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Abstract

As platforms increasingly rely on learning algo-
rithms, collectives may form and seek ways to
influence these platforms to align with their own
interests. This can be achieved by coordinated
submission of altered data. To evaluate the po-
tential impact of such behavior, it is essential to
understand the computations that collectives must
perform to impact platforms in this way. In partic-
ular, collectives need to make a priori assessments
of the effect of the collective before taking action,
as they may face potential risks when modify-
ing their data. Moreover they need to develop
implementable coordination algorithms based on
quantities that can be inferred from observed data.
We develop a framework that provides a theoreti-
cal and algorithmic treatment of these issues and
present experimental results in a product evalua-
tion domain.

1. Introduction
The dynamic interaction among agents and algorithms cre-
ates a complex ecosystem where unanticipated individual
and collective behavior can emerge. The study of such be-
havior is crucial for understanding how to design systems
that are robust, fair, and aligned with societal values.

In a network, agents often have diverse motivations and
multiple incentives. When the incentives of the interacting
agents do not fully align with those of the designer of the
learning system, the former may wish to influence the learn-
ing process. This becomes salient in the common case in
which a learning system interacts with a large number of
agents. Such agents may collaborate, forming a cartel, by
pooling their data and devising a common strategy. Accord-
ingly, even if the learning algorithm is robust to single-agent
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adversarial behavior, the collective may be able to exert
a significant influence on the algorithm. This concept of
collective action has its origins in economic theories (Olson,
1965) and has been more recently explored in the context of
machine learning (Hardt et al., 2023). It is crucial to under-
stand how such collectives can influence learning algorithms
to better comprehend the dynamics within the network of
agents and to deploy algorithms that are reliable and aligned
with the majority interests of consumers. We will focus
specifically on the case of a platform that deploys a learning
algorithm and interacts with a population of consumers.

Collective Action in Machine Learning. We draw on
the work of Hardt et al. (2023), who investigate the follow-
ing problem: a population of individuals (x, y) ∈ X × Y ,
drawn i.i.d. from a distribution D, interacts with a plat-
form. A collective of relative size α ∈ (0, 1) forms within
this population with the goal of influencing the platform.
The collective’s influence is quantified by a success met-
ric S(α), the definition of which depends on the collec-
tive’s objective. To influence the platform, members of the
collective modify their data according to a common strat-
egy h : X ×Y → X ×Y , which maps the original features
and labels of the data to modified features and labels. The
platform observes a mixture of distributions αD̃+(1−α)D,
where D̃ is the distribution of h(z) with z ∼ D. The plat-
form selects a classifier based on this distribution. Thus,
the objective for the collective is to choose a strategy h that
maximizes its success S(α). Hardt et al. (2023) propose
strategies h for two distinct goals: signal planting and sig-
nal erasing. They derive lower bounds on the success S(α),
enabling the identification of a minimum collective size α∗

such that S(α) ≥ S∗ for all α ≥ α∗, where S∗ is a target
threshold.

Unfortunately, several of the strategies h studied by Hardt
et al. (2023) are not available in practice to the collective.
Furthermore, the bounds obtained on the success S(α) de-
pend on key parameters that are unknown to the collective.
Lastly, in practice, the collective seeks a priori guarantees
of success before altering its data, as modifying the data
may expose members to risk. In this paper, we introduce
a new framework to enable members of the collective to
learn strategies h efficiently and to infer the parameters that
determine their success on the platform.
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Contributions. Our primary contribution is the introduc-
tion of a novel framework which empowers collectives via
statistical inference. This statistical framework allows for
the derivation of three key results, each tied to a distinct
objective that a collective may pursue to influence a plat-
form: signal planting, signal erasing, and a new objective
we introduce, signal unplanting.

We thoroughly explore strategies that a collective can em-
ploy to achieve each of these goals and provide theoretical
guarantees for the effectiveness of these strategies. The
statistical inference capabilities of the collective serve two
main purposes: first, to estimate the most effective strategies
for influencing the platform, and second, to infer key pa-
rameters that determine the collective’s success. This dual
approach allows the collective to predict its potential impact
on the platform with high probability.

Our framework reduces to that of Hardt et al. (2023) in the
infinite data regime, although we note that we improve on
earlier results in this regime—our lower bounds are tighter
than those from Hardt et al. (2023). Our main focus, how-
ever, is the setting in which the signal set is finite. We
obtain bounds in this setting that form staircase-like curves.
This result provides a new interpretation of data poisoning
bounds: the success of attacks depends not just on the signal
set to be poisoned as a whole but more precisely on each
feature within it. Each feature has a resistance to poisoning,
requiring a specific level of attack to breach it, resulting in
these staircase patterns. When the steps are close enough,
these curves resemble the smooth sigmoid shapes seen in
data poisoning literature.

We construct a synthetic dataset to validate our theoretical
findings and to examine the influence of various parameters
empirically. Our empirical results highlight, among other
things, that the effectiveness of the collective depends not
only on its relative size compared to the total number of
agents interacting with the platform but also on its absolute
size. A larger collective, in absolute terms, can obtain better
statistical estimates and thus more accurately infer optimal
strategies. This result implies that larger platforms may be
more vulnerable to collective action.

2. Related Work
Our research builds upon and extends the concept of col-
lective action in machine learning, a framework originally
introduced by Hardt et al. (2023). Collective action relates
closely to data poisoning attacks in machine learning, a
subset of security attacks that disrupt model training by
injecting malicious data to degrade performance or alter pre-
dictions. Of particular virulence, backdoor attacks embed a
hidden trigger in the data that activates malicious behavior
only when the trigger appears, making them subtle and hard

to detect. For comprehensive discussions on data poisoning,
backdoor attacks, and defense mechanisms, we refer the
reader to the surveys by Tian et al. (2022), Guo et al. (2021),
and Cinà et al. (2023).

Data poisoning is a critical topic in machine learning. Many
empirical studies focus on backdoor attacks and the defense
mechanisms for learning algorithms. However, there is rela-
tively little research that analyzes the effectiveness of these
attacks theoretically. Grosse et al. (2022) show that back-
door patterns induce a stable representation of the target
class. The classifier relies on the backdoor trigger and dis-
regards other features. In the case of binary classification,
Manoj & Blum (2021) demonstrate that if the model has
a property called nonzero memorization capacity, then a
successful backdoor attack is possible. The model’s vulner-
ability is assessed based on its ability to memorize out-of-
distribution values. In particular, overparameterized linear
models have higher memorization capacity and are more
susceptible to attacks. Xian et al. (2023) also investigate the
context of binary classification and propose a hypothesis
regarding the distribution of poisoned data, which allows
them to derive useful results on the effectiveness of an attack.
Wang et al. (2024) explore the effectiveness of backdoor
attacks from a statistical standpoint. They provide bounds
on the statistical risks associated with a poisoned model,
specifically analyzing how these risks manifest when the
model is evaluated on both clean and backdoored data for
a finite sample size. Li & Liu (2024) present a theoretical
examination of a backdoor attack applied to a convolutional
neural network with two layers. Cinà et al. (2024) con-
duct an empirical study on the learning curves associated
with backdoor attacks. Moreover, they demonstrated that
classifiers with stronger regularization are generally more
resistant to poisoning attacks, although this comes with a
slight decrease in accuracy on clean data.

What sets the concept of collective action apart conceptually
is its treatment of the collective as a group of individuals,
each representing a data point. This perspective also has eco-
nomic, social, and political dimensions, as certain groups of
individuals can unite and collaborate to influence decisions.
Such ideas have been explored in areas of research at the
intersection of machine learning and other fields (Vincent
et al., 2019; Albert et al., 2020; Vincent et al., 2021; Al-
bert et al., 2021; Creager & Zemel, 2021; Vincent & Hecht,
2021). See Appendix A of Hardt et al. (2023) for an in-
depth analysis of the related work on collective action. In
addition, Ben-Dov et al. (2024) highlight how the learning
algorithm shapes the success of collective action.

An important contribution of Hardt et al. (2023) is to study
data poisoning via the formalism of Bayes-optimal classi-
fication, which yields a conceptual inversion of the idea of
strategic classification (Hardt et al., 2016). While strategic
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classification revolves around a firm’s ability to anticipate
and respond to the actions of a single, strategic individual,
collective action shifts the focus toward a scenario where
individuals collectively anticipate and strategically respond
to the optimizing behavior of the firm. This concept has
also been explored by Zrnic et al. (2021). Unlike traditional
strategic classification, which primarily considers the firm’s
perspective, collective action highlights the role of workers
and consumers on online platforms.

3. Statistical Algorithmic Collective Action in
Classification

First, we will describe the new setting for deriving theo-
retical bounds in collective action that are effectively com-
putable by the collective. We then present our three main
results, which address three different objectives for the col-
lective. Two of these objectives are classic goals of collec-
tive action: signal planting and signal erasing. Additionally,
we introduce a new objective: signal unplanting, where the
collective aims to prevent an association between the sig-
nal set and a certain label. We will explore strategies and
provide theoretical guarantees for each of these objectives.

3.1. Setting

We consider a platform that deploys a learning algorithm in
a universe X × Y . We assume that X × Y is finite. Each
individual corresponds to a single data point (x, y) ∈ X×Y .

The platform trains a classifier f̂ on a training dataset. The
training dataset is composed of N consumers which are ini-
tially drawn i.i.d. according to some distribution D. Among
these consumers, a certain number n < N forms a collective
to strategically influence the firm’s behavior. The collective
shares a common strategy h : X × Y → X × Y . The
N − n base consumers and the n members of the collective
together form an empirical distribution of consumers P̂ , and
the corresponding dataset constitutes the training set. The
collective wants to obtain guarantees on the influence they
have on the platform at test time.

