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Abstract

We leverage multilevel Monte Carlo (MLMC)
to improve the performance of multi-step look-
ahead Bayesian optimization (BO) methods that
involve nested expectations and maximizations.
Often these expectations must be computed
by Monte Carlo (MC). The complexity rate
of naive MC degrades for nested operations,
whereas MLMC is capable of achieving the
canonical MC convergence rate for this type
of problem, independently of dimension and
without any smoothness assumptions. Our
theoretical study focuses on the approxima-
tion improvements for two- and three-step
look-ahead acquisition functions, but, as we
discuss, the approach is generalizable in various
ways, including beyond the context of BO.
Our findings are verified numerically and the
benefits of MLMC for BO are illustrated on
several benchmark examples. Code is available at
https://github.com/Shangda-Yang/MLMCBO.

1. Introduction
Bayesian optimization (BO) is a global optimization method
for expensive-to-evaluate black-box functions that generally
have unknown structures. In this setting, only the function
value is observed for a given input value. BO works by con-
structing a probabilistic surrogate model, often a Gaussian
process (GP), for the black-box function and then iteratively
updating the surrogate model, guided by the optimization
of an acquisition function, until some stopping criterion is
achieved. See Frazier (2018); Shahriari et al. (2015) for a
detailed review of BO.
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The choice of acquisition function is crucial in the design of
BO algorithms. Typical myopic acquisition functions such
as upper confidence bound (Auer et al., 2002; Auer, 2002;
Srinivas et al., 2009), expected improvement (EI) (Močkus,
1975; Jones et al., 1998), entropy search (Hennig & Schuler,
2012), and predictive entropy search (Hernández-Lobato
et al., 2014) only consider the immediate reward of the de-
cision. They do not trade off the depth of decision-making
with the computational budget. By contrast, a multi-step
acquisition function looks into the future and will optimize
over the planning horizon by formulating the problem as a
Markov decision process (MDP). This can substantially re-
duce the number of required function evaluations (González
et al., 2016; Wu & Frazier, 2019; Yue & Kontar, 2020; Lee
et al., 2020; Jiang et al., 2020a;b). However, the complexity
of approximating such acquisition functions increases expo-
nentially with the number of look-ahead steps for current
methods, which limits their use.

The goal of this paper is to improve the computational
complexity of approximating look-ahead acquisition
functions.

Multi-step look-ahead acquisition functions have tradition-
ally been optimized by nesting optimization and Monte
Carlo (MC) estimations, whereas we leverage a nested
Sample Average Approximation (SAA) (Balandat et al.,
2020), which facilitates the application of deterministic
higher-order optimization methods. Standard MC (with-
out nested operations) requires O(ε−2) samples to achieve
mean-squared-error (MSE) of ε. For just one nested oper-
ation, the sample complexity of MC with SAA is at least
O(ε−3) and O(ε−4) in the worst case, depending on the
smoothness of the integrand. For k nested operations, the
cost for MC grows exponentially in k to O(ε−2(k+1)), lead-
ing to a curse of dimensionality.

This paper is the first to apply the MLMC framework to
Bayesian Optimization, thereby improving the performance
of look-ahead methods. MLMC for expectations of ap-
proximations, such as nested MC, works by constructing a
telescoping sum of estimators from low accuracy to high
accuracy (Giles, 2015). Computational complexity is re-
duced by performing most simulations with low-accuracy
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and low-cost, and only very few high-accuracy and high-
cost simulations (see Figure 1). Investigations of MLMC
with nested MC appeared in Giles & Haji-Ali (2019) for ef-
ficient risk estimation inside a Heaviside function, Hironaka
et al. (2020); Giles & Goda (2019) for the expected value of
sample information with the feasible set being finite, Goda
et al. (2020) for nested MC inside a log function, and Giles
(2018) for more general problems. Hu et al. (2021) use
MLMC gradient methods for computing the nested MC
problems, and Beck et al. (2020) use MLMC for approxi-
mating the expected information gain in a Bayesian optimal
experimental design. MLMC is still a nascent technology
within Machine Learning, with results only now beginning
to appear in the context of Markov chain Monte Carlo (Lyne
et al., 2015; Strathmann et al., 2015; Chada et al., 2022; Cai
& Adams, 2022) and stochastic gradient descent (Fujisawa
& Sato, 2021; Goda et al., 2022).

Figure 1. A graphical description of MLMC complexity (green
area) improvement over nested MC (red area).

Variance reduction techniques are crucial for look-ahead
acquisition functions in BO. Recent work using variance re-
duction techniques for myopic acquisition functions include
Bogunovic et al. (2016); Balandat et al. (2020); Lee et al.
(2020); Nguyen et al. (2017). In general, for smooth and rel-
atively low-dimensional integrals, quadrature methods rule
(Heath, 2018; James, 1980). However, these methods suffer
from the curse of dimensionality, i.e., the rate of conver-
gence degrades exponentially with dimension. Sparse grid
approaches can mitigate this effect in moderate dimensions
(Bungartz & Griebel, 2004). However, the only methods
that deliver dimension-independent convergence rates for
individual integrals are MC methods (James, 1980). For
smooth functions, quasi-MC (QMC) methods can improve
the canonical MC rate; however, for non-smooth functions,
the rate returns to the canonical MC rate (Caflisch, 1998).
Importance sampling can reduce variance, but the vari-
ance constant often grows exponentially in the dimension
(Chatterjee & Diaconis, 2018). Furthermore, the critical

dimension-dependence of the convergence rate reappears
along the nesting axis, i.e. here the look-ahead direction,
where one has expectation of function of expectation of... To
our knowledge, only MLMC methods, or the closely related
multifidelity methods (Peherstorfer et al., 2018), are capable
of delivering the MC rate of convergence (independently of
dimension) for nested MC approximation of non-smooth
functions. Look-ahead acquisition functions in BO are in-
deed non-smooth, hence their approximation is a prime
candidate for leveraging MLMC in Machine Learning.

We apply MLMC to compute a multi-step look-ahead acqui-
sition function. The feasible set is infinite, and the integrand
may contain nested optimization functions due to the MDP
formulation. We prove that the error of the SAA with nested
MC approximations can be decomposed into “variance” and
“bias” terms, which allows us to apply MLMC for improved
efficiency. Through its ability to improve complexity, our
results suggest that MLMC is the state-of-the-art method
for accelerating current Bayesian optimization frameworks.

The narrative is summarized concisely as follows:

(i) The primary bottleneck in BO is quantified by the
number of black-box function evaluations (BB), which
can be substantially reduced by look-ahead acquisition
functions (AF).

(ii) These look-ahead acquisition functions are themselves
expensive to approximate. The cost of (BB), B, implies
a cost constraint for (AF), say between (B/10, B).

(iii) We deliver a method which can be tuned to get designs
which are either the best for a given budget or cheapest
for a target accuracy, in terms of order of complexity,
i.e. the bigger the budget or the higher the target
accuracy, the more gain there is to be had.

This article is structured as follows. Section 2.1 illustrates
the intuition and benefits of applying the MLMC method
in BO. Section 2.2 introduces the general BO settings for
this paper. Section 3 discusses SAA, standard MC, and
nested MC. Basic MLMC and MLMC for BO is introduced
in Section 4. Numerical tests are conducted in Section 5,
where we illustrate the benefits of the method on several
benchmark examples from Balandat et al. (2020).

2. Bayesian Optimization
Suppose we want to maximize an expensive-to-evaluate
black-box function g : X → R, for X ⊆ Rd where d is
the dimension of the input space. Here, “black box” means
that we do not know the structure or the derivatives of the
function. We can only observe the output of the function
given an input value. Mathematically, for an input value
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x(i), we observe

y(i) = g(x(i)) + ϵi

where the ϵi are i.i.d. zero mean Gaussian random variables.

Suppose we have collected n observations Dn :=
{(x(i), y(i))}ni=1. We can solve the optimization problem
sequentially using BO, which involves emulating g(x) using
a surrogate model, specifically a Gaussian Process, select-
ing x(n+1) given Dn by maximizing an acquisition func-
tion, incorporating {(x(n+1), y(n+1))} into the surrogate,
and iterating. The standard setting for BO is low/moderate
dimension d and small sample size n.

2.1. Brief overview of intuition and result

We illustrate the intuition and result concisely with a simple
1D toy example first, where X = [−10, 10] and

g(x) = e−(x−2)2 + e−
(x−6)2

10 +
1

x2 + 1
, (1)

which has one global maximum g(x∗ = 2.0087) = 1.4019,
shown in Figure 2(a).

Figure 2(a) illustrates the need to approximate the acquisi-
tion functions with high accuracy, because a low accuracy
function approximation is susceptible to finding the wrong
mode. Multi-modality can lead to a higher inaccuracy than
one would expect in a uni-modal setting, and ultimately
drive the BO trajectory off course, thus wasting costly func-
tion evaluations and delaying convergence.

In the following, we introduce a technique that improves
accuracy or reduces computational complexity compared
to the standard MC method while balancing exploration
and exploitation found with BO. In particular, we leverage
the MLMC method to efficiently approximate analytically
intractable look-ahead acquisition functions.

