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ABSTRACT

Developing efficient multi-objective optimization methods to compute the Pareto
set of optimal compromises between conflicting objectives remains a key challenge,
especially for large-scale and expensive problems. To bridge this gap, we introduce
SPREAD, a generative framework based on Denoising Diffusion Probabilistic
Models (DDPMs). SPREAD first learns a conditional diffusion process over
points sampled from the decision space and then, at each reverse diffusion step,
refines candidates via a sampling scheme that uses an adaptive multiple gradient
descent-inspired update for fast convergence alongside a Gaussian RBF–based
repulsion term for diversity. Empirical results on multi-objective optimization
benchmarks, including offline and Bayesian surrogate-based settings, show that
SPREAD matches or exceeds leading baselines in efficiency, scalability, and Pareto
front coverage.

1 INTRODUCTION

Multi-objective optimization (MOO) is fundamental in numerous scientific and engineering disci-
plines, where decision-makers often face the challenge of optimizing conflicting objectives simulta-
neously (Rangaiah, 2016; Malakooti, 2014; Zhang et al., 2024b). The primary aim is to identify the
Pareto front: a set of non-dominated solutions where improving one objective would deteriorate at
least one other. Traditional methods for approximating the Pareto front include evolutionary algo-
rithms (Deb, 2011; Zhou et al., 2011), scalarization techniques (Braun et al., 2015; Hotegni & Peitz,
2025), and multiple-gradient descent (MGD) (Désidéri, 2012; Sener & Koltun, 2018) combined with
multi-start techniques (i.e., using random initial guesses to obtain multiple points). However, these
approaches may struggle with scalability, especially in high-dimensional or resource-constrained
settings (Cheng et al., 2021; Li et al., 2024a). As a workaround, domain-specific MOO algorithms
have been developed to leverage domain knowledge to improve efficiency and solution quality in
targeted settings (e.g., offline MOO (Yuan et al., 2025b), Bayesian MOO (Daulton et al., 2022),
or federated learning (Hartmann et al., 2025)), but at the expense of broader applicability. These
challenges underscore the need for MOO methods capable of efficiently adapting to large-scale, high-
dimensional, and computationally expensive problem settings. Developing such universal approaches
would not only streamline the optimization process, but would also broaden the applicability of MOO
techniques across different domains.

Recent advancements in generative modeling have shown promise in addressing complex optimization
problems (Garciarena et al., 2018; Yuan et al., 2025a). In particular, diffusion models such as
Denoising Diffusion Probabilistic Models (DDPMs), have demonstrated remarkable capabilities in
generating high-quality samples across various domains (Ho et al., 2020; Yang et al., 2023). Their
iterative refinement process aligns well with the principles of MOO, offering a potential pathway
to efficiently approximate the Pareto front. In this work, we introduce SPREAD (Sampling-based
Pareto front Refinement via Efficient Adaptive Diffusion), a novel diffusion-driven generative
framework designed to tackle multi-objective optimization across diverse problem settings. Our
approach leverages the strengths of diffusion models to iteratively generate and refine candidate
solutions, guiding them towards Pareto optimality. SPREAD applies a conditional diffusion modeling
approach, where a conditional DDPM is trained on points sampled from the input space, allowing
the model to effectively learn the underlying structure of the objective functions and steer the
generation process toward promising regions. To further enhance convergence towards Pareto
optimality, SPREAD incorporates an adaptive guidance mechanism inspired by the multiple gradient
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descent algorithm (Désidéri, 2012), dynamically guiding the sampling process to regions likely to
contain optimal solutions. Furthermore, to promote diversity among the generated solutions and
ensure an approximation of the entire Pareto front, SPREAD utilizes a Gaussian RBF repulsion
mechanism (Buhmann, 2000) that discourages clustering, mitigates mode collapse and encourages
exploration in the objective space.

We evaluate SPREAD on diverse MOO problems including two challenging, resource-constrained
scenarios: offline multi-objective optimization (Xue et al., 2024) and Bayesian multi-objective
optimization (Knowles, 2006). In each case, we benchmark our method against state-of-the-art
approaches specifically tailored for these settings. Our empirical results demonstrate that SPREAD
not only achieves competitive performance but also offers superior scalability and adaptability across
different problem domains. Our contributions can be summarized as follows: (a) We propose a novel
diffusion-based generative framework for MOO that effectively approximates the Pareto front. (b)
We introduce a novel conditioning approach along with an adaptive guidance mechanism inspired
by MGD to improve convergence towards Pareto optimal solutions. (c) We implement a diversity-
promoting strategy to ensure a comprehensive and well-distributed set of solutions. (d) We validate
our approach on challenging MOO tasks, demonstrating its effectiveness and generalizability.

2 RELATED WORK

We now situate our approach within prior work on generative modeling for multi-objective optimiza-
tion, and gradient-based methods relevant to our settings. An extended discussion of related work is
provided in Appendix E.

Generative Modeling for Multi-Objective Optimization Recent work explores alternatives to
traditional search methods, such as evolutionary algorithms or acquisition-based optimization, by
directly generating Pareto optimal candidates. ParetoFlow (Yuan et al., 2025a) uses flow-matching
with a multi-objective predictor-guidance module to steer samples toward the front in the offline
setting, showing that guided generative samplers can cover non-convex fronts efficiently. In parallel,
PGD-MOO (Annadani et al., 2025) trains a dominance-based preference classifier and uses it for
diffusion guidance to obtain diverse Pareto optimal designs from data. For Bayesian settings, CDM-
PSL (Li et al., 2025a) couples unconditional/conditional diffusion with Pareto set learning to propose
candidate points under tight evaluation budgets. Our approach differs by conditioning a diffusion
transformer on objectives and applying step-wise, MGD-inspired guidance together with an explicit
diversity force, yielding both convergence and spread without a separate preference classifier.

Gradient-based Methods for Pareto Set Discovery A complementary line of research explicitly
profiles the Pareto set by moving a population with repulsive interactions or by smoothing scalar-
izations. PMGDA (Zhang et al., 2025) extends the classical MGDA (Désidéri, 2012) by sampling
multiple descent directions in a probabilistic manner, thus improving stability and coverage in
high dimensions. Smooth Tchebycheff scalarization (STCH) provides a lightweight differentiable
scalarization with favorable guarantees (Lin et al., 2024). Leveraging hypervolume gradients, HV-
Grad (Deist et al., 2021) updates solutions toward the Pareto front while preserving diversity, while
MOO-SVGD (Liu et al., 2021) employs Stein variational gradients to transport particles and obtain
well-spaced fronts. Extending this line of work, SPREAD integrates MGD directions into a DDPM
denoising process, using them as adaptive guidance signals within diffusion sampling.

3 PRELIMINARIES

To set the stage for our method, we review the fundamental concepts on which our approach is based.

3.1 DENOISING DIFFUSION PROBABILISTIC MODELS (DDPMS)

As powerful generative models, Denoising Diffusion Probabilistic Models excel at producing high-
quality samples in a wide range of applications, such as image synthesis (Dhariwal & Nichol, 2021),
speech generation (Kong et al., 2020), and molecular design (Hoogeboom et al., 2022). These models
operate by simulating a forward diffusion process, where Gaussian noise is incrementally added to
data, followed by a learned reverse process that denoises the data step by step. In the conditional
setting, DDPMs generate data samples conditioned on auxiliary information c, enabling controlled
generation aligned with specific attributes or constraints. The forward diffusion process gradually
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corrupts a data point x0 over T timesteps:
q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), (1)

where βt is a variance scheduling parameter, often chosen according to a linear (Ho et al., 2020) or
a cosine (Nichol & Dhariwal, 2021) schedule. After T steps, xT approaches a standard Gaussian
distribution. The aim is to reconstruct x0 from xT by learning a parameterized model ϵ̂θ(·) that
predicts the added noise at each timestep t, conditioned on c. The model is trained to minimize the
following loss:

Ls(θ) = Ex0,ϵ,t,c

[
∥ϵ− ϵ̂θ(xt, t, c)∥2

]
, (2)

where ϵ ∼ N (0, I) is the true noise added to x0 at a randomly chosen timestep t ∈ {1, . . . , T} to
obtain xt, at each epoch. Specifically, from equation 1 we have after t timesteps xt =

√
ᾱt x0 +√

1− ᾱt ϵ, with ᾱt =
∏t

i=1(1− βi).

At inference (post-training), sampling starts from pure noise xT ∼ N (0, I) and iteratively denoises it
using the learned reverse process:

xt−1 =
1√

1− βt

(
xt −

βt√
1− ᾱt

ϵ̂θ(xt, t, c)

)
+
√

βtz, (3)

where z ∼ N (0, I). To enhance sample quality and control, guidance techniques can be applied:
classifier guidance introduces gradients from a separately trained classifier to steer the generation
process (Dhariwal & Nichol, 2021), while classifier-free guidance interpolates between conditional
and unconditional predictions within the same model, allowing for flexible control without additional
classifiers (Ho & Salimans, 2022).

3.2 MULTI-OBJECTIVE OPTIMIZATION (MOO)
Multi-objective optimization involves optimizing multiple conflicting objectives simultaneously (Eich-
felder, 2008; Peitz & Hotegni, 2025):

min
x∈X

F(x) = (f1(x), . . . , fm(x)) , (MOP)

where X is the decision space, and each fj : X −→ R, j ∈ {1, . . . ,m} represents an objective
function. Throughout this paper, we assume that each objective function is continuously differentiable.
Definition 1 (Pareto Stationarity). A solution x∗ ∈ X is said to be Pareto stationary if there exist
nonnegative scalars λ1, . . . , λm, with

∑m
j=1 λj = 1, such that

∑m
j=1 λj∇fj(x∗) = 0.

Such points are necessary candidates for Pareto optimality but may include non-optimal solutions.
Definition 2 (Dominance). A solution x′ ∈ X is said to dominate another solution x ∈ X (denoted
x′ ≺ x) if: fj(x

′) ≤ fj(x) for all j = 1, . . . ,m, and ∃i ∈ {1, . . . ,m} | fi(x′) < fi(x).

Definition 3 (Pareto Optimality). A solution x∗ ∈ X is called Pareto optimal if there is no x′ ∈ X
such that x′ ≺ x∗. It is called weakly Pareto optimal if there is no x′ ∈ X such that fj(x′) <
fj(x

∗) for all j = 1, . . . ,m.

The set P of all Pareto optimal solutions is called Pareto set, and its image F(P) =
{
F(x∗) : x∗ ∈

P
}
, is known as Pareto front. Among the various strategies for solving multi-objective optimization

problems, gradient-based techniques are of particular relevance, and in our case, multiple gradient
descent serves as the key inspiration for the update mechanism within SPREAD.

3.3 MULTIPLE GRADIENT DESCENT (MGD)
Multiple gradient descent is a technique designed to find descent directions that simultaneously
improve all objectives in MOO (Désidéri, 2012). Given the gradients∇fj(x) for each objective fj ,
MGD seeks a convex combination of these gradients that yields a common descent direction at each
iteration. This is achieved by solving the following optimization problem:

λ∗ = arg min
λ∈∆m

∥∥∥∥∥∥
m∑
j=1

λj∇fj(x)

∥∥∥∥∥∥
2

, (4)

where ∆m = {λ ∈ Rm |
∑m

j=1 λj = 1, λj ≥ 0} is the standard simplex. The optimal weights
λ∗ define the aggregated gradient g(x) =

∑m
j=1 λ

∗
j∇fj(x), whose negative serves as the common

3
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Figure 1: DiT-MOO architecture. Diffusion Transformer adapted for multi-objective optimization,
where noise prediction is conditioned on objective values condition via multi-head cross-attention.

descent direction. The decision variable is then updated using this direction: xt+1 = xt − ηtg(xt),
with ηt being the step size at iteration t. While MGD ensures convergence to a Pareto stationary point,
employing a classical multi-start approach does not inherently promote diversity among solutions. To
overcome this drawback, our method incorporates a mechanism that promotes diversity, as detailed
in the next section.

