
LapisGS: Layered Progressive 3D Gaussian Splatting

for Adaptive Streaming

Yuang Shi1,3 Géraldine Morin2,3 Simone Gasparini2,3 Wei Tsang Ooi1,3

1National University of Singapore 2IRIT - University of Toulouse 3IPAL, IRL2955, Singapore
{yuangshi, ooiwt}@comp.nus.edu.sg {geraldine.morin, simone.gasparini}@toulouse-inp.fr

Abstract

The rise of Extended Reality (XR) requires efficient

streaming of 3D online worlds, challenging current 3DGS

representations to adapt to bandwidth-constrained environ-

ments. This paper proposes LapisGS, a layered 3DGS

that supports adaptive streaming and progressive render-

ing. Our method constructs a layered structure for cumula-

tive representation, incorporates dynamic opacity optimiza-

tion to maintain visual fidelity, and utilizes occupancy maps

to efficiently manage Gaussian splats. This proposed model

offers a progressive representation supporting a continuous

rendering quality adapted for bandwidth-aware streaming.

Extensive experiments validate the effectiveness of our ap-

proach in balancing visual fidelity with the compactness

of the model, with up to 50.71% improvement in SSIM,

286.53% improvement in LPIPS with 23% of the original

model size, and shows its potential for bandwidth-adapted

3D streaming and rendering applications. Project page:

https://yuang-ian.github.io/lapisgs/

1. Introduction

In recent years, there has been a significant surge in the pop-
ularity of diverse XR applications like virtual reality (VR),
augmented reality (AR), and cloud gaming, largely driven
by the need to provide users with seamless access to online
3D environments. The success of these applications hinges
on the ability to represent complex 3D scenes accurately.

Recently, 3D Gaussian Splatting (3DGS) [11] has
emerged as an efficient technique for generating an explicit
3D representation from calibrated images, providing photo-
realistic visual quality and supporting fast rendering.

While 3DGS offers advantages for representing and ren-
dering high-fidelity 3D scenes, the resulting data size can be
prohibitively large for streaming to users with various band-
width constraints due to transfer over diverse and dynamic
networks and different rendering capacities due to hetero-
geneous devices. Recent works [5, 7, 14, 17, 19–21, 28] to
reduce data size through model compaction or optimization

Single-scale 3DGS

103.8 MB 8x 4x 2x 1x

Multiscale 3DGS

103.8 MB50.85 MB21.83 MB10.08 MB 8x 4x 2x 1x

LOD0 LOD1 LOD2 LOD3

Layered Progressive 3DGS

59.9 MB26.0 MB12.5 MB10.08 MB 8x 4x 2x 1x

LOD0 LOD1 LOD2 LOD3

Figure 1. The illustration of the architecture of the single-scale
model (upper), multiscale model (middle), and layered progressive
model (lower) and their sample renderings at different resolution
scales (1⇥, 2⇥, 4⇥, and 8⇥). Our layered progressive model is
tailored for adaptive streaming and view-adaptive rendering.

are insufficient to address the dynamic nature of network
conditions and device capabilities.

To overcome these limitations, adaptive streaming is cru-
cial to optimize resource utilization, visual quality, and user
experience [27]. Specifically, adaptive streaming enables
efficient and scalable transmission of 3D content by lever-
aging a layered representation. This layered structure or-
ganizes the 3D data into multiple levels of detail (LOD),
typically comprising a base layer and one or more enhance-
ment layers. The base layer provides a basic representation,
while the enhancement layers progressively refine the visual
quality.

The layered representation must meet specific require-
ments to effectively support adaptive streaming for 3DGS.
Firstly, given subsets of Gaussian splats, the model should
be able to represent complete 3D content with reduced de-
tails, allowing for the generation of a lower-quality base and
enhancement layers. Secondly, progressive levels of detail
should inherently share visual information with lower lev-

(a) LOD 0. (b) LOD 1. (c) LOD 2. (d) LOD 3.

(e) LOD 0. (f) LOD 1. (g) LOD 2. (h) LOD 3.

Figure 2. Illustrations of space-based representation characterized
by discrete quality layers (upper) and layered progressive repre-
sentation which comprises incremental layers (lower).

els to minimize redundancy in streaming and support view-
adaptive rendering. By leveraging shared visual character-
istics across different levels, the progressive representation
can reduce the amount of data needed to be transmitted
while facilitating smooth and continuous level transition for
rendering.

Recent efforts have been made to build hierarchical
3DGS representations based on multiresolution space parti-
tioning to render very large scenes in real time [12, 16, 22].
For instance, Ren et al. [22] decompose the 3D space with
an octree and optimize Gaussian splats at each octree node,
while Kerbl et al. [12] regard every splat as a tree node and
construct a tree-based hierarchy by recursively merging the
neighboring Gaussian splats into parent nodes. However,
these space-based hierarchies, while being effective and ef-
ficient for local rendering, suffer from the following draw-
backs in supporting adaptive streaming:
• Being built based on spatial information, space-based hi-

erarchies do not explicitly define quality levels. Hence,
tree traversal algorithms are required to select appropri-
ate splats at different layers to build levels of detail. This
added complexity can be computationally expensive and
less adaptable to rapidly changing network conditions,
potentially leading to inefficient streaming decisions.

• Secondly, each level of detail captured from the space-
based hierarchy is independently represented by a set of
anchor splats, as shown in Fig. 2. The lack of correlation
between levels can hinder efficient progressive transmis-
sion and limit flexible detail adjustment across different
parts of the scene, such as foveated rendering or distance-
aware rendering [15, 23, 25].