We use mean-squared error (MSE) as the error metric for
acquisition function approximation. Figure 2(b) shows the
MSE from approximating one acquisition function with
MC and MLMC in BO. It shows that by applying MLMC,
we can approximate the acquisition function’s maximizer
with the canonical convergence rate, i.e., Cost ∝ MSE−1

rather than the sub-optimal Cost ∝ MSE−2 rate of nested
MC. Intuitively, this means that for a given computational
cost, the maximizer can be approximated with higher ac-
curacy, thus improving the performance of the whole BO
algorithm. Alternatively, we can achieve the same accuracy
as the MC method with less computational cost, reducing
the computational cost of the BO algorithm. The benefits
of MLMC are more significant if high accuracy is required
or if the approximation is very costly. Later, we will see
that MLMC achieves a better normalized MSE for the same
computational cost for the full outer BO problem across a
range of examples (Figure 3).
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Figure 2. Panel (a): (i) The blue solid line is the objective function
g (with axis on the right). The function has a unique global maxi-
mizer and maximum. (ii) The black solid line is the analytical EI
acquisition function, and the black dot is the reference solution.
(iii) The dashed colored lines are the Monte Carlo approximation
of the acquisition function with varying N , and the corresponding
dots are the respective maximums. Low-accuracy (small N ) ap-
proximations can result in maximizer of the approximation to be
far from the true maximizer. Panel (b): Complexity diagram of
MLMC and nested MC approximation of two-step look-ahead EI
with the cost measured by the number of operations. The reference
solution for MSE is computed with high accuracy. Each curve is
computed with 200 realizations.

2.2. Detailed Construction

We briefly recall standard results on Gaussian Process re-
gression and introduce look-ahead acquisition functions.

2.2.1. GAUSSIAN PROCESS REGRESSION

We use f to denote the GP surrogate of the objective g,
which indicates f(x(i)) = y(i) at observed point x(i). Ini-
tially, in BO we construct a GP prior and then update the
posterior sequentially with new observations using GP re-
gression, as we now describe.
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Assuming the data are collected randomly from a multi-
variate normal prior distribution with a specific mean and
covariance matrix, we have

f(x(1:n)) ∼ N
(
µ0(x

(1:n)),Σ0(x
(1:n), x(1:n))

)
.

Assuming further that y(i) is observed without noise (which
can be easily relaxed), we can derive the posterior distribu-
tion as

f(x)|Dn ∼ N(µn(x), σ
2
n(x)) ,

where

µn(x) = µ0(x)

+ Σ
(1:n)
0 (x)(Σ

(1:n)
0 )−1(f(x(1:n))− µ0(x

(1:n))) ,

σ2
n(x) = Σ0(x, x)− Σ

(1:n)
0 (x)(Σ

(1:n)
0 )−1Σ

(1:n)
0 (x)T ,

with Σ
(1:n)
0 (x) = Σ0(x, x

(1:n)), Σ(1:n)
0 = Σ

(1:n)
0 (x(1:n)).

2.2.2. ACQUISITION FUNCTIONS

In this work, we focus on multi-step acquisition functions
which are formulated in terms of the underlying Markov
decision process (MDP), defined as follows (Ginsbourger
& Le Riche, 2010; Lam et al., 2016; Jiang et al., 2020b;
Astudillo et al., 2021; Garnett, 2023). The belief state of the
MDP is the posterior fn(·) = f(·;Dn) ∈ S , parameterized
by mean µn(·) and covariance kernel Σn(·, ·), where S is
the space of state. The action is where we take observations
x ∈ X , and the stage-wise reward r(f, x) characterizes the
acquisition function:

α(x;Dn) := E[r(f, x)|Dn] .

A simple reward function may look like r(fn(x)), in which
case E[r(f, x)|Dn] = E[r(fn(x))]. The input action of the
MDP and its output updates the GP with a new observation
(x(n+1), y(n+1)) as described above, i.e. the dynamics of
the MDP are given by

F : S × X × Y → S
(fn, x

(n+1), y(n+1)) 7→ fn+1(·) = f(·;Dn+1) .

The BO algorithm provides a greedy stage-wise solution to
the MDP by repeating the following steps until the compu-
tational resources are exhausted: 1) starting from an initial
state (a GP fn−1 with initial observations Dn−1); 2) maxi-
mize the expected multi-step reward to determine the action
xn at which we should take an observation; 3) observe the
environment, yn; 4) update the state with the new observa-
tion fn−1 7→ fn (see Algorithm 1). Letting D denote all
observations at the current state, the multi-step look-ahead
acquisition functions are

α0(x;D) := Ef(·;D)[r(f, x)]

Algorithm 1 Bayesian optimization

Inputs: D0, ϵ, Black Box objective “g”, stopping crite-
rion.
Outputs: x̂∗ ≈ argminxg(x).
n = 0.
while stopping criterion is not met do

Compute Single Design (Alg. 2) Dn 7→ xn+1;
Evaluate Black Box yn+1 = g(xn+1);
Augment Dn+1 = Dn∪ {xn+1, yn+1};
n 7→ n+ 1.

end while
x̂∗ = argmaxDn

g(x).

α1(x;D) := Ef(·;D)

[
r(f, x) + max

x1

Ef(·;D1(x)) [r(f, x1)]

]
α2(x;D) := Ef(·;D)

[
r(f, x) + max

x1

Ef(·;D1(x))

[
r(f, x1)

+ max
x2

Ef(·;D2(x,x1))[r(f, x2)]
]]

... (2)

where D1(x) = D∪{(x, f(x;D))} ,D2(x, x1) = D1(x)∪
{(x1, f(x1;D1(x)))}, . . . , and we use Ef(·;D) to denote
that the expectations above are taken over the Gaussian
process f given data D. Here, the α0 is the standard one-
step look-ahead acquisition function and αk denotes the
(k + 1)-step look-ahead acquisition function.

Many reward functions lead to analytically intractable ac-
quisition functions, so the 2-step look-ahead acquisition
function α1 requires nested MC approximation as follows

α1,N,M (x;D) =
1

N

N∑
i=1

[
r(f i(x;D))

+

(
max
xi
1

1

M

M∑
j=1

r(f ij(xi
1;Di

1(x)))

)]
.

(3)

Additional details are provided in Appendix A. In general, n-
step look-ahead acquisition functions can be approximated
with n-nested MC approximations. In the present work,
we will focus on deriving theories and showing numerical
results for single-nested MC, which is amenable to MLMC.
This includes 2-step look-ahead q-EI (Wang et al., 2020)
and 3-step look-ahead EI. As we will see, the 2-step look
ahead formulation is sufficient to gain substantial benefits in
terms of MSE when compared with SOTA methods, which
are either single MC, e.g. 1-step qEI or 2-step EI (Wu &
Frazier, 2019; Ginsbourger & Le Riche, 2010; Chevalier
& Ginsbourger, 2013; Renganathan et al., 2020; Balandat

4



Accelerating Look-ahead in BO: MLMC is All You Need

et al., 2020), or rely on very rough approximations for more
than 2 steps (Lam et al., 2016; Jiang et al., 2020b; Astudillo
et al., 2021; Garnett, 2023). There is an extension of the
MLMC technology that is applicable to the general n-nested
case, which is called multi-index MC (Haji-Ali et al., 2016;
Jasra et al., 2018; 2023), and that will be the topic of future
investigation.

Numerous reward functions can be used in BO (see e.g.,
Frazier (2018); Balandat et al. (2020)), but for the present
exposition, we focus on two of the most ubiquitous ones.

Expected improvement (EI) (Močkus, 1975) is obtained
by setting

r(f, x) := (f(x;D)− f∗(D))+,

with (·)+ = max{0, ·} and f∗(D) = max(x,f(x))∈D f(x).
Expected improvement can be computed analytically as

EI(x|D) := E [(f(x;D)− f∗(D))+|D]

= σ(x)z(x)Φ (z(x)) + σ(x)ϕ (z(x))

where z(x) := (µ(x)− f∗(D))/σ(x) and where ϕ(·) and
Φ(·) are the PDF and CDF of the standard normal distribu-
tion, respectively.

q-Expected improvement (qEI) (Wang et al., 2020) maxi-
mizes over a batch x = (x1, . . . , xq) of q > 1 points jointly,
i.e., r(f, x) = maxj=1,...,q(f(xj ;D)− f∗(D))+ so that

qEI(x|D) = E
[

max
j=1,...,q

(f(xj ;D)− f∗(D))+|D
]
. (4)

This is analytically intractable but can be approximated by
MC estimation

qEI(x|D) ≈ 1

N

N∑
i=1

max
j=1,...,q

(f i(xj ;D)− f∗(D))+.

Examples of two-step look-ahead EI, two-step look-ahead
qEI, and three-step look-ahead EI are explicitly given in
Appendix A.1. Noting that the latter two both result in
a single-nested MC objective, we henceforth denote it by
α(x;D) without subscripts, and the corresponding optimiz-
ers by x∗.

3. Sample Average Approximation
Sample average approximation (SAA) (Kleywegt et al.,
2002; Balandat et al., 2020) is constructed from i.i.d. sam-
ples as

xN := argmax
x∈X

1

N

N∑
i=1

r(f i(x;D)) (5)

≈ argmax
x∈X

α(x;D) =: x∗ . (6)

Below and hereafter, ∥ · ∥ denotes the Euclidean distance.
Proposition 1 below guarantees the rate of convergence of
the maximizer under standard assumptions: essentially, x 7→
α(x;D) has a compact domain with Lipschitz derivatives
and is locally quadratic at its optimum (see Appendix B for
a more formal statement and further discussion).
Proposition 1 (Theorem 12 of (Kim et al., 2015)). Given a
unique optimizer and Assumption 1

E[∥xN − x∗∥] = O(N−1/2) .