Notation. Given a distribution Q over X × Y , we denote
by QX the marginal distribution over features. We will sim-
ply write Q when the context allows. We denote by D̃ the
distribution of h(z), z ∼ D. More generally, for a dataset
D, we write D̃ := {h(z) | z ∈ D} (as a multiset) for the
same dataset after applying strategy h. We will also write,
for E ⊆ X × Y , P̂

z∼D
(z ∈ E) := 1

#D

∑
zi∈D 1{zi∈E} the

empirical probability of the event E induced by a dataset D.
We use P̂ to denote empirical probabilities, and P for popu-
lation probabilities. When the variables do not need to be
explicitly stated, we may write P̂

D
(E) and P

D
(E) instead of

P̂
z∼D

(z ∈ E) and P
z∼D

(z ∈ E) respectively.

The collective. Given a test set of consumers Dtest
i.i.d.∼ D,

the collective’s goal is to obtain guarantees with high prob-
ability on their success Ŝ(n) as a function of Dtest. The
definition of Ŝ(n) is based on the objective desired by the
collective. We will consider three objectives: signal plant-
ing, signal unplanting, and signal erasing. The collective
modifies its data using strategy h to maximize its success.

We assume that the collective has access to the value N .
This is a weak assumption because it is common in practice.
For example, if the platform is a polling institute seeking to
understand participants’ voting preferences based on their
demographic data, the total number of people surveyed is
usually publicly available.

Unless stated otherwise, the collective has access only to
their own data and not to the data of consumers who are
not part of the collective. The collective can pool its data to
infer quantities that depend on the underlying distribution.
Throughout this paper, we will use Hoeffding’s concentra-
tion inequality (Lemma D.1) for simplicity. We will denote
Hoeffding error terms as follows:

Rδ(k) :=

√
log(1/δ)

2k
,

for any δ > 0 and k ∈ N∗. We note that Hoeffding’s
inequality can be loose, for example when applied to sums
of Bernoulli random variables with means close to zero.
One can address this issue by using other concentration
inequalities such as Bernstein; the framework we present
here can readily incorporate such choices.

The platform. The firm observes an empirical distribution
of consumers P̂ . It selects a classifier f̂ based on this dis-
tribution P̂ . Following Hardt et al. (2023), we characterize
classifiers f̂ by their suboptimality in terms of total variation
distance with respect to the observed distribution P̂:
Definition 3.1. Let ε > 0. A classifier f̂ : X → Y is
ε-suboptimal on a set X ′ ⊆ X under the distribution P̂ if
there exists a distribution P̃ with TV (P̂, P̃) ≤ ε such that

f̂(x) ∈ argmax
y∈Y

P̃(x, y)

for all x ∈ X ′. Here, TV (P̂, P̃) := sup
E⊆X×Y

|P̂(E)−P̃(E)|

denotes the total variation distance between P̂ and P̃ .

The parameter ε roughly controls how much the classifier
can make use of statistics that go beyond simple frequency
counts. It accounts for classifiers that consider feature inter-
actions and capture complex patterns in the data.

3.2. Signal planting

In signal planting, we are given a transformation g : X → X
and a target label y∗ ∈ Y . The map g induces a signal set
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defined by X̃ := {g(x) | x ∈ X}. The success is defined as

Ŝ(n) := P̂
x∼Dtest

(f̂(g(x)) = y∗),

where Dtest
i.i.d.∼ D is the test set. In other words, the

collective aims to enforce an association between the signal
set X̃ and a target label y∗ at test time.

3.2.1. FEATURE-LABEL SIGNAL PLANTING

A natural goal for the collective is to maximize its success,
Ŝ(n). To ensure that its efforts are effective, the collective
aims to establish theoretical lower bounds on Ŝ(n), as these
provide a guarantee of success. To do so, the collective can
play the feature-label signal planting strategy defined below.
Definition 3.2 (Feature-label signal planting strategy). We
define the feature-label signal planting strategy as

h(x, y) = (g(x), y∗).

We analyze the effect of this strategy on the learning plat-
form. Formally, we are given three independent datasets:
a dataset D(n) i.i.d.∼ D of n consumers which are part of
the collective; a dataset D(N−n) i.i.d.∼ D of N − n con-
sumers which are not part of the collective; and a dataset
Dtest

i.i.d.∼ D of Ntest consumers forming the test dataset.
We recall that D̃(n) := {h(z) | z ∈ D(n)} (as a multiset).
The training set of the platform’s classifier is the concate-
nation of D̃(n) and D(N−n). In other words, the platform
observes the distribution:

P̂(x0, y0) :=
n

N
P̂

D̃(n)
(x0, y0) +

N − n

N
P̂

D(N−n)
(x0, y0).

The platform then chooses a classifier f̂ based on P̂ . We
can now state the main result for signal planting:
Theorem 3.3 (Signal planting lower bound, feature-label
signal planting strategy). Let δ > 0, and write δ̃ := δ/(2 +
2#X̃+2#X̃#Y). Then, by playing the feature-label signal
planting strategy against a classifier that is ε-suboptimal
on X̃ , the collective achieves with probability at least 1− δ
(over the draw of the consumers):

Ŝ(n) ≥ P̂
x̃∼D̃(n)

[
n

N

(
P̂

D̃(n)
(x̃)− 2Rδ̃(n)

)
−N − n

N

(
∆

(n)
x̃ + 2Rδ̃(n) + 2Rδ̃(N − n)

)
− ε

1− ε
> 0

]
−Rδ̃(n)−Rδ̃(Ntest),

(1)

where ∆
(n)
x̃ := max

y′∈Y\{y∗}
P̂

D(n)
(x̃, y′)− P̂

D(n)
(x̃, y∗).

Proofs and additional remarks can be found in Appendix E.
Note that lower bound (1) is fully computable by the col-
lective as it depends only on datasets D(n) and D̃(n). D(n)

is obtained through data pooling by the collective’s mem-
bers, and D̃(n) is computed by applying strategy h to the
dataset D(n). Details on the algorithm for computing the
lower bound are provided in Appendix B, and the code
is available at: https://github.com/GauthierE/
statistical-collusion.

The interpretation of lower bound (1) is that success in-
creases step by step: each feature x̃ in the signal set X̃ has
a certain resistance to being planted. As the relative size
of the collective n/N gradually increases, features x̃ are
cracked as their resistance breaks, in decreasing order of re-
sistance. For each feature x̃, its resistance depends on three
terms. The first one, here n

N ( P̂
D̃(n)

(x̃)− 2Rδ̃(n)), represents

how prevalent the feature x̃ is in the modified data: the more
frequently x̃ appears in the poisoned data, the greater the
collective’s ability to influence the associated label. The
second term, here −N−n

N (∆
(n)
x̃ + 2Rδ̃(n) + 2Rδ̃(N − n)),

captures the counteracting influence of non-collective indi-
viduals in the population, quantifying how much they might
limit the collective’s success in planting the signal. It in-
dicates how strongly the target label is associated with the
signal set: the more frequent y∗ is in the signal set, the easier
it is to plant the signal; if other labels are far more likely
than y∗, planting the signal becomes more difficult. The
third term, − ε

1−ε , represents the platform’s ability to adapt
to the distribution of its users. As ε 7→ ε

1−ε increases with
ε, it benefits the collective to have ε close to zero, limiting
the platform’s flexibility and resulting in a tighter bound.

The first term scales approximately linearly with n, by a
factor of n/N , while the second term decreases by 1−n/N .
However, the dependence is more complex than purely lin-
ear. The bound involves estimation terms Rδ̃(n), which
decay at a rate proportional to n−1/2 as n increases. The
bound also depends on Rδ̃(N − n), but these terms can be
negligible as long as n remains much smaller than N .

Also, the cardinality of X̃ affects the definition of δ̃, and thus
the estimation terms Rδ̃ . The smaller #X̃ is, the better the
collective’s estimates will be, resulting in sharper bounds.

3.2.2. FEATURE-ONLY SIGNAL PLANTING

Note that the feature-label signal planting strategy assumes
that the members of the collective can change both their
features and their labels. This might not always be feasible
in practice, where labels can be immutable. In this situation,
a natural strategy for the collective is to change its feature x
to g(x) when y = y∗. This strategy was explored by Hardt
et al. (2023). However, it is preferable for the collective to
additionally change its feature x to some x0 that is not in the
signal set X̃ when y ̸= y∗. This ensures that not only does
the feature belong to the signal set X̃ when the label is y∗,
but also that if a feature is in the signal set X̃ , the associated
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label is necessarily y∗. This dual condition strengthens the
association between the signal set X̃ and the target label y∗.
In this case, we can directly say that the term P̂

D̃(n)
(g(x′), y′)

with y′ ̸= y∗ that would appear in the proof of Theorem 3.5
is equal to zero, leading to a sharper bound.
Definition 3.4 (Feature-only signal planting strategy). We
define the feature-only signal planting strategy as

h(x, y) =

{
(g(x), y∗) if y = y∗,

(x0, y) otherwise,

where x0 ∈ X\X̃ is any feature that does not belong to the
signal set X̃ . Note that x0 does not have to be fixed across
all initial data points (x, y).