• Furthermore, since different levels of detail do not share
content, each level needs to redundantly encode and rep-
resent similar visual information using separate sets of
Gaussian splats, significantly enlarging both the global
and intermediate model size, as shown in Figure 1.
In this paper, we propose LapisGS1, a layered repre-
1
Lapis means ”layer” in Malay, the national language of Singapore —

sentation for progressive streaming and rendering of 3DGS
content. Inspired by scalable coding [1, 24, 31] and progres-
sive LOD representation [15, 23, 24, 33, 38], this method
is designed to efficiently stream and render photo-realistic
3D objects and scenes by leveraging a progressive frame-
work that enables dynamic adaptation to varying levels of
detail. As shown in Fig. 2, at the core of our approach is a
layered structure for cumulative representation, where each
layer adds additional details to the existing base layers, pro-
gressively refining the representation. To force coherence
among layers while avoiding re-encoding lower layers, we
incorporate dynamic opacity optimization during training,
allowing for selective adjustment of layer contributions for
optimal visual fidelity. We then utilize an occupancy map
to track and exclude less important Gaussian splats dur-
ing streaming and rendering, improving computational and
storage efficiency.

Our contributions can be summarized as follows.
• A progressive layered approach for 3DGS encoding mul-

tiple levels of detail into a single-layered model, support-
ing adaptive streaming and seamless rendering.

• Dynamic opacity optimization and management, which
ensures consistency across varying resolution levels but
also adjusts layer contributions selectively to maintain
visual fidelity. As a result, our approach reduces data
size and additionally enhances computational efficiency
by managing splats dynamically with occupancy maps.

• Flexible and adaptive rendering, which enables seamless
transitions and view-adaptive rendering strategies without
the need for separate models for each level of detail.

• Extensive experiments on diverse 3D contents demon-
strate the effectiveness of our method, achieving high-
quality rendering and low resource cost, with up to
50.71% improvement in SSIM, 286.53% improvement in
LPIPS with 23% of the original model size.
By drawing parallels to scalable coding and LOD rep-

resentation, our progressive representation effectively bal-
ances the need for high-quality rendering with bandwidth-
aware streaming, providing a robust solution for adaptive
3D content delivery.

To foster collaboration and further research, we will re-
lease our source code to the research community and make
our pre-trained layered 3DGS models publicly available.

2. Background and Related Work

2.1. 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [11] is a method used for
real-time photorealistic radiance field rendering by repre-
senting a 3D scene as a collection of 3D Gaussian splats.

the host of 3DV’25. The logo in the title depicts kuih lapis, or ”layered
cake”, a local delight in Singapore and neighboring countries

Each 3D Gaussian splat is characterized by a set of at-
tributes, including its position x, a covariance matrix ⌃ de-
composed by a scaling matrix S and a rotation matrix R,
opacity �, and view-dependent color c represented by a set
of Spherical Harmonic (SH) coefficients. Specifically, each
3D Gaussian is defined as G(x) = exp(� 1

2 (x)
T⌃�1(x)).

In the rendering stage [39], each 3D Gaussian is projected
into 2D camera coordinates, denoted as G0(x0). To compute
the color of a pixel x0, a tile-based rasterizer is employed
to sort the projected splats in front-to-back depth order and
blend their colors with ↵-blending. The ↵-blending weights
are deprived as �G0(x0).

These Gaussian splats are derived from a sparse
Structure-from-Motion (SfM) point cloud and are refined
through a gradient-descent-based optimization process in-
terleaved with adaptive refinements.

2.2. Level-of-Detail 3DGS

Level-of-details (LODs) are fundamental to scalable render-
ing solutions, allowing for the adjustment of detail levels
based on computational resources and user needs. While
LODs have been explored for point cloud representations,
applying them to 3DGS presents unique challenges.

Recent efforts have been made to build multiscale repre-
sentations for 3DGS [4, 12, 16, 17, 22, 34]. For instance,
Yan et al. [34] proposed to add larger and coarser Gaus-
sian splats for lower resolutions by aggregating the smaller
and finer Gaussians from higher resolutions, creating inde-
pendent Gaussian splats layers at different scales to miti-
gate the aliasing artifacts during rendering. To reconstruct
and render large-scale scenes with 3DGS, Liu et al. [16]
divided the whole scene into spatially adjacent blocks and
trained each block in parallel. Within each block, different
LODs were created with LightGaussian [7], by pruning and
post-optimizing the splats. Kerbl et al. [12] proposed a tree-
based hierarchy designed for real-time rendering of large-
scale scenes. Their approach involves dividing the scene
into chunks and constructing a tree for each chunk, where
both interior and leaf nodes are represented by Gaussian
splats. Interior nodes are formed by merging child splats
and then optimized at each level separately, while leaf nodes
originate directly from the initial optimization process. To
ensure smooth transitions between levels, splat interpola-
tion is employed. Similarly, Ren et al. [22] use an octree
structure to partition the 3D space, with each octree level
corresponding to a set of anchor Gaussians that define the
LOD. They incorporate Scaffold-GS [17], which leverages
neural Gaussians and MLPs to predict anchor-wise features,
allowing for a more compact representation. Linear inter-
polation of rendered 2D images is used to achieve smooth
transitions between levels.

However, these existing methods are primarily designed
for reconstruction quality and rendering speed, without con-

G0

G0 ΔG1

Opacity O

G0 ΔG1 ΔG2

Opacity O

G0

Opacity

ΔG3

O

G0 ΔGi

Base Layer Enhancement Layer

Opacity O

Occupancy MapUpdated Opacity

𝐿0

𝐿1

𝐿2

𝐿3 ΔG1 ΔG2

Images from the dataset Layered Progressive Model

Figure 3. The overview of LapisGS. The framework progres-
sively constructs a layered model, starting from the low-resolution
base layer (L0) and adding higher-resolution enhancement layers
(L1, L2, L3). Dynamic opacity optimization and occupancy maps
are employed to refine splat contributions and optimize data size.

sidering the challenges of adaptive streaming, as we dis-
cussed in Sec. 1. Space-based hierarchies in 3DGS feature
discrete quality layers, each independently represented by a
set of anchor splats, as shown in Fig. 2. This approach re-
quires substantial computational resources for maintenance
and navigation, especially with frequent level transitions,
and limits view-adaptive rendering. In contrast, our model
supports progressive streaming and flexible detail adjust-
ment, reducing storage needs while enabling smoother level
transitions and effective view-adaptive rendering.