In practice, we assume that our optimization algorithm can
find the global optimizer, and we attempt to achieve this with
a committee of multiple initializations of a local optimiza-
tion algorithm. For given realizations, the function αN (·) is
deterministic, and we can apply deterministic optimization
algorithms such as L-BFGS with multi-start initialization.
We now show the decomposition of approximation error of
AF (3), omitting the subscript 1 henceforth.
Proposition 2. If Assumption 1 holds and ∀x, x1 ∈
X ,Var

(
r(f, x) + Ef(·;D1(x)) [r(f, x1)]

)
≤ σmax and

Var(r(f, x1)) ≤ σmax, for some σmax > 0, then the fol-
lowing holds, for some C > 0

sup
x∈X

E
[
|αN,M (x;D)− α(x;D)|2

]
≤ C

( 1

N
+

1

M

)
. (7)

The proof is provided in Appendix C. The decomposition
for three-step look-ahead EI (16) follows similarly. The
rate with respect to the outer and inner MC is numerically
verified in Appendix H.1.

Given the decomposition of MSE as O(1/N + 1/M), if
we want to achieve an MSE of ε2 for ε > 0, then we
require N = O(ε−2) and M = O(ε−2), hence a computa-
tional complexity of MN = O(ε−4). If there is no nested
MC, such as α0 from (2), the computational complexity
to achieve an MSE of ε2 is O(ε−2), which is called the
canonical rate of MC. We can leverage MLMC to reduce
the complexity of α1 from sub-canonical O(ε−4) if (3) is
used, to canonical O(ε−2).

4. Multilevel Monte Carlo
The idea behind MLMC is relatively simple (Giles, 2015).
We first introduce the general concept and then discuss the
specific construction for BO. Suppose we want to estimate
the expectation of some quantity of interest φ, which must
itself be approximated. Here the quantity of interest is the
given look-ahead stage-wise reward and the approximation
refers to the inner MC. We leverage a sequence of approxi-
mations to φ with increasing accuracy and cost, where an
initial estimate using a large number of samples with low
accuracy and cost is corrected with progressively fewer-
sample estimates of increments with higher accuracy and
cost. We make this precise in the following.
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Denote the sequence of approximations with increasing
accuracy and cost over levels l by φM0 , φM1 , . . . , φML

. Let
Ml = 2l. The MLMC approximation to E[φ] follows from
the telescoping sum identity

E[φ] ≈ E[φML
] =

L∑
l=0

E[∆φMl
],

where ∆φMl
= φMl

− φMl−1
is the increment and

φM−1
= 0. Now we let

ZNl,Ml
=

1

Nl

Nl∑
i=1

(φi
Ml

− φi
Ml−1

)

be an unbiased MC estimator of E[∆φMl
] for l = 0, 1, ..., L,

where φi
Ml

and φi
Ml−1

are computed using the same input
samples, i.i.d for each i and l. If |E[φMl

− φ]| and the vari-
ance Var(∆φMl

) decay exponentially as l increases with
specific rates, we can achieve computational benefits over
the standard MC method. The following theorem is the
standard MLMC theorem similar to (Giles, 2015).

Proposition 3. Assume there exists positive constants
s, w, γ with s ≥ 1

2 min{β, γ} and C (where C may vary
line to line) such that

• Bl := |E[φMl
− φ]| ≤ CM−s

l = C2−sl

• Vl := Var(∆φMl
) ≤ CM−β

l = C2−βl

• COSTl := COST(∆φMl
) ≤ CMγ

l = C2γl,

then there are values L and Nl such that the multilevel
estimator

Z =

L∑
l=0

ZNl,Ml

can be approximated with an accuracy ε2 measured by the
mean square error (MSE) with a computational complexity
(COST) for which

E[COST] ≤


Cε−2, β > γ,

Cε−2(log ε)2, β = γ,

Cε−2−(γ−β)/s, β < γ.

MLMC requires a regularity assumption on bias and incre-
mental variance convergence. For the canonical situation,
we require the variance to decay faster than the cost increase
such that the cost at the lower level dominates; for the bor-
derline situation, the cost is equally spread among levels;
for the worst situation, the cost at the finer level dominates
that corresponds to the MC rate. A detailed proof can be
found in Giles (2008). The main components are provided
in Lemma 3 in Appendix G.

4.1. Multilevel formulation of the maximizer of the
acquisition function

We construct a multilevel estimator for the two-step look-
ahead acquisition function

α(x;D) := Ef(·;D)

[
r(f, x) + max

x1

Ef(·;D1(x)) [r(f, x1)]

]
.

(8)
Since our target is to find the next observation point guided
by the acquisition function, we formulate the multilevel
estimator for the maximizer as

x∗
ML :=

L∑
l=0

zNl,Ml
− zNl,Ml−1

=

L∑
l=0

∆zNl,Ml
, (9)

where

zNl,Ml
= argmax

x∈X

1

Nl

Nl∑
i=1

[
r(f i(x;D))

+

(
max
xi
1

1

Ml

Ml∑
j=1

r(f ij(xi
1;Di

1(x)))

)]
,

(10)

zNl,Ml−1
= argmax

x∈X

1

Nl

Nl∑
i=1

[
r(f i(x;D))

+

(
max
xi
1

1

Ml−1

Ml−1∑
j=1

r(f ij(xi
1;Di

1(x)))

)]
,

(11)

where zN0,M−1 ≡ 0. To leverage MLMC, we first simu-
late Ml samples of f(x1;D1(x)) and construct the zNl,Ml

and then subsample Ml−1 samples from the Ml samples to
construct zNl,Ml−1

. We remark that the terms ∆zNl,Ml
(x)

for l = 0, 1, ..., L are mutually independent. Algorithm 2
shows a general implementation of the MLMC approxima-
tion, where Φl

l and Φl−1
l denote the fine and coarse approxi-

mation of AF at level l and Φ0 is the single AF at level 0.

Algorithm 2 Single Design with MLMC acquisition

Inputs: Dn, ϵ
Outputs: xn+1

Define L, N0, . . . , NL, and M0, . . . ,ML (as in Thm 1)
Compute z0 = argminzΦ0(z)
for l = 1, . . . , L do

zll = argminzΦ
l
l(z) and zl−1

l = argminzΦ
l−1
l (z);

∆l = zll − zl−1
l .

end for
xn+1 = z0 +

∑L
l=1 ∆l .

An antithetic coupling approach can improve the rate of
convergence. It involves replacing the coarse estimator (11)
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with

zANl,Ml−1
= argmax

x

1

Nl

Nl∑
i=1

[
r(f i(x;D))

+
1

2

(
max
xi
1

1

Ml−1

Ml−1∑
j=1

r(f ij(xi
1;Di

1(x)))

+ max
xi
1

1

Ml−1

Ml∑
j=Ml−1+1

r(f ij(xi
1;Di

1(x)))

)]
,

(12)

where zAN0,M−1
≡ 0 and the samples used for zANl,Ml−1

are taken by splitting the Ml samples from zNl,Ml
. In the

coarser estimator zANl,Ml−1
, one averages the maxima asso-

ciated with two batches of Ml−1 samples rather than max-
imizing the average. It can easily be shown using Taylor
expansion for smooth functions (Blanchet et al., 2015) that
this can double the rate, but it can also yield improvement
even for non-smooth functions (Giles, 2018; Giles & Goda,
2019), as in our situation. The multilevel formulation for
the three-step look-ahead AF is given in Appendix D.2.

The complexity is determined by the cost to evaluate the
terms above, which is O(d(

∑L
l=0 Nl(Ml + 1)) for both the

antithetic and regular cases. Without loss of generality, we
assume that a fast super-linear solver is available, so com-
puting (10) can be done with a linear cost in the evaluation
of the objective function, which corresponds to γ = 1.

Note the maximizer increments of (9) are not unbiased, as
is common in Bayesian MLMC (Beskos et al., 2017). In the
present work, we provide theory for a simplified estimator,
and introduce strong assumptions for (9). The more subtle
and challenging complete theory is deferred to future work.

4.2. MLMC approximation of the acquisition function

We first present a theoretical analysis of a procedure for
MLMC BO using the easier-to-analyse AF results. We
combine MLMC ideas with SAA techniques on AF instead
of optimizers, i.e. we directly construct an MLMC estimator
for the AF.

Similarly to (10) and (11), we construct ∆αNl,Ml
(x) =

αNl,Ml
(x) − αNl,Ml−1

(x), with αN0,M−1
(x) ≡ 0, as in-

cremental approximations of (8). From this, we form the
estimator

αML(x) :=

L∑
l=0

∆αNl,Ml
(x) .

We now argue that αML is a computationally efficient proxy
for the intractable limit objective α(x;D), which leads to
computational benefits for approximating optimizer x∗ (see
Appendix D.1 for some further details).

Before proceeding with the theoretical analysis, we note
again that the above estimator αML(x) and the correspond-
ing argmaxx∈X αML(x) is just one estimator that leverages
the MLMC methodology. It is particularly tractable from
a theoretical perspective due to unbiased increments. We
require an additional technical Assumption 2, which holds
for GP with standard kernels. This and supporting Lemmas
are presented in Appendix F.

Theorem 1 (Q-Function Convergence). Suppose Assump-
tions 1 and 2 hold. Let Ml = 2l. For x ∈ X , the MLMC
estimator αML(x) is such that

E
[
sup
x

|αML(x)− α(x;D)|2
]

≤ C(L+ 1)

(
V0

N0
+

L∑
l=1

1

NlMl

)
+

C

ML
,

E
[
sup
x

|∇αML(x)−∇α(x;D)|2
]

≤ C(L+ 1)

(
V0

N0
+

L∑
l=1

1

NlMl

)
+

C

ML
,

for some constant C. Consequently taking1 L = O(| log ε|),

N0 = ε−2KL

(
V0

M0

)1/2

and Nl = ε−2KL
1

Ml
, (13)

for l ≥ 1 with KL = (V0M0)
1/2+L , the MLMC estimator

αML(x) gives the following error estimate, for x ∈ X ,

E
[
sup
x

|αML(x)− α(x;D)|2
]
≤ Cε2

for a sample complexity of O(ε−2| log ε|3).

