
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REWARD AS OBSERVATION: LEARNING REWARD-
BASED POLICIES FOR RAPID ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper explores a reward-based policy to achieve zero-shot transfer between
source and target environments with completely different observation spaces.
While humans can demonstrate impressive adaptation capabilities, deep neural
network policies often struggle to adapt to a new environment and require a con-
siderable amount of samples for successful transfer. Instead, we propose a novel
reward-based policy only conditioned on rewards and actions, enabling zero-shot
adaptation to new environments with completely different observations. We dis-
cuss the challenges and feasibility of a reward-based policy and then propose a
practical algorithm for training. We demonstrate that a reward policy can be
trained within three different environments, Pointmass, Cartpole, and 2D Car
Racing, and transferred to completely different observations, such as different
color palettes or 3D rendering, in a zero-shot manner. We also demonstrate that a
reward-based policy can further guide the training of an observation-based policy
in the target environment.

Figure 1: A reward-based policy enables zero-shot transfer from the 2D Car Racing environment to
the 3D AirSim environment by taking reward and action histories as the only input. We assume that
kinematics between environments are matched.

1 INTRODUCTION

Humans are known for their remarkable ability to adapt to completely new environments. For exam-
ple, once gamers master a racing game, they can adapt rapidly to new games with entirely different
visuals and themes. People can also navigate their surroundings in completely new cities despite
unfamiliar environments. Therefore, researchers have investigated the development of intelligent
agents that are capable of rapid adaptation in unseen environments. However, neural network agents
trained with deep reinforcement learning (deep RL) typically struggle in unfamiliar environments,
even when trained with massive data. Therefore, developing robust agents that perform well in un-
seen environments remains an open challenge in various fields, such as machine learning, artificial
intelligence, and robotics.

This paper discusses the problem of rapid adaptation from a source problem to a target problem,
where significant changes occur only in observation spaces. This change in observation reflects

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

various adaptation scenarios, such as altering color palettes, changing screen resolutions, switching
rendering engines from OpenGL to Unreal Engine, or transitioning from 2D to 3D visualizations, all
without making assumptions. We also assume that ground-truth state information is not accessible
to the policy in the target environment, following the definition of a Partially Observable Markov
Decision Process (POMDP). This assumption reflects situations where the internal programming
variables of a game or the ground-truth hardware states of a robot are inaccessible to the control
policy.

Our key hypothesis is that a reward can serve as a strong signal for rapid adaptation if it is sufficiently
dense. This work explores the development of a reward-based policy that takes only rewards as input,
disregarding observations. In the context of computer games, this would be analogous to playing a
game solely by observing the score. If successful, our reward-based agent could be deployed across
different environments with any visual renderings in a zero-shot manner. We note that assuming
the availability of rewards to the agent is somewhat unconventional. However, this assumption is
not entirely unreasonable, as POMDPs provide per-step rewards to deep RL algorithms anyway.
Furthermore, we will later relax this assumption by demonstrating that rewards can be more easily
estimated from observations than high-dimensional state vectors.

In this work, we aim to explore the novel concept of a reward-based policy for rapid transfer, which
is only conditioned on the history of rewards and actions without observations. First, we discuss
our problem assumptions, such as significant changes in observation spaces while other MDP com-
ponents remain the same. Then, we introduce a reward-based policy, followed by discussions on
its difficulties, feasibility, requirements, and sub-optimal behaviors. Finally, we propose a practi-
cal framework for training a reward-based policy, which is enabled by two key components: (1) a
temporal history of the reward/action pairs and (2) the guidance of an expert policy.

We demonstrate that the proposed framework can successfully train a reward-based policy in three
environments: Pointmass, Cartpole, and Car Racing. The learned reward-based policies exhibit rea-
sonable behavior in all three environments, achieving approximately 60% to 90% of the performance
of standard observation-based policies. However, due to their independence from observations, they
can be transferred to novel environments with significant observation shifts in a zero-shot manner,
including palette swaps or even 2D-to-3D transfers. If the reward function is unavailable, we can
rapidly learn a reward estimator for rapid transfer, which performs significantly better than training
a state estimator. Lastly, we will conduct an ablation study on the effect of expert guidance.