3. Methodology

Our method LapisGS is based on training a 3DGS model
at successive level of progressively higher resolution to cre-
ate a multiscale representation. Initially, a low-resolution
dataset is used to establish a base layer. As the training pro-
gresses, new enhancement layers are added, each trained
on incrementally higher resolution versions of the dataset.
These layers build upon and refine the details captured in
the previous layers. While the parameters of the prior layers
remain fixed, their opacity is optimized to adjust the influ-
ence of each layer dynamically. We also utilize occupancy
maps to track the contributions of splats. During streaming
and rendering, these transparent splats are excluded, which
reduces the overall model size and improves computational
efficiency. To ensure smooth transitions between resolution
levels, we employ interpolation of opacity values between
adjacent layers. Fig. 3 shows the overview of LapisGS.

(a) G1. (b) �G2. (c) �G3. (d) G3.

Figure 4. Sample renderings of hotdog. The enhancement layers
�G2 and �G3 capture higher frequency features and can be iter-
atively added to the layer G1 to obtain the model G3.

3.1. Layered Progressive 3DGS

Layered Progressive Representation. We denote N + 1
as the total number of quality levels for the layered 3DGS
model, which also corresponds to the total number of train-
ing stages in the progressive training scheme. We can then
denote Li as the i-th level of detail where i 2 {0, 1, . . . , N}.
Given a full-resolution multi-view image set DN , we can
build an image pyramid {Di}Ni=0:

Di =
��

V
i
m, X

i
m

� M

m=1
, (1)

where V
i
m is the camera matrix, Xi

m is the corresponding
image, and M is the number of views.

Starting from the lowest quality level, we initially opti-
mize a set of 3D Gaussian splats, denoted as G0. As train-
ing advances, views with higher resolution are considered
at each layer. Consequently, the Gaussian splats at various
quality levels are represented as {Gi}Ni=0.

As discussed in Sec. 1, the core idea is to create a lay-
ered structure comprising a base layer G0 and enhancement
layers. As training progresses to a higher quality level, new
enhancement layers are optimized and integrated with prior
layers. Formally, we can represent the layered progressive
model as {G0, {�Gi}Ni=1}, where

Gi = G0 +
iX

k=1

�Gk, i 2 {1, 2, . . . , N}, (2)

where �Gk is the k-th enhancement layer.
In this layered structure and progressive training scheme,

a rough scene layout is constructed, allowing lower-
frequency features to be learned in the early stages. This
layout serves as a foundation for higher quality levels in
subsequent training stages. By building upon information
from previous levels, the model can focus more on captur-
ing higher frequency features, thereby speeding up conver-
gence and reducing redundancy across different quality lev-
els. Fig. 4 shows an example of the above process.

Multi-level Optimization. During the training of each
level in LapisGS, we focus on optimizing the enhancement
layer �Gi while maintaining the parameters of the pre-
ceding layers {G0,�G1, . . . ,�Gi�1} as fixed, except for
their opacity values.

The decision to optimize only the opacity values of the
previous layers, rather than other parameters, is based on
the balance between efficient layer integration and visual
coherence. 3DGS applies standard ↵-blending for render-
ing, indicating that the contribution of each splat is typ-
ically additive and weighted by its opacity. Besides, un-
like other attributes of Gaussian splats (such as position or
scale), changing opacity does not alter the spatial informa-
tion of the scene [6, 7, 22, 29]. Therefore, opacity opti-
mization allows for fine-tuning the visibility and influence
of Gaussian splats from earlier layers without altering their
foundational features and changing the layered structure. In
other words, this selective optimization strategy enables the
model to refine the contributions of existing layers, ensuring
that previously learned features are kept, while the current
enhancement layer focuses on capturing new details and im-
proving the overall representation.

For each level Li, the optimization process is driven by
minimizing a rendering loss function L�Gi , which consists
of two components: an L1-norm loss L1 and a D-SSIM loss
LD. The rendering loss is defined as follows:

L�Gi = �

MX

m=1

L1(X̂
i
m, X

i
m)+(1��)

MX

m=1

LD(X̂
i
m, X

i
m),

(3)
where X

i
m represents the ground truth image for view m at

the i-th quality level, and X̂
i
m is the image rendered of Gi,

using all enhancement layers up to Li.
Notably, L1 loss estimates perceived errors and is not

sensitive to blurriness or low-resolution artifacts that do not
alter the image’s structure [32, 37]. In our progressive train-
ing pipeline, this insensitivity can result in premature con-
vergence, where the model fails to update and densify the
“low-layer” Gaussian splats. Existing works [3, 34, 35, 37]
offer sophisticated solutions. For example, Zhang et al. [37]
propose to utilize frequency information to regularize the
Gaussian densification, by incorporating frequency term in
the loss function. Nevertheless, addressing this problem
is orthogonal to our work. In our approach, we adopt a
straightforward step to alleviate the problem by giving more
weight to the SSIM loss with � = 0.2, to ensure that the
model prioritizes maintaining structural integrity.

By minimizing the rendering loss at each level, the
model incrementally refines its representation, effectively
balancing the integration of new information and the
learned features of lower-resolution layers. This approach
ensures that the final model achieves high visual fidelity and
efficient splat coding across successive quality levels.