We can generalize Theorem 3.3 to the feature-only strategy:
Theorem 3.5 (Signal planting lower bound, feature-only
signal planting strategy). Let δ > 0, and write δ̃ := δ/(2 +
2#X̃ +2#X̃#Y). Then, by playing the feature-only signal
planting strategy against a classifier that is ε-suboptimal
on X̃ , the collective achieves with probability at least 1− δ
(over the draw of the consumers):

Ŝ(n) ≥ P̂
x′∼D(n)

[
n

N

(
P̂

D̃(n)
(g(x′), y∗)− 2Rδ̃(n)

)
−N − n

N

(
∆

(n)
g(x′) + 2Rδ̃(n) + 2Rδ̃(N − n)

)
− ε

1− ε
> 0

]
−Rδ̃(n)−Rδ̃(Ntest),

(2)

where ∆
(n)
g(x′) is defined in Theorem 3.3.

We can straightforwardly compare lower bounds (1) and (2).
The only difference is that in (2), we have P̂

D̃(n)
(g(x′), y∗)

instead of P̂
D̃(n)

(g(x′)). This comparison directly measures

the impact of not modifying labels on the collective’s in-
fluence. In the following, we will always assume that the
collective can modify its labels.

Signal planting relies on a straightforward strategy: flooding
the platform with as many pairs (g(x), y∗) as possible. This
strategy is simple and does not require the collective to per-
form any statistical estimation. Statistical inference is only
necessary for the collective to calculate the lower bound on
success, not for defining the optimal strategy h. In the next
two sections, we examine two objectives that additionally
require statistical estimation to infer the optimal strategy h:
signal unplanting and signal erasing.

3.3. Signal unplanting

The setting is essentially the same as before; the only differ-
ence is the success of the collective is defined as follows:

Ŝ(n) := P̂
x∼Dtest

(
f̂(g(x)) ̸= y∗

)
.

The collective’s goal is now to prevent an association be-
tween the signal set X̃ = {g(x) | x ∈ X} and the target
label y∗.

3.3.1. NAIVE STRATEGY

A simple and naive strategy for the collective is to flood the
platform with feature-label pairs of the form (g(x), y′) for
some fixed y′ ̸= y∗. Indeed, for any y′ ̸= y∗, we have that

Ŝ(n) = P̂
x∼Dtest

(
f̂(g(x)) ̸= y∗

)
≥ P̂

x∼Dtest

(
f̂(g(x)) = y′

)
=: Ŝy′(n).

Therefore, the collective can compute lower bounds
on Ŝy′(n) for all y′ ̸= y∗ using Theorem 3.3. It can then
play the strategy h(x, y) = (g(x), ȳ) where ȳ is the label
that maximizes the lower bounds on Ŝy′(n) for y′ ̸= y∗.
Note that this is equivalent to planting a signal with trans-
formation g and target label ȳ, so we obtain the same guar-
antees as in Theorem 3.3.

3.3.2. ADAPTIVE STRATEGY

The collective can also use an adaptive strategy, meaning
that each member of the collective (x, y) can change its
feature-label pair to some (g(x), yg(x)) where the modified
label yg(x) depends on g(x) and is no longer fixed. The plan
for the collective is to estimate the optimal label using a
subset of ne < n randomly chosen participants. Formally,
we assume that D(n) is the concatenation of two indepen-
dent datasets D(ne) and D(n−ne) drawn from D. A natural
strategy for the collective is to change every pair (x, y) into
(g(x), ŷg(x)) where for x̃ ∈ X̃ :

ŷx̃ := argmax
y′∈Y\{y∗}

P̂
D(ne)

(x̃, y′). (3)

We formalize this strategy in the following definition.

Definition 3.6 (Signal unplanting strategy). We define the
signal unplanting strategy as

h(x, y) = (g(x), ŷg(x)),

where ŷx̃ is defined in Equation (3).

Intuitively, this strategy means that the collective aims to se-
lect the most likely label among all labels different from y∗,
given a feature g(x).

Theorem 3.7 (Signal unplanting lower bound). Let δ > 0,
and write δ̃ := δ/(2 + 6#X̃ ). Let ne < n. Then, by
playing the signal unplanting strategy above against a clas-
sifier that is ε-suboptimal on X̃ , the collective achieves with
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probability at least 1− δ (over the draw of the consumers):

Ŝ(n) ≥ P̂
x̃∼D̃(n)

[
n

N

(
P̂

D̃(n)
(x̃)− 2Rδ̃(n)

)
−N − n

N

(
∆

(n−ne)
x̃ + 2Rδ̃(n− ne) + 2Rδ̃(N − n)

)
− ε

1− ε
> 0

]
−Rδ̃(n)−Rδ̃(Ntest),

(4)

where ∆
(n−ne)
x̃ := P̂

D(n−ne)
(x̃, y∗)− P̂

D(n−ne)
(x̃, ŷx̃).

3.4. Signal erasing

In the previous subsections, we examined how the collective
can plant a signal by using a natural strategy, which consists
in simply flooding the platform with feature-label pairs of
the form h(x, y) = (g(x), y∗), and how it can unplant a sig-
nal by estimating the most probable label different from y∗.
In this section, we study another objective: signal erasing.

We consider a transformation g : X → X . The success of
the collective is now defined by:

Ŝ(n) := P̂
x∼Dtest

(
f̂(g(x)) = f̂(x)

)
.

As outlined by Hardt et al. (2023), maximizing Ŝ(n) aligns
with reducing the impact of g on the learning algorithm. The
term signal erasing is motivated by the example in tabular
data where g preserves certain features while removing
others, for instance by setting some features to a fixed value.
This effectively removes the impact of the erased features,
provided these features are independent of the other ones.

In this part, we will make the following mild assumptions.

Assumption (A1): ∃η > 0,∀x̃ ∈ X̃ ,∃y∗x̃ ∈ Y : ∀y′ ̸=
y∗x̃,PD

(x̃, y∗x̃) > P
D
(x̃, y′) + η.

Intuitively, Assumption 1 implies two things. Firstly, each
feature x̃ ∈ X̃ is sufficiently frequent in the base distribution.
Secondly, given a feature x̃ ∈ X̃ , there exists a label y∗x̃ that
is consequently more probable than the other labels in the
base distribution.

Assumption (A2): The transformation g is idempotent:
g(g(x)) = g(x) for all x ∈ X .

To understand Assumption 2, consider data poisoning in
image classification. Assumption 2 holds in data poisoning
strategies where the trigger is a fixed, opaque watermark, as
in the case of binary masks (Gu et al., 2019), where applying
the mask twice is equivalent to applying it once. However,
this is not true for strategies like pixel blending (Chen et al.,
2017). In contrast, Assumption 2 naturally applies to tabular
data, where the collective can apply a transformation g to
map a feature to a constant value.

Now, we outline a scheme that the collective can use to
compute a lower bound. The basic idea is that each member
(x, y) of the collective keeps its feature x but changes its
label to the most likely label y∗g(x) based on the feature g(x).
This approach encourages the platform to predict the same
label for both x and g(x), hence erasing the signal. The
scheme is the following: first, the collective pools its data to
predict the optimal y∗x̃ for each x̃ ∈ X̃ . Then, the collective
applies some strategy h based on the first step to erase the
signal. Assuming the collective can compute the optimal
label y∗x̃ for each x̃ ∈ X̃ , the erasure strategy is formally
defined as follows:

Definition 3.8 (Erasure strategy). We define the erasure
strategy as

h(x, y) = (x, y∗g(x)),

where y∗x̃ is given in Assumption 1 for each x̃ ∈ X̃ .

We can now state the main result in signal erasing:

Theorem 3.9 (Signal erasing lower bound). Let δ > 0, and
write δ̃ := δ/(2 + #X̃#Y + 2#X + 2#X#Y). Assume
that 2 log(1/δ̃)

η2 ≤ n ≤ N − 2 log(1/δ̃)
η2 where η is given in

Assumption 1. Then, with probability at least 1− δ (over the
draw of the consumers), the collective can compute y∗x̃ for
all x̃ ∈ X̃ and by playing the erasure strategy it achieves
against a classifier that is ε-suboptimal on X :

Ŝ(n) ≥ P̂
x′∼D(n)

[
n

N

(
P̂

D(n)
(x′)− 2Rδ̃(n)

)
−N − n

N

(
∆

(n)
x′ + 2Rδ̃(n) + 2Rδ̃(N − n)

)
− ε

1− ε
> 0

]
−Rδ̃(n)−Rδ̃(Ntest),

(5)

where ∆
(n)
x′ := max

y′∈Y\{y∗
g(x′)}

P̂
D(n)

(x′, y′)− P̂
D(n)

(x′, y∗g(x′)).

In signal erasing, just like in signal unplanting, the collective
leverages its own data to compute the strategy h. However,
the technique differs. In signal unplanting, the collective
uses a fraction of its members to estimate the optimal label
to play. Whereas in signal erasing, the collective, provided
that it is sufficiently large, utilizes all of its data to compute
the most likely label given a feature x̃, which exists under
Assumption 1.

4. Experimental Evaluation
In our experiments, we simulate a platform that collects data
on vehicles, where each sample represents a car. The fea-
tures of each car include characteristics such as Model Type,
Fuel Type, and Country of Manufacture. The labels assigned
to each vehicle reflect the car’s evaluation, categorized into
four classes: Excellent, Good, Average, or Poor. Further
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Figure 1. Signal planting with feature-label strategy. Comparison of the theoretical lower bound from Theorem 3.3 and the true success
Ŝ(n) observed at test time for different values of n and a fixed value of N = 1, 000, 000. For all target labels, the lower bound indicates
that approximately 10% of the total number of agents interacting with the platform is necessary to significantly influence it. In reality, the
success observed at test time shows that just under 5% of members is sufficient, except for the target label y∗= Excellent, which is already
consistently the most frequent and does not require any planting.

details on the dataset and the specific parameters used in the
experiments can be found in Appendix A.

