VERINA: Benchmarking Verifiable Code Generation

Anonymous Authors'

Abstract

Large language models (LLMs) are increasingly
integrated in software development, but ensur-
ing correctness in LLM-generated code remains
challenging and often requires costly manual re-
view. Verifiable code generation—jointly gen-
erating code, specifications, and proofs of code-
specification alignment—offers a promising path
to address this limitation and further unleash
LLMs’ benefits in coding. Yet, there exists a
significant gap in evaluation: current benchmarks
often lack support for end-to-end verifiable code
generation. In this paper, we introduce VE-
RINA (Verifiable Code Generation Arena), a high-
quality benchmark enabling a comprehensive and
modular evaluation of code, specification, and
proof generation as well as their compositions.
VERINA consists of 189 manually curated coding
tasks in Lean, with detailed problem descriptions,
reference implementations, formal specifications,
and extensive test suites. Our extensive evaluation
of state-of-the-art LLMs reveals significant chal-
lenges in verifiable code generation, especially
in proof generation, underscoring the need for
improving LLM-based theorem provers in verifi-
cation domains. The best model, OpenAl 04-mini,
generates only 61.4% correct code, 51.0% sound
and complete specifications, and 3.6% successful
proofs, with one trial per task. We hope VERINA
will catalyze progress in verifiable code genera-
tion by providing a rigorous and comprehensive
benchmark.

1. Introduction

Large language models (LLMs) have shown strong perfor-
mance in programming (Jain et al., 2025; Jimenez et al.,
2024; Chen et al., 2021) and are widely adopted in tools

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

like Cursor and GitHub Copilot to boost developer produc-
tivity (Kalliamvakou). LLM-generated code is becoming
prevalent in commercial software (Peters, 2024) and may
eventually form a substantial portion of the world’s code.
However, due to their probabilistic nature, LLMs alone
cannot provide formal guarantees for the generated code.
As a result, the generated code often contains bugs, such
as functional errors (Wang et al., 2025) and security vul-
nerabilities (Pearce et al., 2022). When LLM-based code
generation is increasingly adopted, these issues can become
a productivity bottleneck, as they typically require human
review to be resolved (Finley). Formal verification presents
a promising path to establish correctness guarantees in LLM-
generated code but has traditionally been limited to safety-
critical applications due to high cost (Gu et al., 2016; Leroy
et al., 2016; Bhargavan et al., 2013). Similarly to how they
scale up code generation, LLMs have the potential to signif-
icantly lower the barrier of formal verification. By jointly
generating code, formal specifications, and formal proofs
of alignment between code and specifications, LLMs can
offer higher levels of correctness assurance and automa-
tion in software development. This approach represents an
emerging programming paradigm known as verifiable code
generation (Sun et al., 2024; Yang et al., 2024).

Given the transformative potential of verifiable code gener-
ation, it is crucial to develop suitable benchmarks to track
progress and guide future development. This is challenging
because verifiable code generation involves three intercon-
nected tasks: code, specification, and proof generation. We
need to curate high-quality samples and establish robust
evaluation metrics for each individual task, while also com-
posing individual tasks to reflect real-world end-to-end us-
age scenarios where LLMs automate the creation of verified
software directly from high-level requirements. Existing
benchmarks, as listed in Table 1 and detailed in Section 2,
fall short as they lack comprehensive support for all three
tasks (Loughridge et al., 2025; Aggarwal et al., 2024; Chen
et al., 2024), quality control (Dougherty and Mehta, 2025),
robust metrics (Misu et al., 2024), or a modular design (Sun
et al., 2024).

To bridge this gap, we introduce VERINA (Verifiable Code
Generation Arena), a high-quality benchmark to compre-
hensively evaluate verifiable code generation. It consists of
189 programming challenges with detailed problem descrip-

VERINA: Benchmarking Verifiable Code Generation

tions, code, specifications, proofs, and comprehensive test
suites. We format these problems in Lean (Moura and Ull-
rich, 2021), a general-purpose programming language with
a rapidly growing ecosystem and applications in both for-
mal mathematics (Mathlib community, 2020; Mathlib Com-
munity, 2022) and verification (de Medeiros et al., 2025;
Hietala and Torlak, 2024).

VERINA is constructed with careful quality control. It draws
problems from various sources, including MBPP (Misu
et al., 2024; Austin et al., 2021), LiveCodeBench (Jain et al.,
2025), and LeetCode, offering a diverse range of difficulty
levels. All samples in the benchmark are manually inspected
and revised to ensure clear natural language descriptions and
accurate formal specifications and code implementations.
Moreover, each sample also includes a comprehensive test
suite with both positive and negative cases, which achieves
100% line coverage on the code implementation and passes
the ground truth specification.

VERINA facilitates the evaluation of code, specification, and
proof generation, along with flexible combinations of these
individual tasks. We utilize the standard pass @k metric (Fan
et al., 2024) with our comprehensive test suites to evaluate
code generation. For proof generation, we use the Lean
compiler to automatically verify their correctness. Further-
more, we develop a practical, testing-based approach based
on to automatically evaluate model-generated specifications,
by verifying their soundness and completeness with respect
to ground truth specifications.