4 METHOD

In this section, we first present the core components of our method for solving an MOP in an online
setting (full access to the objective functions), and then discuss how we adapt them to different
resource-constrained settings. We adopt a Transformer-based noise-prediction network, DiT-MOO
(Fig. 1), adapted from the Diffusion Transformer (DiT) architecture (Peebles & Xie, 2023), for stable
and scalable sampling. The model takes as input a batch of n noisy decision variables Xt ∈ Rn×d,
together with a timestep t and a condition C, and outputs the predicted noise ϵ̂θ(Xt, t,C). A cosine
schedule (Nichol & Dhariwal, 2021) is considered for the variance scheduling parameter βt. Further
architectural details are provided in Appendix A.4.

Training For a given MOP, we sample N points {xi}Ni=1 = X from the decision space X ⊆ Rd

via Latin hypercube sampling (McKay et al., 2000) to create the training dataset. Our DiT-MOO is
then trained using the loss Ls (equation 2), on pairs (xi, ci) with

ci = F(xi) + Ξ, Ξ ∈ (0,∞)m. (5)
During sampling, however, we condition on the original objective vector F(xi). The shift Ξ can be
any vector with strictly positive entries, fixed for the entire dataset or varying per point or batch. The
following theorem establishes the key advantage of this conditioning approach.
Theorem 1 (Objective Improvement). Let X ⊂ X be a training dataset with distribution PX. Let
Ξ ∈ (0,∞)m, independent of X, and define the training label

C := F(X) + Ξ. (6)
For a conditioning value c in the support of C, denote by PX|C=c the true conditional data distribu-
tion and by Qθ(· | c) the distribution produced by a conditional DDPM when sampling conditioned
on c. Assume the sampler approximates the true conditional training distribution in total-variation
TV distance by at most τ ∈ [0, 1):

TV
(
Qθ(· | c), PX|C=c

)
= supA |Qθ(A | c)− PX|C=c(A)| ≤ τ. (7)

Fix any initialization xT ∈ X and set c := cT = F(xT ). If cT lies in the support of C, and we draw
x0 ∼ Qθ(· | cT ), then:

P(x0 ≺ xT ) ≥ 1− τ. (8)
In other words, conditioning the reverse diffusion on F(xT ) yields, with probability at least 1− τ , a
sample that dominates xT .

The proof of this theorem is provided in Appendix A.1.

4
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Sampling Let XT = {xi
T }ni=1 ⊂ X denote n random initial points. We refine them by iteratively

applying the reverse diffusion step (equation 3), augmented with a guided update that (i) aligns each
sample with its MGD direction and (ii) encourages dispersion in the objective space to promote
diversity. Specifically, this guidance is implemented via an additive term, balancing objective
improvement (in the spirit of Section 3.3) with spreading along the Pareto front, together with a small
noise term. At each sampling step t, the update is therefore:

X′
t ←−

1√
1− βt

(
Xt −

βt√
1− ᾱt

ϵ̂θ(Xt, t,C)
)
+

√
βt z

Xt−1 ←− X′
t − ηt h̃t(X

′
t)

(9)

where the condition C is the batch of the objective values related to Xt, and
h̃t(X

′
t) = (h̃i

t)
n
i=1 = (hi

t)
n
i=1 + γT

t δt, (10)

are the guidance directions. Here, δt ∈ Rd is a random perturbation added to the main directions
(hi

t)
n
i=1, and γt = (γ1

t , . . . , γ
n
t )

T ∈ Rn are scaling parameters that control the strength of this
perturbation. We choose hi

t, i = 1, . . . , n to balance two objectives:

(i) Alignment with the MGD directions: Let gi
t = g(x

′i
t ), i = 1, . . . , n be obtained as defined

in Section 3.3. The main directions are chosen to maximize the average inner product
1

n

n∑
i=1

〈
gi
t, h

i
t

〉
. (11)

(ii) Diversity in objective space: Define (yi
t)

n
i=1 = Yt = F

(
X′

t − ηt
(
(hi

t)
n
i=1 + γT

t δt
))

. The
main directions are chosen so as to minimize the Gaussian RBF repulsion function (Buh-
mann, 2000)

Γt(Yt) =
2

n(n− 1)

∑
1≤i<j≤n

exp
(
− ∥y

i
t − yj

t∥2

2σ2

)
, (12)

where σ > 0 is the length-scale.

Balancing the alignment objective (equation 11) with the diversity requirement (equation 12), we
obtain the main directions by solving the following sub-problem:

(hi
t)

n
i=1 = arg min

(ui)ni=1

{
− 1

n

n∑
i=1

⟨gi
t,u

i⟩+ νt Γt

(
F
(
X′

t − ηt
(
(ui)ni=1 + γT

t δt
)))}

, (13)

where νt ≥ 0. In practice, we solve this sub-problem by performing a fixed number of gradient descent
steps, which provides an approximation of the main directions while keeping the computational cost
manageable. In the case where νt = 0, the main directions hi

t, i = 1, . . . , n, are well aligned with
the MGD directions and thus inherit their descent properties. This assumption leads to the following
theorem:
Theorem 2. Assume each objective function fj is continuously differentiable, and that νt = 0 for all
t ∈ {1, . . . , T}. Let, at reverse timestep t,

ai,j =
〈
∇fj(x

′i
t ),h

i
t

〉
, bi,j =

〈
∇fj(x

′i
t ), δt

〉
,

with ai,j > 0 for all i = 1, . . . , n and j = 1, . . . ,m. Define

γi
t =

ρ min
j: bi,j<0

(
− ai,j

bi,j

)
, 0 < ρ < 1, if any bi,j < 0,

ζ, ζ > 0, otherwise,
(14)

where ρ controls the magnitude of the scaling parameters γi
t , and ζ denotes an arbitrary positive

scalar. Then, −h̃i
t = −

(
hi
t + γi

tδt
)

serves as a common descent direction for all objectives at x
′i
t .

We provide the proof of this theorem in Appendix A.2. While νt = 0 guarantees a common descent
direction for all objectives, it is a very strong and restrictive assumption, since a moderate value of νt
is necessary to achieve good coverage of the Pareto front. A discussion on the theory for the general
case νt > 0 can be found in in Appendix A.3, including the sketch of a proof. An ablation study
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Algorithm 1 SPREAD (Online Setting)
Input: DiT-MOO architecture (untrained model), a multi-
objective optimization problem (MOP).
Parameter: epochs E, timesteps T , sample size n.
Output: approximate pareto optimal points P0.
1: DiT-MOO training via Algorithm 2.
2: Initialize n random points XT = {xi

T }ni=1 ⊂ X
3: PT ← XT

4: for t = T to 1 do
5: (gi

t)
n
i=1 ← Get the MGD directions via Sec-

tion 3.3.
6: (hi

t)
n
i=1 ← Get the main directions via equa-

tion 13.
7: (h̃i

t)
n
i=1 ← Get the guidance directions via equa-

tion 10.
8: Xt−1 ←− Get the denoised points via equation 9.

9: Pt−1 ← Use crowding distance (Appendix A.5)
to get the top-n non-dominated points from
Xt−1 ∪ Pt.

10: end for
Return: P0

Algorithm 2 Training (Online Setting)
Input: DiT-MOO as the noise prediction net-
work ϵ̂θ(·), a multi-objective optimization problem
(MOP).
Parameter: epochs E, timesteps T .
Output: a trained noise prediction network
ϵ̂θ(·).
1: Sample N points {xi}Ni=1 = X ⊂ X using

Latin hypercube sampling (Appendix A.5).
2: {βt}Tt=1 ← Get the variances via a cosine

schedule (Appendix A.5).
3: for epoch = 1 to E do
4: t← Uniform({1, . . . , T})
5: Xt ←

√
ᾱt X+

√
1− ᾱt ϵ, with

ϵ ∼ N (0, I), and ᾱt ←
∏t

i=1(1− βi).
6: C ← F(Xt) + Ξ, with Ξ ∈ (0,∞)m an

arbitrary vector with strictly positive entries.

7: Take gradient descent step on
∇θ ∥ϵ− ϵ̂θ(Xt, t,C)∥2.

8: end for
Return: ϵ̂θ(·)

illustrating this trade-off is presented in Appendix D (Figure 9). To determine the batch ηt of step
sizes at timestep t (equation 9), we employ an Armijo backtracking line search (Armijo, 1966). This
ensures sufficient decrease in the objective functions at each timestep t, prevents overly aggressive
steps, and adapts to local curvature (Fliege & Svaiter, 2000).

The proposed SPREAD framework for solving multi-objective optimization problems is summarized
in Algorithm 1. The final set P0 of approximate solutions is obtained as the top-n non-dominated
points from the union X0 ∪ · · · ∪XT . More specifically, for two successive reverse timesteps t and
t− 1, we define Pt−1 as the top-n non-dominated points from the union Xt−1 ∪Pt (with PT = XT

initially), using crowding distance (Deb et al., 2002a) to preserve diversity (preferring non-dominated
solutions that are less crowded in objective space).

4.1 EXTENSION TOWARDS SURROGATE-BASED OPTIMIZATION

Beyond the classical (online) setting, SPREAD extends naturally to resource-constrained multi-
objective optimization, where true objective evaluations are expensive or limited and surrogate
models are used. Such challenges arise in domains like offline MOO and Bayesian MOO, which
require dedicated multi-objective optimization methods to handle restricted or costly evaluations.

Offline MOO: In offline multi-objective optimization, the true objective functions are unavailable.
Instead, one relies on a pre-collected dataset D =

{
(x, F(x)), x ∈ X

}
to train a surrogate function

F̃ which serves as a proxy model for the objectives (Xue et al., 2024). To adapt SPREAD to this
setting, we set X = D in Algorithm 2, and use F = F̃ in Algorithms 1 and 2.

Bayesian MOO: A key constraint in multi-objective Bayesian optimization (MOBO) is the limited
evaluation budget of an expensive F, which is typically addressed by employing iteratively updated
Gaussian process surrogate models. Using simulated binary crossover (SBX) (Deb, 1995) as an
auxiliary escape mechanism to avoid local optima, together with the data extraction strategy proposed
in CDM-PSL (Li et al., 2025a), we adapt SPREAD to the MOBO setting. The procedure is described
in Appendix B (Algorithm 3), along with further details. Moreover, Algorithm 1 from the online
setting is adapted to Algorithm 4 using Gaussian processes.

5 EXPERIMENTS

5.1 ONLINE MOO SETTING

We evaluate our method on a diverse suite of problems, ranging from synthetic benchmarks (ZDT (Zit-
zler et al., 2000), DTLZ (Deb et al., 2002b)) to real-world engineering design tasks RE (Tanabe &

6
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Ishibuchi, 2020). All synthetic problems use an input dimension of d = 30. The selected real-world
tasks use d ≥ 4 with continuous decision spaces. The baselines considered are gradient-based
MOO methods for Pareto set discovery: PMGDA (Zhang et al., 2025), STCH (Lin et al., 2024),
MOO-SVGD (Liu et al., 2021), and HVGrad (Deist et al., 2021). For SPREAD, we train DiT-MOO
for 1000 epochs with early stopping after 100 epochs. We set the number of timesteps to T = 5000,
and each baseline is also run for 5000 iterations. Each method produces a set of 200 points, and the
quality of the solutions is assessed using the hypervolume (HV) indicator (Guerreiro et al., 2020).
More detailed descriptions of the experimental protocols appear in Appendix C.

Table 1: Hypervolume results averaged over 5 independent runs. The best values are bold.
HV (↑) m = 2 m = 3 m = 4

Method ZDT1 ZDT2 ZDT3 RE21 DTLZ2 DTLZ4 DTLZ7 RE33 RE34 RE37 RE41
PMGDA 5.72±0.00 6.22±0.00 5.85±0.00 48.14±0.00 22.97±0.00 19.69±0.20 17.82±0.00 43.06±0.00 210.07±0.00 1.18±0.00 901.90±3.36
MOO-SVGD 5.70±0.00 6.21±0.00 6.08±0.02 20.43±0.32 22.61±0.02 19.69±0.62 13.57±0.03 16.26±0.17 156.20±0.57 1.05±0.09 579.53±6.42
STCH 5.71±0.00 5.89±0.00 5.44±0.13 19.07±0.00 22.92±0.01 14.55±0.00 17.46±0.00 12.14±0.00 156.72±0.00 1.31±0.02 506.33±2.86
HVGrad 5.72±0.00 6.22±0.00 6.10±0.00 43.65±0.00 22.93±0.00 19.98±0.04 17.48±0.05 36.13±0.00 156.72±0.00 1.44±0.00 936.17±8.91
SPREAD 5.72±0.00 6.22±0.00 6.10±0.00 70.10±0.01 22.91±0.00 20.22±0.01 18.07±0.01 133.76±1.72 243.15±0.49 1.42±0.00 1008.75±6.30

Table 2: Results of the ∆-spread diversity measure. The best value, along with those whose mean
falls within one standard deviation of it, are shown in bold.