2 RELATED WORK

Transfer learning in RL leverages existing information for rapid adaptation in a new scenario, which
has been approached by a wide range of algorithms. One possible approach is learning from demon-
stration (Schaal, 1996), where expert demonstrations are available to guide the learning process.
Offline methods can use these demonstrations for offline RL (Ma et al., 2019), (Yang & Nachum,
2021), (Li et al., 2023) and for pretraining to learn value functions or policies (Silver et al., 2016),
(Stachowicz et al., 2023). Online methods use expert demonstrations to improve policy exploration
during learning, and include policy iterations (Piot et al., 2014), (Chemali & Lazaric, 2015), policy
gradients (Nair et al., 2018), (Kang et al., 2018), and Q-learning approaches (Brys et al., 2015),
(Hester et al., 2018).

Another way to transfer knowledge is representation learning, which establishes reusable represen-
tations in the action or state spaces that can be shared between source and target environments.
Progressive networks (Rusu et al., 2016) and PathNet (Fernando et al., 2017) directly train common
reusable representations and leverage them during policy training. There exists a line of works that
split networks into general and reusable modules (Andreas et al., 2017), (Devin et al., 2017). Gupta
et al. (2017) learns an invariant feature space in order to better transfer between tasks. Bou-Ammar
& Taylor (2011), Taylor et al. (2007) learn inter-task mappings to deal with state differences be-
tween tasks. Successor representations (Dayan, 1993) seek to separate the environment dynamics
from the reward function. These have seen widespread use (Barreto et al., 2018), (Zhang et al.,
2017), (Konidaris & Barto, 2006) for transferring knowledge for different tasks with the same state
and action spaces. Zhang et al. (2018) does a similar approach of separating dynamics and reward
for learning a better policy for transfer. We avoid the need for dealing with different observations
between the source and target environments by using the shared reward function as the policy input.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The most relevant method of transfer for our work is to transfer at the policy level. A popular method
to transfer involves distilling information from an expert policy. This method uses supervised learn-
ing to match action distributions between the student and teacher policies, and is widely used for
robotic applications (Kumar et al., 2021), (Liang et al., 2023), (Miki et al., 2022). Policies can also
be directly reused for updating policies in a transfer setting, as in (Barreto et al., 2017), (Fernández
& Veloso, 2006), (Rajendran et al., 2017). This is the closest domain to our method, which directly
transfers an expert policy via reward information.

Another very similar sounding work to ours is the reward-conditioned policy (Kumar et al., 2019).
However, this work trains standard observation-based policies with an additional reward condition-
ing that allows for using suboptimal trajectories as optimal supervision. This is in contrast to our
work which uses no observation feedback and uses the reward directly as the policy input.

3 REWARD-BASED POLICY

3.1 PROBLEM DEFINITION

A Partially Observable Markov decision process (POMDP) is a popular tool for modeling a sequen-
tial decision problem. It is defined as a tuple (S,O,A,R, T ), where S is the state space, O is the
observation space, A is the action space, T is the transition function that defines how states change
given an action, and R is the reward function. The policy π : O 7→ A takes action based on the given
observation without knowing the underlying state s ∈ S, and we want to find an optimal policy that
maximizes the discounted cumulative sum of the reward over time:

∑T
t=0 γ

tR(st, at).

Our scenario defines the transfer problem as training a reusable policy from a source to a target en-
vironment. We assume the source and target environments should have the same transition, reward,
action, and state but may have very different observation spaces. Therefore, when the source en-
vironment is described as a tuple (S,O,A,R, T ), the target environment becomes (S, Õ, A,R, T ),
where there is no assumption between O and Õ. For all environments we consider, we assume the
availability of a dense reward, which makes the training of a reward-based policy feasible.

3.2 REWARD-BASED POLICY: DEFINITION AND PROPERTIES

Our paper investigates a novel reward-based policy π : R × A 7→ A, which takes only the previ-
ous rewards and actions as input. Our key intuition is that a typical observation-based policy for
transfer inevitably requires an additional training process to map the observations from the target
environment to match those of the source environment, which requires considerable training sam-
ples. However, a reward-based policy can immediately be deployed in a zero-shot fashion if the
underlying system dynamics remain the same.