We consider a scenario where a collective seeks to influ-
ence the platform by lobbying against a particular category
of vehicles, specifically SUVs with specific features. The
collective defines a signal set X̃ through a transformation g
fixing all feature values except Country of Manufacture.
They may want to plant a signal targeting a label y∗ = Poor.
They might also aim to unplant signals, specifically working
to associate elements of X̃ with labels y ̸= Excellent.

4.1. Signal planting

In Figure 1, we plot the lower bounds from Theorem 3.3 for
various values of n and compare them to the true success
Ŝ(n) observed at test time. We fit sigmoid functions to in-
terpolate the obtained values. The lower bounds are indeed
lower than the success, and the gap between the two is not
excessively large. This gap could potentially be narrowed
using more advanced statistical inference methods. Inter-
estingly, even though in practice the label y∗ = Excellent is
already the most frequent label for every element of the sig-
nal set X̃ and does not technically need to be planted—i.e.,
Ŝ(n) = 1 for all n—the collective is still not guaranteed to
have influence over the signal for small values of n. This
stems from statistical uncertainties, which our framework
highlights, causing the collective to consistently overesti-
mate the number of agents needed for a given success.

Figure 2 shows how the lower bound evolves with the total
number of individuals N . When the fraction n/N is held
fixed, increasing N leads to a larger collective size n. This,
in turn, improves the collective’s ability to estimate key
quantities, as reflected by the decreasing error terms Rδ̃(n).
This suggests that platforms interacting with large user bases
are more exposed to collectives altering their data. While
this observation is specific to signal planting, it is even more
relevant when optimal strategies need to be estimated, as in
signal unplanting.
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Figure 2. Signal planting with feature-label strategy. Lower
bound from Theorem 3.3 with y∗ = Poor for different values of n
with N = 500, 000, N = 1, 000, 000, and N = 2, 000, 000.

4.2. Signal unplanting

We now focus on signal unplanting with a target y ̸= Excel-
lent, where the collective aims for the platform to predict a
label other than Excellent for samples in the signal set X̃ .

The lower bound obtained in Theorem 3.7 depends on ne,
the size of the sub-collective used to determine the strat-
egy h. As shown in Figure 3 (a), ne involves a trade-off:
small values lead to erratic strategy estimates and weaker
bounds, while overly large values increase the Rδ̃(n− ne)
term, also weakening the bound. A good balance is achieved
at ne = 2, 000.

Figure 3 (b) compares this adaptive strategy with
ne = 2, 000 to naive strategies planting labels y∗ ∈
{Good, Average, Poor}. The adaptive strategy consistently
outperforms the naive ones by providing a higher lower
bound, demonstrating the benefits of tailoring the strategy
based on the data. However, it is worth noting that the naive
strategy of planting the signal with y∗ = Good performs well
for this dataset. This is due to the fact that most elements in
the signal set X̃ have Good as the second most likely label
after Excellent.

In Figure 3 (c), we compare the lower bound with ne =
2, 000 and the actual success Ŝ(n) achieved at test time.
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Figure 3. Signal unplanting. (a) Comparison of lower bounds from Theorem 3.7 for different values of ne. (b) Comparison between
the adaptive strategy with ne = 2, 000 and naive planting strategies targeting labels y∗ ∈ {Good (G), Average (A), Poor (P)}. (c)
Comparison of the lower bound achieved by the adaptive strategy with ne = 2, 000 and the actual success Ŝ(n) observed at test time.

The lower bound suggests that the collective would need
to represent around 10% of the agents interacting with the
platform to have a significant impact, while in practice, only
about 3% was sufficient.

4.3. Comparative analysis
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Figure 4. Signal planting. Comparison of signal planting lower
bounds with target y∗ = Poor using feature-label (F-L) and feature-
only (F-O) strategies. Our bounds in the infinite data regime are
compared to bounds from Hardt et al. (2023), when ε = 0.

Our finite-sample framework differs from that presented
by Hardt et al. (2023), which focuses on a population-level
analysis. The connection is that the limit of our framework
in the infinite data regime boils down to that of Hardt et al.
(2023). Specifically, for α ∈ (0, 1). let n,N,Ntest → ∞
such that n/N → α. In this case, our statistical algorithmic
collective action framework simplifies to that of algorithmic
collective action. In Figure 4, we compare the bounds we
obtain under the infinite data regime with those of Hardt
et al. (2023). The bounds presented in our work are tighter
than those obtained by Hardt et al. (2023). We provide a
proof and additional remarks in Appendix F.

Interestingly, in the case of a discrete signal set, as used in
our experiments, our lower bounds take on a staircase shape
rather than a smooth sigmoid. This mirrors the shape of
the curves observed in signal unplanting in Figure 3, which
would also appear in Figure 1 and Figure 2 if we used finer
increments of n. In contrast, the bounds from Hardt et al.
(2023) do not capture this phenomenon.

5. Discussion
In this work, we introduced a framework where collectives
aiming to influence a platform can leverage their local in-
formation by pooling their data. Our approach captures
the key desideratum that collectives may not only want to
observe the outcomes of their actions at test time but also
anticipate lower bounds on their success. Moreover, it al-
lows the collective to implement practical strategies based
on parameters they do not directly observe, by using sta-
tistical estimation. The ability to anticipate outcomes and
make informed decisions based on pooled data represents an
advancement in understanding how collectives can interact
with and influence platforms. However, there is room for
further exploration.

We used Hoeffding’s inequality as a proof of concept, but it
is worth studying improved concentration inequalities for
obtaining estimates of success for collectives. It is also
possible to reverse the concentration inequalities to derive
upper bounds on success, but the challenge lies in the fact
that these upper bounds are often trivial. In ongoing work,
we are exploiting recent developments in concentration in-
equalities due to Howard et al. (2020).

We focused on classification, but extensions to other objec-
tives, such as regression, would be useful. We also assumed
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that the feature space X is finite to use a limited number of
events in the union bounds. It would be natural to remove
this assumption by using a covering of X̃ , provided it is
compact, to derive more general bounds for signal planting
and unplanting.

Finally, a key assumption in collective action is that indi-
viduals are identically distributed. However, those who join
a collective are often distributed differently from the gen-
eral population—e.g., a collective against SUVs is likely
to have fewer SUV-related data points and more data on
smaller vehicles. Extending the framework to account for
a heterogeneous population is an important direction for
future work.
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A. Additional Details on Experiments
We generate a dataset of 3,000,000 instances. Each instance represents a car, characterized by multiple categorical features
that capture key aspects of vehicle design, performance, and manufacturing.

The features included in this synthetic dataset are as follows:

• Model Type: the type of vehicle, categorized as Sedan, SUV, Coupe, Hatchback, Convertible, Wagon, Minivan, or
Truck.

• Fuel Type: the fuel used by the vehicle, which can be Gasoline, Diesel, Electric, or Hybrid.

• Transmission Type: the type of transmission, classified as Manual, Automatic, or CVT.

• Drive Type: the drive configuration of the vehicle, identified as FWD (Front-Wheel Drive), RWD (Rear-Wheel Drive),
or AWD (All-Wheel Drive).

• Safety Rating: the safety rating of the vehicle, rated from 1 star to 5 stars.

• Interior Material: the material used for the vehicle’s interior, which can be Cloth, Leather, or Synthetic.

• Infotainment System: the level of the infotainment system, ranging from Basic, Advanced, Premium, or None.

• Country of Manufacture: the country where the vehicle was manufactured, that we will denote by C1, C2, C3, C4, and
C5.

• Warranty Length: the length of the vehicle’s warranty, available in options of 3 years, 5 years, 7 years, or 10 years.

• Number of Doors: the number of doors on the vehicle, which can be 2, 4, or 5.

• Number of Seats: The seating capacity of the vehicle, with options for 2, 4, 5, or 7 seats.

• Air Conditioning: indicates whether the vehicle is equipped with air conditioning (Yes or No).

• Navigation System: the level of the navigation system, which can be None, Basic, or Advanced.

• Tire Type: the type of tires used, categorized as All-Season, Summer, or Winter.

• Sunroof : indicates whether the vehicle has a sunroof (Yes or No).

• Sound System: the quality of the sound system, which can be Standard, Premium, High-end, or None.

• Cruise Control: indicates whether the vehicle is equipped with cruise control (Yes or No).

• Bluetooth Connectivity: indicates whether the vehicle has Bluetooth connectivity (Yes or No).

Additionally, each car is assigned a Car Evaluation label based on a scoring system that considers various factors such as
safety rating, fuel type, warranty length, and others. The possible evaluation outcomes are classified into four categories:
Excellent, Good, Average, and Poor.

We generate separate consumer datasets, sampled without replacement from this base dataset. Unless otherwise specified,
we choose N = 1, 000, 000 for the training set and Ntest = 100, 000 for the test set. In all the experiments, we set δ = 0.05
and ε = 0.