The proof of Theorem 1 is in Appendix G.2. Appendix E
provides corollaries for the value function and the maxi-
mizer. Here, we consider the inner sup with a loose bound;
up to logarithmic terms, we achieve the same rate as a
standard MC stimulation (without nested summations and
maximizations).

4.3. Main Result

We now establish the main MLMC complexity result, which
requires yet another additional Assumption 3, given in Ap-
pendix F. This final assumption essentially states that the
strong rate of convergence of increments of the acquisition
function ∆αNl,Ml

implies the corresponding rate for the
maximizer ∆zNl,Ml

. As indicated earlier, we expect the
result to hold for the maximizer, however the proof of this
is deferred to future work.

1The ceiling function provides integer values of L, Nl, and Ml.

7



Accelerating Look-ahead in BO: MLMC is All You Need

Theorem 2. Suppose Assumptions 1, 2 and 3 hold. Let
Ml = 2l. Then one can choose L, {Nl}Ll=0, as in Theorem
1, such that

E[∥x∗
ML − x∗∥2] ≤ Cε2 ,

for a complexity of O(ε−2(log ε)2).

The proof is given in Appendix G.5. We verify β = 1 nu-
merically with the difference of optimizer in Appendix H.3.
This corresponds to the borderline scenario of Proposition 3
with β = γ = 1, which still yields an improvement com-
pared with the standard MC. We have the following remark,
which can further improve the computational complexity.

Remark 1. The antithetic construction (12) gives β ≈ 1.5
leading to an overall canonical computational complexity
O(ε−2). This is similar to the work by Giles & Goda (2019),
but here, we are interested in constructing a multilevel esti-
mator of the optimizer. The rates are numerically verified
with the 1D toy example 1. See Appendix H.3 for the verifi-
cation of β ≈ 1.5 and Figure 2(b) for the complexity.

5. Numerical Results
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(a) 1D Toy Example (d=1)
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(c) DropWave (d=2)
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(d) Branin (d=2)

0 200 400 600 800 1000 1200 1400 1600
Cumulative wall time in second

1.00e-03

1.00e-02

1.00e-01

1.00e+00

NM
SE

MLMC
MC

(e) Hartmann6 (d=6)
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(f) Cosine8 (d=8)

Figure 3. Convergence of the BO algorithm with respect to the
cumulative wall time in seconds, with error bars (computed with
20 realizations). The Matérn kernel is applied. The initial BO run
starts with 2× d observations.

In this section, we run the whole BO algorithm on various
synthetic functions from BoTorch (Balandat et al., 2020)
and show the benefits of using MLMC (9) with the antithetic
approach over standard MC (3) in AF approximation. We
apply the normalized MSE, defined as

NMSE = E
[
∥maxDk

g(x)− g(x∗)∥2

∥maxD0
g(x)− g(x∗)∥2

]
, (14)

where D0 and Dk are the initial observation set and the
observation set after k iterations, as the error metric. It
measures the algorithm’s expected relative improvement
over the initial values. It normalizes the value to [0, 1],
which can make the performance on different problems
with different scales of domain comparable and remains
the decaying feature of error. The AF we applied is the
two-step look-ahead 1-EI + 2-EI defined in (19). According
to Figure 3, in expectation, compared with the MC method,
the MLMC method can achieve the same NMSE with less
computational cost to find the optimum of test functions.
We primarily focus on the method from Section 4.1 as our
initial study. Comparisons between the multilevel optimizer
method from Section 4.1 and the multilevel function method
from Section 4.2 are performed in Section H.4.

The number of samples in MC is N = M = 1/ε2. The
number of samples in MLMC for Nl and Ml, related to
ε, is chosen according to the formula in Theorem 1. For
comparison, the ε is set to be the same for any given problem.
Here, we use ε = 0.2 for Figure 3(a), 3(b), 3(c), 3(d) and
3(f), and ε = 0.15 for Figure 3(e). It is useful to note
that MLMC requires balancing the ”variance” and ”bias”
to achieve the canonical rate. This requires careful tuning
in selecting the finest level and the number of samples at
each level. From the previously derived formulas, the level
and the number of samples depend on the variance of the
increments. In practice, since we need to approximate the
AF interactively, it is not realistic nor efficient to compute
the variance every time before we evaluate the functions. A
practical way to deal with that is to use C2−βl, which is
due to the proportionality of the variance, with the constant
C empirically. It turns out that the worst situation is that
MLMC degenerates to MC, and we have an MC rate of
convergence in a single AF approximation. Overall, MLMC
with this pragmatic choice performs much better in practice.

Because L-BFGS is a local optimization method, we need
to run it with multiple initial conditions to get an approxi-
mation of the global maximizer. An additional complication
in the present context is that we need to match the coarse
and fine maximizers at each level l in order for (9) to de-
liver a good approximation. The simplest way to achieve
this is by matching all levels with the best one from level
0 (or L), which is the strategy adopted in the present work.
However, we want the estimator (9) which delivers the max-
imum value, rather than being anchored to any individual
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Function Name PI EI UCB PES GLASSES R-4-9 R-4-10 R-5-9 R-5-10 Ours

Branin-Hoo Mean 0.847 0.818 0.848 0.861 0.846 0.904 0.898 0.887 0.903 0.992
Median 0.922 0.909 0.910 0.983 0.909 0.959 0.943 0.921 0.950 0.997

Goldstein-Price Mean 0.873 0.866 0.733 0.819 0.782 0.895 0.784 0.861 0.743 0.987
Median 0.983 0.981 0.899 0.987 0.919 0.991 0.985 0.989 0.928 0.998

Griewank Mean 0.827 0.884 0.913 0.972 1.02 0.882 0.885 0.930 0.867 0.973
Median 0.904 0.953 0.970 0.987 1.02 0.967 0.962 0.960 0.954 0.975

6-hump Camel Mean 0.850 0.887 0.817 0.664 0.776 0.860 0.825 0.793 0.803 0.942
Median 0.893 0.970 0.915 0.801 0.941 0.926 0.900 0.941 0.907 0.979

Table 1. [Reproduced with permission from (Lam et al., 2016)]. Performance of our 2-step look-ahead acquisition function (1EI + 2EI) on
benchmark functions. The rollout algorithms of (Lam et al., 2016) are denoted R-.... The other algorithms are commonly used and all are
myopic except GLASSES. The error metric is GAP = (g(x0)−maxDk g(x))/(g(x0)− g(x∗)) after a fixed budget of k = 15 function
evaluations, and statistics are from 40 realizations randomly initialized with a single function evaluation.

level. This can be achieved with backward (or forward)
matching, where we essentially prune a tree whose branches
start at level 0 (or L) and branch forward (or backward) in
levels. This approach is more robust but also slightly more
complicated and costly, and we have found that the former
strategy is satisfactory in practice. The approaches are il-
lustrated in Figures 10(a) and 10(b) in Appendix H.7. A
global strategy which explores all combinations of the local
optimizers of the 2L intermediate problems would incur a
non-trivial cost of O(ε−2).

In Table 1 we replicate Table 2 of Lam et al. (2016) and
include a comparison with our 2-step look-ahead AF (1EI
+ 2EI) computed using MLMC. We observe that the 2-step
look-ahead AF (1EI + 2EI) is the best in 7 out of 8 cases and
the second best for the median of the Griewank function.
Wu & Frazier (2019); Jiang et al. (2020a;b) provide further
comparisons of look-ahead methods with myopic competi-
tors, illustrating the advantage of look-ahead in general.
Further discussion is provided in Appendix H.5.

Numerics related to 2-step look-ahead 2-EI (18) are per-
formed in Appendix H.6.

6. Future Directions
Evaluating multi-step look-ahead acquisition functions is
computationally expensive. In this work we introduced
MLMC into this area and showed the benefits of using
MLMC over MC. Further theoretical analysis remains to
be carried out. This paper mainly focuses on the two- and
three-step look-ahead settings, but it can be extended to
additional steps. MLMC may not be able to achieve the
canonical rate with an increasing number of look-ahead step
due to the curse of dimensionality, which leads to a violation
of regularity assumptions. Under mixed regularity assump-

2According to (Lam et al., 2016), the GAP = 1 results of
GLASSES arise from an arbitrary choice by one optimizer to
evaluate the origin, which coincides with the minimizer of the
Griewank function. Those results are excluded from the analysis.

tions, this can be solved by using multi-index Monte Carlo
(MIMC) (Haji-Ali et al., 2016; Jasra et al., 2023), which
works by considering increments of increments (of incre-
ments ...) over a grid of levels/indices instead of a simple
increment at each level. In this case, the regularity condi-
tions required for canonical complexity are only required
on each nested MC individually.

