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Abstract
Because of the prevalence of symmetry in real-
world data, the development of deep learning
architectures that incorporate this structure into
network design has become an important area of
research. Empirically however, equivariant ar-
chitectures tend to provide more benefit in some
settings than others. Since the development of
new equivariant layers is a substantial research
task and existing equivariant architectures tend
to be more complex and harder for the non-
expert to work with, identifying those situations
where architectural equivariance is likely to bring
the most benefit is an important question for the
practitioner. In this short paper we begin to ex-
plore this question. Our preliminary studies sug-
gest that (i) equivariant architectures are more
useful when groups are more complex and data
is more high-dimensional, (ii) aligning the type
of equivariance with the symmetries in the task
brings the most benefit, (iii) equivariant architec-
tures tend to be beneficial across data regimes,
and (iv) equivariant architectures display simi-
lar scaling behavior (as a function of training set
size) as non-equivariant architectures.

1. Introduction
The symmetries in data can be used to impose useful in-
ductive biases on deep learning architectures. This is often
done by developing layers that are equivariant to the rel-
evant symmetry group while at the same time remaining
as expressive as possible. The convolutional neural net-
work architecture, which continues to be central in com-
puter vision, is the most famous example of this, encoding
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translation equivariance in images and related modalities.
There are many other symmetries in data however, some
of which are substantially more complex than this exam-
ple (e.g., even moving from the orthogonal group O(2) for
2-dimensional images, to O(3) in 3-dimensional data is a
significant jump in mathematical complexity). As equiv-
ariant architectures tend to be more complicated to work
with than more common architectures and developing a
new equivariant architecture is often a major research ef-
fort, understanding if and when one should consider using
an equivariant architecture is useful. In this paper we pose
the question:

What characteristics of a machine learning task imply that
an equivariant architecture will perform better than a

non-equivariant architecture?

Our initial motivation came from the anecdotal observa-
tion that while rotation equivariant architectures bring only
marginal gains to computer vision tasks involving 2d im-
ages (Kvinge et al., 2022) (at least in the large training set
regime), they appear to be essential to tasks involving 3d
data (e.g., molecular modeling) (Duval et al., 2023). This
makes intuitive sense; more complicated symmetries would
benefit more from built in priors. But since the role of
data symmetry in deep learning models is still not fully un-
derstood, it is interesting to create experiments to explore
whether this trend holds in other settings where the dimen-
sion/group size associated with a task can be varied beyond
n = 2 and 3. To begin to disentangle the factors impacting
equivariant architecture performance, we identify several
elementary properties of a machine learning task that we
conjecture to be important. These include (i) the dimen-
sion of the input/complexity of the group, (ii) the extent
to which the symmetries captured by the architecture align
with the symmetries of the task, and (iii) the volume of
training data. Properties to explore in a future version of
this work include Lie group dimension and dataset diver-
sity.

In our first experiment we look at the problem of predict-
ing N -body dynamics using a standard graph neural net-
work (GNN) and a E(n)-equivariant GNN where n is the
dimension in which the particles move and E(n) is the Eu-
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clidean group for Rn. Varying n, we see that as the in-
put dimension/group size increases the benefits of using
an equivariant architecture increase relative to a non-E(n)-
equivariant architecture. This aligns with the observation
about 2d-images and 3d-data. In our second experiment
we train a range of equivariant convolutional neural net-
works (CNNs) on rotated MNIST and flipped and rotated
MNIST. Each model is composed of layers equivariant to
a different subgroup of the orthogonal group O(2) (e.g.,
cyclic groups Cr, dihedral groups Dr, SO(2), etc.). We
also vary the available training data. We find, as might be
expected, that equivariant models do best when the group
they are equivariant to aligns with the symmetries in the
task. More interestingly, we find that equivariant archi-
tectures provide a benefit across training set size regimes,
contradicting folk wisdom that built-in equivariance is only
important when there are few examples of each class avail-
able. Finally, we observe that the scaling plots of equivari-
ant and non-equivariant architectures have similar slopes as
a function of training data, suggesting that when trained on
the same data and when models are the same approximate
size, equivariant and non-equivariant models tend to have
similar scaling properties.

Finally, it is important to note that this paper represents
work in progress. As such, most lines of inquiry will need
further experiments and analysis to establish firm conclu-
sions (especially when it comes to getting coverage of a
broader range of groups and applications). We hope that
the ideas presented here will serve as impetus for further
research into this question and related questions.