∆-spread (↓) m = 2 m = 3 m = 4

Method ZDT1 ZDT2 ZDT3 RE21 DTLZ2 DTLZ4 DTLZ7 RE33 RE34 RE37 RE41
PMGDA 0.42±0.17 0.23±0.01 1.57±0.02 1.53±0.00 0.66±0.02 1.71±0.07 1.02±0.08 1.11±0.00 1.46±0.00 0.59±0.01 1.46±0.01
MOO-SVGD 0.78±0.20 1.16±0.11 0.90±0.08 1.01±0.00 1.31±0.01 1.02±0.09 0.71±0.03 1.00±0.00 1.20±0.17 0.58±0.07 1.13±0.04
STCH 1.01±0.04 1.00±0.00 1.05±0.03 1.00±0.00 1.00±0.04 1.00±0.00 1.06±0.05 1.00±0.00 1.00±0.00 0.80±0.04 1.38±0.02
HVGrad 0.36±0.05 1.07±0.05 1.08±0.10 1.00±0.00 1.18±0.05 1.56±0.06 0.66±0.03 1.00±0.00 1.00±0.00 0.51±0.01 1.00±0.02
SPREAD 0.32±0.01 0.29±0.02 0.53±0.01 0.44±0.02 0.93±0.05 0.80±0.06 0.69±0.05 0.97±0.02 0.88±0.03 0.80±0.01 0.92±0.03

Table 1 reports hypervolume results for problems with two to four objectives. On the bi-objective
synthetic problems ZDT1-3, SPREAD matches the best values, while clearly outperforming the
baselines on the real-world task RE21. For three objectives, SPREAD achieves the best results
on 4 out of the 6 evaluated problems. On the four-objective problem RE41, it attains the highest
hypervolume overall. To assess the diversity of the generated solutions for each method, we evaluate
the ∆-spread measure as introduced in Deb et al. (2002a). By convention, ∆-spread is set to +∞
when the solutions collapse to a single point. As reported in Table 2, our method yields more diverse
solutions on most problems. These results indicate that SPREAD maintains superior performance as
the number of objectives increases, providing superior coverage and diversity of the Pareto front in
both synthetic and engineering benchmarks. In Appendix D (Figure 7), we show the approximate
Pareto optimal points produced by the different methods for four synthetic and four real-world
problems.

Scalability Analysis We further investigate the scalability of all methods by comparing their
computational time as the number m of objectives increases (ZDT1 with m = 2, DTLZ2 with
m = 3, and RE41 with m = 4) and as the number n of required samples grows (DTLZ4 with
n = 200, 400, 600, 800). Unlike the baselines, SPREAD requires a training phase, so we account
for both training and sampling times to ensure a fair comparison. As shown in Figure 2(a) and
Figure 2(b), PMGDA exhibits the largest growth rate in computational time with increasing m and n.
In contrast, SPREAD achieves substantially lower computational time than PMGDA, while being
moderately more costly than MOO-SVGD, HVGrad, and STH. However, as shown in Figure 2(c)
and Figure 2(d), SPREAD consistently offers superior performance in hypervolume and ∆-spread
compared to the other methods. Therefore, our method provides a favorable trade-off between
efficiency and performance.
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Figure 2: Scalability. Comparison of (a) computational time as the number of objectives increases
(ZDT1 with m = 2, DTLZ2 with m = 3, and RE41 with m = 4), and (b–d) computational time,
hypervolume, and ∆-spread, respectively, as the number of required samples increases (DTLZ4).
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Table 3: Ablation study on the diversity-promoting mechanisms in SPREAD. Best values are
highlighted in bold. For ∆-spread, any mean value within one standard deviation of the best is also
shown in bold. Worst values are shown in red, while best values are shown in blue (HV) and green
(∆-spread).

Problem SPREAD SPREAD (w/o diversity) SPREAD (w/o perturbation) SPREAD (w/o repulsion)
HV ∆-spread HV ∆-spread HV ∆-spread HV ∆-spread

ZDT1 5.72±0.00 0.32±0.01 5.06±0.00 +∞ 5.72±0.00 0.32±0.02 4.25±0.08 0.88±0.05
ZDT2 6.22±0.00 0.29±0.02 5.89±0.00 +∞ 6.22±0.00 0.28±0.02 4.40±0.14 +∞
ZDT3 6.10±0.00 0.53±0.01 5.06±0.00 0.66±0.00 6.10±0.00 0.51±0.01 4.34±0.07 0.84±0.05
RE21 70.10±0.01 0.44±0.02 70.03±0.01 0.41±0.02 69.01±0.14 0.84±0.05 70.03±0.03 0.51±0.03
DTLZ2 22.91±0.00 0.93±0.05 22.94±0.00 0.73±0.03 22.8±0.01 0.91±0.07 22.79±0.04 1.06±0.08
DTLZ4 20.22±0.01 0.80±0.06 20.36±0.01 0.89±0.11 20.01±0.02 0.89±0.2 20.34±0.02 0.97±0.15
DTLZ7 18.07±0.01 0.69±0.05 16.7±0.00 +∞ 18.05±0.01 0.80±0.03 12.84±0.33 0.87±0.04
RE33 133.76±1.72 0.97±0.02 8.72±0.65 0.99±0.00 125.06±0.46 0.97±0.04 99.89±9.7 1.04±0.17
RE34 243.15±0.49 0.88±0.03 236.86±0.94 0.97±0.03 242.47±0.22 0.99±0.02 237.34±0.77 0.82±0.05
RE37 1.42±0.00 0.80±0.01 1.32±0.00 0.98±0.03 1.42±0.00 0.75±0.03 1.40±0.00 0.79±0.05
RE41 1008.75±6.3 0.92±0.03 950.45±7.32 0.81±0.10 969.43±6.44 0.93±0.03 1011.03±7.52 0.78±0.06

Ablation Study We present in Table 3 an ablation study on the diversity-promoting mechanisms in
SPREAD. Specifically, we evaluate three variants: SPREAD(w/o diversity), with (h̃i

t)
n
i=1 = (gi

t)
n
i=1;

SPREAD(w/o repulsion), with (h̃i
t)

n
i=1 = (gi

t)
n
i=1 + γT

t δt; and SPREAD(w/o perturbation), with
(h̃i

t)
n
i=1 = (hi

t)
n
i=1. The results indicate that SPREAD(w/o diversity) and SPREAD(w/o repulsion)

tend to collapse the solutions to a single point (∆-spread = +∞). Ignoring the perturbation
(SPREAD(w/o perturbation)) has a milder impact on solution quality for some problems. However,
to maintain a good balance between convergence (HV) and Pareto front coverage (∆-spread), all
diversity-promoting mechanisms of SPREAD are important. The diversity gain observed with
SPREAD(w/o diversity) on some problems shows that the stochasticity inherent in DDPM sampling
(injected in X′

t (equation 9)) contributes to the overall diversity of SPREAD. Ablation studies on
additional hyperparameters of SPREAD, including νt, the perturbation scaling factor ρ, and the
number of blocks L, are provided in Appendix D.

5.2 OFFLINE MOO SETTING

Table 4: Offline MOO. Average rank
results (↓) per task group. Within
each group, the overall best method
is shown in bold, and the best gen-
erative approach is highlighted in
light gray .

Method Synthetic RE
D(best) 9.08 11.83
MM 5.92 3.92
MM-COM 8.00 7.42
MM-IOM 5.67 4.33
MM-ICT 6.50 3.83
MM-RoMA 6.08 7.75
MM-TriMentoring 8.17 4.58
MH 7.58 5.67
MH-PcGrad 5.75 6.92
MH-GradNorm 9.58 11.50
ParetoFlow 7.50 6.83
PGD-MOO 4.58 8.75
SPREAD 3.50 1.83

In the offline setting, we conduct our evaluation using Off-
MOO-Bench (Xue et al., 2024), a unified collection of offline
multi-objective optimization benchmarks. Each task is asso-
ciated with a dataset D and an evaluation oracle F. During
optimization, F remains inaccessible and is only used to
compute the hypervolume of the final solutions. The base-
lines comprise DNN-based approaches that employ either
Multiple Models (MM) or Multi-Head Models (MH), in con-
junction with gradient-based algorithms (GradNorm (Chen
et al., 2018), and PcGrad (Yu et al., 2020)) or model-based op-
timization methods (COM (Trabucco et al., 2021), IOM (Qi
et al., 2022), ICT (Yuan et al., 2023), RoMA (Yu et al., 2021),
and TriMentoring (Chen et al., 2023)) to refine candidate
solutions. Additionally, we evaluate the ability of the evolu-
tionary algorithms NSGA-III and MOEA/D to solve offline
MOO tasks in Appendix D (Tables 16 and 17). The most
relevant baselines for our approach are the generative meth-
ods ParetoFlow (Yuan et al., 2025b) and PGD-MOO (An-
nadani et al., 2025). ParetoFlow utilizes flow-matching mod-
els, while PGD-MOO employs a preference-guided diffusion
technique. Each algorithm is run with five different random
seeds, producing 256 solutions per seed. We evaluate two task groups, Synthetic and RE, with 12
problems in each. Following Xue et al. (2024), we rank algorithms within each task group with
respect to their hypervolumes, and use the resulting average rank (↓) as our primary comparison
metric. The average rank results are reported in Table 4, while the individual hypervolume results are
provided in Appendix D (Tables 14 and 15). Here, “D(best)” denotes the dataset’s non-dominated
points, serving as a simple baseline. Our method achieves the best average rank across both the
synthetic (3.50) and real-world (1.83) task groups, and it outperforms the other generative approaches
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Figure 3: Bayesian MOO. Log-hypervolume difference (LHD) over 20 post-initialization steps
(totaling 100 function evaluations) on nine MOBO benchmarks: Branin and Currin, ZDT1, ZDT2,
ZDT3, Penicillin Production, DTLZ2, DTLZ5, DTLZ7, and Car Side Impact (RE41).

on most problems in terms of hypervolume (see Tables 14 and 15). These results show that SPREAD
effectively leverages static datasets to generate high-quality approximate Pareto fronts without any
online queries, matching or even surpassing the performance of state-of-the-art offline multi-objective
optimization techniques.

5.3 BAYESIAN MOO SETTING

We compare our method against three groups of baselines in multi-objective Bayesian optimization:
(1) Pareto set learning–based methods (PSL-MOBO (Lin et al., 2022), SVH-PSL (Nguyen et al.,
2025)), (2) acquisition-based methods (PDBO (Ahmadianshalchi et al., 2024), qPOTS (Renganathan
& Carlson, 2023)), and (3) CDM-PSL (Li et al., 2025a), a diffusion-based generative approach. We
consider nine MOBO problems with 2 or 3 objectives, including the real-world RE41 problem (Car
Side Impact), which has 4 objectives All methods were initialized with 100 solutions and then run
for 20 iterations, selecting 5 new solutions per iteration, for a total of 100 function evaluations. We
repeat each experiment with 5 independent random seeds, and Figure 3 shows the mean and standard
deviation of the log-hypervolume difference (LHD) across the 20 post-initialization iterations. LHD
is computed at each iteration as the logarithm of the difference between the maximum reachable hy-
pervolume and the obtained hypervolume (see equation 40 in Appendix A.6). SPREAD delivers solid
performance across the benchmark suite, achieving the lowest final values in most cases. It converges
particularly rapidly on the 3-objective DTLZ2 and DTLZ5 problems and the 4-objective Car Side
Impact problem. Notably, SPREAD consistently outperforms CDM-PSL, another diffusion-based
generative method. This advantage stems from our novel conditioning strategy and our adaptive
guidance mechanism, which steers samples more accurately toward the Pareto front, yielding stronger
approximations overall. To assess the ability of both generative methods to fully solve MOBO
problems, we compare their performance without employing SBX to escape local optima (step 8,
Algorithm 3) in Appendix D (Figure 13), which demonstrates the superiority of our method.