Difficulties. Learning a policy from only reward information is more difficult than using a standard
observation-based approach. This is because the reward is a scalar projection of the, in general, n-
dimensional state space that governs the dynamics of the task. This reduction in information makes
the learning task much more challenging as the partial observability makes estimating the value and
advantage functions more difficult. Exploration is also negatively impacted by the lower information
feedback. If we have sparse rewards, the problem is even worse, as there can be large periods with
no reward.

Feasibility. Despite these difficulties, it is still possible to train a reward-based policy for at least
some simple environments. Let us consider a simple 1D Pointmass environment, where the reward
is defined as a negative distance to the origin. In this environment, a reward-based agent can easily
estimate its current position from the given reward if it correctly determines the sign by checking
the previous action and reward changes. Even in ND Pointmass environments, we can design an
analytical algorithm similar to a triangulation method that determines the location from a set of angle
measurements. Therefore, it seems to be true that we can train a reward-based policy using off-the-
shelf algorithms; it just takes a nearly exponential amount of time with respect to the difficulty of
the task.

Figure 2 shows how the difficulty of learning the task scales as the number of dimensions for Point-
mass increases. The maximum reward of policies with direct state access is impacted very little

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6
Number of Dimensions

0

20

40

60

80

100

Re
wa

rd

99.83 99.60 99.48 99.34 99.14 99.0598.73 97.11 95.94
88.12 85.96

57.18

State-based
Reward-based

Figure 2: Effect of increasing state dimension on performance of state-based and reward-based
policies. It shows that the performance of the reward-based policy decreases much faster than that
of the state-based policy.

Figure 3: Architecture. The reward-based policy πR is trained using expert state-based guidance
from π∗ and standard training in RL with PPO.

by the dimensionality of the problem, almost reaching the maximum possible reward of 100 for all
scenarios, but the performance of the reward-based policy is heavily affected, only achieving 57%
of the maximum reward in the 6D Pointmass environment.

Requirement for Dense Rewards. Another significant consideration is the requirement for a dense
reward function. Because the reward is being used as a signal for solving the MDP, it should be a
dense function that gives a good value throughout the state space, while a sparse reward would be
much worse in general and often impossible. Let us consider the Pointmass problem again. If the
reward is sparse and only given at the goal, the agent will not receive any meaningful learning signal
and will be unable to learn any useful behaviors.

Differences in Optimal Behaviors. Also important to note is the inherent difference in behavior
between the observation-based and reward-based policies. Let us consider a 2D Pointmass envi-
ronment. Given this very simple environment, an observation-based agent with direct access to the
states x and y can easily learn the perfect actions to take to reach the goal directly. However, the
reward-based agent will not be able to make an optimal action at the beginning because the only
information that is available immediately from a single reward/action pair is the distance to the
goal. The agent must take at minimum two information-gathering actions to localize itself from
the history; then, it can take optimal actions based on the localization result. Given this suboptimal
behavior for this very simple environment, it is fair to assume that learning will become much more
challenging in more complicated environments.

3.3 PRACTICAL FRAMEWORK FOR LEARNING A REWARD-BASED POLICY

Despite the discussed difficulties, we found that two key features can effectively improve the training
process of a reward-based policy:

1. Temporal history of the reward/action pairs.
2. Guidance of an expert policy, such as an observation-based agent.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 4: Tasks used for evaluation: Pointmass, Cartpole, and Car Racing.

To handle the temporal history, we first give the previous reward/action pair as inputs to a standard
MLP for feature extraction. These extracted features are then passed to a recurrent network. We
adopt an LSTM (Hochreiter & Schmidhuber, 1997) as a network architecture, but any recurrent net-
work should perform similarly. The output of the LSTM is given as an input for the policy and value
networks, which are trained with RL using Proximal Policy Optimization (PPO) (Schulman et al.,
2017), using code modified from Huang et al. (2022). It is essential for control that some recurrent
network is used for the inputs. In our experience, a single reward/action pair was not sufficient for
effective control in most environments. On the other hand, the temporal history from the LSTM
allows agents to estimate complicated contexts, particularly in more complex environments.