Contributions: In summary, this short paper contributes
the following: (1) We pose the problem of identifying
when an ML task will benefit from the use of equivari-
ant architectures, focusing on easily measurable problem
parameters. (2) We run experiments to explore how the
dimension of the input data, the order of the group (if fi-
nite), and the amount of data available impact the perfor-
mance of an equivariant model vs. a non-equivariant model.
(3) We summarize some initial trends that we observe.
For instance, we see the largest gains from equivariance
with higher dimensional data and more complex symme-
try groups and notice that equivariant models outstrip their
non-equivariant counterparts in both small- and large-data
regimes. Finally, we find evidence that the slope of the
scaling curves for equivariant and non-equivariant models
are very similar.

2. Equivariance and ML Tasks
Let G be a group with real representations V and W , so
that V and W are R-vector spaces and there are group ho-
momorphisms φ1 : G → GL(V ) and φ2 : G → GL(W ).
When it is understood from the context we will omit φ1

and φ2 and just write gv := φ1(g)v (and analogously for
φ2 and W ). If f : V →W is a neural network then we say
that f is G-equivariant if for any g ∈ G and any v ∈ V ,
f(gv) = gf(v)1. Since f is a neural network, it has a de-
composition into l layers which we write as f = fl◦· · ·◦f1
with fi : Vi−1 → Vi.

One of several approaches to building equivariance into a
network is to construct the network from equivariant lay-
ers. Abusing terminology, we will refer to this type of net-
work as an equivariant architecture. By now, G-equivariant
layers have been designed for a range of groups G and
representations of G. In this work our experiments focus
on some more common examples including: (i) the cyclic
groups Cr which are generated by a rotation of 360◦/r de-
grees in the plane, (ii) the dihedral groups Dr which are
generated by a rotation of 360◦/r degrees and a reflection
across the x-axis in the plane, (iii) O(2), which is the Lie
group of all rotations and reflections in the plane (note that
Cr, Dr for all r ≥ 1 are subgroups ofO(2)), and (iv)E(n),
which is generated by all translations, reflections, and rota-
tions of Rn.

3. Related Work
The concepts of invariance and equivariance which per-
meate mathematics and physics are becoming increasingly
central to machine learning. This has been driven by the ex-
panding number of applications that deep learning methods
are used in, particularly those coming from the sciences.
There is now a diverse suite of approaches for constructing
invariant or equivariant networks. Some methods involve
manipulation of the input data by either transforming it into
a canonical example (Kaba et al., 2023) or simply through
targeted data augmentation (Hauberg et al., 2016; Cubuk
et al., 2018). In this work we focus on equivariant architec-
tures (Cohen & Welling, 2016a; Kondor & Trivedi, 2018;
Cohen & Welling, 2016b). They enforce equivariance by
composing a network from equivariant layers. There are
now equivariant architectures for a broad range of groups
and representations. These range from cyclic groups Cr,
dihedral groups D2r, and SO(2) applied to 2d images
(Weiler & Cesa, 2019) to SO(3) applied to 3d point clouds
and volumetric data (Weiler et al., 2018) or molecular mod-
els (Duval et al., 2023) to the symmetric groups applied to
elements of a set (Zhang et al., 2019) or vertices of a graph
(Scarselli et al., 2009).

There is also a rich literature characterizing the theoretical
and empirical properties of equivariance in deep learning
models. Such studies include (Gruver et al., 2022) which
analyzes the extent to which equivariance is lost at specific

1Note that invariance is a special case of equivariance where
the action of G on W is trivial.

2



What Makes a Machine Learning Task a Good Candidate for an Equivariant Network?

layers and (Kvinge et al., 2022) which attempts to quan-
tify the extent to which the internal representations and fi-
nal output of a model are equivariant. Other work focuses
on the theoretical properties of invariance in deep learn-
ing models (Bloem-Reddy et al., 2020; Chen et al., 2020;
Singla et al., 2021) and the universality of invariant neural
networks (Maron et al., 2019; Yarotsky, 2022). However,
despite the widespread belief that equivariant models im-
prove generalization on equivariant data distributions, there
are few results demonstrating this exact result.