6 CONCLUSION

We introduced SPREAD, a diffusion-based generative framework for multi-objective optimization
that refines candidate solutions through adaptive, MGD-inspired guidance and a diversity-promoting
repulsion mechanism. By integrating these components into a conditional diffusion process, SPREAD
achieves both convergence toward Pareto optimality and broad coverage of the front. Experiments on
synthetic and real-world tasks show that SPREAD consistently outperforms state-of-the-art baselines
in terms of hypervolume, diversity, and scalability, particularly in offline and Bayesian settings. A
promising direction for future work is the design of a proper constraint-handling mechanism to extend
SPREAD to multi-objective optimization problems with constraints on the decision variables.
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7 ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or applications with direct
societal risks. The experiments are conducted entirely on publicly available benchmark problems
and synthetic test functions commonly used in the multi-objective optimization community. No
new datasets are collected, and all code and experimental protocols are designed for scientific
reproducibility. We believe our contributions align with the ICLR Code of Ethics and do not raise
ethical concerns beyond standard research integrity.

8 REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure reproducibility of our results. All algorithmic details,
hyperparameter choices, and evaluation metrics are described in the main paper (Sections 4, 5)
and the appendix (Appendices A–C). Complete proofs of theoretical results are provided in Ap-
pendix A. For all baseline methods, we rely on publicly available implementations or official
repositories, as referenced in Appendix C. To facilitate full reproducibility, we provide an anony-
mous repository containing our implementation and scripts to reproduce all experimental results:
https://anonymous.4open.science/r/SPREAD-2E32.
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A ADDITIONAL PROOFS AND DETAILS

A.1 PROOF OF THEOREM 1

We recall Theorem 1.

Theorem 1. (Objective Improvement) Let X ⊂ X be a training dataset with distribution PX. Let
Ξ ∈ (0,∞)m, independent of X, and define the training label

C := F(X) + Ξ. (15)

For a conditioning value c in the support of C, denote by PX|C=c the true conditional data distribution
and by Qθ(· | c) the distribution produced by a conditional DDPM when sampling conditioned on
c. Assume the sampler approximates the true conditional training distribution in total-variation TV
distance by at most τ ∈ [0, 1):

TV
(
Qθ(· | c), PX|C=c

)
= supA |Qθ(A | c)− PX|C=c(A)| ≤ τ. (16)

Fix any initialization xT ∈ X and set c := cT = F(xT ). If cT lies in the support of C, and we draw
x0 ∼ Qθ(· | cT ), then:

P(x0 ≺ xT ) ≥ 1− τ. (17)
In other words, conditioning the reverse diffusion on F(xT ) yields, with probability at least 1− τ , a
sample that dominates xT .

Proof. We proceed in two steps.

1. Characterization of the true conditional training distribution PX|C=c.

Conditioning the training data on C forces F(X) = C− Ξ. Because each component of Ξ
is strictly positive, we have F(X) ≺ C. Formally, letting Ac := {x ∈ X : F(x) ≺ c}, we
have

PX|C=c(Ac) = 1. (18)
This means that, if we sample a point x from the training data distribution conditioned on a
label c that lies in the support of C, then the objective vector of that sample is almost surely
strictly below c component-wise (because among the data points that carry the training label
c, essentially all of them have objective values strictly below c).
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2. Transfer guarantee from the true conditional training distribution to the learned sampler via
TV.

The total-variation assumption (equation 16) says that for every measurable set A,

∣∣Qθ(A | c)− PX|C=c(A)
∣∣ ≤ τ. (19)

Simply put, when we condition on the label c, the model’s sampling probabilities are
uniformly close to the true training data probabilities, within τ , for every event we could ask
about.

Applying equation 19 with A = Ac and using equation 18 yields

Qθ(Ac | c) ≥ PX|C=c(Ac)− τ (20)

Qθ(Ac | c) ≥ 1− τ. (21)

So, if we draw x0 ∼ Qθ(· | c), then

P(F(x0) ≺ c) ≥ 1− τ (22)

Finally, assume we conditioned the sampler on c = F(xT ). Under the assumption “c = F(xT )
lies in the support of C”, all the conditional probabilities above are well-defined, and equation 22
immediately implies P(F(x0) ≺ F(xT )) ≥ 1− τ . This completes the proof.

To empirically support the dominance claim in Theorem 1, we provide a direct visualization of the
initial points and their corresponding sampled points. Since dominance can be visually verified in
two objectives, we conduct this experiment on the bi-objective problems considered in the online
setting. Figure 4 presents the results for ZDT1, ZDT2, ZDT3, and RE21. No guidance mechanism is
used so that the effect of the diffusion model alone can be clearly assessed. As shown in the plots,
the sampled points consistently dominate their initializations, providing empirical validation of the
theoretical improvement stated in Theorem 1.
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Figure 4: Empirical validation of the objective improvement guaranteed by Theorem 1. The figure
shows the movement of random initial points (blue) toward the corresponding sampled points (red)
on ZDT1, ZDT2, ZDT3 and RE21 in the online setting. Guidance is disabled so that only the effect
of the diffusion model is visualized.

A.2 PROOF OF THEOREM 2

We recall Theorem 2.

Theorem 2. Assume each objective function fj is continuously differentiable, and that νt = 0 for
all t ∈ {1, . . . , T}. Let, at reverse timestep t,

ai,j =
〈
∇fj(x

′i
t ),h

i
t

〉
, bi,j =

〈
∇fj(x

′i
t ), δt

〉
,
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with ai,j > 0 for all i = 1, . . . , n and j = 1, . . . ,m. Define

γi
t =

ρ min
j: bi,j<0

(
− ai,j

bi,j

)
, 0 < ρ < 1, if any bi,j < 0,

ζ, ζ > 0, otherwise,
(23)

where ρ controls the magnitude of the scaling parameters γi
t , and ζ denotes an arbitrary positive

scalar. Then, −h̃i
t = −

(
hi
t + γi

tδt
)

serves as a common descent direction for all objectives at x
′i
t .

Proof. For each point x
′i
t at reverse timestep t, define

ai,j =
〈
∇fj(x

′i
t ),h

i
t

〉
, and bi,j =

〈
∇fj(x

′i
t ), δt

〉
.

It suffices to prove that, for all j = 1, . . . ,m:〈
∇fj(x′i

t ), h̃
i
t

〉
> 0 (24)〈

∇fj(x′i
t ),

(
hi
t + γi

tδt
)〉

> 0 (25)

ai,j + γi
tbi,j > 0. (26)

Since νt = 0, the main direction hi
t is well aligned with the MGD direction at x

′i
t , and thus inherits

its descent property, i.e. ai,j > 0 for all j = 1, . . . ,m

• If bi,j > 0 for all j = 1, . . . ,m, then any choice of γi
t = ζ (with ζ > 0) works.

• Otherwise, if bi,j < 0 for some j ∈ {1, . . . ,m}.
For indices j with bi,j < 0, the inequality in (equation 26) is equivalent to

γi
t < −

ai,j
bi,j

. (27)

For indices j with bi,j > 0, the inequality in (equation 26) is satisfied with any γi
t > 0.

Therefore, a valid choice is

0 < γi
t = ρ min

j,bi,j<0

(
−ai,j
bi,j

)
, with 0 < ρ < 1, (28)

which ensures that the inequality in (equation 26) is satisfied for all j = 1, . . . ,m.

A.3 A DISCUSSION ON νt > 0 IN THEOREM 2

As outlined in the main text, the assumption that we turn of the diversity criterion for the Pareto set by
choosing νt = 0 in Theorem 2 is quite restrictive and limiting. It is possible to prove an alternative
version of Theorem 2 when dropping this assumption. Since this would lead to the requirement
of a sample-wise online adaptation of the penalty parameter νt as well as significant additional
computational cost, we have decided to pursue this approach in practice. However, a proof would
follow along the arguments laid out next.

First, we note that in the optimization problem in equation 13, the first term −1/n
∑n

i=1⟨gi
t,u

i⟩ can
simply be decomposed into a sample-wise formulation, where we try to align the descent direction
ui as much with the multi-objective steepest descent direction gi

t. The coupling occurs only in the
second term, where we try to diversify the directions using the repulsion term Γt from equation 12.
Setting γt = 0 thus simply leads to ui = gi

t for all samples i. Setting νt > 0 thus leads to a
divergence between the two, and we need to bound the maximum angle between ui and gi

t(x) in
order to ensure that ui remains a common descent direction for sample i. For simplicity, we are now
going to drop the indices i and t in the following.

17
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Next, following the arguments above, we need to ensure that the angle between any individual gradient
∇fj(x) and u remains sufficiently large. In Peitz & Dellnitz (2018a), an additional a-posteriori
criterion was derived for the optimization problem (4), in which the weights λ∗

j are derived that
ultimately lead to the construction g(x) =

∑m
j=1 λ

∗
j∇fj(x). To bound the angle between descent

direction g(x) and∇fj(x) from above (i.e., to make it strictly smaller than the otherwise allowed
maximum π/2 for a non-increasing direction), the corresponding weight λ∗

j has to be larger than
a lower bound λ∗

j,min that can be computed when knowing g(x) as well as all the ∇fj(x). As a
consequence, one obtains a bound of the form ∥g(x)−∇fj(x)∥2 < ϵj .

Our strategy is now to bound the second term in equation 13 from above such that the difference
between g(x) and u is smaller than the smallest difference between g(x) and ∇fj(x),

∥g(x)− u∥ ≤ max
j∈{1,...,m}

∥g(x)−∇fj(x)∥2 < ϵj .

We observe that the maximum value for Γt in equation 12 is one in the case where all samples
coincide. We thus have Γt ∈ [0, 1], and consequently (νtΓt) ∈ [0, νt]. Since the optimization
problem (13) trades between the deviation of u from g(x) and the spreading, we find that the inner
product ⟨g(x),u⟩ (and thus the angle) is also bounded.

In summary, an appropriate choice of νt leads to a maximum deviation between u and g(x). By
making sure that this deviation is smaller than the minimal angle between g(x) and ∇fj(x), descent
can be guaranteed. However, in practice this would require us to perform a costly calculation and
sample-wise adaptation of νt, which proves to be impractical. Moreover, we find that allowing a
temporary increase in favor of a better diversity is in the end beneficial for the Pareto set coverage.

A.4 EXTENDED ARCHITECTURAL DETAILS

Figure 1 shows our noise-prediction network DiT-MOO, conditioned on the objective values via
a multi-head cross-attention module (MH Cross-Attention: MHCA). The input projection, time
embedding, and condition embedding are implemented as linear layers with hidden dimension e,
while the output projection is a linear layer with input dimension e. At timestep t, let Zt ∈ Rn×1×e

(layer-normalized features from Xt) and Bt ∈ Rn×2×e (the concatenation of the condition and
time embeddings) be the inputs to MHCA. With h attention heads, where each head has dimension
dk = dv = e/h, the MHCA module computes, for each head i ∈ {1, . . . , h}:

Q(i) = ZtW
(i)
Q ∈ Rn×1×dk ,

K(i) = BtW
(i)
K ∈ Rn×2×dk ,

V(i) = BtW
(i)
V ∈ Rn×2×dv ,

where W
(i)
Q ∈ Re×dk , W(i)

K ∈ Re×dk , and W
(i)
V ∈ Re×dv are learnable projections1.

The attention weights are

A(i) = softmax

(
Q(i)(K(i))⊤√

dk

)
∈ Rn×1×2, (29)

and the head output is
O(i) = A(i)V(i) ∈ Rn×1×dv . (30)

Finally, the head outputs are concatenated and projected:

MHCA(Zt,Bt) =
(
concathi=1O

(i)
)
WO ∈ Rn×1×e, (31)

where WO ∈ Re×e is a learnable projection matrix.

For a fixed number of blocks L, the number of parameters in DiT-MOO depends on the input
dimension d and the objective space dimension m of the considered multi-objective optimization
problem. In all our experiments with SPREAD, we set L = 3, which yields a total of approximately
800k parameters (ranging from 797, 571 to 804, 894).