Randomized MLMC (Rhee & Glynn, 2012; 2015) and ran-
domized MIMC can eliminate the bias and costly tuning
ordinarily required to balance with variance, at the cost of
a potentially larger constant (Liang et al., 2023). It may
be possible to further reduce computational complexity to
MSE−1/2 or O(ε−1) for small ε > 0 by introducing multi-
level quasi-Monte Carlo or multi-index quasi-Monte Carlo
developed based on MLMC or MIMC and quasi-Monte
Carlo (Caflisch, 1998; L’Ecuyer et al., 2009), which gen-
erates a sequence of low discrepancy samples for variance
reduction. However, the improved complexity relies on the
smoothness of the integrand, and performance degenerates
to that of standard MC, O(ε−2), in the non-smooth case.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Acquisition Functions
Some one-step look-ahead acquisition functions, such as expected improvement (EI), are analytically tractable, but the
functions are generally intractable for the look-ahead steps greater than one. Monte Carlo (MC) estimation is a standard
method for approximating the values. Using the re-parameterization trick, we assume the following

f(x, ξ;D) = N(µ(x), σ2(x)) = µ(x) + σ(x)ξ,

f(x1, ξ1;D1(x; ξ)) = N(µ(x1;x), σ
2(x1;x)) = µ(x1;x) + σ(x1;x)ξ1,

where ξ, ξ1 ∼ N(0, 1), µ(·;x) and σ2(·;x) are the posterior mean and variance functions derived with D1(x; ξ) =
{D, (x, f(x, ξ;D))}. For simplicity, we do not carry on the reparameterization trick explicitly and keep using the notation
f(x;D) when the dependence is on ξ and f(x1;D1(x)) when the dependence is on ξ and ξ1. The superscript notations are
used for realization driven by a random source. Specifically, the notation

f i(x;D) = f(x, ξi;D)

f j(x1;D1(x)) = f(x1, ξ
j
1;D1(x; ξ))

f ij(x1;D1(x)) = f(x1, ξ
j
1;D1(x; ξ

i))

for i = 1, 2, ... and j = 1, 2, ... is used to stand for a realization of the function. Here, ξi, ξj1 and ξij1 are i.i.d. The data set
follows the superscript notation as well.

Even if the one-step AF is analytically tractable, we must approximate the two-step and three-step look-ahead AFs, which
can be done with MC as follows

α1,N (x;D) = Ef(·;D)[r(f, x)] +
1

N

N∑
i=1

max
xi
1

Ef(·;Di
1(x))

[
r(f, xi

1)
]
, (15)

α2,N,M (x;D) = Ef(·;D)[r(f, x)] +
1

N

N∑
i=1

max
xi
1

{
Ef(·;Di

1(x))

[
r(f, xi

1)
]
+

1

M

M∑
j=1

max
xij
2

Ef(·;Dij
2 (x,xi

1))
[r(f, xij

2 )]

}
,

(16)

where N and M are number of samples.

A.1. Explicit 2- and 3-step functions

Two-step look-ahead expected improvement can be written as

α1(x;D) := Ef(·;D)

[
r(f, x) + max

x1

Ef(·;D1(x)) [r(f, x1)]

]
, (17)

with r(f, x) = (f(x;D)−f∗(D))+, r(f, x1) = (f(x1;D1(x))−f∗(D1(x))+, where f∗(D1(x)) = max{f∗(D), f(x;D)}.
The two-step look-ahead EI (17) is analytically intractable, which can be approximated by referring to (15).

Two-step look-ahead q-expected improvement can be written as

α1(x;D) := Ef(·;D)

[
r(f, x) + max

x1

Ef(·;D1(x)) [r(f, x1)]

]
, (18)

with r(f, x) = maxj=1,...,q(f(xj ;D) − f∗(D))+ and r(f, x1) = maxj=1,...,q(f(x1,j ;D1(x)) − f∗(D1(x))+. The two-
step look-ahead qEI (18) is analytically intractable and introduces a nested MC due to the qEI, which can be evaluated by
referring to (3).

In the numerical section 5 of this article, we let the zero-step reward be EI and the two-step reward be qEI for convenience,
i.e.

α1(x;D) := Ef(·;D)

[
r0(f, x) + max

x1

Ef(·;D1(x)) [r1(f, x1)]

]
, (19)

13
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with r0(f, x) = (f(x;D)− f∗(D))+ and r1(f, x1) = maxj=1,...,q(f(x1,j ;D1(x))− f∗(D1(x))+.

Three-step look-ahead expected improvement can be written as

α2(x;D) := Ef(·;D)

[
r(f, x) + max

x1

Ef(·;D1(x))

[
r(f, x1) + max

x2

Ef(·;D2(x,x1))[r(f, x2)]
]]

(20)

with r(f, x) = (f(x;D) − f∗(D))+, r(f, x1) = (f(x1;D1(x)) − f∗(D1(x))+ and r(f, x2) = (f(x2;D2(x, x1)) −
f∗(D2(x, x1)))+, where f∗(D2(x, x1)) = max{f∗(D1(x)), f(x1;D1(x))}. Referring to equation (16), we obtain the
approximation of the Three-step look-ahead EI (20).

B. Assumptions and discussion related to SAA
The following is a set of sufficient conditions for basic SAA convergence results to hold, which will be made throughout.

Assumption 1.

1. (Quadratic Growth) For the optimum x∗, there exist a constant K > 0 and an open neighborhood V of x∗ such that
for all x ∈ Ω ∩ V ,

α(x;D) ≤ α(x∗;D)−K∥x∗ − x∥2.

2. The input space X is compact, and α(x;D) ∈ C1(U), where U is a neighbourhood of S∗.

3. E[α(x;D)2|D], E[∥∇xα(x
′;D)∥2] < ∞ for all x ∈ X and x′ ∈ U .

4. Both α(·;D) and ∇xα(·;D) are Lipschitz continuous with Lipschitz constant L(ξ) on the input space, which is finite in
expectation.

Theorem 5.3 of (Shapiro et al., 2021) implies that the limit point (in N ) of any solution from SN lies in S∗, where SN is the
set of solutions of the SAA (5), by assuming 1(3, 4). If the function is convex, then a local optimizer is a global optimizer.
The rate of convergence of optimizers is based on more factors. We require an essential regularity condition called quadratic
growth condition, defined in 1(1). Otherwise, if the function r increases linearly near x∗, the optimizer may converge at a
faster rate (Kim et al., 2015) while the rate may be slower if it behaves like a higher-order polynomial.

C. Proof of Proposition 2
Proof. Recall α(x;D), (15) and (3) as follows

α(x;D) := Ef(·;D)

[
r(f, x) + max

x1

Ef(·;D1(x)) [r(f, x1)]

]
αN (x;D) =

1

N

N∑
i=1

[
r(f i(x;D)) + max

xi
1

Ef(·;Di
1(x))

[
r(f, xi

1)
] ]

αN,M (x;D) =
1

N

Nl∑
i=1

[
r(f i(x;D)) + max

xi
1

1

M

M∑
j=1

r(f ij(xi
1;Di

1(x)))

]
.

We first prove equation (7). Note that

E[|αN,M (x;D)− α(x;D)|2] ≤ 2E[|αN (x;D)− α(x;D)|2] (21)

+ 2E[|αN,M (x;D)− αN (x;D)|2], (22)

due to (a+ b)2 ≤ 2a2 + 2b2. We deal with the two terms (21) and (22) separately.

14
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The first term (21) is simply a standard MC error bounded by the following

E[|αN (x;D)− α(x;D)|2] = E

[(
1

N

N∑
i=1

[
r(f i(x;D)) + max

xi
1

Ef(·;Di
1(x))

[
r(f, xi

1)
] ]

(23)

− Ef(·;D)

[
r(f, x) + max

x1

Ef(·;D1(x)) [r(f, x1)]

])2]

=
Var
(
r(f, x) + maxx1 Ef(·;D1(x)) [r(f, x1)]

)
N

≤ σmax

N
, (24)

where the last inequality is due to the bounded variance assumption.

For the second term (22), we have

E[|αN,M (x;D)− αN (x;D)|2] = E

[∣∣∣∣∣ 1N
Nl∑
i=1

[
r(f i(x;D)) + max

xi
1

1

M

M∑
j=1

r(f ij(xi
1;Di

1(x)))

]

− 1

N

N∑
i=1

[
r(f i(x;D)) + max

xi
1

Ef(·;Di
1(x))

[
r(f, xi

1)
] ]∣∣∣∣∣

2]

= E

[∣∣∣∣∣ 1N
Nl∑
i=1

max
xi
1

1

M

M∑
j=1

r(f ij(xi
1;Di

1(x)))−
1

N

N∑
i=1

max
xi
1

Ef(·;Di
1(x))

[r(f, x1)]

∣∣∣∣∣
2]

Define

xi,∗
1,M = argmax

xi
1

1

M

M∑
j=1

r(f ij(x1;Di
1(x))).

Then, we have

max
xi
1

Ef(·;Di
1(x))

[
r(f, xi

1)
]
≥ Ef(·;Di

1(x))

[
r(f, xi,∗

1,M )
]
.

Thus,

E[|αN,M (x;D)− αN (x;D)|2]

≤E

[∣∣∣∣∣ 1N
N∑
i=1

1

M

M∑
j=1

r(f ij(xi,∗
1,M ;Di

1(x)))−
1

N

N∑
i=1

Ef(·;Di
1(x))

[
r1(f, x

i,∗
1,M )

] ∣∣∣∣∣
2]

≤ N

N2

N∑
i=1

E

[∣∣∣∣∣ 1M
M∑
j=1

r(f ij(xi,∗
1,M ;Di

1(x)))− Ef(·;Di
1(x))

[
r(f, xi,∗

1,M )
] ∣∣∣∣∣

2]

≤ 1

N

N∑
i=1

Var

 1

M

M∑
j=1

r(f ij(xi,∗
1,M ;Di

1(x)))


≤σmax

M
, (25)

the first inequality is by taking the maximizer, the second inequality is by Cauchy-Schwarz inequality, and the last follows
from standard SAA arguments.