While a temporal history is necessary for control, we find that it is not sufficient for effective learn-
ing in practice. This degraded learning can be because a new highest reward record implies an
unseen situation to the agent. To improve policy learning, we include an additional expert guidance
loss along with the PPO loss from RL, where we train observation-based experts using a standard
reinforcement learning algorithm. This loss is a supervised loss to regress the current policy ac-
tions to the actions of the expert policy. The full loss for training is LPPO + Lguidance, where
Lguidance = (at − a∗t )

2.

A full schematic of our architecture is shown in Figure 3.

4 RESULTS

We evaluate The proposed reward-based policy on multiple tasks to answer the following questions:

1. Can you train a reward-based policy that only uses reward and action information in-
stead of observations? How does a reward-based policy perform compared to a standard
observation-based policy?

2. If we assume access to rewards, can a reward-based policy achieve zero-shot transfer to
new problems with completely different observations?

3. If we must estimate reward information at inference time, how effectively can we transfer
with a reward-based policy?

4.1 ENVIRONMENTS

We evaluate our work on three separate tasks shown in Figure 4. They are as follows:

1. Pointmass: 2D Pointmass environment with kinematic actions: st+1 = st + at.

2. Cartpole: A Cartpole task from the DeepMind Control Suite (Tassa et al., 2018).

3. Car Racing: Gymnasium (Towers et al., 2024) Car Racing. Because this task’s reward
is a sparse reward that is only provided when crossing new pieces of the race track, we
modified it to be continuous. Our modified reward follows the form of the rewards from
the DM Control Suite: rmodified = rdistancerangle, where rdistance = exp(−d), where d is the
distance to the next track waypoint, and rangle = cos(θ), where θ is the difference in the
track angle and the car’s heading.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 0.5M 1M 1.5M 2M

70

75

80

85

90

95

100

Observation-based Reward-based

Pointmass

Timestep

Re
w
ar
d

0 5M 10M 15M

0

200

400

600

800

1000

Cartpole

Timestep
5M 10M 15M

0

200

400

600

800

Car Racing

Timestep

Figure 5: Learning curves for reward-based policies and observation-based policies. Observation-
based policies serve as an upper bound on performance.

Task Original Observation Shifted Observation
Pointmass 97.06 ± 1.36 95.96 ± 2.47
Cartpole 758.74 ± 62.79 755.45 ± 52.63
Car Racing 775.37 ± 225.27 715.93 ± 264.28

Table 1: Zero-shot transfer for different observations via swapping color palettes. Mean value ±
standard deviation is reported over 50 trials. Given the standard deviation, the behavior is function-
ally identical in both observation domains.

4.2 SUCCESSFUL TRAINING OF REWARD-BASED POLICIES

For all three environments, we are able to train successful reward-based policies. The learning
curves from training across three random seeds are shown in Figure 5. We compare our reward-based
policies to a standard observation-based policy as an upper bound on the performance: reward-based
policies demonstrate 95%, 66%, and 70% performance of state-based policies in three environments,
respectively. While they could not match the exact upper bound performance in the allotted training
time, the learned reward-based policies demonstrate reasonable behaviors. For instance, a reward-
based Pointmass agent can navigate to the goal with a few exploratory movements. In the Car Racing
environment, a reward-based agent does not always follow the centerline of the track to get more
reward signals and shows some sub-optimal turns. For qualitative comparisons, please refer to the
accompanying video.

4.3 ZERO-SHOT TRANSFER VIA DIRECT REWARD ACCESS

Assuming we have access to the reward at test time, one intuitive application of our method is
zero-shot transfer of a policy under observation shifts. If we take any of our environments and do
a color palette swap, either randomly chosen or intentionally designed to be difficult, our method
can transfer seamlessly. On the other hand, a standard observation-based policy would likely need
to be retrained for each specific grouping of colors. Example color shifts for our environments are
illustrated in Figure 6 and the effectiveness of our policy for the original and modified environments
is demonstrated in Table 1.