1Here, we use the convention that a tensor in Rn×a×b represents n matrices of size a × b, and matrix
multiplications are carried out in parallel across the batch dimension.
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A.5 ADDITIONAL METHODOLOGICAL DETAILS

Latin Hypercube Sampling (LHS) Latin hypercube sampling is a stratified sampling technique
for generating well-distributed initial points in Rd (McKay et al., 2000). Given a sample size N , the
range of each decision variable xj (j = 1, . . . , d) is partitioned into N disjoint intervals of equal
probability under the uniform distribution. One value is drawn uniformly at random from each
interval, yielding N candidate values per dimension. The values across dimensions are then randomly
permuted and paired, so that each sample xi = (xi

1, . . . , x
i
d) ∈ X ⊂ Rd contains exactly one value

from each interval of every variable. This makes LHS particularly useful for covering the decision
space uniformly with relatively few samples.

Cosine Variance Schedule The cosine variance schedule (Nichol & Dhariwal, 2021) is a technique
for defining the forward diffusion noise schedule in a smooth, non-linear fashion. Instead of linearly
increasing the variance βt over timesteps t = 1, . . . , T , the cumulative product of the noise-retention
coefficients, ᾱt =

∏t
s=1(1− βs), is parameterized using a shifted cosine function:

ᾱt =
cos2

(
t/T+s
1+s ·

π
2

)
cos2

(
s

1+s ·
π
2

) , t = 0, . . . , T, (32)

where s ≥ 0 is a small offset to avoid singularities near t = 0. The corresponding variances βt are
then recovered from ᾱt. Compared to linear schedules, the cosine schedule allocates more steps to
low-noise regions, resulting in improved sample quality and training stability in practice.

Armijo Backtracking Line Search At each timestep t of the sampling process in SPREAD, the
step size ηt is determined using the Armijo backtracking line search (Armijo, 1966). Given a search
direction h̃t(X

′
t), we start from an initial step size η = η0 and iteratively reduce it by a factor

b ∈ (0, 1) until the Armijo condition is satisfied:

F(X′
t − ηh̃t(X

′
t)) ≤ F(X′

t)− aη∇F(X′
t)

⊤h̃t(X
′
t), (33)

where a ∈ (0, 1) is a fixed parameter. This condition ensures a sufficient decrease in the objective
function while avoiding overly aggressive steps. We set a = 10−4 and b = 0.9 in our experiments.

Crowding Distance The crowding distance (Deb et al., 2002a) is a density estimator widely used
in evolutionary multi-objective optimization to preserve diversity along the Pareto front. Given a
non-dominated set S = {x1, . . . ,xn}, the crowding distance of solution xi ∈ Rd is computed by
summing the normalized objective-wise distances to its immediate neighbors. For each objective
j ∈ {1, . . . ,m}, sort the solutions by fj , and assign infinite distance to the boundary solutions. For
interior points, the contribution in objective j is

dij =
fj(x

i+1)− fj(x
i−1)

maxk fj(xk)−mink fj(xk)
. (34)

The overall crowding distance of xi is then

CD(xi) =

m∑
j=1

dij , (35)

with CD(xi) = +∞ for boundary points. Larger crowding distances indicate that a solution lies in a
less crowded region of the objective space, making it more likely to be selected.

Computational and Memory Complexity Analysis Let K be the number of gradient steps used
to solve the sub-problem in equation 13. In each reverse step of Algorithm 1, SPREAD performs
four main operations: performing a DiT-MOO denoising pass, computing the multi-gradient descent
directions, solving the diversity-regularized sub-problem, and applying the guidance update. The
denoising update uses a single forward pass through DiT-MOO, which processes each sample
independently and costs O(n(d + m)). Computing the MGD directions requires evaluating all
objective gradients∇fj(xi

t), yielding a cost of O(nmd). Solving the sub-problem in equation 13 for
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K gradient steps requires evaluating the objectives for all points, O(nmd), together with computing
the pairwise RBF-based repulsion term in objective space, O(n2m). Thus the full sub-problem costs
O(K(nmd+ n2m)). Finally, the guidance update involves only vector projections and costs O(nd).
Summing these contributions and keeping only the dominant terms, one reverse-diffusion step has
complexity

O
(
nmd+K(nmd+ n2m)

)
, (36)

and running all T steps yields the total sampling complexity

O
(
Tnmd+ TK(nmd+ n2m)

)
, (37)

which is dominated by the O(TKn2m) term when objective evaluations are inexpensive and n is
large.

The memory usage during sampling is determined by storing the n points (O(nd)), their objective
values (O(nm)), the pairwise distances required for the repulsion term (O(n2m)), and the DiT-MOO
activations (O(neL)), in addition to the model parameters. Therefore, the total memory scales as

O
(
n(d+m) + n2m+ neL+ |θ|

)
. (38)

A.6 EVALUATION METRICS

Figure 5: Hypervolume
bi-objective example, cor-
responding to the shaded
region defined by the ob-
tained solutions (red) and
the reference point (blue).

Hypervolume (HV) The hypervolume indicator measures the portion
of objective space that is weakly dominated by the approximated Pareto
front with respect to a fixed reference point (Zitzler & Thiele, 2002).
Formally, for a set of non-dominated solutions P = {xi}ni=i with
xi ∈ Rd, the hypervolume is defined as

HV(P) = Λ

a ∈ Rd | ∃ x ∈ P : a ∈
m∏
j=1

[fj(x), r]


 (39)

where r ∈ Rm is a reference point dominated by all Pareto optimal
solutions, and Λ(·) is the Lebesgue measure (see Figure 5). We report
in Appendix C, the reference points used in our experiments. The HV
is maximized when the solution set covers the Pareto front broadly
and accurately, making it a widely used indicator for comparing multi-
objective optimization methods.

Log Hypervolume Difference (LHD) The log hypervolume difference is a commonly used
indicator to assess the convergence of multi-objective Bayesian optimization methods. Let HV∗

denote the maximum reachable hypervolume (i.e., the hypervolume of the true Pareto front). At
iteration t, let Pt be the approximated Pareto front obtained by the algorithm. The LHD is then
defined as:

LHDt = log(HV∗ −HV(Pt)) . (40)
A lower LHD value indicates that the current solution set is closer to the optimal hypervolume.

∆-spread The ∆-spread (Deb et al., 2002a) evaluates the diversity of an approximated Pareto
front by comparing the spacing between consecutive solutions to the average spacing, while also
accounting for the coverage of the true extreme points. Let Y = {F(x1), . . . ,F(xn)} denote the
non-dominated solutions, sorted along a chosen objective. Define di = ∥F(xi+1)− F(xi)∥ as the
Euclidean distance between consecutive solutions, d̄ = 1

n−1

∑n−1
i=1 di as their mean, and df , dl as the

distances from the extreme solutions in Y to the true Pareto front endpoints (if available, otherwise
set to 0). The ∆-spread is given by:

∆-spread =
df + dl +

∑n−1
i=1 |di − d̄|

df + dl + (n− 1)d̄
. (41)

A lower value indicates a more uniform spread of solutions along the Pareto front. By convention,
∆-spread = +∞ if the solution set collapses to a single point.
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B SPREAD IN THE MOBO SETTING

In a MOBO framework, the true objectives are expensive to evaluate, so surrogate models (e.g.,
Gaussian processes) are trained on an initial dataset of evaluated solutions. At each iteration,
the surrogate models are updated with newly evaluated solutions, and a search strategy proposes
new candidate solutions to evaluate (Paria et al., 2020; Lin et al., 2022). This iterative cycle of
modeling, proposing, and evaluating continues until the evaluation budget is exhausted, yielding
an approximation of the Pareto front. To adapt our method to this setting, we use SPREAD as the
search strategy for proposing new candidate solutions. The full procedure is given in Algorithm 3.
Following (Li et al., 2025a), we employ simulated binary crossover (SBX) as an auxiliary operator to
escape local minima, i.e., when no improvement is observed for a fixed number of iterations. Batch
selection is then performed using the hypervolume metric, as in (Lin et al., 2022). To increase the
number of training samples per iteration k, we adopt the data augmentation strategy of (Li et al.,
2025a). Specifically, data points are first extracted from X(k) using shift-based density estimation (Li
et al., 2013). Three transformations are then applied: small random perturbations, interpolation of
randomly chosen pairs, and Gaussian noise injection. The augmented samples are shuffled, truncated
to match the target augmentation factor, and merged with the extracted points to form the enhanced
dataset used for training DiT-MOO.

Simulated Binary Crossover (SBX) Simulated Binary Crossover (SBX) (Deb, 1995) is a real-
parameter recombination operator used to generate two offspring from two parents. Given parent
vectors p1, p2 ∈ X(k) ⊂ Rd and a distribution index parameter κ > 0, SBX first samples a random
vector u ∈ [0, 1]d, then computes a spread factor τj for each j = 1, . . . , d as

τj =

{
(2uj)

1
κ+1 , uj ≤ 0.5,(

1
2(1−uj)

) 1
κ+1 , uj > 0.5.

(42)

The two offspring are then set as

offspring1j = 0.5
(
(1 + τj) p1,j + (1− τj) p2,j

)
,

offspring2j = 0.5
(
(1− τj) p1,j + (1 + τj) p2,j

)
.

(43)

A higher κ makes offspring closer to the parents (less exploratory), while lower κ allows more distant
(diverse) offspring. This operation is repeated 1000 times, and the resulting points are passed to the
batch selection step (Step 10 in Algorithm 3). In our experiments, we use κ = 15.

Algorithm 3 MOBO with SPREAD
Input: DiT-MOO as the noise prediction network ϵ̂θ(·), a black-box multi-objective function F(·) defined on X .
Parameter: initial sample size ninit, number of iterations K, batch size b, a boolean flag escape (initialized
to False).
Output: approximate Pareto optimal points.

1: Get the initial solutions {x(0)i}ninit
i=1 = X(0) via LHS, and evaluate Y(0) = F(X(0)).

2: for k = 0 to K − 1 do
3: Train Gaussian-Process surrogates {gpk

j }mj=1 using {X(k),Y(k)}.
4: X

(k)
train ← Get training data for DiT-MOO using {X(k),Y(k)} as in CDM-PSL (Li et al., 2025a)

(Appendix B)
5: if escape is False then
6: S← Generate offspring with SPREAD via Algorithm 4).
7: else
8: S← Apply SBX to escape local-optima (Appendix B).
9: end if

10: X
(k)
new ← Batch selection: select the top-b solutions from S based on their hypervolume contributions.

11: Y(k+1) ← Y(k) ∪ F(X
(k)
new)

12: X(k+1) ← X(k) ∪ X
(k)
new

13: Decide whether to invert escape based on the latest hypervolume values.
14: end for
Return: XK
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Algorithm 4 Offspring generation with SPREAD (MOBO setting)
Input: DiT-MOO as the noise prediction network ϵ̂θ(·), a black-box multi-objective function F(·) defined on
X , a training dataset X(k)

train, Gaussian-Process surrogates (gpk
j )

m
j=1 = GP.

Parameter: epochs E, timesteps T , number of generation Ngen, required offspring size n.
Output: offspring S generated by SPREAD.

1: Train ϵ̂θ(·) for E epochs on X
(k)
train via Algorithm 2 using GP instead of F.

2: S← ∅
3: for i = 1 to Ngen do
4: Initialize n random points XT = {xi

T }ni=1 ⊂ X
5: PT ← XT

6: for t = T to 1 do
7: (gi

t)
n
i=1← Get the MGD directions via Section 3.3 using GP instead of F.

8: (hi
t)

n
i=1← Get the main directions via equation 13 using GP instead of F.

9: (h̃i
t)

n
i=1 ← Get the guidance directions via equation 10.

10: Xt−1 ←− Get the denoised points via equation 9.
11: Pt−1 ← Use crowding distance (Appendix A.5) to get the top-n non-dominated points

from Xt−1 ∪ Pt.
12: end for
13: S ← S ∪ {P0}
14: end for
Return: S

C IMPLEMENTATION DETAILS

In this section, we provide further details about the experimental settings. For each training batch
X = {xi}Nb

i=1, we set Ξ = ω · 1m, where 1m denotes the m-dimensional vector of ones. The value
of ω is determined as

ω =

{
min{F(xi) | xi ∈ X, F(xi) > 0}, if this set is nonempty,

10−6, otherwise.