Combining (24) and (25), we have

E|αN,M (x)− α(x)|2 ≤ C1(1/N + 1/M),

for some constant C1.
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D. MLMC estimators
D.1. MLMC Acquisition Function

We define ∆αNl,Ml
(x) = αNl,Ml

(x)− αNl,Ml−1
(x) and adapt the convention that αN0,M−1(x) ≡ 0. From this, we form

the estimator

αML(x) :=

L∑
l=0

∆αNl,Ml
(x) ,

where

αNl,Ml
(x) =

1

Nl

Nl∑
i=1

[
r(f i(x;D)) +

(
max
xij
1

1

Ml

Ml∑
j=1

r(f ij(xij
1 ;Di

1(x)))

)]
,

αNl,Ml−1
(x) =

1

Nl

Nl∑
i=1

[
r(f i(x;D)) +

(
max
xij
1

1

Ml−1

Ml−1∑
j=1

r(f ij(xij
1 ;Di

1(x)))

)]
.

We remark that the terms ∆αNl,Ml
(x) for l = 0, 1, ..., L are mutually independent. We now argue that αML is a computa-

tionally efficient proxy for the intractable limit objective α(x;D), which leads to computational benefits for approximating
optimizer x∗.

D.2. Multilevel formulation of three-step look-ahead acquisition function

The multilevel estimation for the optimizer of the three-step look-ahead AF α2(x;D) can be formulated as

x∗
ML :=

L∑
l=0

zNl,Ml
− zNl,Ml−1

=

L∑
l=0

∆zNl
,

with

zNl,Ml
= argmax

x

1

Nl

Nl∑
i=1

[
r(f i(x;D)) + max

xi
1

1

Ml

Ml∑
j=1

(
r(f ij(xi

1;Di
1(x))) + max

xij
2

Ef(·;Dij
2 (x,x1))

[r(f, xij
2 )]

)]
,

(26)

zNl,Ml−1
= argmax

x

1

Nl

Nl∑
i=1

[
r(f i(x;D)) + max

xi
1

1

Ml−1

Ml−1∑
j=1

(
r(f ij(xi

1;Di
1(x))) + max

xij
2

Ef(·;Dij
2 (x,x1))

[r(f, xij
2 )]

)]
.

(27)

Here we use the convention zN0,M−1
≡ 0. To leverage the MLMC, we also require the subsampling of Ml−1 samples from

Ml similar to the two-step look-ahead one. The antithetic approach of the three-step function involves replacing the coarse
estimator (27) with

zANl,Ml−1
= argmax

x

1

Nl

Nl∑
i=1

[
r(f i(x;D))

+
1

2

(
max
xi
1

1

Ml−1

Ml−1∑
j=1

(
r(f ij(xi

1;Di
1(x))) + max

xij
2

Ef(·;Dij
2 (x,x1))

[r(f, xij
2 )]

)

+max
xi
1

1

Ml−1

Ml∑
j=Ml−1+1

(
r(f ij(xi

1;Di
1(x))) + max

xij
2

Ef(·;Dij
2 (x,x1))

[r(f, xij
2 )]

))]
,

where zAN0,M−1
≡ 0. The sampling step is the same as the two-step look-ahead one.
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E. Value function and maximizer corollaries
Theorem 1 provides a convergence rate for q-functions. We can then use this result to establish the convergence of value
functions:

Corollary 1 (Value Function Convergence). For v⋆(D) := maxx α(x;D) and vML := maxx αML(x)

E
[
|vML − v⋆(D)|2

]
≤ C(L+ 1)

(
V0

N0
+

L∑
l=1

1

NlMl

)
+

C

ML

and thus under the parameter choices (13), a root-mean-square error of ε2 can be achieved with a sample complexity of
O(ε−2| log ε|3).

The proof of Corollary 1 is given in Appendix G.3. Assuming quadratic growth at the optimizer, we can prove convergence
to the optimal decision point.

Corollary 2 (Maximizer Convergence). Assume 1 and 2. For x̃∗
ML ∈ argmaxx αML(x) and x∗ = argmaxx α(x;D)

E[∥x̃∗
ML − x∗∥2] ≤ C(L+ 1)

(
V0

N0
+

L∑
l=1

1

NlMl

)
+

1

ML

and thus under the parameter choices (13), a mean-square error of ε2 can be achieved with a sample complexity of
O(ε−2| log ε|3).

The proof of Corollary 2 is given in Appendix G.4.

It is difficult to numerically verify Theorem 1 due to the inner sup. Numerical verification of complexity for Corollary 1 and
2 are in Appendix H.2.

F. Assumptions and discussion related to MLMC
We let

∆M (x) = max
x1

1

M

M∑
j=1

r(f j(x1;D1(x)))−max
x1

Ef(·;D1(x)) [r(f, x1)] , (28)

∇∆M (x) = ∇x max
x1

1

M

M∑
j=1

r(f j(x1;D1(x)))−∇x max
x1

Ef(·;D1(x)) [r(f, x1)] . (29)

Notice that ∆M (x) and ∇∆M (x) summarize the error in the sample average approximation of the inner expectation and its
derivative, respectively. Given the existence of comparable results on SAA, we make the following assumption:

Assumption 2. For some constant C > 0 and ∀x ∈ X ,

sup
x

∣∣E[∆M (x)
]∣∣ ≤ C

M
1
2

and E
[
sup
x

∣∣∣∆M (x)− E[∆M (x)]
∣∣∣2] ≤ C

M
,

sup
x

∣∣E[∇∆M (x)
]∣∣ ≤ C

M
1
2

and E
[
sup
x

∣∣∣∇∆M (x)− E[∇∆M (x)]
∣∣∣2] ≤ C

M
.

Remark 2. The above Assumption is found to hold for Sample Average Approximation for any given value of x, See Page
165 of (Shapiro et al., 2021). Here we ask for standard SAA approximation results to hold over all values of x taken
in our outer sample. Also, if maxx1

1
M

∑M
j=1 r(f

j(x1;D1(x))) is square integrable, Assumption 2 is satisfied by CLT.

The square integrability of maxx1

1
M

∑M
j=1 r(f

j(x1;D1(x))) can be obtained by the square integrability of underlying
Gaussian random variables, following the similar argument of showing uniform integrability as Theorem 6.1.6 of (Borovkov,
1999). The underlying GP is square integrable by choosing a proper integrable kernel function.
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We state an intermediate result in Lemma 1, which shows the variance of the increments satisfies the MLMC assumption
and leads to Theorem 1.

Lemma 1. Assume 2 and Ml = cMl−1 for some positive integer c. Then, for some constant C > 0,

E[sup
x

|∆αNl,Ml
(x)− E[∆αNl,Ml

(x)]|2] ≤ C

NlMl
.

The proof of Lemma 1 is in Appendix G.1.

F.1. Additional assumption for Theorem 2

The additional assumption required for the implementable algorithm is now given.

Assumption 3. Assume for β > 0 and x ∈ X , the bound

E[|∆αNl,Ml
(x)−∆α∞,Ml

(x)|2] ≤ C

NlM
β
l

,

implies

E[∥∆zNl,Ml
−∆z∞,Ml

∥2] ≤ C

NlM
β
l

.

Remark 3. The implication Assumption 3 holds for differences, e.g. E[∥∆zNl,Ml
∥] ≤ supx∈X E[|∇∆αNl,Ml

(x)|], under
suitable assumptions, following the argument in the proof of Corollary 2. We have validated it numerically for differences of
differences in Appendix H.3, but it remains to be proven.

G. Proof of lemmas and theorems
Recall

α(x;D) = Ef(·;D)

[
r(f, x) + max

x1

Ef(·;D1(x)) [r(f, x1)]

]
,

αN,M (x;D) =
1

N

N∑
i=1

[
r(f i(x;D)) +

(
max
xi
1

1

M

M∑
j=1

r(f ij(xi
1;Di

1(x)))

)]
.

Define

αN,∞(x;D) =
1

N

N∑
i=1

(
r(f i(x;D)) + max

xi
1

Ef(·;Di
1(x))

[
r(f, xi

1)
])

,

α∞,M (x;D) = Ef(·;D)

r(f, x) + max
x1

1

Ml

Ml∑
j=1

r(f j(x1;D1(x)))

 .

We first state a lemma.

Lemma 2. Assume 2. For some constant C > 0,

E
[
sup
x

∣∣αN,M (x)− αN,∞(x)− E[αN,M (x)− αN,∞(x)]
∣∣2] ≤ C

NM
.

Proof. We have

E
[
sup
x

∣∣αN,M (x)− αN,∞(x)− E[αN,M (x)− αN,∞(x)]
∣∣2]

=E

[
sup
x

∣∣∣∣∣ 1N
N∑
i=1

(
max
xi
1

1

M

M∑
j=1

r(f ij(xi
1;Di

1(x)))−max
xi
1

Ef(·;Di
1(x))

[
r(f, xi

1)
]
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− E
[
max
xi
1

1

M

M∑
j=1

r(f ij(xi
1;Di

1(x)))−max
xi
1

Ef(·;Di
1(x))

[
r(f, xi

1)
] ])∣∣∣∣∣

2]

=
1

N
E

[
sup
x

(
max
xi
1

1

M

M∑
j=1

r(f ij(xi
1;Di

1(x)))−max
xi
1

Ef(·;Di
1(x))

[
r(f, xi

1)
]

− E
[
max
xi
1

1

M

M∑
j=1

r(f ij(xi
1;Di

1(x)))−max
xi
1

Ef(·;Di
1(x))

[
r(f, xi

1)
] ])2]

=
1

N
E
[
sup
x

∣∣∣∆M (x)− E[∆M (x)]
∣∣∣2]

≤ C

NM
.