In our experiments, the collective attempts to influence the platform by targeting features with specific characteristics defined
through the transformation g: Model Type = SUV, Fuel Type = Diesel, Transmission Type = Manual, Drive Type = RWD,
Safety Rating = 4 stars, Interior Material = Synthetic, Infotainment System = Premium, Warranty Length = 10 years, Number
of Doors = 5, Number of Seats = 5, Air Conditioning = Yes, Navigation System = Advanced, Tire Type = All-Season, Sunroof
= Yes, Sound System = Premium, Cruise Control = Yes, and Bluetooth Connectivity = Yes. In the dataset containing 3
million samples, the signal set X̃ induced by g comprises exactly 208,871 samples, which represents just under 7% of the
entire training set. Table 1 provides details on the label frequencies within the signal set.

For further details on the dataset composition, we refer to the code available at: https://github.com/GauthierE/
statistical-collusion.
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Table 1. Distribution of labels for elements in X̃ , characterized by their Country of Manufacture.

Country of Manufacture Label Sample Count

C1

Excellent 18410
Good 9228
Average 0
Poor 1471

C2

Excellent 18504
Good 9214
Average 0
Poor 1461

C3

Excellent 58083
Good 29170
Average 0
Poor 4619

C4

Excellent 17491
Good 0
Average 2946
Poor 8911

C5

Excellent 18589
Good 9290
Average 0
Poor 1484

Total

Excellent 131077
Good 56902
Average 2946
Poor 17946

B. Algorithms

Algorithm 1 Signal planting lower bound – feature-label strategy

1: Input: X ,Y, N,Ntest, n < N,D(n), g, y∗, δ > 0, ε > 0
2: Define X̃ := {g(x) | x ∈ X}
3: Observe D(n) and compute ∆

(n)
x̃ for every x̃ ∈ X̃

4: Define h : (x, y) 7→ (g(x), y∗)
5: Compute D̃(n) by applying h to all samples in D(n)

6: Compute P̂
D̃(n)

(x̃) for every x̃ ∈ X̃

7: Define δ̃ := δ/(2 + 2#X̃ + 2#X̃#Y)
8: Compute Rδ̃(n), Rδ̃(N − n), and Rδ̃(Ntest)
9: Compute and return:

P̂
x̃∼D̃(n)

[
n
N

(
P̂

D̃(n)
(x̃)− 2Rδ̃(n)

)
− N−n

N

(
∆

(n)
x̃ + 2Rδ̃(n) + 2Rδ̃(N − n)

)
− ε

1−ε > 0

]
−Rδ̃(n)−Rδ̃(Ntest)
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Algorithm 2 Signal planting lower bound – feature-only strategy

1: Input: X ,Y, N,Ntest, n < N,D(n), g, y∗, δ > 0, ε > 0
2: Define X̃ := {g(x) | x ∈ X} and select some x0 /∈ X̃
3: Observe D(n) and compute ∆

(n)
x̃ for every x̃ ∈ X̃

4: Define h : (x, y) 7→

{
(g(x), y∗) if y = y∗,

(x0, y) otherwise

5: Compute D̃(n) by applying h to all samples in D(n)

6: Compute P̂
D̃(n)

(x̃, y∗) for every x̃ ∈ X̃

7: Define δ̃ := δ/(2 + 2#X̃ + 2#X̃#Y)
8: Compute Rδ̃(n), Rδ̃(N − n), and Rδ̃(Ntest)
9: Compute and return:

P̂
x′∼D(n)

[
n
N

(
P̂

D̃(n)
(g(x′), y∗)− 2Rδ̃(n)

)
− N−n

N

(
∆

(n)
g(x′) + 2Rδ̃(n) + 2Rδ̃(N − n)

)
− ε

1−ε > 0

]
− Rδ̃(n) −

Rδ̃(Ntest)

Algorithm 3 Signal unplanting lower bound – adaptive strategy

1: Input: X ,Y, N,Ntest, n < N, ne < n,D(ne), D(n−ne), g, y∗, δ > 0, ε > 0
2: Define X̃ := {g(x) | x ∈ X}
3: Observe D(ne) and compute ŷx̃ := argmax

y′∈Y\{y∗}
P̂

D(ne)
(x̃, y′) for every x̃ ∈ X̃

4: Observe D(n−ne) and compute ∆
(n−ne)
x̃ for every x̃ ∈ X̃

5: Define h : (x, y) 7→ (g(x), ŷg(x))

6: Compute D̃(n) by applying h to all samples in D(n) defined as the concatenation of D(ne) and D(n−ne)

7: Compute P̂
D̃(n)

(x̃) for every x̃ ∈ X̃

8: Define δ̃ := δ/(2 + 6#X̃ )
9: Compute Rδ̃(n), Rδ̃(n− ne), Rδ̃(N − n), and Rδ̃(Ntest)

10: Compute and return:

P̂
x̃∼D̃(n)

[
n
N

(
P̂

D̃(n)
(x̃)− 2Rδ̃(n)

)
− N−n

N

(
∆

(n−ne)
x̃ + 2Rδ̃(n− ne) + 2Rδ̃(N − n)

)
− ε

1−ε > 0

]
− Rδ̃(n) −

Rδ̃(Ntest)

Algorithm 4 Signal erasing lower bound – under Assumption 1 and Assumption 2

1: Input: X ,Y, N,Ntest, n < N,D(n), g, δ > 0, ε > 0
2: Define X̃ := {g(x) | x ∈ X}
3: Observe D(n) and compute y∗x̃ = argmax

y′∈Y
P̂

D(n)
(x̃, y′) for every x̃ ∈ X̃ and ∆

(n)
x′ for every x′ ∈ X

4: Compute P̂
D(n)

(x′) for every x′ ∈ X

5: Define δ̃ := δ/(2 + #X̃#Y + 2#X + 2#X#Y)
6: Compute Rδ̃(n), Rδ̃(N − n), and Rδ̃(Ntest)
7: Compute and return:

P̂
x′∼D(n)

[
n
N

(
P̂

D(n)
(x′)− 2Rδ̃(n)

)
− N−n

N

(
∆

(n)
x′ + 2Rδ̃(n) + 2Rδ̃(N − n)

)
− ε

1−ε > 0

]
−Rδ̃(n)−Rδ̃(Ntest)

Note that Algorithm 4 yields a valid lower bound if 2 log(1/δ̃)
η2 ≤ n ≤ N − 2 log(1/δ̃)

η2 where η is given in Assumption 1.
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C. Additional Experiments
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Figure 5. Signal planting with feature-only strategy. Comparison of the theoretical lower bound from Theorem 3.5 and the true success
Ŝ(n) observed at test time for different values of n and a fixed value of N = 1, 000, 000.

For the feature-only signal planting strategy, we selected x0 constant equal to: Model Type = Sedan, Fuel Type = Diesel,
Transmission Type = Automatic, Drive Type = RWD, Safety Rating = 1 star, Interior Material = Synthetic, Infotainment
System = Premium, Warranty Length = 7 years, Number of Doors = 5, Number of Seats = 5, Air Conditioning = Yes,
Navigation System = Advanced, Tire Type = All-Season, Sunroof = No, Sound System = Premium, Cruise Control = No, and
Bluetooth Connectivity = No.

In Figure 5, we can see that both the lower bounds and the actual success rates at test time are lower compared to the
feature-label strategy observed in Figure 1. This is expected since the collective has less leverage with the feature-only
strategy, as it cannot modify its labels. Specifically, for planting y∗ = Average and y∗ = Poor, it appears that only collectives
representing the majority of agents interacting with the learning platform are likely to have a significant impact, while the
lower bounds remain uninformative unless the collective represents nearly all agents.

D. Lemmas
Lemma D.1 (Hoeffding’s Inequality). Let X1, X2, . . . , Xn be independent random variables such that ai ≤ Xi ≤ bi for
all i. Let X = 1

n

∑n
i=1 Xi. Then for any t > 0,

P
X1,...,Xn

(
X − E[X] ≥ t

)
≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.

Note that by applying Lemma D.1 to the random variables −Xi we obtain that:

P
X1,...,Xn

(
X − E[X] ≤ −t

)
≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.

Lemma D.2 ((Hardt et al., 2023), Lemma B.1). Suppose that P and P ′ are two distributions such that TV(P,P ′) ≤ ε.
Take any two events E1 and E2 measurable under P and P ′. If P(E1) > P(E2) +

ε
1−ε , then P ′(E1) > P ′(E2).

E. Proofs and additional remarks
E.1. Proof of Theorem 3.3

Proof. The proof relies on applying union bound to several concentration inequalities. Here, we will use Hoeffding’s
inequality (Lemma D.1).