Among such results, (Elesedy & Zaidi, 2021) provides
provably strict generalization benefits from equivariant
models when the target distribution is equivariant and lin-
ear (i.e., X ∼ N (0, σ2I) and Y = ΘTX + ε). They show
that the expected test generalization gap between the least-
squares estimate Θn on n i.i.d. examples and its equivariant
counterpart Θn :=

∫
G
φ1(g)Θnφ2(g−1)dg is

σ2
ε

dim(V ) dim(W )− 〈χφ1
, χφ2
〉

n− dim(V )− 1
> 0, (1)

where 〈χφ1
, χφ2
〉 is the scalar product between the charac-

ters of the representations φ1 and φ2. The expression in (1)
provides some insight on factors that affect the generaliza-
tion benefit from equivariance. Note that dim(V ) dim(W )
is the dimension of the space of linear maps V →W , while
〈χφ1

, χφ2
〉 is the dimension of the space of equivariant lin-

ear maps. (Elesedy & Zaidi, 2021) shows that the numer-
ator in (1) thus represents the dimension of the space of
linear maps which vanish when averaged over G, which is
a heuristic for the importance of symmetry in the task. In
other words, the importance of symmetry directly controls
the generalization benefit from equivariance as is believed
to be the case in general.

Other results on generalization of equivariant models
bound the worst-case generalization error using complex-
ity measures like VC dimension or Rademacher complex-
ity (Sokolic et al., 2017; Sannai et al., 2021). These mea-
sures are data-agnostic and only capture the complexity of a
class of models. Additionally, (Lyle et al., 2020) provides a
PAC-Bayes generalization error bound for equivariant neu-
ral networks. Across these works, there is no implication
that equivariant models generalize strictly better on equiv-
ariant distributions. Only (Elesedy & Zaidi, 2021) shows
this result in the linear case. As we present our empirical
results, we will compare them to these existing theoretical
results on the generalization of equivariant architectures.

4. Experiments
We conduct two experiments to explore the performance of
equivariant and non-equivariant models relative to the char-
acteristics of a machine learning task. In the first, we vary
the input dimension and associated group “complexity” by

training E(n)-equivariant and non-equivariant graph neu-
ral networks (GNNs) on a dynamical system task for vary-
ing values of n. In the second, we look at the performance
of a range of rotation equivariant CNNs on two versions
of MNIST (Deng, 2012); one where digits have been ran-
domly rotated and one where digits have been randomly
flipped and rotated. In this latter experiment we vary both
the group and the amount of training data.

4.1. Equivariant architectures and data dimension in
N-body dynamical systems

We apply graph neural networks to model N -body dy-
namical systems in Rn using the experimental set-up from
(Kipf et al., 2018). Each node in the GNN represents a
charged particle with n-dimensional position and veloc-
ity data, while edges between nodes indicate whether they
have the same or opposite charge. Though the N -body
problem is traditionally considered in dimensions n = 2
or 3, one can set n equal to any positive integer. Such dy-
namical systems have been modeled with graph neural net-
works in the context of deep reinforcement learning (Chua
et al., 2018). The system we consider is governed by forces
between particles, which determine the ending positional
configuration after a fixed amount of time. The goal of the
machine learning task is to predict the ending configuration
from the initial configuration. This system is equivariant
with respect to the Euclidean group E(n), which is gener-
ated by all translations, rotations, and reflections. That is,
rotating, reflecting, or translating the positions of all parti-
cles results in the same solution up to an equivalent rota-
tion, reflection, or translation. Thus it makes sense to try to
use an E(n)-equivariant neural network for this task2.

For each dimension n = 2, 3, 4, 6, and 8, we sample
10, 000 trajectories for training and 2, 000 for testing. The
number of particles is fixed at N = 5. Each trajectory con-
sists of an input/output graph pair sampled as follows: we
randomly initialize positions x(0) = {x(0)

1 , . . . ,x
(0)
5 } ∈

R5×d, velocities v(0) = {v(0)
1 , . . . ,v

(0)
5 } ∈ R5×d, and

charges {c1, . . . , c5} ∈ {−1, 1}; next, we apply T =
10, 000 steps of Euler’s method, where change in position
is determined by velocity and change in velocity is deter-
mined by forces proportional to the relative charge between
particles and inversely proportional to the (n − 1)th power
of the distance between particles. The output graph’s node
data consists of the final positions x(T ). Models are trained
to minimize the Mean Squared Error between predicted and
ground truth positions.