In the final inequality, we apply Assumption 2.

G.1. Proof of Lemma 1

Now, we prove Lemma 1, which is a direct result of Lemma 2.

Proof. Note that

∆αNl,Ml
(x) = αNl,Ml

(x)− αNl,Ml−1
(x)

= αNl,Ml
(x)− αNl,∞(x)− αNl,Ml−1

(x) + αNl,∞(x).

Thus,

E[sup
x

|∆αNl,Ml
(x)− E[∆αNl,Ml

(x)]|2] = E
[
sup
x

∣∣αNl,Ml
(x)− αNl,∞(x)− E[αNl,Ml

(x)− αNl,∞(x)]

− αNl,Ml−1
(x) + αNl,∞(x) + E[αNl,Ml−1

(x)− αNl,∞(x)]
∣∣2]

≤ 2E
[
sup
x

∣∣αNl,Ml
(x)− αNl,∞(x)− E[αNl,Ml

(x)− αNl,∞(x)]
∣∣2]

+ 2E
[
sup
x

∣∣αNl,Ml−1
(x)− αNl,∞(x)− E[αNl,Ml−1

(x)− αNl,∞(x)]
∣∣2]

≤ 2C

NlMl
+

2C

NlMl−1

≤ C

NlMl
,

where the second inequality is obtained by applying Lemma 2 and the last inequality is by Ml = cMl−1 for some positive
integer c and relabeling the constant C.

G.2. Proof of Theorem 1

The proof of Theorem 1 is given below. The proof is only given for α, however, given the assumptions the proof for ∇α
follows in exactly the same fashion.

Proof. To begin, the error can be divided into its bias and variance components as follows:

E[sup
x

∥αML(x)− α(x;D)∥2] ≤ 2E[sup
x

∥αML(x)− E[αML(x)]∥2] (30)

+ 2 sup
x

|E[αML(x)]− α(x;D)|2 (31)

We will proceed to bound (30) and (31). We bound the term (30). Notice that, by Cauchy-Schwartz

|αML(x)− E[αML(x)]|2 =
∣∣∣ L∑
l=0

∆αNl,Ml
(x)− E[∆αNl,Ml

(x)]
∣∣∣2 ≤ (L+ 1)

L∑
l=0

∣∣∣∆αNl,Ml
(x)− E[∆αNl,Ml

(x)]
∣∣∣2 .
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Thus, we have

E[sup
x

∥αML(x)− E[αML(x)]∥2] ≤ (L+ 1)

L∑
l=0

E[sup
x

∥∆αNl,Ml
(x)− E[∆αNl,Ml

(x)]∥2]

≤ C(L+ 1)

(
V0

N0
+

L∑
l=1

1

NlMl

)
. (32)

The first line above is due to independence. For l = 0, we have the variance of αN0,M0
as E[∥αN0,M0

− E[αN0,M0
]∥2] =

V0/N0. The equation (32) follows from Lemma 1.

Finally, we deal with the term (31). First we note that αML(x) is an unbiased estimator of α∞,L(x) since

E[αML(x)] = E
[ L∑

l=0

∆αNl,Ml
(x)
]

= E[αN0,M0
(x)] +

L∑
l=1

(E[αNl,Ml
(x)]− E[αNl,Ml−1

(x)])

= E[αN0,M0(x)] +

L∑
l=1

(E[αNl,Ml
(x)]− E[αNl−1,Ml−1

(x)])

= E[αNL,ML
(x)]

= α∞,ML
(x).

For the third line, above, note that E[αNl,Ml−1
(x)] = E[αNl−1,Ml−1

(x)]. In the fourth line, we cancel terms in the
interpolating sum. Thus

|E[αML(x)]− α(x;D)| = |α∞,ML
(x)− α(x;D)|.

And so,

sup
x

|α∞,ML
(x)− α(x;D)|2

= sup
x

∣∣∣∣∣Ef(·;D)

[
r(f, x) + max

x1

1

ML

ML∑
j=1

r(f j(x1;D1(x)))

]
− Ef(·;D)

[
r(f, x) + max

x1

Ef(·;D1(x)) [r(f, x1)]

]∣∣∣∣∣
2

= sup
x

∣∣∣∣∣Ef(·;D)

[
max
x1

1

ML

ML∑
j=1

r(f j(x1;D1(x)))−max
x1

Ef(·;D1(x)) [r(f, x1)]

]∣∣∣∣∣
2

= sup
x

|E
[
∆ML

(x)
]
|2

≤ C

ML
, (33)

The final inequality follows by Assumption 2. Applying (32) and (33) to (30) and (31) gives

E
[
sup
x

∥αML(x)− α(x;D)∥2
]
≤ C(L+ 1)

(
V0

N0
+

L∑
l=1

1

NlMl

)
+

C

ML
.

Thus the required the bound in 1 holds.

Setting L = 2| log ε|/ log 2 gives the term C/ML of O(ε2). Given the cost assumption, we have total computational cost
Cost=

∑L
l=0 MlNl. We can minimise this cost for a fixed variance V0

N0
+
∑L

l=1
1

NlMl
= ε2/(L + 1) using Lagrange

multipliers. See Lemma 3 for a proof. Specifically, Lemma 3 (with cl = Ml, l = 0, ..., L, v0 = V0 and vl = 1/Ml,
l = 1, ..., L) gives

N0 = (L+ 1)ε−2KL

(
V0

M0

)1/2

and Nl = (L+ 1)ε−2KL
1

Ml
, for l ≥ 1,
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for
KL = (V0M0)

1/2 + L,

and hence COST = (L+ 1)ε−2K2
L = O(| log ε|3/ε2) since KL = O(| log ε|) and L = O(| log ε|). Finally, observe that if

we round up terms, I.e. N0 =
⌈
ε−2KL

(
V0

M0

)1/2 ⌉
and Nl =

⌈
ε−2KL

1
Ml

⌉
, for l ≥ 1, then the additional cost added is∑L

l=0 Ml ≤ 2L+1 ≤ 2
ϵ2 . Thus the total cost of the algorithm is of order O(ε−2| log ε|3).

Lemma 3. The cost minimization

minimize
L∑

l=0

nlcl subject to
L∑

l=0

vl
nl

≤ ϵ2 over nl ≥ 0, l = 0, ..., L,

has optimal solution and the optimal cost

n⋆
l =

1

ϵ2

√
vl
cl

(
L∑

l′=0

√
vl′cl′

)
and C⋆ =

1

ϵ2

(
L∑

l′=0

√
vl′cl′

)2

.

Proof. The Lagrangian of the above optimization problem is:

L(n;λ) =
L∑

l=0

nlcl + λ

(
L∑

l=0

vl
nl

− ϵ2

)
.

Thus

cl −
λvl
n2
l

= 0, and thus nl =

√
λvl
cl

.

For primal feasibility, we require

ϵ2 =
vl
nl

=

L∑
l=0

√
clvl
λ

, thus λ =

(
1

ϵ2

L∑
l=0

√
clvl

)2

.

Thus we have, as required,

nl =

(
1

ϵ2

L∑
l=0

√
clvl

)
×
√

vl
cl

, and
L∑

l=0

nlcl =
1

ϵ2

(
L∑

l=0

√
clvl

)2

.

G.3. Proof of Corollary 1

The proof of Corollary 1 is a consequence of the following standard lemma.
Lemma 4. For two functions α1(x) and α2(x)

|max
x

α1(x)−max
x

α2(x)| ≤ sup
x

|α1(x)− α2(x)|

Proof. Let x⋆
1 ∈ argmaxα1(x) then

max
x

α1(x)−max
x

α2(x) = α1(x
⋆
1)−max

x
α2(x) ≤ α1(x

⋆
1)− α2(x

⋆
1) ≤ sup

x
|α1(x)− α2(x)|

By a symmetric argument we have maxx α2(x)−maxx α1(x) ≤ supx |α1(x)− α2(x)| and thus the result holds.

Proof of Corollary 1. By Lemma 4 and Theorem 1

E
[
|vML − v⋆(D)|2

]
≤ E

[
sup
x

|αML(x)− α(x;D)|2
]
≤ C(L+ 1)

(
V0

N0
+

L∑
l=1

1

NlMl

)
+

C

ML
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G.4. Proof of Corollary 2.

Proof of Corollary 2. By the quadratic growth condition on α(x;D) in Assumption 1, we have for some C > 0,

C∥x̃∗
ML − x∗∥2 ≤ α(x∗;D)− α(x̃∗

ML;D)

= α(x∗;D)− α(x̃∗
ML;D) + αML(x̃

∗
ML)− αML(x̃

∗
ML)

≤ α(x∗;D)− α(x̃∗
ML;D) + αML(x̃

∗
ML)− αML(x

∗)

= δML(x̃
∗
ML;D)− δML(x

∗;D)

≤ ∇δML(y;D) · (x̃∗
ML − x∗)

≤ |∇δML(y;D)|∥x̃∗
ML − x∗∥

= ∥∇αML(y)−∇α(y;D)∥∥x̃∗
ML − x∗∥,

Dividing through by ∥x∗
ML − x∗∥, squaring and taking sup and expectation, we have

CE[∥x∗
ML − x∗∥2] ≤ E[sup

y
∥∇αML(y)−∇α(y;D)∥2]

≤ C(L+ 1)

(
V0

N0
+

L∑
l=1

1

NlMl

)
+

C

ML
.