Representation Compaction and Adjustment. Gaus-
sian splats from the first layers capture broader and low-
frequency features essential for constructing a rough scene
layout. As the training process progresses to higher reso-
lutions, the model focuses on capturing fine-grained details

Smooth Level Transition𝐿0 𝐿1
Figure 5. Example of the smooth level transition on Lego.

that the lower-resolution splats cannot effectively represent.
Consequently, the opacity of these “low-layer” splats is re-
duced during the optimization of “high-layer” splats, indi-
cating their decreased importance in the rendering process.

To improve transmission and computational efficiency,
we introduce an occupancy map Oi for each level Li in our
layered 3DGS model. This map tracks the opacity of in-
dividual Gaussian splats, identifying those that fall below
a specified opacity threshold. These splats are marked as
less important and can be omitted during both streaming
and rendering processes, significantly reducing the model
size during transmission and rendering. We set the opac-
ity threshold at 0.005, following the default pruning phase
setting from the original 3DGS work [11].

Nevertheless, this approach could allow for adaptive bi-
trate streaming by dynamically selecting splats based on
their opacity. By adjusting the opacity threshold, the system
could fine-tune the amount of data transmitted, adapting to
varying network bandwidths and device capabilities [7, 29].

3.2. Continuous level transition

A critical challenge in LOD rendering is achieving seam-
less visual transitions between different resolution levels.
Abrupt changes between levels can lead to visual artifacts,
degrading the user experience, especially in scenarios with
limited bandwidth or dynamic view changes [29].

We address this by linearly interpolating the opacity of
a given splat between adjacent levels. As discussed in
Sec. 3.1 and Sec. 2.1, opacity leverages each splat’s con-
tribution during rendering, and by adjusting these weights,
we effectively blend representations from different quality
levels in a plausible manner. Interpolating the opacity al-
lows for gradual detail blending without altering spatial in-
formation, resulting in smooth visual changes. Our method
aligns with the additive nature of Gaussian splat rendering
and leverages the human visual system’s lower sensitivity
to gradual intensity changes.

Specifically, for a target resolution rt that falls between
the resolutions of two adjacent quality levels Li and Li+1,
we define a continuous interpolation factor t. This factor is
calculated as

t(rt) =
rt � ri

ri+1 � ri
, (4)

where ri and ri+1 are the resolutions of quality levels Li

and Li+1, respectively, and ri rt < ri+1.
Our interpolation scheme ensures smooth transitions be-

tween different levels of detail in our model. We illustrate
the renderings of the interpolated models between L0 and
L1 in Fig. 5.

Additionally, by dynamically and continuously adjust-
ing the influence of splats based on their opacity, LapisGS
could allow for efficient view-adaptive rendering, which op-
timizes rendering performance by adjusting the quality lev-
els based on the viewer’s gaze and the distance to objects.
Detailed analysis and comparison, along with illustrative
figures, can be found in the supplementary materials.

4. Experiments

In this section, we first detail the experimental setup of
LapisGS in Section 4.1. We then evaluate the performance
of our approach in Section 4.2. We also conduct abla-
tion studies to analyze the contributions of key components
within our method.

4.1. Experimental Setup

Dataset. We evaluated our method using 19 objects and real
scenes from various datasets, including Synthetic Blender
[18], Mip-NeRF360 [2], Tanks&Temples [13], and Deep
Blending [8]. These datasets encompass a diverse range of
object-centric, indoor, and outdoor scenes, providing a ro-
bust basis for testing. In addition to full-scale images, we
down-scaled each dataset by factors of 2⇥, 4⇥, and 8⇥,
reducing the image resolution by half, a quarter, and one-
eighth in each direction, respectively. This provided multi-
ple scales for constructing the layered representation.

Implementation. Our implementation is based on the
official release of the 3D Gaussian Splatting code [10]. We
initially trained the base layer from the dataset with the
lowest resolution. In subsequent training stages, we fixed
the parameters of Gaussian splats in prior layers, except
for their opacity, and trained the enhancement layer and
the opacity of prior layers on datasets with the correspond-
ing quality levels. All hyperparameters remained consistent
across training stages. The training process was conducted
on an NVIDIA A100 GPU.

Table 1. Quantitative comparison results on synthetic Blender dataset [18] at different quality levels. The model size is normalized.

Method L0 L1 L2 L3

SSIM " LPIPS # Size # SSIM " LPIPS # Size # SSIM " LPIPS # Size # SSIM " LPIPS # Size #
Downsample 0.827 0.117 0.127 0.875 0.092 0.141 0.907 0.069 0.252 0.929 0.060 0.430

Single 0.747 0.131 1.000 0.864 0.070 1.000 0.946 0.032 1.000 0.969 0.027 1.000
Multiscale 0.984 0.014 0.127 0.980 0.016 0.272 0.976 0.018 0.540 0.969 0.027 1.000
LapisGS 0.984 0.014 0.127 0.981 0.015 0.141 0.970 0.026 0.252 0.970 0.044 0.430

� - - - 0.001 -0.001 -92.91% -0.006 0.008 -114.29% 0.001 0.017 -132.56%

Table 2. Quantitative comparison results on Mip-NeRF360 dataset [2] at different quality levels. The model size is normalized.

Method L0 L1 L2 L3

SSIM " LPIPS # Size # SSIM " LPIPS # Size # SSIM " LPIPS # Size # SSIM " LPIPS # Size #
Downsample 0.548 0.314 0.239 0.678 0.236 0.413 0.778 0.194 0.520 0.870 0.166 0.568

Single 0.635 0.201 1.000 0.752 0.164 1.000 0.881 0.119 1.000 0.918 0.124 1.000
Multiscale 0.957 0.052 0.239 0.947 0.065 0.531 0.928 0.096 0.783 0.918 0.124 1.000
LapisGS 0.957 0.052 0.239 0.936 0.080 0.413 0.928 0.111 0.520 0.925 0.161 0.568

� - - - -0.011 0.015 -28.57% 0.000 0.015 -50.58% 0.007 0.037 -76.06%

Table 3. Quantitative comparison results on Tank&Temples dataset [13] at different quality levels. The model size is normalized.