First, assume that ε = 0 for simplicity. Let x̃ ∈ X̃ . By applying Hoeffding’s inequality to the n independent random
variables 1{x̃′

i=x̃} ∈ [0, 1] for x̃′
i ∈ D̃(n), we have that

P̂
x̃′∼D̃(n)

(x̃′ = x̃) ≤ P
x̃′∼D̃

(x̃′ = x̃) +Rδ̃(n) (6)

with probability at least 1− δ̃ over the draw of D(n). Similarly,

P
x̃′∼D̃

(x̃′ = x̃) ≤ P̂
x̃′∼D̃(n)

(x̃′ = x̃) +Rδ̃(n) (7)
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holds with probability at least 1− δ̃ over the draw of D(n). For any fixed x̃ ∈ X̃ and y′ ∈ Y\{y∗}, the following inequalities
also hold individually with probability at least 1− δ̃ over the draw of consumers:

P̂
(x,y)∼D(N−n)

(x = x̃, y = y′) ≤ P
(x,y)∼D

(x = x̃, y = y′) +Rδ̃(N − n) (8)

P
(x,y)∼D

(x = x̃, y = y∗) ≤ P̂
(x,y)∼D(N−n)

(x = x̃, y = y∗) +Rδ̃(N − n) (9)

Similarly:
P̂

(x,y)∼D(n)
(x = x̃, y = y∗) ≤ P

(x,y)∼D
(x = x̃, y = y∗) +Rδ̃(n) (10)

P
(x,y)∼D

(x = x̃, y = y′) ≤ P̂
(x,y)∼D(n)

(x = x̃, y = y′) +Rδ̃(n) (11)

We also have that
P̂

x∼Dtest

(f̂(g(x)) = y∗) ≥ P
x∼D

(f̂(g(x)) = y∗)−Rδ̃(Ntest) (12)

with probability at least 1− δ̃, where the probability is taken over Dtest conditionally on D(n) and D(N−n), so in particular
it holds marginally over all consumers. Lastly, we have with probability at least 1− δ̃ over the draw of D(n):

P̂
x̃∼D̃(n)

(
n

N

(
P

x̃′∼D̃
(x̃′ = x̃)−Rδ̃(n)

)
− N − n

N

(
∆

(D)
x̃ + 2Rδ̃(N − n)

)
> 0

)
≤

P
x̃∼D̃

(
n

N

(
P

x̃′∼D̃
(x̃′ = x̃)−Rδ̃(n)

)
− N − n

N

(
∆

(D)
x̃ + 2Rδ̃(N − n)

)
> 0

)
+Rδ̃(n)

(13)

where ∆
(D)
x̃ := max

y′∈Y\{y∗}

(
P

(x,y)∼D
(x = x̃, y = y′)− P

(x,y)∼D
(x = x̃, y = y∗)

)
.

Now, we use union bound with these 2 + 2#X̃ + 2#X̃#Y inequalities above, so that all the following calculations hold
with probability at least 1− δ over the draw of consumers. First, Inequality (12) yields:

Ŝ(n) ≥ P
x∼D

(f̂(g(x)) = y∗)−Rδ̃(Ntest)

= P
x̃∼D̃

(f̂(x̃) = y∗)−Rδ̃(Ntest)

by definition of h. Now see that for any x̃ ∈ X̃ we have that

f̂(x̃) = y∗ ⇐= ∀y′ ̸= y∗, P̂(x̃, y∗) > P̂(x̃, y′)

⇐⇒ ∀y′ ̸= y∗,
n

N
P̂

(x̃′,ỹ′)∼D̃(n)
(x̃′ = x̃, ỹ′ = y∗) +

N − n

N
P̂

(x,y)∼D(N−n)
(x = x̃, y = y∗)

>
n

N
P̂

(x̃′,ỹ′)∼D̃(n)
(x̃′ = x̃, ỹ′ = y′) +

N − n

N
P̂

(x,y)∼D(N−n)
(x = x̃, y = y′)

⇐⇒ ∀y′ ̸= y∗,
n

N
P̂

x̃′∼D̃(n)
(x̃′ = x̃) +

N − n

N
P̂

(x,y)∼D(N−n)
(x = x̃, y = y∗)

>
N − n

N
P̂

(x,y)∼D(N−n)
(x = x̃, y = y′)

⇐⇒ n

N
P̂

x̃′∼D̃(n)
(x̃′ = x̃)

− N − n

N
max

y′∈Y\{y∗}

(
P̂

(x,y)∼D(N−n)
(x = x̃, y = y′)− P̂

(x,y)∼D(N−n)
(x = x̃, y = y∗)

)
> 0

⇐=
n

N

(
P

x̃′∼D̃
(x̃′ = x̃)−Rδ̃(n)

)
− N − n

N

(
∆

(D)
x̃ + 2Rδ̃(N − n)

)
> 0
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where the last implication comes from Inequality (7) and because

max
y′∈Y\{y∗}

(
P̂

(x,y)∼D(N−n)
(x = x̃, y = y′)− P̂

(x,y)∼D(N−n)
(x = x̃, y = y∗)

)
≤ max

y′∈Y\{y∗}

(
P

(x,y)∼D
(x = x̃, y = y′)− P

(x,y)∼D
(x = x̃, y = y∗)

)
+ 2Rδ̃(N − n)

= ∆
(D)
x̃ + 2Rδ̃(N − n)

by Inequality (8) on X̃ × Y\{y∗} and Inequality (9) on X̃ × {y∗}. Therefore, we have that:

Ŝ(n) ≥ P
x̃∼D̃

(
n

N

(
P

x̃′∼D̃
(x̃′ = x̃)−Rδ̃(n)

)
− N − n

N

(
∆

(D)
x̃ + 2Rδ̃(N − n)

)
> 0

)
−Rδ̃(Ntest)

and so by applying Inequality (13) we deduce that:

Ŝ(n) ≥ P̂
x̃∼D̃(n)

(
n

N

(
P

x̃′∼D̃
(x̃′ = x̃)−Rδ̃(n)

)
− N − n

N

(
∆

(D)
x̃ + 2Rδ̃(N − n)

)
> 0

)
−Rδ̃(n)−Rδ̃(Ntest).

Finally, note that:

∆
(D)
x̃ = max

y′∈Y\{y∗}

(
P

(x,y)∼D
(x = x̃, y = y′)− P

(x,y)∼D
(x = x̃, y = y∗)

)
≤ max

y′∈Y\{y∗}

(
P̂

(x,y)∼D(n)
(x = x̃, y = y′)− P̂

(x,y)∼D(n)
(x = x̃, y = y∗)

)
+ 2Rδ̃(n)

= ∆
(n)
x̃ + 2Rδ̃(n)

by Inequality (10) on X̃ × {y∗} and Inequality (11) on X̃ × Y\{y∗}. So together with Inequality (6), we conclude that:

Ŝ(n) ≥ P̂
x̃∼D̃(n)

(
n

N

(
P̂

x̃′∼D̃(n)
(x̃′ = x̃)− 2Rδ̃(n)

)
− N − n

N

(
∆

(n)
x̃ + 2Rδ̃(n) + 2Rδ̃(N − n)

)
> 0

)
−Rδ̃(n)−Rδ̃(Ntest).

The case ε > 0 is similar, noting that for any x̃ ∈ X̃ :

f̂(x̃) = y∗ ⇐= ∀y′ ̸= y∗, P̃(x̃, y∗) > P̃(x̃, y′)

⇐= ∀y′ ̸= y∗, P̂(x̃, y∗) > P̂(x̃, y′) +
ε

1− ε
by Lemma D.2

and with slight modifications to Inequality (13) to incorporate the term ε
1−ε .

If there exists a subset X0 ⊆ X̃ such that #X0 < #X̃ and P
x̃∼D̃

(x̃ ∈ X0) is significant, it may be preferable to condition the

probability based on whether or not the feature belongs to X0, and to disregard the term conditioned on not being in X0. In
this case, the union bound should be applied only to x̃ ∈ X0.

The proof of Theorem 3.5 is essentially the same as the proof of Theorem 3.3. One difference is that we can not simplify
P

x∼D
(f̂(g(x)) = y∗) = P

x̃∼D̃
(f̂(x̃) = y∗) as we did in the proof of Theorem 3.3. Therefore, the calculations must be carried

out directly using the term g(x).
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E.2. Proof of Theorem 3.7

Proof. The proof closely follows that of Theorem 3.3, so we will only highlight the main differences. We focus on the case
where ε = 0; the case where ε > 0 can be handled similarly to the proof of Theorem 3.3.

Let x̃ ∈ X̃ . We have:

f̂(x̃) ̸= y∗ ⇐= ∃y′ ̸= y∗ : P̂(x̃, y∗) < P̂(x̃, y′)

⇐= P̂(x̃, y∗) < P̂(x̃, ŷx̃)

⇐⇒ n

N
P̂

(x̃′,ỹ′)∼D̃(n)
(x̃′ = x̃, ỹ′ = y∗)︸ ︷︷ ︸

=0

+
N − n

N
P̂

(x,y)∼D(N−n)
(x = x̃, y = y∗)

<
n

N
P̂

(x̃′,ỹ′)∼D̃(n)
(x̃′ = x̃, ỹ′ = ŷx̃)︸ ︷︷ ︸

= P̂
x̃′∼D̃(n)

(x̃′=x̃)

+
N − n

N
P̂

(x,y)∼D(N−n)
(x = x̃, y = ŷx̃)

⇐⇒ n

N
P̂

x̃′∼D̃(n)
(x̃′ = x̃)

− N − n

N

(
P̂

(x,y)∼D(N−n)
(x = x̃, y = y∗)− P̂

(x,y)∼D(N−n)
(x = x̃, y = ŷx̃)

)
︸ ︷︷ ︸

=:∆
(N−n)
x̃

> 0

and see that

∆
(N−n)
x̃ ≤ P

(x,y)∼D
(x = x̃, y = y∗)− P

(x,y)∼D
(x = x̃, y = ŷx̃)︸ ︷︷ ︸

=:∆
(D)
x̃

+2Rδ̃(N − n)

by applying Hoeffding’s inequality to both empirical probabilities. Note that Hoeffding’s inequality for the term P
(x,y)∼D

(x =

x̃, y = ŷx̃) holds in probability over D(N−n) conditionally on D(ne). It should only be applied #X̃ times here contrary
to #X̃ (#Y − 1) times in signal planting because ŷx̃ is fixed conditionally on D(ne). Then, since the inequality holds in
probability over D(N−n) conditionally on D(ne), in particular it holds marginally over all consumers.

The conclusion is similar to that of Theorem 3.3. We just need to apply the same argument as above to use Hoeffding’s
inequality: P

(x,y)∼D
(x = x̃, y = ŷx̃) ≥ P̂

(x,y)∼D(n−ne)
(x = x̃, y = ŷx̃)−Rδ̃(n− ne).