In all experiments, we fix the number of DiT blocks to L = 3. DiT-MOO is trained for a maximum
of 1000 epochs with early stopping after 100 epochs, except in the Bayesian MOO setting, where a
maximum of 250 epochs is used. The number of solutions produced by all methods is 200 in the main
experiments and 256 in the offline setting. For the Bayesian MOO setting, 5 solutions are selected at
each of the 20 steps. We consider T = 5000 timesteps for the main experiments, and 1000 and 25
timesteps for the offline and Bayesian settings, respectively. At each timestep, we solve for the main
directions (hi

t)
n
i=1 using gradient descent with 10 iterations and a fixed νt = 10. In the repulsion

function, the length scale σ is set adaptively from the pairwise squared distances as

2σ2 = 5 · 10−6 ×
median

(
{∥Fi − Fj∥2 : 1 ≤ i, j ≤ n}

)
log n

, (44)

where Fi ∈ Rm are the objective vectors in the batch of samples and n is the number of samples.2 In
all experiments, we use fixed values of ρ determined solely by the number of objectives and, in a few
cases, by the specific problem instance:

• Online setting:
– m = 2 : ρ = 0.9

– m > 2 : ρ = 0.001

• Offline setting:
– m = 2 : ρ = 0.9, except for ZDT4(ρ = 0.0001), and ZDT6(ρ = 0.1).
– m > 2: ρ = 0.001, except for DTLZ4, and DTLZ6: ρ = 0.0001.

• Bayesian setting:
– m = 2 : ρ = 0.9

2In implementation, we follow a PyTorch workaround from Liu et al. (2021) to simulate NumPy’s median.
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– m > 2 : ρ = 0.01

We determined the default ρ values from a few preliminary checks and used them unchanged
throughout our experiments. We did not conduct any extensive hyperparameter search. While
Figure 10 shows that SPREAD’s performance varies across a wide range of ρ values, the relative
ordering with respect to the baselines remains stable: even with non-optimal choices of ρ, SPREAD
does not exhibit any drastic performance degradation relative to the competing methods. For
new problems, we recommend using the default values, which depend only on the number of
objectives. In the main experiments, we use the implementations provided by the PyTorch library
LibMOON (Zhang et al., 2024a)3 for HVGrad, PMGDA, and STH. For MOO-SVGD, we rely on
the authors’ official code.4 In the offline setting, implementation and evaluation protocols follow
Off-MOO-Bench (Xue et al., 2024), and we adopt baseline results from Annadani et al. (2025).
Five independent seeds (1000, 2000, . . . , 5000) are used, and we report mean and standard deviation
across runs. The same seeds are used across all experiments in all settings, and for ablation studies
where mean and standard deviation are not reported, we fix the seed to 1000. In the Bayesian
MOO setting, we use the publicly available codes provided by the respective authors. We report in
Tables 5, 6, 7 and 8 detailed information about the synthetic and real-world problems considered
across the different settings. The experiments were run on a single NVIDIA A100-SXM4-40GB
GPU. To facilitate reproducibility, our code is available at the following anonymous repository:
https://anonymous.4open.science/r/SPREAD-2E32.

Table 5: Benchmark problems. Problem settings and reference points in the main experiments.

Name d m Type Pareto Front Shape Reference Point for Hypervolume Computation

ZDT1 30 2 Continuous Convex (0.9994, 6.0576)
ZDT2 30 2 Continuous Concave (0.9994, 6.8960)
ZDT3 30 2 Continuous Disconnected (0.9994, 6.0571)
DTLZ2 30 3 Continuous Concave (2.8390, 2.9011, 2.8575)
DTLZ4 30 3 Continuous Concave (3.2675, 2.6443, 2.4263)
DTLZ7 30 3 Continuous Disconnected (0.9984, 0.9961, 22.8114)
RE21 (Four bar truss design) 4 2 Continuous Convex (3144.44, 0.05)
RE33 (Disc brake design) 4 3 Continuous Unknown (5.01, 9.84, 4.30)
RE34 (Vehicle crashworthiness design) 5 3 Continuous Unknown (1.86472022e+03, 1.18199394e+01, 2.90399938e-01)
RE37 (Rocket injector design) 4 3 Continuous Unknown (1.1022, 1.20726899, 1.20318656)
RE41 (Car side impact design) 7 4 Continuous Unknown (47.04480682, 4.86997366, 14.40049127, 10.3941957)

Table 6: Offline MOO benchmarks: task properties.

Task Name Dataset size Dimensions # Objectives Search space

Synthetic Function 60000 7-30 2-3 Continuous
Real-world Application 60000 3-7 2-6 Continuous, Integer & Mixed

D ADDITIONAL RESULTS

MGD+RBF Baseline and Guidance Ablation Experiments We present experiments using the
straightforward MGD+RBF baseline, as well as an ablation of SPREAD without any guidance
mechanism. For MGD+RBF, we apply the second update of equation 9 for T iterations (using the
same T as in the main experiments) to refine random initializations, without using any diffusion
model. For the SPREAD ablation without guidance, we discard the second update of equation 9
and rely solely on the reverse-diffusion update (the first update of equation 9). As shown in Table 9,
SPREAD consistently dominates both baselines in the online setting. In the offline setting (Table 10),
SPREAD(w/o guidance) achieves the best performance on many DTLZ problems, while SPREAD
surpasses both baselines on most ZDT and RE problems; MGD+RBF, however, shows strong
performance on the RE61 task. In the MOBO setting, Figure 6 demonstrates that SPREAD and
SPREAD(w/o guidance) both outperform MGD+RBF on most tasks, with SPREAD performing best
overall. These results indicate that both diffusion and guidance are essential components contributing
to the strong performance of SPREAD.

3https://github.com/xzhang2523/libmoon
4https://github.com/gnobitab/MultiObjectiveSampling
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Table 7: Offline MOO benchmarks: problem settings and reference points.

Name d m Type Pareto Front Shape Reference Point for Hypervolume Computation

ZDT1 30 2 Continuous Convex (1.10, 8.58)
ZDT2 30 2 Continuous Concave (1.10, 9.59)
ZDT3 30 2 Continuous Disconnected (1.10, 8.74)
ZDT4 10 2 Continuous Convex (1.10, 300.42)
ZDT6 10 2 Continuous Concave (1.07, 10.27)
DTLZ1 7 3 Continuous Linear (558.21, 552.30, 568.36)
DTLZ2 10 3 Continuous Concave (2.77, 2.78, 2.93)
DTLZ3 10 3 Continuous Concave (1703.72, 1605.54, 1670.48)
DTLZ4 10 3 Continuous Concave (3.03, 2.83, 2.78)
DTLZ5 10 3 Continuous Concave (2d) (2.65, 2.61, 2.70)
DTLZ6 10 3 Continuous Concave (2d) (9.80, 9.78, 9.78)
DTLZ7 10 3 Continuous Disconnected (1.10, 1.10, 33.43)
RE21 (Four bar truss design) 4 2 Continuous Convex (3144.44, 0.05)
RE22 (Reinforced concrete beam design) 3 2 Mixed Mixed (829.08, 2407217.25)
RE25 (Coil compression spring design) 3 2 Mixed Mixed, Disconnected (124.79, 10038735.00)
RE31 (Two bar truss design) 3 3 Continuous Unknown (808.85, 6893375.82, 6793450.00)
RE32 (Welded beam design) 4 3 Continuous Unknown (290.66, 16552.46, 388265024.00)
RE33 (Disc brake design) 4 3 Continuous Unknown (8.01, 8.84, 2343.30)
RE35 (Speed reducer design) 7 3 Mixed Unknown (7050.79, 1696.67, 397.83)
RE36 (Gear train design) 4 3 Integer Concave, Disconnected (10.21, 60.00 , 0.97)
RE37 (Rocket injector design) 4 3 Continuous Unknown (0.99, 0.96, 0.99)
RE41 (Car side impact design) 7 4 Continuous Unknown (42.65, 4.43, 13.08, 13.45)
RE42 (Conceptual marine design) 6 4 Continuous Unknown (-26.39, 19904.90, 28546.79, 14.98)
RE61 (Water resource planning) 3 6 Continuous Unknown (83060.03, 1350.00, 2853469.06,16027067.60, 357719.74, 99660.36)

Table 8: Bayesian MOO benchmarks: problem settings and reference points.

Name d m Type Pareto Front Shape Reference Point for Hypervolume Computation

ZDT1 20 2 Continuous Convex (0.9994, 6.0576)
ZDT2 20 2 Continuous Concave (0.9994, 6.8960)
ZDT3 20 2 Continuous Disconnected (0.9994, 6.0571)
DTLZ2 20 3 Continuous Concave (2.8390, 2.9011, 2.8575)
DTLZ5 20 3 Continuous Concave (2.6672, 2.8009, 2.8575)
DTLZ7 20 3 Continuous Disconnected (0.9984, 0.9961, 22.8114)
Branin and Currin 2 2 Continuous Convex (18.0, 6.0)
Penicillin Production 7 3 Continuous Unknown (1.8500, 86.9300, 514.7000)
Car Side Impact (RE41) 7 4 Continuous Unknown (45.4872, 4.5114, 13.3394, 10.3942)

Table 9: (Online) MGD+RBF baseline and ablation study without guidance. The random seed is
fixed to 1000, and the best results are highlighted in bold.

Problem SPREAD MGD+RBF SPREAD (w/o guidance)
HV ∆-spread HV ∆-spread HV ∆-spread

ZDT1 5.72 0.32 5.06 1.00 4.08 0.84
ZDT2 6.22 0.30 5.89 1.00 4.00 0.85
ZDT3 6.10 0.53 5.06 1.00 4.18 0.86
RE21 70.11 0.41 32.84 1.00 70.05 0.45
DTLZ2 22.92 0.92 0.00 1.63 22.25 0.94
DTLZ4 20.22 0.76 18.84 1.14 17.88 1.37
DTLZ7 18.08 0.61 16.72 1.00 11.88 0.74
RE33 135.26 0.97 119.22 1.11 0.00 1.00
RE34 242.69 0.93 210.07 1.14 237.07 0.78
RE37 1.42 0.81 0.23 1.70 1.37 0.87
RE41 1005.08 0.88 382.80 1.28 860.07 0.94

Table 10: (Offline) MGD+RBF baseline and ablation study without guidance. The random seed is
fixed to 1000, and the best results are highlighted in bold.

Method ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7
SPREAD 4.91 6.52 5.75 4.78 4.47 11.72 13.21 10.21 30.26 10.85 8.56 11.35
MGD+RBF 0.00 4.64 4.97 5.27 4.39 10.17 12.83 10.26 35.38 10.79 10.92 11.23
SPREAD (w/o guidance) 4.68 6.16 5.48 3.30 3.86 11.95 13.57 10.61 35.38 11.98 9.37 11.04

Method RE21 RE22 RE25 RE31 RE32 RE33 RE35 RE36 RE37 RE41 RE42 RE61
SPREAD 4.83 5.18 5.33 11.87 11.34 13.50 10.82 10.03 8.39 23.16 22.87 201.43
MGD+RBF 3.01 4.84 4.89 11.44 11.38 8.87 10.53 6.54 6.78 13.56 19.21 2004.69
SPREAD (w/o guidance) 4.79 5.14 5.24 11.87 11.17 12.72 10.85 10.13 8.51 21.34 22.40 314.52
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Figure 6: (Bayesian) MGD+RBF baseline and ablation study without guidance. The random seed is
fixed to 1000.

Approximate Pareto Fronts To provide a complete view of the results in Tables 1 and 2, Figure 7
illustrates the approximate Pareto optimal points obtained by the different methods on four synthetic
and four real-world problems. SPREAD provides broader coverage of the Pareto fronts, particularly
on the real-world problems.

Runtime Scaling with Decision-Space Dimensionality. To analyze the runtime scaling with
decision space dimensionality, we perform an ablation study on DTLZ4 in the online setting for
(d = 10, 20, 30, 40). As shown in Figure 8, the computational cost of SPREAD remains lower than
that of PMGDA and higher than that of the other baselines. However, SPREAD delivers better
hypervolume and ∆-spread performance than all baselines as the number of decision variables
increases.