Theorem 1 is applied directly. Applying the parameters, (13) we see that a mean-squared-error of ε2 is reached with a
sample complexity of O(ε−2| log ε|3).

G.5. Proof of Theorem 2

We now provide the proof of the main MLMC Theorem 2, reproduced here for convenience.

Theorem 3. Assume 1, 2 and 3. Let Ml = 2l. The estimator x∗
ML is such that, for x ∈ X ,

E[∥x∗
ML − x∗∥2] ≤ C

(
V0

N0
+

L∑
l=1

1

NlM
β
l

)
+

C

ML

for β ≥ 1 and some constant C. Consequently taking L = O(| log ε|),

N0 = ε−2KL

(
V0

M0

)1/2

and Nl = ε−2KL
1

Ml
,

for l ≥ 1 with KL = (V0M0)
1/2 + L, the MLMC estimator (9) gives the following error estimate, for some x∗ ∈ S∗,

E[∥x∗
ML − x∗∥2] ≤ Cε2 ,

for a complexity of O(ε−2(log ε)2).

Proof. We have

E[∥x∗
ML − x∗∥2] ≤ E

[∥∥∥∥ L∑
l=0

∆zNl,Ml
−

L∑
l=0

(z∞,Ml
− z∞,Ml−1

) +

L∑
l=0

(z∞,Ml
− z∞,Ml−1

)− x∗
∥∥∥∥2]

≤ C

L∑
l=0

E
[∥∥∥∥∆zNl,Ml

− (z∞,Ml
− z∞,Ml−1

)

∥∥∥∥2]+ CE[∥z∞,ML
− x∗∥2]

≤ C

(
V0

N0
+

L∑
l=1

1

NlM
β
l

)
+

C

ML
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Figure 4. Sample average approximation rate of convergence. The Matern kernel is applied with six observations. (a): convergence
with respect to N . Rate of regression: -0.92. (b): convergence with respect to M with fixed Nl = 25. Rate of regression: -1.05. 100
realizations are used for both plots.

for β = 1, where the last line is due to Assumption 3, Lemma 1 and SAA results. The bias of O(1/ML) = O(2−L) requires
one to choose L = O(| log ε|) for the desired MSE. We have total computational cost Cost=

∑L
l=0 MlNl. Minimising the

cost for a fixed variance V0

N0
+
∑L

l=1
1

NlMl
= ε2 using Lagrange multipliers as Lemma 3 gives

N0 = ε−2KL(V0M0)
1/2 and Nl = ε−2KLM

−(1+γ)/2
l , for l ≥ 1,

for

KL = (V0M0)
1/2 + C

L∑
l=1

M
−(1−1)/2
l = (V0M0)

1/2 + CL,

and hence COST = ε−2K2
L with KL = O(| log ε|). We recover the borderline complexity.

H. Numerical Results
H.1. Inner and outer Monte Carlo rates

We test the inner and outer rates using the 1D toy example 1 introduced before. Here, we apply (15) with EIs and assume
that we can only approximate the inner EI using MC estimation, i.e., we have

α1,N,M (x) = EI(x|D) +
1

N

N∑
i=1

max
x1

1

M

M∑
j=1

(f j(x1)− f∗({Dn, (x, f
i(x))}))+. (34)

The reason for using (15) is that we have a benchmark for the inner expectation.

Rate with respect to N : We test the convergence with respect to N using equation (34) with inner MC replaced by the
analytical solution of EI. The reference solution is computed with N = 212. According to Figure 4(a), the maximizer
converges with O(N−1).

Rate with respect to M : For the convergence with respect to M , we fix the number of sample N = 25 for the outer Monte
Carlo of equation (34) and then let M varies. Note that the approximation is sensitive to the base sample, so we fixed the
base samples (ξi) for the outer MC. Figure 4(b) illustrates that the maximizer converges with O(M−1).
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(a) Multilevel value function

1.0
0e
+0
2

1.0
0e
+0
3

1.0
0e
+0
4

Cost

1.00e-03

1.00e-02

M
SE

 o
f o

pt
im

ize
r

MLMC
-1

(b) Optimizer of the multilevel value function

Figure 5. Complexity of MLMC value function and the corresponding optimizer. (a): a fitted slope of -1.08. (b): a fitted slope of -1.16.
200 realizations are used for both plots.

H.2. Corollary 1 and Corollary 2

Figure 5(a) and 5(b) verify the complexity of Corollary 1 and Corollary 2 where the rate MSE−1 occurs for large cost due to
the log penalty. It is possible that the constant of the multilevel value function estimator is smaller than that of the multilevel
optimizer estimator, see Figure 2(b) and 5(b), but this benefit is not practically significant due to the higher computational
cost of the multilevel value function estimator, discussed in Appendix H.4, and the feature of BO which requires repeatedly
solving for new observations.

H.3. MLMC variance assumptions

We now numerically verify the multilevel variance assumptions.

Multilevel construction without antithetic approach: Figure 6(a) shows β = 1 as we expected.

Multilevel construction with antithetic approach: Figure 6(b) shows β ≈ 1.5 as we expected.

It is noted that the variance of the increments can be large. It is the case where some of the increments can be hundreds of
times larger or smaller than others for small sample sizes. This effect, of course, vanishes asymptotically. In addition, the
constant for the increments is smaller than that of the antithetic increments.

H.4. Results related to Theorem 1, and Corollaries 1, 2

Constructing the multilevel value function as Corollary 1 and seeking for optimizer requires solving a higher dimensional
joint optimization problem which can be costly than solving multiple low dimensional problems as constructing the
multilevel estimator for optimizer directly as Theorem 2 and Remark 1. See Figure 7(b), which indicates the cost for the
multilevel value function is higher than the multilevel optimizer in expectation. Figure 7(c) shows computational times
of multilevel value function and multilevel optimizer with different numbers of observations. This mimics the whole BO
algorithm. A single estimation for the multilevel value function may be more computationally efficient than that for the
multilevel optimizer, but in expectation that does not hold. Figure 7(a) shows that BO with the multilevel value function
estimation even performs worse than BO with MC, but the purpose of introducing the value function estimation is for
theoretical analysis and the numerical disadvantage is expected.

Figure 7(a) shows better performance. (Though use of the antithetic trick may improve performance for value functions.)
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Figure 6. Rate of convergence of increments. (a): β of the multilevel increments with a fitted slope -1.09. (b): β of the multilevel antithetic
increments with a fitted slope -1.59. A fixed Nl = 25 is applied for all levels, and 50 realisations are used for both plots.

H.5. Further Discussion of Multi-step Look-ahead

Figure 8 [reproduced from (Wu & Frazier, 2019)] illustrates the benefit of the look-ahead acquisition function 2-OPT
in comparison to myopic alternatives. Follow-on work has demonstrated that the value of look-ahead is even greater
for constrained optimization (Lam & Willcox, 2017; Zhang et al., 2021), which is a context we intend to explore in the
future. See also (Jiang et al., 2020b) for comparisons between more multi-step look-ahead candidates and other acquisition
functions, again showing the benefit of being non-myopic.

We emphasize here that the goal of this paper is to introduce a method that can improve the computational efficiency of
multi-step look-ahead acquisition functions, either in terms of a wall time for a given accuracy or accuracy for a given wall
time. And that gain is asymptotic, so that the greater the accuracy the greater the gain in efficiency (beware the converse that
for very low accuracy there may not be any gain). We leave an exhaustive exploration of this space for the ideal acquisition
function to future work. The recently introduced logEI family are compelling candidates (Ament et al., 2024).

H.6. Results with two-step look-ahead 2-expected improvement (18)

We now consider the two-step look-ahead 2-EI (18) where the one- and two-step is a 2-EI. Figure 9 shows the benefits of
using MLMC over MC for 2D Ackley function, 2D DropWave and 2D Shekel function.

H.7. Matching strategies

Two greedy matching strategies are illustrated in Figures 10(a) and 10(b).
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Figure 7. Computational times of multilevel value function and multilevel optimizer. Figure 7(a): convergence of the BO algorithm with
respect to the cumulative wall time in seconds, with error bars (computed with 20 realizations). The Matern kernel is applied. The initial
BO run starts with 2 observations. Figure 7(b): time spent by multilevel value function and multilevel optimizer with respect to the
required accuracy of the approximation. Figure 7(c): time spent by multilevel value function and multilevel optimizer with respect to the
different number of observations. The 1D toy example is applied. Each line is computed with 50 realizations

Figure 8. [Reproduced with permission from (Wu & Frazier, 2019)] Synthetic test functions, 90% quantile of log10 immediate regret
compared with common one-step heuristics. 2-OPT[, 2-step lookead EI implemented with importance sampling and stochastic gradient
descent,] provides substantially more robust performance.
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Figure 9. Convergence of the BO algorithm with respect to the cumulative wall time in seconds for 2-step look-ahead 2-EI, with error bars
(computed with 20 realizations). The Matérn kernel is applied. The initial BO run starts with 2× d observations.

(a) Point matching: all levels align with the best approximation
of the global maximizer at level 0.

(b) Backward matching: a set of local maximizers are found at
each subsequent level and pruned backwards (dashed arrows
are pruned branches).

Figure 10. Greedy matching strategies. One candidate of the type (9) is considered in (a), whereas (b) results in an estimator of the type
(9) for each local optimizer found at level L (or 0, if pruned in the opposite direction).
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