In fact, it is possible to obtain a slightly better bound than (4). Indeed, to bound ∆
(D)
x̃ , one can use Hoeffding’s inequality on

D(n) instead of D(n−ne) for the term P
(x,y)∼D

(x = x̃, y = y∗). We kept the inequality (4) as it is to simplify the expression

of the bound and make the interpretation of the different terms easier.

E.3. Interpretation of the bound from Theorem 3.7

As the signal planting lower bound (1), the signal unplanting lower bound (4) also depends on three distinct terms:

• n
N

(
P̂

x̃′∼D̃(n)
(x̃′ = x̃)− 2Rδ̃(n)

)
• −N−n

N

(
∆

(n−ne)
x̃ + 2Rδ̃(n− ne) + 2Rδ̃(N − n)

)
• − ε

1−ε
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The first and third terms play the same role as in signal planting. The main difference here is the second term
−N−n

N

(
∆

(n−ne)
x̃ + 2Rδ̃(n− ne) + 2Rδ̃(N − n)

)
. The term ∆

(n−ne)
x̃ represents how much more probable the target

label y∗ is compared to other labels given a feature belonging to X̃ . If y∗ is much more probable than the other labels, it
will be difficult to unplant the signal. Conversely, if y∗ is not the most probable, it will be easier to unplant the signal. The
collective’s plan relies on the choice of ne < n. If ne is large, it will be more likely for the collective to select the best
possible label given a modified feature x̃ to maximize the impact of the strategy h. However, if ne is too large compared to
n, the estimation error 2Rδ̃(n− ne) may become too significant. Therefore, there is a trade-off for the optimal choice of the
value ne. This trade-off depends on the specific dataset being considered.

E.4. Proof of Theorem 3.9

Proof. Assume that ε = 0. The case of ε > 0 is handled in the same way as in signal planting and signal unplanting. By
Hoeffding’s inequality, we know that the following inequalities each hold with probability at least 1− δ̃ (over the draw of
consumers), for some fixed x̃ ∈ X̃ and y′ ∈ Y\{y∗x̃}:

P
(x,y)∼D̃

(x = x̃, y = y∗x̃) ≤ P̂
(x,y)∼D̃(n)

(x = x̃, y = y∗x̃) +Rδ̃(n) (14)

P̂
(x,y)∼D̃(n)

(x = x̃, y = y′) ≤ P
(x,y)∼D̃

(x = x̃, y = y′) +Rδ̃(n) (15)

Similarly, for some fixed x′ ∈ X and y′ ∈ Y\{y∗g(x′)}:

P̂
x∼D(n)

(x = x′) ≤ P
x∼D

(x = x′) +Rδ̃(n) (16)

P
x∼D

(x = x′) ≤ P̂
x∼D(n)

(x = x′) +Rδ̃(n) (17)

P̂
(x,y)∼D(N−n)

(x = x′, y = y′) ≤ P
(x,y)∼D

(x = x′, y = y′) +Rδ̃(N − n) (18)

P
(x,y)∼D

(x = x′, y = y∗g(x′)) ≤ P̂
(x,y)∼D(N−n)

(x = x′, y = y∗g(x′)) +Rδ̃(N − n) (19)

P̂
(x,y)∼D(n)

(x = x′, y = y∗g(x′)) ≤ P
(x,y)∼D

(x = x′, y = y∗g(x′)) +Rδ̃(n) (20)

P
(x,y)∼D

(x = x′, y = y′) ≤ P̂
(x,y)∼D(n)

(x = x′, y = y′) +Rδ̃(n) (21)

We also have that
P̂

x′∼Dtest

(f̂(g(x′)) = f̂(x′)) ≥ P
x′∼D

(f̂(g(x′)) = f̂(x′))−Rδ̃(Ntest) (22)

and

P̂
x′∼D(n)

(
n

N

(
P

x∼D
(x = x′)−Rδ̃(n)

)
− N − n

N

(
∆

(D)
x′ + 2Rδ̃(N − n)

)
> 0

)
≤

P
x′∼D

(
n

N

(
P

x∼D
(x = x′)−Rδ̃(n)

)
− N − n

N

(
∆

(D)
x′ + 2Rδ̃(N − n)

)
> 0

)
+Rδ̃(n)

(23)

where ∆
(D)
x′ := max

y′∈Y\{y∗
g(x′)}

(
P

(x,y)∼D
(x = x′, y = y′)− P

(x,y)∼D
(x = x′, y = y∗g(x′))

)
.

We apply union bound to the 2 + #X̃#Y + 2#X + 2#X#Y inequalities above, so that the calculations below hold with
probability at least 1− δ.

Let x̃ ∈ X̃ . By Assumption 1 we know that:

P
(x,y)∼D

(x = x̃, y = y∗x̃) > P
(x,y)∼D

(x = x̃, y = y′) + η (24)

18
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for all y′ ̸= y∗x̃. So by using Inequality (14) and Inequality (15):

P̂
(x,y)∼D(n)

(x = x̃, y = y∗x̃) +Rδ̃(n) > P̂
(x,y)∼D(n)

(x = x̃, y = y′)−Rδ̃(n) + η

for all ∀y′ ̸= y∗x̃. Provided that n ≥ 2 log(1/δ̃)
η2 , we have that η − 2Rδ̃(n) > 0 and so we deduce that

P̂
(x,y)∼D(n)

(x = x̃, y = y∗x̃) > P̂
(x,y)∼D(n)

(x = x̃, y = y′)

for all ∀y′ ̸= y∗x̃.

Therefore, for each x̃ ∈ X̃ , the collective can compute y∗x̃ by using D(n) as follows:

y∗x̃ = argmax
y′∈Y

P̂
(x,y)∼D(n)

(x = x̃, y = y′). (25)

Then, the collective plays the erasure stategy h(x, y) = (x, y∗g(x)).

Now see that using Inequality (18) and Inequality (19) together with Inequality (24) yields that

P̂
(x,y)∼D(N−n)

(x = x̃, y = y∗x̃) +Rδ̃(N − n) > P̂
(x,y)∼D(N−n)

(x = x̃, y = y′)−Rδ̃(N − n) + η

for all y′ ̸= y∗x̃. Provided that n ≤ N − 2 log(1/δ̃)
η2 , we have that η − 2Rδ̃(N − n) > 0 and so we deduce that

P̂
(x,y)∼D(N−n)

(x = x̃, y = y∗x̃) > P̂
(x,y)∼D(N−n)

(x = x̃, y = y′)

for all ∀y′ ̸= y∗x̃. This implies that

argmax
y′∈Y

P̂
(x,y)∼D(N−n)

(x = x̃, y = y′) = y∗x̃. (26)

So for all x′ ∈ X we have:

y∗g(x′) = argmax
y′∈Y


n

N
P̂

(x̃,ỹ)∼D̃(n)
(x̃ = g(x′), ỹ = y′)︸ ︷︷ ︸

=0 if y′ ̸=y∗
g(x′) since g(g(x′))=g(x′)

+
N − n

N
P̂

(x,y)∼D(N−n)
(x = g(x′), y = y′)︸ ︷︷ ︸

maximized in y∗
g(x′) by Equation (26)


= argmax

y′∈Y
P̂(g(x′), y′)

= f̂(g(x′)).

Therefore

Ŝ(n) = P̂
x′∼Dtest

(
f̂(x′) = f̂(g(x′))

)
≥ P

x′∼D

(
f̂(x′) = f̂(g(x′))

)
−Rδ̃(Ntest) by Inequality (22)

= P
x′∼D

(
f̂(x′) = y∗g(x′)

)
−Rδ̃(Ntest).

Now let x′ ∈ X . A calculation similar to the one in the proof of Theorem 3.3 shows that

f̂(x′) = y∗g(x′) ⇐=
n

N

(
P

x∼D
(x = x′)−Rδ̃(n)

)
− N − n

N

(
∆

(D)
x′ + 2Rδ̃(N − n)

)
> 0.
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Here we reused Inequality (18) and Inequality (19), together with Inequality (17) and the fact that D̃X = DX by definition
of h.

Therefore

Ŝ(n) ≥ P
x′∼D

(
n

N

(
P

x∼D
(x = x′)−Rδ̃(n)

)
− N − n

N

(
∆

(D)
x′ + 2Rδ̃(N − n)

)
> 0

)
−Rδ̃(Ntest)

and so by applying Inequality (23) we deduce that

Ŝ(n) ≥ P
x′∼D(n)

(
n

N

(
P

x∼D
(x = x′)−Rδ̃(n)

)
− N − n

N

(
∆

(D)
x′ + 2Rδ̃(N − n)

)
> 0

)
−Rδ̃(n)−Rδ̃(Ntest).

We conclude with Inequality (16), Inequality (20), and Inequality (21).

The result of Theorem 3.9 depends on whether the collective is large enough to compute the optimal label y∗x̃ for each

x̃ ∈ X̃ . Specifically, n must exceed 2 log(1/δ̃)
η2 . In Figure 6, we plot 2 log(1/δ̃)

η2 as a function of η with the parameters used in
our experiment in Section 4 and detailed in Appendix A: #X = 2, 388, 787, 200; #X̃ = 5; and #Y = 4.
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Figure 6. Plot of the minimum value of n as a function of η for computing the erasure strategy.

For example, suppose the collective consists of n = 100, 000 members. Then, if η exceeds approximately 0.03, the
signal-erasing bound 5 from Theorem 3.9 holds.