Ablation Study on νt To assess the impact of the parameter νt (equation 13) on the performance
of SPREAD, we conduct an ablation study with values ranging from 0 to 100. As shown in Figure 9,
setting νt = 0 provides a poor trade-off between convergence and diversity. In the bi-objective ZDT2
problem, a lower positive value (νt = 0.5) yields both better convergence and good diversity, while
in the 4-objective RE41 problem, a higher value (νt = 50) achieves a more favorable balance. For the
3-objective DTLZ4 problem, smaller values of νt improve diversity at the expense of convergence,
whereas larger values reduce diversity but improve hypervolume. Overall, νt is a key parameter for
balancing convergence and diversity in SPREAD, with moderate positive values typically yielding
the best performance. In our experiments, we set νt = 10

Ablation Study on ρ The adaptive perturbation added to the main direction in equation 14 is scaled
by 0 < ρ < 1, which controls its magnitude. We evaluate its effect on SPREAD’s performance in
Figure 10. The results suggest that when the number of objectives is small (e.g., m = 2), lower
values of ρ yield good performance, whereas problems with more objectives benefit from moderate
or larger values of ρ.

Ablation Study on the Number of Blocks L Figure 11 shows the performance of SPREAD as the
number of blocks increases on ZDT2 (m = 2), DTLZ4 (m = 3), and RE41 (m = 4). The results
indicate that a larger number of blocks does not necessarily improve performance, even on problems
with more objectives, compared to moderate values such as L = 2.

Effect of the Number of Main-Direction Optimization Steps. We performed an ablation on the
number of main direction optimization steps (5, 10, 25, 50) on ZDT2, DTLZ4, and RE41. The results
are shown in Figure 12. The runtime plot shows that increasing the number of inner steps increases
the cost linearly, but the cost remains modest compared to a full DDPM denoising pass. Regarding
performance, the hypervolume and ∆-spread curves do not show a consistent monotonic trend across
problems: on RE41, performance improves with more steps, while on DTLZ4, the best values appear
at smaller step counts. Importantly, all curves remain within a comparable range across the tested step
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Figure 7: Approximate Pareto optimal points for multiple benchmark problems. Solutions from
5 independent runs are merged, and the non-dominated points are shown.

counts. These observations suggest that using a small fixed number of steps (e.g., 5− 25) is practical
and that the method does not appear particularly sensitive to full convergence of the inner update.
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Figure 8: Computational time, hypervolume, and ∆-spread, respectively, as the decision-space
dimensionality increases (DTLZ4).
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Figure 9: Ablation study on νt, evaluated on ZDT2 (m = 2), DTLZ4 (m = 3), and RE41 (m = 4).
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Figure 10: Ablation study on the perturbation scaling factor ρ, evaluated on ZDT2 (m = 2), DTLZ4
(m = 3), and RE41 (m = 4).

Ablation with explicit shift conditioning. In Table 11, we report the ablation results for explicit
shift conditioning in the online setting. For each training sample xi, the condition is defined as
c = (F(xi),Ξ), instead of the implicit form c = F(xi) + Ξ. This requires embedding F(xi)
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Figure 11: Ablation study on the number of blocks L ∈ {1, 2, . . . , 5} in DiT-MOO, evaluated on
ZDT2 (m = 2), DTLZ4 (m = 3), and RE41 (m = 4).
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Figure 12: Ablation study on the number of optimization steps in equation 13, evaluated on ZDT2
(m = 2), DTLZ4 (m = 3), and RE41 (m = 4).

and Ξ separately and concatenating their embeddings with the time embedding. Consequently, the
conditioning input to the multi-head cross-attention module has shape (n, 3, e), while the output
retains the shape (n, 1, e) as in Figure 1. During sampling, we set the condition to c = (F(xi), 0).
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Overall, the results indicate that the implicit shift conditioning used in SPREAD slightly outperforms
explicit shift conditioning in terms of hypervolume on most problems, with the difference being
especially notable on the 4-objective RE41 problem. Explicit conditioning, however, improves
solution diversity on the ZDT problems and achieves higher hypervolume on RE33 and RE34.
Nevertheless, the theoretical improvement guarantee established for implicit shift conditioning in
Theorem 1 does not directly carry over to the explicit variant.

Table 11: Ablation study with explicit shift conditioning. The random seed is fixed to 1000, and the
best results are highlighted in bold.

Problem SPREAD SPREAD (explicit)
HV ∆-spread HV ∆-spread

ZDT1 5.72 0.32 5.72 0.29
ZDT2 6.22 0.30 6.22 0.28
ZDT3 6.10 0.53 6.10 0.50
RE21 70.11 0.41 70.10 0.43
DTLZ2 22.92 0.92 22.91 0.94
DTLZ4 20.22 0.76 20.22 0.76
DTLZ7 18.08 0.61 18.07 0.69
RE33 135.26 0.97 135.29 1.03
RE34 242.69 0.93 242.91 0.84
RE37 1.42 0.81 1.42 0.73
RE41 1005.08 0.88 968.46 0.99

Training Cost and Feasibility of Transfer Learning Across Related Problems. We acknowledge
that training a separate diffusion model for each problem introduces additional computational over-
head. However, when multiple problems share the same decision space and number of objectives,
transfer learning becomes feasible and can substantially reduce the training effort in both online and
offline settings. In this experiment, we perform transfer learning by training a single diffusion model
on groups of related problems. Two groups are considered in both the online and offline settings:

• Online setting: (ZDT1-3) and (DTLZ2, DTLZ4, DTLZ7)

• Offline setting: (ZDT1-3) and (DTLZ2-7)

Tables 12 and 13 present the results. In the online setting, transfer learning achieves performance
comparable to training individual models, with only one exception (DTLZ2) where the hypervolume
is slightly lower. In the offline setting, transfer learning even improves performance on most problems.
Overall, these experiments suggest that transfer learning is a practical strategy for reducing training
cost with minimal risk of performance degradation.

Table 12: (Online) Transfer learning results. The random seed is fixed to 1000, and the best results
are highlighted in bold.

Problem SPREAD SPREAD (transfer)
HV ∆-spread HV ∆-spread

ZDT1 5.72 0.32 5.72 0.32
ZDT2 6.22 0.30 6.22 0.29
ZDT3 6.10 0.53 6.10 0.53
DTLZ2 22.92 0.92 22.91 0.90
DTLZ4 20.22 0.76 20.22 0.79
DTLZ7 18.08 0.61 18.08 0.70

Table 13: (Offline) Transfer learning results. The random seed is fixed to 1000, and the best results
are highlighted in bold.

Method ZDT1 ZDT2 ZDT3 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7
SPREAD 4.91 6.52 5.75 13.21 10.21 30.26 10.85 8.56 11.35
SPREAD (transfer) 4.91 6.52 5.85 13.17 10.22 31.09 10.85 9.70 11.35
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Table 14: (Offline) Hypervolume results of synthetic functions averaged over 5 independent runs.

HV (↑) m = 2 m = 3

Method ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7
D(best) 4.17 4.67 5.15 5.45 4.61 10.60 9.91 10.00 10.76 9.35 8.88 8.56
MM 4.81 ± 0.02 5.57 ± 0.07 5.48 ± 0.21 5.03 ± 0.19 4.78 ± 0.01 10.64 ± 0.01 9.03 ± 0.80 10.58 ± 0.03 7.66 ± 1.30 7.65 ± 1.39 9.58 ± 0.31 10.61 ± 0.16
MM-COM 4.52 ± 0.02 4.99 ± 0.12 5.49 ± 0.07 5.10 ± 0.08 4.41 ± 0.21 10.64 ± 0.01 8.99 ± 0.97 10.27 ± 0.37 9.72 ± 0.39 9.44 ± 0.41 9.37 ± 0.35 10.09 ± 0.36
MM-IOM 4.68 ± 0.12 5.45 ± 0.11 5.61 ± 0.06 4.99 ± 0.21 4.75 ± 0.01 10.64 ± 0.01 10.10 ± 0.27 10.24 ± 0.13 10.03 ± 0.53 9.77 ± 0.18 9.30 ± 0.31 10.60 ± 0.05
MM-ICT 4.82 ± 0.01 5.58 ± 0.01 5.59 ± 0.06 4.63 ± 0.43 4.75 ± 0.01 10.64 ± 0.01 8.68 ± 0.88 10.25 ± 0.42 10.33 ± 0.24 9.25 ± 0.28 9.10 ± 1.16 10.29 ± 0.05
MM-RoMA 4.84 ± 0.01 5.43 ± 0.35 5.89 ± 0.04 4.13 ± 0.11 1.71 ± 0.10 10.64 ± 0.01 10.04 ± 0.05 10.61 ± 0.03 9.25 ± 0.11 8.71 ± 0.47 9.84 ± 0.25 10.53 ± 0.04
MM-TriMentoring 4.64 ± 0.10 5.22 ± 0.11 5.16 ± 0.04 5.12 ± 0.12 2.61 ± 0.01 10.64 ± 0.01 9.39 ± 0.35 10.48 ± 0.12 10.21 ± 0.06 7.69 ± 1.03 9.00 ± 0.48 10.12 ± 0.09
MH 4.80 ± 0.03 5.57 ± 0.07 5.58 ± 0.20 4.59 ± 0.26 4.78 ± 0.01 10.51 ± 0.23 9.03 ± 0.56 10.48 ± 0.23 6.73 ± 1.40 8.41 ± 0.15 8.72 ± 1.07 10.66 ± 0.09
MH-PcGrad 4.84 ± 0.01 5.55 ± 0.11 5.51 ± 0.03 3.68 ± 0.70 4.67 ± 0.10 10.64 ± 0.01 9.64 ± 0.33 10.55 ± 0.12 9.95 ± 1.93 9.02 ± 0.24 9.90 ± 0.25 10.61 ± 0.03
MH-GradNorm 4.63 ± 0.15 5.37 ± 0.17 5.54 ± 0.20 3.28 ± 0.90 3.81 ± 1.20 10.64 ± 0.01 8.86 ± 1.27 10.26 ± 0.28 7.45 ± 0.75 7.87 ± 1.06 8.16 ± 2.21 10.31 ± 0.22
ParetoFlow 4.23 ± 0.04 5.65 ± 0.11 5.29 ± 0.14 5.00 ± 0.22 4.48 ± 0.11 10.60 ± 0.02 10.13 ± 0.16 10.41 ± 0.09 10.29 ± 0.17 9.65 ± 0.23 9.25 ± 0.43 8.94 ± 0.18
PGD-MOO 4.41 ± 0.08 5.33 ± 0.05 5.54 ± 0.10 5.02 ± 0.03 4.82 ± 0.01 10.65 ± 0.01 10.55 ± 0.01 10.63 ± 0.01 10.64 ± 0.01 10.06 ± 0.02 10.14 ± 0.01 9.70 ± 0.18
SPREAD 4.89 ± 0.02 6.52 ± 0.00 5.82 ± 0.04 4.90 ± 0.13 4.51± 0.04 11.46 ± 0.13 13.27 ± 0.02 10.23 ± 0.01 31.19 ± 1.10 10.85 ± 0.00 9.56 ± 0.42 11.35 ± 0.00

Table 15: (Offline) Hypervolume results of real-world tasks averaged over 5 independent runs.

