

4.1. Generator Prediction and Latent Flow

Investigating the quality of the learned generator depends on what final coefficients the model
converged to. We visualize the latent flow defined by the generator using the natural connection to
differential equations (Equation 9). This describes the flow in latent space, i.e., it shows how the
latent 5× 5 image is transformed in order to obtain the transformed image in pixel space (Figure 2).
Note that generator relates to the direction of the flow, the magnitude and orientation (i.e., forwards
or backwards) is determined by the value and sign of the parameter t, respectively.

4



NEURAL SYMMETRY DETECTION FOR NN CONSTRAINTS

Figure 3: Learned parameter distribution for various transformations and uniform sampling (top row).
Parameters for more complicated distributions, compositions, and non-canonical transformations
(bottom row). All of these results were applied to augmented MNIST.

4.2. Parameter Distribution

The parameters predicted by the t-network augmented MNIST are plotted on a histogram during
training (Figures 3). Beyond multimodal distributions, which the model can learn well, it seems
like the distributions capture aliasing artifacts in the small angle and translation setting. Note the
broadening of the range (in radians) of the learned distribution when sampling angles in the rotation
setting, which breaks down for larger values. Peaks are also visible at the origin, even when no pair
relates to such an identity transformation.

4.3. Discussion

In most cases, in particular augmented MNIST, it seems like the final generator has some correct
values. This is probably due to the α-matching term, which pushes the values of the coefficient
towards the values expected from the first order Taylor expansion in pixel space. It is expected
that this term helps the coefficients reach a basin where the correct pixel-space transformations are
reachable, although placing too much weight on this term might be counter-productive for large
values of the parameters. Additionally, it is worth noting that the parameter distributions mostly
match the correct ones. Finally, we note that the quality of the reconstructions are not always as crisp
(attaining about 0.12 MSE for CIFAR in particular) (Figure 6). This is probably due to the MLP not
being suitable for autoencoding image data. More results are shown in Appendix E.

5. Conclusion

Symmetry detection tasks rely on identifying transformations of data points that keep some task-
related quality, such as classification label, identical. In this work, we proposed a latent variable
framework for learning one-parameter subgroups of Lie group symmetries from observations. Our
method uses a neural network to predict the one-parameter of every transformation that has been
applied to datapoints, and the coefficients of a linear combination of a pre-specified basis of (affine
and non-affine) generators. We show that our method can learn the correct generators for a variety
of transformations as well as characterize the distribution of the parameter that has been used for
transforming the dataset.
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Appendix A. Related Work

In this section, we present related work, including a succinct list of our contributions.
Equivariance A lot of work has been dedicated to designing neural networks that are equivari-

ant with respect to a given transformation [7, 13]. Transformations of interest beyond translation
are scaling [28, 34], rotation on spheres [5], local gauge transformations [4] and the Euclidean
group [33], as well as discrete transformations like permutations of sets [35, 36] and time-reversal
[29]. Research in these areas shows improved performance on tasks that are symmetric w.r.t. the
transformation under consideration, but nonetheless requires knowledge about the symmetries a
priori.

Symmetry Detection Early work on detecting symmetries from observations was performed
by [23] and [19], who use methods to learn transformations for small parameter values. [27] propose
a smoothing operation of the transformation space to overcome the issue of a highly non-convex
reconstruction objective that includes an exponential map. These methods are close to ours in that
we also make use of the exponential map to obtain group elements from their Lie algebra, although
their work being focused on video patches and using EM-algorithms to find the parameters and the
generator. [3] focus on disentangling and learning the distributions of multiple compact “toroidal"
one-parameter groups in the data.