We use a graph neural network as our baseline model
(Scarselli et al., 2009). This model does not have E(n)-

2Note that this system is also equivariant to permutation of
particles since all particles are functionally identical, but this
equivariance is in all the GNNs that we use so we ignore it.
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equivariance for node data (position and velocity), though
as noted above it does have permutation equivariance. In
particular, we follow the neural message passing frame-
work (Gilmer et al., 2017). The E(n)-equivariant version
of the model uses E(n)-equivariant graph convolutional
layers (Satorras et al., 2021), which produce node features
and positions at the next layer.

Results: To measure the importance of equivariance, we
track the best test mean squared error (MSE) achieved by
each model in dimension d = 2, 3, 4, 6, 8 with n = 10, 000
training samples. MSEGNN represents the ordinary graph
neural network while MSEEGNN represents the equivariant
model. Figure 1 plots the ratio MSEGNN/MSEEGNN as a
function of dimension. We note that MSEGNN/MSEEGNN is
not only greater than 1, it tends to grow as a function of n
indicating (in this setting at least), equivariance does tend to
be more valuable for data of higher dimension and/or with
more complicated symmetries. We note that since both the
dimension of the representation Rn and the complexity of
the group E(n) grow with n, it is unclear if one of these
drives the gains seen by the equivariant architecture.

One can ask why we use the quotient of MSEGNN and
MSEEGNN rather than, for example, MSEGNN −MSEEGNN.
This choice was made based on the observation that the na-
ture and difficulty of the problem changes as n changes.
This is a persistent challenge encountered when running
experiments where task parameters such as input data di-
mension vary. It turns out that for this N -body problem,
increasing the dimension changes the underlying dynam-
ics making the task easier in relative terms. Thus, the ab-
solute difference between MSE values decreases, but only
because the MSE for both models decreases as n increases.
The dependence on nmay also explain the interesting spike
in Figure 1 at n = 3. By plotting the quotient we are able
to capture the difference in relative performance between
the E(n)-equivariant and non-equivariant models.

Takeaway: Equivariant architectures may be more valu-
able as the input dimension of the data and the complexity
of the group of symmetries grow larger.

4.2. Data Scaling and Equivariance Type for Rotated
MNIST

For our second experiment, we explore how data volume
and the choice of group impact the difference in perfor-
mance between equivariant and non-equivariant CNNs on
rotated MNIST and flipped and rotated MNIST (the latter
consisting of compositions of random rotations and a possi-
ble reflection). We limit each one to a maximum of 50, 000
training examples and 10, 000 test examples to keep the
sizes consistent. All images in rotated MNIST are rotated
by a fixed random angle, making it a rotation-invariant task.
All images in flipped and rotated MNIST are also randomly

Figure 1. The ratio of the MSE of a model that is not equivariant
to the group E(n) over the MSE of an E(n)-equivariant model
as a function of the input dimension n. Shaded regions indicate
95% confidence values.

flipped making it an O(2)-invariant task.

We compare ordinary CNNs to group equivariant CNNs,
using the E(n)-equivariant steerable CNN library (Cesa
et al., 2022). We have models that are equivariant to vari-
ous subgroups of E(2), including C4, D4, C8, D8, SO(2),
and O(2). We will identify these models by their sub-
group of O(2), which is G = {e} for the conventional
CNN. Each convolutional network consists of six convo-
lution blocks, which contains a (possibly equivariant) con-
volution layer, batch normalization, and ELU activation.
We apply average pooling after every two blocks. We
have attempted to keep the number of learnable param-
eters between each model approximately equal. Every-
thing is trained using the Adam optimizer with a learn-
ing rate of 5 × 10−5 and a batch size of 64. To as-
sess data scaling, we train each model to completion on
n = 1, 000, 2, 000, . . . , 10, 000, 20, 000, . . . , 50, 000
training examples.

Results: Figure 2 plots best test error rate vs. the num-
ber of training examples for each model on rotated MNIST
(top) and flipped and rotated MNIST (bottom). In both
cases, we see that the models that actually capture the
symmetry of the dataset (exclusively continuous rotational
symmetry for rotated MNIST and continuous rotational
and reflection symmetry for flipped and rotated MNIST)
tend to have lower error in all data regimes. That is, the
SO(2)-equivariant architecture has the lowest error for ro-
tated MNIST and the O(2)-equivariant architecture has the
lowest error for flipped and rotated MNIST. Beyond that,
we find that the finite groups (cyclic and dihedral) with
the highest order which best approximate the underlying
continuous group, do better than lower order groups with
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Figure 2. Best test error (misclassification rate) vs. number of
training examples for models of various equivariance levels on
rotated MNIST and flipped and rotated MNIST.

worse approximation (e.g., C4 and D4). Note that this is
in contrast to (Weiler & Cesa, 2019), which found that net-
works equivariant to finite subgroups sometimes perform
better than networks equivariant to their continuous parent
even if the underlying symmetry is continuous.