Another application we tested is for transferring a Car Racing policy. However, instead of a rel-
atively simple color palette swap, we consider a more dramatic observation shift, from the simple
2D visualization of the Gymnasium Car Racing environment to the photorealistic 3D render from
Microsoft AirSim (Shah et al., 2017). These two environments are semantically similar and have
the same action spaces and rewards. However, the dynamics are very different, which breaks our

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 6: A reward-based policy can solve the task with any observation shifts in a zero-shot manner.

initial assumption in Section 3.1. Because our focus is not on dealing with the dynamics shift, we
consider transfer with the simplified dynamics. Therefore, we match the transition function of 3D
AirSim environment to that of 2D Car Racing environment by reimplementing its dynamics. Once
the transitions are matched, a reward-based policy is successfully transferred to the 3D environment
and demonstrates reasonable driving performance that travels for over 60 seconds with three turns.
This was done as a proof of concept in a residential neighborhood in a grid pattern, but given the
right configuration of waypoints, any trajectory seen in the 2D Car Racing training data should be
achievable.

4.4 RAPID TRANSFER USING ESTIMATED REWARD

In some circumstances, we may not have access to the reward at inference time. We demonstrate that
our method can still provide benefits in these scenarios. For the DMC Cartpole task, we examine
the problem of transferring a policy when dealing with an image-based observation. Assuming
access to a trained state-based policy and reward-based policy, we seek to learn an encoder that can
map the image to the states and the rewards so that the policy can be directly reused in the target
image domain. With each policy, we collect 100000 samples from the target image domain and use
supervised learning to train an encoder to map to the original policy domain. For the given amount
of data, we show that the reward can be effectively estimated and our reward-based policy can be
deployed with a small performance decrease while the state encoder fails to accurately estimate the
state and performs as effectively as a random policy. These results are shown in Table 2. A reward-
based policy with the learned estimator still works well even when the reward is not available, which
is much better than a state-based policy with a learned state estimator. This result demonstrates the
effectiveness of using rewards for transfer, even if the performance of a reward-based policy in the
source environment is suboptimal.

We hypothesize that our method works better as it is easier to estimate the 1 dimensional reward than
it is the higher dimensional (five, in this case) state as it is less susceptible to noise and overfitting.
This matches other works’ observations on using low-dimensional latent spaces for control rather
than the full state space. While we could perhaps get a similar result with a trained 1D latent space,
we think our method is better as the reward is an inherent component of the MDP and requires no
training. In addition, a reward is interpretable as we know what the reward is and it also offers direct,
zero-shot transfer for environments with the same reward.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Policy Original Domain Image Domain
State-based 915.49 ± 2.24 189.41 ± 12.54
Reward-based 836.49 ± 4.46 735.83 ± 65.48
Random - 192.78 ± 36.91

Table 2: Benefit of a reward-based policy even when the reward is not available at inference. Esti-
mating an approximate reward from an image is easier than a full state, so the reward-based policy
can be used directly from a small set of training data where the state-based policy fails. Means and
standard deviations are reported over 100 trials with each policy.

0 0.5M 1M 1.5M 2M

70

75

80

85

90

95

No Guidance Guidance

Pointmass

Timestep

Re
w

ar
d

0 5M 10M 15M
0

100

200

300

400

500

600

700

Cartpole

Timestep
5M 10M 15M

0

100

200

300

400

500

600

Car Racing

Timestep

Figure 7: Ablation for expert guidance. Additional guidance term offers slight benefit for Pointmass
and Cartpole but is very beneficial for Car Racing.

4.5 ABLATION ON EXPERT GUIDANCE

To validate the design choice of including expert state-based guidance during training, we compare
reward-based policies trained with and without guidance in Figure 7. This shows that for the Point-
mass and Cartpole, extra guidance gives a small performance boost, while for the Car Racing task,
it achieves much higher rewards. This is possibly caused by the relative difficulty of the tasks, as
in both the Pointmass and Cartpole tasks failure to effectively act just reduces the maximum reward
but the agent can try again, whereas for the Car Racing task, failure to maintain position on the track
terminates the episode.

5 CONCLUSION

This paper presents a novel approach to solving MDPs using policies with only rewards and actions
as inputs. We examine the feasibility and practical methods for learning such reward-based poli-
cies, requiring temporal context provided by a recurrent network architecture and expert guidance
provided by an observation-based expert policy. We show the benefits of such policies for zero-shot
transfer among environments with the same dynamics and different observations, assuming direct
access to the reward at inference time. We also demonstrate the potential usefulness of our method
even when we do not have access to the reward and must estimate it.