Method L0 L1 L2 L3

SSIM " LPIPS # Size # SSIM " LPIPS # Size # SSIM " LPIPS # Size # SSIM " LPIPS # Size #
Downsample 0.530 0.340 0.104 0.602 0.302 0.241 0.724 0.238 0.424 0.868 0.154 0.608

Single 0.640 0.198 1.000 0.764 0.140 1.000 0.885 0.092 1.000 0.923 0.106 1.000
Multiscale 0.958 0.051 0.104 0.946 0.060 0.272 0.934 0.077 0.528 0.923 0.106 1.000
LapisGS 0.958 0.051 0.104 0.942 0.076 0.241 0.935 0.103 0.424 0.916 0.163 0.608

� - - - -0.004 0.016 -12.86% 0.001 0.026 -24.53% -0.007 0.057 -64.47%

Table 4. Quantitative comparison results on Deep Blending dataset [8] at different quality levels. The model size is normalized.

Method L0 L1 L2 L3

SSIM " LPIPS # Size # SSIM " LPIPS # Size # SSIM " LPIPS # Size # SSIM " LPIPS # Size #
Downsample 0.820 0.168 0.319 0.880 0.132 0.431 0.909 0.157 0.489 0.913 0.236 0.544

Single 0.829 0.152 1.000 0.910 0.095 1.000 0.959 0.094 1.000 0.959 0.171 1.000
Multiscale 0.966 0.045 0.319 0.967 0.055 0.611 0.967 0.077 0.825 0.959 0.171 1.000
LapisGS 0.966 0.045 0.319 0.961 0.097 0.431 0.954 0.125 0.489 0.951 0.219 0.544

� - - - -0.006 0.042 -41.76% -0.013 0.048 -68.71% -0.008 0.048 -83.82%

Comparison Method. We compare LapisGS with three
alternative approaches:

• Single. A full-resolution model is trained and then ren-
dered at multiple scales. This approach demonstrates the
trade-offs in scalability and quality when a single model
is tasked with adapting to different resolutions without
specific optimization for each scale.

• Multiscale. Separate models are trained independently
for each scale (1⇥, 2⇥, 4⇥, and 8⇥), resulting in four dis-
tinct models that form a multiscale representation. This is
similar to tree-based hierarchies where each level is inde-
pendently represented shown in Fig. 2, and serves as the
upper bound for reconstruction quality.

• Downsample. Following Fan et al. [7], this method down-
samples the full-resolution model by calculating signifi-
cance scores based on the opacity and scale of each splat,
removing those with lower scores. This approach serves
as the lower bound and highlights the limitations of us-
ing traditional point cloud down- and up-sampling tech-
niques [26, 36] to construct an LOD representation for
3DGS which is a point-based representation.

Metrics. We evaluate the visual quality using SSIM and
LPIPS. We exclude PSNR from our evaluation as it primar-
ily estimates pixel-wise error, which makes it less sensi-
tive to blurriness and low-resolution artifacts [32, 37], as
discussed in Sec. 3.1. In addition to quality, we compare
the model sizes across different methods. Given that 3DGS
models vary significantly in size depending on the complex-
ity of the 3D content they represent, we normalize the model
sizes to a range of (0, 1] by dividing each model’s size by
the maximum model size within that 3D content.

4.2. Results and Evaluation

Quantitative Comparison. We present the results from
four datasets in Tabs. 1 to 4. As our comparison focuses
on the trade-off between model size and rendering qual-
ity, the size and quality difference and change in size of
our method compared to the Multiscale method is also pre-
sented. Note that we quantify the size change relative to the
new model size, which expresses the reduction as a negative
percentage. A more negative value indicates a greater size
decrease. To better illustrate the comparison, we also show

(a) L0. (b) L1. (c) L2. (d) L3.

Figure 6. Each point represents the overall quality of a scene/object with the corresponding model size at a given quality level. As the level
increases, LapisGS achieves high visual quality (SSIM) with a considerably smaller model size.

the visual quality against normalized model size for each
scene and object at each resolution scale, in Fig. 6. Several
key observations are highlighted.

First, the downsampled model shows significant degra-
dation in visual quality as model size decreases. This
suggests that traditional downsampling methods for point
clouds are inadequate for 3DGS, primarily because they fail
to re-optimize or re-learn the model for the reduced set of
splats. Given the unique distribution and anisotropic nature
of Gaussian splats, simply reducing the number of splats
without retraining does not capture the high-frequency de-
tails or maintain the model’s original fidelity.

Second, LapisGS consistently achieves the smallest
model size across all datasets and scales, demonstrating
the effectiveness of our progressive multiscale training
pipeline: by enabling feature sharing across different LODs
and multi-level optimization and occupancy maps, our ap-
proach significantly compacts the representation. This re-
duction in model size directly correlates to decreased ren-
dering times, further illustrating the efficiency of our lay-
ered progressive model in adaptive rendering scenarios.

Third, LapisGS achieves notable improvements in both
visual quality and model size compared to the single-scale
model. At lower resolutions, our approach yields enhance-
ments of up to 50.71% in SSIM, 286.53% in LPIPS with
23% of the original model size. These results emphasize the
necessity of constructing a multiscale 3DGS LOD model
and highlight the effectiveness and efficiency of our method
in maintaining visual fidelity while reducing data overhead.