HV (↑) m = 2 m = 3 m = 4 m = 6
Method RE21 RE22 RE25 RE31 RE32 RE33 RE35 RE36 RE37 RE41 RE42 RE61
D(best) 4.10 4.78 4.79 10.6 10.56 10.56 10.08 7.61 5.57 18.27 14.52 97.49
MM 4.60 ± 0.00 4.84 ± 0.00 4.63 ± 0.25 10.65 ± 0.00 10.62 ± 0.02 10.62 ± 0.00 10.55 ± 0.01 10.24 ± 0.03 6.73 ± 0.03 20.77 ± 0.08 22.59 ± 0.11 108.96 ± 0.06
MM-COM 4.38 ± 0.09 4.84 ± 0.00 4.83 ± 0.01 10.64 ± 0.01 10.64 ± 0.01 10.61 ± 0.00 10.55 ± 0.02 9.82 ± 0.35 6.35 ± 0.10 20.37 ± 0.06 17.44 ± 0.71 107.99 ± 0.48
MM-IOM 4.58 ± 0.02 4.84 ± 0.00 4.83 ± 0.01 10.65 ± 0.00 10.65 ± 0.00 10.62 ± 0.00 10.57 ± 0.01 10.29 ± 0.04 6.71 ± 0.02 20.66 ± 0.05 22.43 ± 0.10 107.71 ± 0.50
MM-ICT 4.60 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 10.65 ± 0.00 10.64 ± 0.00 10.62 ± 0.00 10.50 ± 0.01 10.29 ± 0.03 6.73 ± 0.00 20.58 ± 0.04 22.27 ± 0.15 108.68 ± 0.27
MM-RoMA 4.57 ± 0.00 4.61 ± 0.51 4.83 ± 0.01 10.64 ± 0.01 10.64 ± 0.00 10.58 ± 0.03 10.53 ± 0.03 9.72 ± 0.28 6.67 ± 0.02 20.39 ± 0.09 21.41 ± 0.37 108.47 ± 0.28
MM-TriMentoring 4.60 ± 0.00 4.84 ± 0.00 4.84 ± 0.00 10.65 ± 0.00 10.62 ± 0.01 10.60 ± 0.01 10.59 ± 0.00 9.64 ± 1.42 6.73 ± 0.01 20.68 ± 0.04 21.60 ± 0.19 108.61 ± 0.29
MH 4.60 ± 0.00 4.84 ± 0.00 4.74 ± 0.20 10.65 ± 0.00 10.60 ± 0.05 10.62 ± 0.00 10.49 ± 0.07 10.23 ± 0.03 6.67 ± 0.05 20.62 ± 0.11 22.38 ± 0.35 108.92 ± 0.22
MH-PcGrad 4.59 ± 0.01 4.73 ± 0.36 4.78 ± 0.14 10.64 ± 0.01 10.63 ± 0.01 10.59 ± 0.03 10.51 ± 0.05 10.17 ± 0.08 6.68 ± 0.06 20.66 ± 0.10 22.57 ± 0.26 108.54 ± 0.23
MH-GradNorm 4.28 ± 0.39 4.70 ± 0.44 4.52 ± 0.50 10.60 ± 0.10 10.54 ± 0.15 10.03 ± 1.50 9.76 ± 1.30 9.67 ± 0.43 5.67 ± 1.41 17.06 ± 3.82 18.77 ± 2.99 108.01 ± 1.00
ParetoFlow 4.20 ± 0.17 4.86 ± 0.01 4.84 ± 0.00 10.66 ± 0.12 10.61 ± 0.00 10.75 ± 0.20 11.12 ± 0.02 8.42 ± 0.35 6.55 ± 0.59 19.41 ± 0.92 20.35 ± 5.31 107.10 ± 6.96
PGD-MOO 4.46 ± 0.03 4.84 ± 0.00 4.84 ± 0.00 10.60 ± 0.01 10.65 ± 0.00 10.51 ± 0.04 10.32 ± 0.10 9.37 ± 0.17 6.13 ± 0.12 19.31 ± 0.46 19.01 ± 0.68 105.02 ± 1.14
SPREAD 4.83 ± 0.00 5.18 ± 0.00 5.33 ± 0.06 11.87 ± 0.00 11.27 ± 0.17 13.50 ± 0.02 10.78 ± 0.03 9.55 ± 0.24 8.37 ± 0.06 22.29 ± 0.26 23.18 ± 0.96 251.81 ± 49.97

Table 16: (Offline: comparison with evolutionary algorithms) Hypervolume results of synthetic
functions. Best values are highlighted in bold.

HV (↑) m = 2 m = 3

Method ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7
NSGA-III 4.85 ± 0.00 5.70 ± 0.00 5.68 ± 0.02 4.50 ± 0.05 4.76 ± 0.01 10.65 ± 0.00 7.88 ± 1.07 10.56 ± 0.08 7.01 ± 0.12 8.98 ± 0.13 9.36 ± 0.32 10.79 ± 0.00
MOEA/D 4.85 ± 0.00 5.69 ± 0.00 5.65 ± 0.06 4.38 ± 0.16 4.79 ± 0.00 10.17 ± 0.42 7.00 ± 0.49 9.82 ± 0.33 7.94 ± 0.80 7.30 ± 0.88 6.34 ± 0.33 10.43 ± 0.00
SPREAD 4.89 ± 0.02 6.52 ± 0.00 5.82 ± 0.04 4.90 ± 0.13 4.51± 0.04 11.46 ± 0.13 13.27 ± 0.02 10.23 ± 0.01 31.19 ± 1.10 10.85 ± 0.00 9.56 ± 0.42 11.35 ± 0.00

Table 17: (Offline: comparison with evolutionary algorithms) Hypervolume results of real-world
tasks. Best values are highlighted in bold.

HV (↑) m = 2 m = 3 m = 4 m = 6

Method RE21 RE22 RE25 RE31 RE32 RE33 RE35 RE36 RE37 RE41 RE42 RE61
NSGA-III 4.57 ± 0.00 4.84 ± 0.00 4.35 ± 0.00 10.65 ± 0.00 10.63 ± 0.01 10.61 ± 0.01 10.49 ± 0.00 9.98 ± 0.07 6.69 ± 0.01 20.77 ± 0.01 22.30 ± 0.19 108.94 ± 0.10
MOEA/D 4.57 ± 0.00 4.84 ± 0.00 4.35 ± 0.00 10.25 ± 0.04 10.63 ± 0.00 10.58 ± 0.01 10.35 ± 0.10 9.83 ± 0.08 6.66 ± 0.00 21.09 ± 0.00 22.09 ± 0.01 NA
SPREAD 4.83 ± 0.00 5.18 ± 0.00 5.33 ± 0.06 11.87 ± 0.00 11.27 ± 0.17 13.50 ± 0.02 10.78 ± 0.03 9.55 ± 0.24 8.37 ± 0.06 22.29 ± 0.26 23.18 ± 0.96 251.81 ± 49.97

Hypervolume Results in the Offline Setting As mentioned in Section 5.2, Table 4 reports the
average rank results. For reference, we provide here the corresponding individual hypervolume
results: Table 14 summarizes the results for synthetic problems, while Table 15 reports the results
for real-world tasks. For each problem, the overall best method is shown in bold, and the best
generative approach is highlighted in light gray . In addition, we evaluate the ability of the well-
known evolutionary algorithms NSGA-III and MOEA/D, originally designed for the online setting,
on offline MOO tasks. We use the pymoo (Blank & Deb, 2020) implementation, with the evaluation
adapted to rely on pretrained proxy models instead of the true objective functions. The label “NA”
denotes runs that failed due to memory exhaustion when handling many objectives. As shown in
Tables 16 and 17, these algorithms struggle to adapt to the offline setting, indicating that state-of-the-
art online MOO methods are not necessarily suitable for resource-constrained domains. By contrast,
our SPREAD framework provides this flexibility.

Ablation Study in the MOBO Setting Figure 13 complements the results in Section 5.3 by
comparing the SPREAD and CDM-PSL generative methods without SBX (step 8, Algorithm 3).
The figure highlights that SPREAD achieves superior performance compared to CDM-PSL under
this setting. Interestingly, on the 4-objective Car Side Impact problem, SPREAD achieves a better
convergence rate without SBX than with it.

Many-Objective Experiments (m = 10). We consider the DTLZ problem family (online set-
ting), which is flexible with respect to the number of objectives. Since HVGrad is a hypervolume-
maximization method, it cannot be applied in this setting because hypervolume computation becomes
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Figure 13: (Bayesian) Ablation study on the local-optima escaping technique at step 8 of Algorithm 3.
SPREAD is compared against CDM-PSL, where variants without step 8 are marked with an asterisk
(*).

prohibitively expensive in many-objective optimization, and we were therefore unable to run HVGrad.
We therefore exclude it from this experiment. To evaluate performance, we use an approximate hyper-
volume calculation based on the hvwfg(Walking Fish Group algorithm (While & Bradstreet, 2012))
implementation from the pygmo library (Biscani & Izzo, 2020). As shown in Figure 14, SPREAD
outperforms the remaining three baselines on DTLZ4 and DTLZ7, while PMGDA achieves the best
performance on DTLZ2. Overall, these results demonstrate that SPREAD remains competitive in the
many-objective setting and scales favorably to higher numbers of objectives.
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Figure 14: Performance comparison for many-objective DTLZ problems with m = 10. We report
hypervolume (higher is better) and ∆-spread (lower is better). The random seed is fixed to 1000.

E EXTENDED RELATED WORK

To complement the discussion in Section 2, we provide a broader overview of related work, ranging
from diffusion-based approaches for single-objective black-box optimization (BBO) to surrogate-
assisted methods for multi-objective optimization.

Diffusion Models as Data-Driven Samplers for Black-Box Optimization In the single-objective,
offline setting, Krishnamoorthy et al. (2023) introduced Denoising Diffusion Optimization Models

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

(DDOM), which learn a conditional generative model over designs given target values and, at test time,
employ guidance to sample high-reward candidates. This approach highlights the potential of inverse
modeling without relying on explicit surrogates. Beyond the offline setting, Diffusion-BBO (Wu
et al., 2024) extends this idea to the online regime by scoring in the objective space through an
uncertainty-aware acquisition function and then conditionally sampling designs, with theoretical and
empirical results showing sample-efficient improvements over BO baselines. Parallel efforts broaden
the scope of data-driven BBO with diffusion by training reward-directed conditional models that
combine large unlabeled datasets with small labeled sets and provide sub-optimality guarantees, or by
constraining sampling to learned data manifolds to enforce feasibility, both yielding improvements
across black-box optimization tasks (Li et al., 2024b). Together, these works highlight the potential
of diffusion models to reformulate single-objective black-box optimization as a generative sampling
task, paving the way for extensions to multi-objective settings.

Surrogate-Assisted Multi-Objective Optimization Surrogate techniques have long been com-
bined with multi-objective optimization to reduce the cost of expensive evaluations by approximating
the true objectives, either globally or locally. Deb et al. (2020) offer a broad taxonomy of surrogate
modeling strategies and propose an adaptive switching scheme (ASM) that cycles among different
surrogate types, demonstrating that ASM often outperforms any individual surrogate model. With-
out requiring explicit gradients, Berkemeier & Peitz (2021) introduce a derivative-free trust-region
descent method for multi-objective problems, which builds radial basis function surrogates within
each local region and proves convergence to Pareto-critical points. In practical engineering settings,
surrogate-assisted MOO has been applied to optimize permanent magnet synchronous motors us-
ing neural networks, Kriging, or support vector regression under small sample regimes (Li et al.,
2025b). In the context of multi-objective control problems and PDE-constrained systems, Peitz &
Dellnitz (2018b) survey how surrogate modeling or reduced-order models help accelerate decision
making or feedback control under real-time constraints. In reservoir modeling and well control, the
MOO-SESA framework of Wang et al. (2024) combines a selective ensemble of SVR surrogates with
NSGA-II to strike a balance between surrogate robustness and multi-objective accuracy, yielding
faster convergence and more reliable Pareto fronts in benchmark reservoir. Overall, surrogate-assisted
methods provide the foundation for offline and Bayesian multi-objective optimization, where surro-
gates not only reduce evaluation costs but also serve as probabilistic models to guide exploration and
exploitation under uncertainty.

32


	Introduction
	Related Work
	Preliminaries
	Denoising Diffusion Probabilistic Models (DDPMs)
	Multi-Objective Optimization (MOO)
	Multiple Gradient Descent (MGD)

	Method
	Extension towards surrogate-based optimization

	Experiments
	Online MOO Setting
	Offline MOO Setting
	Bayesian MOO Setting

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	Additional Proofs and Details
	Proof of Theorem 1
	Proof of Theorem 2
	A discussion on t > 0 in Theorem 2
	Extended Architectural Details
	Additional Methodological Details
	Evaluation Metrics

	SPREAD in the MOBO Setting
	Implementation Details
	Additional Results
	Extended Related Work