Folk wisdom has often suggested that equivariance is most
important in the low-data regime. This is natural to expect.
If a dataset is small, a model may not see all possible trans-
formations of a given class and built-in equivariance might
be more useful. We find that while equivariance is valuable
when the training set is small, it provides benefit in all data
regimes. This implies that even for problems where ample
training data is available, one should not rule out the use of
equivariant architectures.

We notice that in Figure 2, each curve is approximately lin-
ear (on a log-log scale), agreeing with past empirical work
on data scaling laws (Hoffmann et al., 2022). Interestingly,
the slopes between models with different types of equiv-
ariance are all relatively similar suggesting that changing
the G to which a model is equivariant only changes scal-
ing behavior up to a shift in the log-log plot. This is in
contrast to behavior seen with models with different num-
bers of parameters, where the scaling curve slopes can vary.
One interesting implication to this is that if we understand
the scaling behavior of a non-equivariant model, we only
need to calculate one constant term to be able to calculate
scaling behavior for any given equivariant model.

Takeaway: Models with equivariant architectures whose
symmetries best align with the symmetries in the data tend
to perform better for all amounts of training data explored.
The scaling properties of equivariant and non-equivariant
models tend to be similar up to a shift in the log-log plot.

5. Conclusion
In this work we ask whether it is possible to predict when
a given ML task will benefit from the use of an equivari-
ant neural network architecture. We focus on how well
the group aligns with symmetries in the data, the group
complexity and input dimension, and quantity of training
data. Our conclusions suggest that (i) tasks with high-
dimensional data and complex symmetries may benefit
from equivariant architectures more than low-dimensional
data with simple symmetries, (ii) the group that a model is
built to be equivariant to should align with the symmetries
of the data, and (iii) the scaling properties of equivariant
and non-equivariant models are the same for fixed data up
to a possible shift in the log-log plot.

We note there are several limitations in this preliminary
study. Firstly, too few groups and types of ML tasks are
explored. In particular, all experiments in this paper con-
cern a special type of equivariance: invariance. Secondly,
strong scaling experiments require extensive hyperparame-
ter searches and carefully controlled training runs. We plan
to address these issues in another iteration of this work.
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What Makes a Machine Learning Task a Good Candidate for an Equivariant Network?

A. Experimental details
Equivariance in N -body Dynamical Systems: In our
N -body experiments, each model takes initial positions
x0 = x(0) as input and h0

i = ‖v(0)
i ‖ as features. Edge

values represent relative charges eij = cicj . We apply 4
convolutional layers in each model and train for 10,000
epochs using the Adam optimizer (Kingma & Ba, 2014)
with a learning rate of 5× 10−4 and a batch size of 128.

Our E(n)-equivariant network has convolutions that are
defined by

mij = φe(h
l
i,h

l
j , ‖xli − xlj‖, eij), (2)

xl+1
i = xli + C

∑
j 6=i

(xlj − xli)φx(mij), (3)

mi =
∑
j 6=i

mij , (4)

hl+1
i = φh(hli,mi). (5)

Note that equation (2) is a function of the distance between
nodes, and equation (3) models the influence on node vi’s
position from the rest of the nodes. By only relying on the
relative position between points, the convolutions in this
model are equivariant to rotations, translations, and reflec-
tions in Rn. The equivariant graph convolution only re-
quires a small modification to include velocity data and re-
tain equivariance (Satorras et al., 2021).

Our GNN that is notE(n)-equivariant is given a graph G =
(V, E) with nodes vi ∈ V and edges eij ∈ E . The graph
convolution at layer l is defined by

mij = φe(hi,hj , eij), (6)

mi =
∑
j 6=i

mij , (7)

hl+1
i = φh(hli,mi). (8)

Here, hli ∈ Rf denotes the feature embedding of node vi at
hidden layer l. The functions φe and φh are approximated
by Multilayer Perceptrons (MLPs).
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