There are several directions for future work. In this work, we assume identical transition functions
between the source and target environments to focus on observation shifts. However, a reward-
based policy could potentially handle changes in dynamics by augmenting its training process with
common transfer techniques such as domain randomization or system identification. Additionally,
we evaluate the concept of a reward-based policy in relatively simple environments. It would be

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

interesting to explore their potential in more realistic domains, such as real-world robotic control or
autonomous navigation.

Reproducibility Statement

• We provide hyperparameters for PPO in the Appendix A.1.

• We use standard RL benchmarks from Tassa et al. (2018) and Towers et al. (2024).

REFERENCES

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, pp. 166–175. JMLR.org, 2017.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado Van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning, 2017.

André Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel
Mankowitz, Augustiň Zı́dek, and Rémi Munos. Transfer in deep reinforcement learning using
successor features and generalised policy improvement, 2018.

Haitham Bou-Ammar and Matthew E. Taylor. Reinforcement learning transfer via common sub-
spaces. In Peter Vrancx, Matthew Knudson, and Marek Grzes (eds.), Adaptive and Learning
Agents - International Workshop, ALA 2011, Held at AAMAS 2011, Taipei, Taiwan, May 2,
2011, Revised Selected Papers, volume 7113 of Lecture Notes in Computer Science, pp. 21–36.
Springer, 2011. doi: 10.1007/978-3-642-28499-1\ 2. URL https://doi.org/10.1007/
978-3-642-28499-1_2.

Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia Chernova, Matthew E. Taylor, and Ann
Nowé. Reinforcement learning from demonstration through shaping. In Proceedings of the 24th
International Conference on Artificial Intelligence, IJCAI’15, pp. 3352–3358. AAAI Press, 2015.
ISBN 9781577357384.

Jessica Chemali and Alessandro Lazaric. Direct policy iteration with demonstrations. In Proceed-
ings of the 24th International Conference on Artificial Intelligence, IJCAI’15, pp. 3380–3386.
AAAI Press, 2015. ISBN 9781577357384.

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural Computation, 5(4):613–624, 1993. doi: 10.1162/neco.1993.5.4.613.

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning modular
neural network policies for multi-task and multi-robot transfer. In 2017 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 2169–2176, 2017. doi: 10.1109/ICRA.2017.
7989250.

Fernando Fernández and Manuela Veloso. Probabilistic policy reuse in a reinforcement learning
agent. In Proceedings of the Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’06, pp. 720–727, New York, NY, USA, 2006. Association for
Computing Machinery. ISBN 1595933034. doi: 10.1145/1160633.1160762. URL https:
//doi.org/10.1145/1160633.1160762.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A. Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. 1 2017. URL http://arxiv.org/abs/1701.08734.

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning invariant
feature spaces to transfer skills with reinforcement learning. 3 2017. URL http://arxiv.
org/abs/1703.02949.

9

https://doi.org/10.1007/978-3-642-28499-1_2
https://doi.org/10.1007/978-3-642-28499-1_2
https://doi.org/10.1145/1160633.1160762
https://doi.org/10.1145/1160633.1160762
http://arxiv.org/abs/1701.08734
http://arxiv.org/abs/1703.02949
http://arxiv.org/abs/1703.02949


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Hor-
gan, John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold, John Agapiou, Joel Z.
Leibo, and Audrunas Gruslys. Deep q-learning from demonstrations. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications
of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in
Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-57735-800-
8.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, nov 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.
URL http://jmlr.org/papers/v23/21-1342.html.

Bingyi Kang, Zequn Jie, and Jiashi Feng. Policy optimization with demonstrations, 2018.

George Konidaris and Andrew Barto. Autonomous shaping: Knowledge transfer in reinforcement
learning, 2006.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots. 2021.

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies. arXiv preprint
arXiv:1912.13465, 2019.

Anqi Li, Byron Boots, and Ching-An Cheng. Mahalo: Unifying offline reinforcement learning and
imitation learning from observations. In International Conference on Machine Learning. PMLR,
2023.

Yichao Liang, Kevin Ellis, and João Henriques. Rapid motor adaptation for robotic manipulator
arms, 2023.

Yifei Ma, Yu-Xiang Wang, and Balakrishnan Narayanaswamy. Imitation-regularized offline learn-
ing, 2019.

Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hut-
ter. Learning robust perceptive locomotion for quadrupedal robots in the wild. Science Robotics,
7(62):eabk2822, 2022. doi: 10.1126/scirobotics.abk2822. URL https://www.science.
org/doi/abs/10.1126/scirobotics.abk2822.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6292–6299, 2018. doi: 10.1109/ICRA.2018.
8463162.

Bilal Piot, Matthieu Geist, and Olivier Pietquin. Boosted bellman residual minimization handling
expert demonstrations. In Toon Calders, Floriana Esposito, Eyke Hüllermeier, and Rosa Meo
(eds.), Machine Learning and Knowledge Discovery in Databases, pp. 549–564, Berlin, Heidel-
berg, 2014. Springer Berlin Heidelberg. ISBN 978-3-662-44851-9.

Janarthanan Rajendran, Aravind S. Lakshminarayanan, Mitesh M. Khapra, P. Prasanna, and Balara-
man Ravindran. Attend, adapt and transfer: Attentive deep architecture for adaptive transfer from
multiple sources in the same domain. In 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net, 2017. URL https://openreview.net/forum?id=Sy6iJDqlx.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. 6 2016. URL
http://arxiv.org/abs/1606.04671.

10

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://jmlr.org/papers/v23/21-1342.html
https://www.science.org/doi/abs/10.1126/scirobotics.abk2822
https://www.science.org/doi/abs/10.1126/scirobotics.abk2822
https://openreview.net/forum?id=Sy6iJDqlx
http://arxiv.org/abs/1606.04671


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Stefan Schaal. Learning from demonstration. In M.C. Mozer, M. Jordan, and T. Petsche
(eds.), Advances in Neural Information Processing Systems, volume 9. MIT Press,
1996. URL https://proceedings.neurips.cc/paper_files/paper/1996/
file/68d13cf26c4b4f4f932e3eff990093ba-Paper.pdf.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and
physical simulation for autonomous vehicles. In Field and Service Robotics, 2017. URL https:
//arxiv.org/abs/1705.05065.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529(7587):484–489, Jan 2016. ISSN 1476-4687.
doi: 10.1038/nature16961. URL https://doi.org/10.1038/nature16961.

Kyle Stachowicz, Arjun Bhorkar, Dhruv Shah, Ilya Kostrikov, and Sergey Levine. FastRLAP: A
System for Learning High-Speed Driving via Deep RL and Autonomous Practicing. 2023. URL
https://arxiv.org/abs/2304.09831.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Ried-
miller. Deepmind control suite. 1 2018. URL http://arxiv.org/abs/1801.00690.

Matthew E. Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-task mappings for tem-
poral difference learning. Journal of Machine Learning Research, 8(1):2125–2167, 2007.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Mengjiao Yang and Ofir Nachum. Representation matters: Offline pretraining for sequential de-
cision making. In International Conference on Machine Learning, pp. 11784–11794. PMLR,
2021.

Amy Zhang, Harsh Satija, and Joelle Pineau. Decoupling dynamics and reward for transfer learning.
4 2018. URL http://arxiv.org/abs/1804.10689.

Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker, and Wolfram Burgard. Deep rein-
forcement learning with successor features for navigation across similar environments. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2371–2378,
2017. doi: 10.1109/IROS.2017.8206049.

11

https://proceedings.neurips.cc/paper_files/paper/1996/file/68d13cf26c4b4f4f932e3eff990093ba-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/68d13cf26c4b4f4f932e3eff990093ba-Paper.pdf
https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/1705.05065
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/2304.09831
http://arxiv.org/abs/1801.00690
http://arxiv.org/abs/1804.10689


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PPO HYPERPARAMETERS

Parameter Value
Learning rate 3 x 10−4

Steps per update 10000
Batch size 10000
γ discount 0.99
GAE λ 0.95
Clip range 0.2
Gradient clipping threshold 0.5
Update epochs 50
vf coefficient 0.5

12


	Introduction
	Related Work
	Reward-based Policy
	Problem Definition
	Reward-based Policy: Definition and Properties
	Practical Framework for Learning a Reward-based Policy

	Results
	Environments
	Successful Training of Reward-based Policies
	Zero-shot Transfer via Direct Reward Access
	Rapid Transfer Using Estimated Reward
	Ablation on Expert Guidance

	Conclusion
	Appendix
	PPO Hyperparameters