Neural Symmetry Detection Techniques from Lie theory and generators have been used in
conjunction with deep learning methods in order to identify symmetries of a task, although usually
only for small angles or in a supervised setting [6]. These are also of interest to physicists, as this can
simplify the process of identifying conservation laws or picking the right theoretical model for a given
problem [14, 15]. Probabilistic approaches are also of interest, especially in relation to our work, in
which learning the distribution over the parameters as well as the symmetry is performed. This can
be for inference [30, 31] or automatic data augmentation [1, 18, 26]. Another method is found in
[25], where a group invariant function known as the bispectrum is used to learn group-equivariant
and group-invariant maps from data. [1] consider a task similar to ours, attempting to learn groups
with respect-to-which the data is invariant, however, the objective places constraints directly on the
network parameters as well as the distribution of transformation parameters with which the data is
augmented.

Latent Transformations Learning transformations of a one-parameter subgroup in latent space
(whether that subgroup is identical to the one in pixel space or not) has been visited by [11, 24, 38].
Nevertheless, these works either presuppose local structure in the data by using CNNs instead of
fully-connected networks like we do, or they focus on disentangling interpretable features instead of
directly learning generators that can be used as an inductive bias for a new model.

In contrast to the above, we propose a model that is able to:

• perform symmetry detection in pixel-space, without assuming strong spacial inductive biases,

• efficiently parametrize the latent space generator for a wide range of parameter values and
different symmetry transformations,

• learn both the generator and the parameter distributions simultaneously in an unsupervised
manner.

To the best of our knowledge, previous works have only been able to estimate symmetries from
images in a supervised way [6], on small image patches [27] or focusing on downstream validation
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without directly evaluating the symmetries [37], specifically for automatic data augmentation [1, 18,
26] unfortunately rendering them unsuitable for baseline comparisons (Table 1).

MNIST CIFAR-10 Param. Transferable
Affine Non-aff. Affine Non-aff. Distributions Generators

Dehmamy et al. [6] X X X X X ✓
Augerino [1] ✓ X ✓ X ✓(uniform) X
Singhal et al. [26] ✓ X ✓ X ✓(2,3-modal) X
Ours ✓ ✓ ✓ ✓ ✓(n-modal) ✓

Table 1: Comparison of model properties across different works.

Appendix B. Lie Theory

The transformations that describe the symmetries are assumed to form Lie groups. This means they
are sufficiently smooth (k-times differentiable, where k is usually chosen to be infinity), closed under
composition, associative, have a neutral element, and have smooth inverse. These transformations
can be defined by the way in which they act on objects, namely H : X × R → X , with object
x ∈ X ⊂ Rn. This also introduces a parameter, t ∈ R, which is related to the magnitude of the
transformation, forming what is usually called a one-parameter group. For rotations, this parameter
will correspond to the angle, for translations, it will be the distance, etc. Because of continuity in the
parameter, we can perform a Taylor expansion of the transformation H for small values of t:

H(x, t) ≈ x+ tΓ(x), Γ(x) :=
∂H(x, t)

∂t

∣∣∣∣
t=0

. (7)

We apply the First Fundamental Theorem of Lie [21, 22] in order to make the following claim:
Γ(x) defines the transformation and is related to what is known as the generator of the transformation.
Intuitively, this correspondence between action and generator is due to the constraints imposed on
the transformation function being a Lie group. The generator can thus be written as a differential
operator as follows:

G =
n∑
i=1

Γi(x)
∂

∂xi
(8)

That is, if one solves the differential equations ∂H(x,t)
∂t |t=0 that characterize the generator, the original

transformation function is obtained. More specifically, the solution is the family of functions topolog-
ically connected to the identity transformation through continuity in t. The generator is an element
of the Lie algebra of the transformation group and is related to the original transformation by what is
called the exponential map. This nomenclature emphasizes the connection between the differentiation
performed in Equation 7 and exponentiation, easily seen when solving the characteristic equation
[22], i.e.,

dH(x, t)

dt
= GH(x, t), H(x, 0) = x, (9)
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as the solution is H(x, t) = etGx with etG :=
∑∞

k=0
1
k! t

kGk, where the integer power of G is
defined by applying it iteratively. The inverse procedure, which extracts the generator from the action
as shown in Equation 7, is also referred to as the logarithmic map.