E.5. Interpretation of the bound from Theorem 3.9

The signal erasing lower bound 5 depends on three distinct terms:

• n
N

(
P̂

x∼D(n)
(x = x′)− 2Rδ̃(n)

)
• −N−n

N

(
∆

(n)
x′ + 2Rδ̃(n) + 2Rδ̃(N − n)

)
• − ε

1−ε

The second term captures how optimal the label for the feature g(x) is for the feature x as well, thus reflecting the initial
sensitivity of the signal, which aligns with the intuition discussed by Hardt et al. (2023).
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There are two major differences between signal erasing and signal planting or unplanting. First, the term
n
N

(
P̂

x∼D(n)
(x = x′)− 2Rδ̃(n)

)
is significantly weaker in the case of signal erasing because it depends on X rather

than X̃ , making the probability much lower. Second, the term δ̃ is much smaller, making the estimation terms much more
significant. In most cases, we can expect the obtained bound in Theorem 3.9 to be impractical because the estimation terms
will be too large. The bound in Theorem 3.9 becomes useful only when we have a large number of data points relative to the
size of the universe X × Y .

We provide an analysis of the estimation terms to better understand their influence not only in signal erasing but also in
signal planting and signal unplanting. We illustrate it with a basic example in Figure 7. We fix δ = 0.05. We consider
a binary classification problem: #Y = 2. In this case, the values of δ̃ are as follows: δ/(2 + 6#X̃ ) in signal planting
and signal unplanting, and δ/(2 + 4#X̃ + 6#X ) ≈ δ/(2 + 6#X ) in signal erasing, assuming the reasonable hypothesis
that #X̃ ≪ #X . Therefore, we focus on the estimation terms Rδ̃(n) with δ̃ of the form δ/(2 + 6γ) where γ varies. For
simplicity, we assume that #X̃ and #X are powers of two: γ = 2m for some m ≥ 1.
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Figure 7. Plot of estimation terms Rδ̃(n) as a function of n for various values of m, where δ̃ = δ/(2 + 6× 2m).

Given a target error estimation R∗, the value n at which Rδ̃(n) ≤ R∗ is approximately equal to n ≈ log(2)
2R2

∗
m+ log(6)+log(1/δ)

2R2
∗

.
This value of n scales linearly with m.

This simple analysis highlights an interesting phenomenon: the lower bounds obtained are influenced not only by the ratio
n/N (i.e., how large n is relative to N ) but also by the absolute size of n in relation to the universe X × Y . This is crucial
for obtaining estimation terms Rδ̃(n) that are as small as possible. The intuition that n needs to be sufficiently large relative
to N is already present in the work by Hardt et al. (2023). Our research sheds light on the additional requirement that n
should also be large in comparison to the size of the considered universe X × Y .

F. Bounds in the Infinite Data Regime
As discussed in Subsection 4.3, we can compare our results with those presented by Hardt et al. (2023) in the infinite data
regime when n,N,Ntest → ∞ and n/N → α for some α ∈ (0, 1). We provide further details on this comparison here.

In the infinite data regime, the framework is the same as in algorithmic collective action: the platform observes the
distribution

P(x0, y0) := αP
D̃
(x0, y0) + (1− α)P

D
(x0, y0)

and selects a classfier f based on the distribution P:
Definition F.1. Let ε > 0. A classifier f : X → Y is ε-suboptimal on a set X ′ ⊆ X under the distribution P if there exists
a distribution P̃ with TV (P, P̃) ≤ ε such that

f(x) ∈ argmax
y∈Y

P̃(x, y)
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for all x ∈ X ′.

With these notations, we can redefine the successes for the various objectives of the collective and derive lower bounds
on these successes. Note that to obtain the bounds below, it is no longer necessary to assume that X is finite, since this
assumption is only used to apply the union bound a finite number of times when the collective performs statistical inference
with its finite-sample dataset.

F.1. Signal planting

The success is defined as
S(α) := P

x∼D
(f(g(x)) = y∗).

The bound (1) from Theorem 3.3 under the feature-label strategy becomes:

S(α) ≥ P
x̃∼D̃

[
αP
D̃
(x̃)− (1− α)∆

(D)
x̃ − ε

1− ε
> 0

]
(27)

where ∆
(D)
x̃ = max

y′∈Y\{y∗}

(
P
D
(x̃, y′)− P

D
(x̃, y∗)

)
.

Similarly, the bound (2) from Theorem 3.5 under the feature-only strategy becomes:

S(α) ≥ P
x∼D

[
αP
D̃
(g(x), y∗)− (1− α)∆

(D)
g(x) −

ε

1− ε
> 0

]
. (28)

F.2. Signal unplanting

The success is defined as
S(α) := P

x∼D
(f(g(x)) ̸= y∗).

The signal unplanting strategy relies on the choice of some parameter ne < n to estimate the most likely label yg(x) ̸= y∗

given some feature g(x). In the infinite data regime, we assume that ne → ∞ and n − ne → ∞. The bound (4) from
Theorem 3.7 becomes:

S(α) ≥ P
x̃∼D̃

[
αP
D̃
(x̃)− (1− α)∆

(D)
x̃ − ε

1− ε
> 0

]
(29)

where ∆
(D)
x̃ = P

D
(x̃, y∗)− P

D
(x̃, yx̃).

F.3. Signal erasing

The success is defined as
S(α) := P

x∼D
(f(g(x)) = f(x)).

The erasure strategy relies on the ability to compute the optimal label y∗g(x) for every feature g(x). In the infinite data regime,
we assume that the collective has access to y∗g(x). The bound (5) from Theorem 3.9 becomes:

S(α) ≥ P
x∼D

[
αP
D
(x)− (1− α)∆(D)

x − ε

1− ε
> 0

]
(30)

where ∆
(D)
x := max

y′∈Y\{y∗
g(x)

}
P
D
(x, y′)− P

D
(x, y∗g(x)).

F.4. Comparison with Prior Lower Bounds

In the original version of their work, Hardt et al. (2023) adopt the same definition of ε-suboptimality as in our work.
However, there was an issue with their proof in the case where ε > 0. For this reason, we restrict our comparison to the
bounds in the case where ε = 0.
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Proposition F.2 (Bounds comparison in signal planting when ε = 0). Assume that the collective plays the feature-label
signal planting strategy against a classifier that is ε-suboptimal (in the sense of Definition F.1) on X̃ . Then the collective
achieves:

S(α) ≥ P
x̃∼D̃

[
αP
D̃
(x̃)− (1− α)∆

(D)
x̃ > 0

]
≥ 1− 1− α

α
P
D

(
X̃
)
max
x̃∈X̃

max
y∈Y

(
P
D
(y|x̃)− P

D
(y∗|x̃)

)
where the first inequality is simply Inequality (27) and the last term is the lower bound originally provided by Hardt et al.
(2023).

Proof. For all x̃ ∈ X̃ , we have:

αP
D̃
(x̃)− (1− α)∆

(D)
x̃ = αP

D̃
(x̃)− (1− α) max

y′∈Y\{y∗}

(
P
D
(x̃, y′)− P

D
(x̃, y∗)

)
= αP

D̃
(x̃)− (1− α) max

y′∈Y\{y∗}

(
P
D
(y′|x̃)− P

D
(y∗|x̃)

)
P
D
(x̃)

≥ αP
D̃
(x̃)− (1− α) max

x̃∈X̃
max
y′∈Y

(
P
D
(y′|x̃)− P

D
(y∗|x̃)

)
P
D
(x̃)

Therefore

P
x̃∼D̃

[
αP
D̃
(x̃)− (1− α)∆

(D)
x̃ > 0

]
≥ P

x̃∼D̃

[
αP
D̃
(x̃)− (1− α) max

x̃∈X̃
max
y∈Y

(
P
D
(y|x̃)− P

D
(y∗|x̃)

)
P
D
(x̃) > 0

]

= P
x̃∼D̃

1− 1− α

α
max
x̃∈X̃

max
y∈Y

(
P
D
(y|x̃)− P

D
(y∗|x̃)

) P
D
(x̃)

P
D̃
(x̃)

> 0


= E

x̃∼D̃

1{
1− 1−α

α max
x̃∈X̃

max
y∈Y

(
P
D
(y|x̃)−P

D
(y∗|x̃)

) P
D

(x̃)

P
D̃

(x̃)
>0

}


≥ E
x̃∼D̃

1− 1− α

α
max
x̃∈X̃

max
y∈Y

(
P
D
(y|x̃)− P

D
(y∗|x̃)

) P
D
(x̃)

P
D̃
(x̃)


= 1− 1− α

α
P
D

(
X̃
)
max
x̃∈X̃

max
y∈Y

(
P
D
(y|x̃)− P

D
(y∗|x̃)

)

The authors subsequently revised their proof when ε > 0 by modifying the suboptimality definition, which we refer to as
ε-conditional suboptimality to provide clarity and distinguish between the two definitions:

Definition F.3. Let ε > 0. A classifier f : X → Y is ε-conditionally suboptimal on a set X ′ ⊆ X under the distribution P
if there exists a distribution P̃ with TV (PY |X=x, P̃Y |X=x) ≤ ε such that

f(x) ∈ argmax
y∈Y

P̃(x, y)

for all x ∈ X ′.

Using this definition of conditional suboptimality, we could derive bounds similar to those given in (1), (2), (4), (5), (27),
(28), (29), and (30), and conduct the same kind of comparisons with the bounds from Hardt et al. (2023).
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