Finally, LapisGS rivals the multiscale model, which
serves as the upper bound for reconstruction quality, achiev-
ing comparable visual fidelity with up to a 2.33⇥ smaller
model size. This demonstrates that our method effectively
balances high and low resolutions, creating a compact yet
highly detailed representation.

In summary, our layered progressive model ensures high
visual quality with a compact model that supports efficient
and adaptive rendering, making it an effective solution for
adaptive 3DGS streaming.

Qualitative Comparison. We present the qualitative
comparison with the other methods in Fig. 7. More de-

tailed qualitative comparisons are shown in the supplemen-
tary materials due to the page limit. As observed, LapisGS
successfully avoids the common artifacts seen in downsam-
pled and single-scale models, achieving results compara-
ble to the Multiscale method but with significantly reduced
model size. This improvement highlights the effectiveness
of our layered progressive model in capturing fine-grained
features while maintaining a compact model size, making it
an ideal choice for adaptive 3DGS streaming.

Table 5. The average size and quality difference in percentage of
LapisGS at different scales, compared to the Freeze method.

Dataset � SSIM " � LPIPS # � Size #
Synthetic [18] 0.82% -26.74% -118.90%

360 [2] 4.61% -22.34% -142.19%
T&T [13] 5.01% -32.31% -123.10%

DB [8] 1.71% -12.28% -201.46%

Ablation Study. To build a layered feature-sharing LOD
model, we chose to optimize only the opacity values of the
previous layers and freeze other parameters to balance effi-
cient layer integration and visual coherence. This step em-
powers the representation compaction and adjustment, as
well as view-adaptive rendering, by dynamically determin-
ing which splats contribute most significantly to the visual
fidelity at various distances from the viewpoint.

To explore the effect of the proposed multi-level opti-
mization approach, we conducted an ablation study. Specif-
ically, we evaluated a variant of our method where all
parameters, including opacity, are frozen when training
enhancement layers. This method, denoted as “Freeze”,
serves as a baseline to highlight the importance of dy-
namic opacity optimization. We evaluated the visual quality
and model size on all four datasets, comparing our method
against the Freeze method.

We present the average results in Tab. 5 and per-scene
quantitative and qualitative results in the supplementary.
The results highlight that without opacity optimization,
model size increases significantly, and visual quality de-
teriorates. The visual quality degrades because lower-
layer splats, which cannot capture high-frequency features,

Si
ng

le
La

pi
sG

S
M

ul
tis

ca
le

D
ow

ns
am

pl
e

SSIM: 0.95

SSIM: 0.93

SSIM: 0.82

SSIM: 0.61

SSIM: 0.94

SSIM: 0.92

SSIM: 0.94

SSIM: 0.82

SSIM: 0.96

SSIM: 0.96

SSIM: 0.48

SSIM: 0.36

SSIM: 0.96

SSIM: 0.95

SSIM: 0.61

SSIM: 0.47𝐿0 𝐿1 𝐿2 𝐿3

𝐿0 𝐿1 𝐿2 𝐿3

𝐿0 𝐿1 𝐿2 𝐿3

𝐿0 𝐿1 𝐿2 𝐿3

Δ Size: -55.27% Δ Size: -75.15%Δ Size: -25.76%

Figure 7. Sample renderings of Garden at different levels. LapisGS eliminates the usual artifacts seen in downsampled and single-scale
models, achieving comparable quality to the Multiscale method with considerably lower data size, as shown in Tab. 2.

continue to influence higher-layer representations. Conse-
quently, the model size increases significantly as additional
splats are added to compensate for the deficiencies of these
lower-layer splats, leading to redundancy. In contrast, our
method achieves more compact models and superior visual
fidelity by efficiently pruning less significant splats.

Overall, LapisGS ensures a balance between model size
and rendering quality, demonstrating the effectiveness of
dynamic opacity optimization for scalable 3DGS.

5. Discussion and Conclusion

In this paper, we introduced LapisGS, a layered progres-
sive 3DGS designed for adaptive streaming. Our approach
addresses key challenges in 3D content streaming by op-
timizing the balance between visual quality and model
size. We leverage visual information sharing across mul-
tiple LODs, which is crucial for real-time rendering and
adaptive streaming where resources are limited. A key ad-
vantage of LapisGS is its progressive nature, where each
layer builds upon the previous one, allowing for efficient
and coherent integration of details. By selectively optimiz-
ing the opacity of splats in lower layers, we reduce redun-
dancy and ensure that only relevant splats enhance visual
fidelity, particularly for high-frequency details. This pro-
gressive framework avoids the inefficiencies of traditional

models that either downsample or train separate models for
each scale. Our method demonstrates superior efficiency
and flexibility, achieving substantial improvements in visual
quality and model compactness, as evidenced by high SSIM
and low LPIPS scores across various datasets. Additionally,
it supports view-adaptive streaming and rendering through
dynamic pruning and interpolation of opacity based on net-
work conditions, ensuring smooth transitions between qual-
ity levels and a seamless user experience. For a complemen-
tary analysis and comparison, including visual illustrations,
we direct readers to the supplementary materials.

While our method performs well, there are areas for
improvement. First, our approach is optimized for static
scenes. Extending the model to handle dynamic elements
or real-time updates in changing environments is an im-
portant direction for future research, especially for more
interactive applications. Second, a notable aspect not ex-
plored in this work is the evaluation of performance under
fluctuating network conditions. These tasks are beyond the
scope of this paper, which focuses on developing an adap-
tive streaming model. However, we refer readers to our re-
cent work [30], where we develop, implement, and evalu-
ate the first DASH-based dynamic 3DGS streaming system
built on our LapisGS. This system demonstrates superior
performance in both live and on-demand streaming.