Appendix C. Interpolation Scheme

To apply the operators to a grid, one must write the partial derivatives as matrices. We use the
Shannon-Whittaker interpolation, as is done in [23] and [6]. This automatically assumes the function
to be interpolated is periodic, although other interpolation schemes could have been chosen. We
note that this scheme introduces a substantial amount of “leakage", an effect known to cause some
aliasing for transformations of low-resolution images, and forms one of the notable limitations of the
current model. One could investigate other choices, such as bicubic interpolation, although deriving
the differential operator for this scheme requires some additional analysis and is left for future work.
Let I be some real-valued signal. For a discrete set of n points on the real line and I(i+ n) = I(i)
for all samples i from 1 to n, the Shannon-Whittaker interpolation reconstructs the signal for all
r ∈ R as

I(r) =

n−1∑
i=0

I(i)Q(r − i),

Q(r) =
1

n

1 + 2

n/2−1∑
p=1

cos

(
2πpr

n

) .

(10)

To obtain numerical expressions (matrices) for ∂x, Q can be differentiated with respect to its input.
This then describes continuous changes in the one dimensional spatial coordinate at all n points,
i.e., [DR]ab = ∂aQ(a − b). The above can be extended to two dimensions by performing the
Kronecker product of the result obtained for one dimension with the identity matrix, Dx = DR ⊗ I
and Dy = I⊗DR, mirroring the flattening operation applied to the input images. The parametrized
generator for the 2D affine case, for example, looks like:

Gα =

6∑
i=1

αiDi, (11)

where the Di ∈ Rn2×n2
are the matrices that represent the operators ∂x, x∂x, y∂x, ∂y, x∂y, and y∂y,

respectively. This can easily be extended to arbitrarily dimensional data by adding more factors to
the above matrices, as was done above for the quadratic basis. One can see that performing this
operation in pixel space scales poorly with signal length (or image width) n.

Appendix D. Experimental Details

For augmented MNIST, the encoder and decoders are fully-connected MLPs with 512, 256, 128,
64 neurons in each hidden layer with ReLU activation functions. The output layer of the encoder
and therefore the input layer of the decoder has size 25. The Adam optimizer [12] was used with a
learning rate of 0.001, batch size of 512 and a StepLR scheduler with stepsize 50 and γ = 0.1. All
the results are shown for 1 channel in latent space.
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For the CIFAR task, LeakyReLU (negative slope 0.2), wider and deeper MLPs, and various
channels in latent space were all checked (1,4,16, and 64). 16 seemed to work best for MSE loss
on the reconstructions, but there was no dramatic increase in predictive performance regarding the
generators. LayerNorm and batch sizes of 512 and 1024 were used.

Regarding the loss function, the α-matching term uses the learned αi from the latent space
(Equation 3) and places them in a generator for the pixel-space, using a Taylor expansion, to compare
its effect on the vectorized input, formally

Lα =

∥∥∥∥[I+ tG′
α +

1

2
t2(G′

α)
2 + . . .

]
x0 − xt

∥∥∥∥2 , (12)

where the prime denotes the basis D′
i evaluated in pixel-space, i.e. G′

α,D
′
i ∈ Rn2×n2

. A sparsity
loss (LASSO) can also be added in order to enforce the correct behavior in the symbolic regression
portion of the symmetry detection.

In order to avoid the ambiguity in the exponent of the matrix exponential (namely, tG =
st ×G/s,∀s ∈ R0), the generator is normalized by enforcing the coefficient vector to have unit
norm during training. I.e., ||α||2 = 1, where α is the vector made up of the coefficients αi.

Appendix E. Additional Results

Figure 4: Additional results for SCT applied to MNIST (uniform sampling bx ∈ [−0.8, 0.8]).

Figure 5: Additional results for scaling applied to CIFAR-10 (sampling s ∈ 1.2, 1.8).

12



NEURAL SYMMETRY DETECTION FOR NN CONSTRAINTS

Figure 6: Output and learned histogram for 4-modal SCT transforms on CIFAR-10.

Figure 7: Application of a SCT on a smiley face.
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