References

[1] Jae-Kyun Ahn, Yeong Jun Koh, and Chang-Su Kim. Effi-
cient fine-granular scalable coding of 3D mesh sequences.
IEEE Transactions on Multimedia, 15(3):485–497, 2013. 2

[2] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-NeRF 360: Unbounded
anti-aliased neural radiance fields. In IEEE/CVF Conference

on Computer Vision and Pattern Recognition, CVPR 2022,

New Orleans, LA, USA, June 18-24, 2022, pages 5460–5469.
IEEE, 2022. 5, 6, 7, 1, 4

[3] Lizhe Chen, Yan Hu, Yu Zhang, Yuyao Ge, Haoyu Zhang,
and Xingquan Cai. Frequency-importance Gaussian splat-
ting for real-time lightweight radiance field rendering. Mul-

timedia Tools and Applications, 83(35):83377–83401, 2024.
4

[4] Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xiaofeng
Yang, Yikai Wang, Zhongang Cai, Lei Yang, Huaping Liu,
and Guosheng Lin. GaussianEditor: Swift and controllable
3D editing with Gaussian splatting. In IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, CVPR

2024, Seattle, WA, USA, June 16-22, 2024, pages 21476–
21485. IEEE, 2024. 3

[5] Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi,
and Jianfei Cai. HAC: hash-grid assisted context for 3D
Gaussian splatting compression. In Computer Vision - ECCV

2024 - 18th European Conference, Milan, Italy, September

29-October 4, 2024, Proceedings, Part VII, pages 422–438.
Springer, 2024. 1

[6] Zilong Chen, Feng Wang, Yikai Wang, and Huaping Liu.
Text-to-3D using Gaussian splatting. In IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, CVPR

2024, Seattle, WA, USA, June 16-22, 2024, pages 21401–
21412. IEEE, 2024. 4

[7] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia
Xu, and Zhangyang Wang. LightGaussian: Unbounded 3D
Gaussian compression with 15x reduction and 200+ FPS.
CoRR, abs/2311.17245, 2023. 1, 3, 4, 5, 6

[8] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel J. Brostow. Deep blending for
free-viewpoint image-based rendering. ACM Transactions

on Graphics, 37(6):257, 2018. 5, 6, 7, 1, 2
[9] Peng Jiang, Gaurav Pandey, and Srikanth Saripalli. 3DGS-

ReLoc: 3D Gaussian splatting for map representation and
visual relocalization. CoRR, abs/2403.11367, 2024. 1

[10] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3D Gaussian splatting for real-time
radiance field rendering. https://github.com/graphdeco-

inria/gaussian-splatting, 2023. 5
[11] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,

and George Drettakis. 3D Gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4):139:1–139:14, 2023. 1, 2, 5

[12] Bernhard Kerbl, Andreas Meuleman, Georgios Kopanas,
Michael Wimmer, Alexandre Lanvin, and George Drettakis.
A hierarchical 3D Gaussian representation for real-time ren-
dering of very large datasets. ACM Transactions on Graph-

ics, 43(4):62:1–62:15, 2024. 2, 3, 1

[13] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: benchmarking large-scale scene
reconstruction. ACM Transactions on Graphics, 36(4):78:1–
78:13, 2017. 5, 6, 7, 1, 3

[14] Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko,
and Eunbyung Park. Compact 3D Gaussian representation
for radiance field. In IEEE/CVF Conference on Computer

Vision and Pattern Recognition, CVPR 2024, Seattle, WA,

USA, June 16-22, 2024, pages 21719–21728. IEEE, 2024. 1
[15] David Li and Amitabh Varshney. Progressive multi-scale

light field networks. In International Conference on 3D Vi-

sion, 3DV 2022, Prague, Czech Republic, September 12-16,

2022, pages 231–241. IEEE, 2022. 2
[16] Yang Liu, Chuanchen Luo, Lue Fan, Naiyan Wang, Junran

Peng, and Zhaoxiang Zhang. CityGaussian: Real-time high-
quality large-scale scene rendering with Gaussians. In Com-

puter Vision - ECCV 2024 - 18th European Conference, Mi-

lan, Italy, September 29-October 4, 2024, Proceedings, Part

XVI, pages 265–282. Springer, 2024. 2, 3
[17] Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin

Wang, Dahua Lin, and Bo Dai. Scaffold-GS: Structured 3D
Gaussians for view-adaptive rendering. In IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, CVPR

2024, Seattle, WA, USA, June 16-22, 2024, pages 20654–
20664. IEEE, 2024. 1, 3

[18] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In Computer Vision - ECCV 2020 - 16th European

Conference, Glasgow, UK, August 23-28, 2020, Proceed-

ings, Part I, pages 405–421. Springer, 2020. 5, 6, 7
[19] Wieland Morgenstern, Florian Barthel, Anna Hilsmann, and

Peter Eisert. Compact 3D scene representation via self-
organizing Gaussian grids. In Computer Vision - ECCV 2024

- 18th European Conference, Milan, Italy, September 29-

October 4, 2024, Proceedings, Part LXXXV, pages 18–34.
Springer, 2024. 1

[20] K. L. Navaneet, Kossar Pourahmadi Meibodi, Soroush Ab-
basi Koohpayegani, and Hamed Pirsiavash. Compact3D:
Compressing Gaussian splat radiance field models with vec-
tor quantization. CoRR, abs/2311.18159, 2023.

[21] Panagiotis Papantonakis, Georgios Kopanas, Bernhard
Kerbl, Alexandre Lanvin, and George Drettakis. Reducing
the memory footprint of 3D Gaussian splatting. Proceedings

of the ACM on Computer Graphics and Interactive Tech-

niques, 7(1):16:1–16:17, 2024. 1
[22] Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu,

Zhangkai Ni, and Bo Dai. Octree-GS: Towards consis-
tent real-time rendering with LOD-structured 3D Gaussians.
CoRR, abs/2403.17898, 2024. 2, 3, 4, 1

[23] Markus Schütz, Katharina Krösl, and Michael Wimmer.
Real-time continuous level of detail rendering of point
clouds. In IEEE Conference on Virtual Reality and 3D User

Interfaces, VR 2019, Osaka, Japan, March 23-27, 2019,
pages 103–110. IEEE, 2019. 2, 1

[24] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.
Overview of the scalable video coding extension of the

H.264/AVC standard. IEEE Transactions on Circuits and

Systems for Video Technology, 17(9):1103–1120, 2007. 2
[25] Yuang Shi and Wei Tsang Ooi. Perceptual impact of facial

quality in MPEG V-PCC-encoded volumetric videos. In Pro-

ceedings of the 16th International Workshop on Immersive

Mixed and Virtual Environment Systems, MMVE 2024, Bari,

Italy, April 15-18, 2024, pages 71–74. ACM, 2024. 2
[26] Yuang Shi, Pranav Venkatram, Yifan Ding, and Wei Tsang

Ooi. Enabling low bit-rate MPEG V-PCC-encoded volumet-
ric video streaming with 3D sub-sampling. In Proceedings

of the 14th Conference on ACM Multimedia Systems, MM-

Sys 2023, Vancouver, BC, Canada, June 7-10, 2023, pages
108–118. ACM, 2023. 6

[27] Yuang Shi, Bennett Clement, and Wei Tsang Ooi. QV4:
QoE-based viewpoint-aware V-PCC-encoded volumetric
video streaming. In Proceedings of the 15th ACM Multi-

media Systems Conference, MMSys 2024, Bari, Italy, April

15-18, 2024, pages 144–154. ACM, 2024. 1
[28] Yuang Shi, Simone Gasparini, Géraldine Morin, Chenggang

Yang, and Wei Tsang Ooi. Sketch and Patch: Efficient
3D Gaussian representation for man-made scenes. CoRR,
abs/2501.13045, 2025. 1

[29] Yuan-Chun Sun, Yuang Shi, Wei Tsang Ooi, Chun-Ying
Huang, and Cheng-Hsin Hsu. Multi-frame bitrate allocation
of dynamic 3D Gaussian splatting streaming over dynamic
networks. In Proceedings of the 2024 SIGCOMM Workshop

on Emerging Multimedia Systems, EMS 2024, Sydney, NSW,

Australia, August 4-8, 2024, pages 1–7. ACM, 2024. 4, 5
[30] Yuan-Chun Sun, Yuang Shi, Cheng-Tse Lee, Mufeng Zhu,

Wei Tsang Ooi, Yao Liu, Chun-Ying Huang, and Cheng-
Hsin Hsu. LTS: A DASH streaming system for dynamic
multi-layer 3D Gaussian splatting scenes. In Proceedings

of the 16th ACM Multimedia Systems Conference, MMSys

2025, Stellenbosch, South Africa, March 31-April 4, 2025.
ACM, 2025. 8

[31] Jianqiang Wang, Dandan Ding, Zhu Li, and Zhan Ma. Multi-
scale point cloud geometry compression. In 31st Data Com-

pression Conference, DCC 2021, Snowbird, UT, USA, March

23-26, 2021, pages 73–82. IEEE, 2021. 2
[32] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.

Simoncelli. Image quality assessment: from error visibility
to structural similarity. IEEE Transactions on Image Pro-

cessing, 13(4):600–612, 2004. 4, 6
[33] Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao,

Anyi Rao, Christian Theobalt, Bo Dai, and Dahua Lin.
BungeeNeRF: Progressive neural radiance field for extreme
multi-scale scene rendering. In Computer Vision - ECCV

2022 - 17th European Conference, Tel Aviv, Israel, Octo-

ber 23-27, 2022, Proceedings, Part XXXII, pages 106–122.
Springer, 2022. 2

[34] Zhiwen Yan, Weng Fei Low, Yu Chen, and Gim Hee Lee.
Multi-scale 3D Gaussian splatting for anti-aliased rendering.
In IEEE/CVF Conference on Computer Vision and Pattern

Recognition, CVPR 2024, Seattle, WA, USA, June 16-22,

2024, pages 20923–20931. IEEE, 2024. 3, 4
[35] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and

Andreas Geiger. Mip-Splatting: Alias-free 3D Gaussian

splatting. In IEEE/CVF Conference on Computer Vision and

Pattern Recognition, CVPR 2024, Seattle, WA, USA, June

16-22, 2024, pages 19447–19456. IEEE, 2024. 4
[36] Anlan Zhang, Chendong Wang, Bo Han, and Feng Qian.

YuZu: Neural-enhanced volumetric video streaming. In
19th USENIX Symposium on Networked Systems Design and

Implementation, NSDI 2022, Renton, WA, USA, April 4-6,

2022, pages 137–154. USENIX Association, 2022. 6
[37] Jiahui Zhang, Fangneng Zhan, Muyu Xu, Shijian Lu, and

Eric P. Xing. FreGS: 3D Gaussian splatting with progressive
frequency regularization. In IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, CVPR 2024, Seattle,

WA, USA, June 16-22, 2024, pages 21424–21433. IEEE,
2024. 4, 6

[38] Junyu Zhu, Hao Zhu, Qi Zhang, Fang Zhu, Zhan Ma, and
Xun Cao. Pyramid NeRF: Frequency guided fast radiance
field optimization. International Journal of Computer Vi-

sion, 131(10):2649–2664, 2023. 2
[39] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and

Markus H. Gross. EWA volume splatting. In 12th IEEE

Visualization Conference, IEEE Vis 2001, San Diego, CA,

USA, October 24-26, 2001, Proceedings, pages 29–36. IEEE
Computer Society, 2001. 3