The high-quality samples and robust metrics of VERINA
establish it as a rigorous platform for evaluating verifiable
code generation. We conduct a thorough experimental evalu-
ation of nine state-of-the-art LLMs on VERINA. Our results
reveal that even the top-performing LLM, OpenAl o4-mini,
struggles with verifiable code generation, producing only
61.4% correct code solutions, 51.0% sound and complete
specifications, and 3.6% successful proof, given a single
sample for each task. Interestingly, iterative refinement us-
ing Lean compiler feedback can increase the proof success
rate to 15.3% with 64 refinement steps. However, this ap-
proach significantly raises costs and the 15.3% success rate
is still insufficient. These findings underscore the challenges
of verifiable code generation and highlight the critical role
of VERINA in advancing the field.

2. Background and Related Work

We present works closely related to ours in Table 1 and
discuss them in detail below.

Task support for verifiable code generation. Writing code,
specifications, and proofs for a verified software component
is time-consuming when done manually. Although vari-
ous studies have explored using LLMs to automate these

tasks, they primarily focus on individual aspects, which
are insufficient for fully automating end-to-end verifiable
code generation. Benchmarks like HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021) have sparked impres-
sive progress on LLM-based code generation but do not
handle formal specifications or proofs. Many verification-
focused efforts target only one or two tasks, while assuming
the other elements are provided by the human user. For
example, DafnyBench (Loughridge et al., 2025) and mini-
CodeProps (Lohn and Welleck, 2024) are two benchmarks
designed exclusively for proof generation. Moreover, Au-
toSpec (Wen et al., 2024) and SpecGen (Ma et al., 2025)
infer specifications and proofs from human-written code.

To the best of our knowledge, Dafny-Synthesis (Misu et al.,
2024) and Clover (Sun et al., 2024) are the only two works
that cover all three tasks, like VERINA. However, they tar-
get automated theorem proving using Dafny (Leino, 2010),
while VERINA leverages interactive theorem proving in
Lean. Moreover, they have relatively small numbers of
human-written samples (50 and 62 respectively). In contrast,
VERINA provides 189 high-quality samples with varying
difficulty levels.

Automated and interactive theorem proving. A major
challenge in formal verification and verifiable code gener-
ation lies in tooling. Verification-oriented languages like
Dafny (Leino, 2010) and Verus (Lattuada et al., 2023) lever-
age SMT solvers for automated theorem proving (De Moura
and Bjgrner, 2008; Barrett and Tinelli, 2018) and consume
only proof hints, such as loop invariants (Pei et al., 2023)
and assertions (Mugnier et al., 2025). However, SMT
solvers handle only limited proof domains and behave as
black boxes, which can make proofs brittle and hard to
debug (Zhou et al., 2023). Interactive theorem proving
(ITP) systems like Lean provide a promising target for veri-
fiable code generation with LLMs. ITPs support construct-
ing proofs with explicit intermediate steps. This visibility
enables LLMs to diagnose errors, learn from unsuccess-
ful steps, and iteratively refine their proofs. While ITPs
traditionally require humans to construct proofs, recent
work shows that LLMs can generate proofs at human level
in math competitions (Google DeepMind, 2024). To our
knowledge, the only existing verification benchmarks in
Lean are miniCodeProps (Lohn and Welleck, 2024) and
FVAPPS (Dougherty and Mehta, 2025). miniCodeProps
translates 201 Haskell programs and their specifications into
Lean but is designed for proof generation only. FVAPPS
contains 4,715 Lean programs with LLM-generated speci-
fications from a fully automated pipeline that lacks human
validation and quality control. In contrast, VERINA provides
high-quality, human-verified samples and captures all three
foundational tasks in verifiable code generation.

Task compositionality. A key strength of VERINA is its

VERINA: Benchmarking Verifiable Code Generation

Table 1: A comparison of VERINA with related works on LLMs for code generation and verification. We characterize
whether each work supports the three foundational tasks for end-to-end verifiable code generation: CodeGen, SpecGen,
ProofGen (Section 4.1). @ means fully supported, © means partially supported, O means unsupported. If ProofGen is
supported, we specify the proving style: automated theorem proving (ATP) or interactive theorem proving (ITP). For works
supporting multiple tasks, we annotate if these tasks are supported in a modular and composable manner. Overall, VERINA
offers more comprehensive and high-quality benchmarking compared to prior works.

CodeGen SpecGen ProofGen Proving Style Compositionality Language

% HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021) o O O - - Python
S Dafny-Synthesis (Misu et al., 2024) [© [ATP X Dafny
E DafnyBench (Loughridge et al., 2025) @) O) ATP - Dafny
% miniCodeProps (Lohn and Welleck, 2024) O O [) ITP — Lean
m FVAPPS (Dougherty and Mehta, 2025) [} O o ITP X Lean
nl2postcond (Endres et al., 2024) O [] O — - Python, Java
Clover (Sun et al., 2024) [} o o ATP X Dafny
AlphaVerus (Aggarwal et al., 2024) [} O [J ATP X Rust

» AutoSpec (Wen et al., 2024) O (]] ATP X C/C++
% SpecGen (Ma et al., 2025) O [} [] ATP X Java
‘£ SAFE (Chen et al., 2024) O O o ATP X Rust
§ AutoVerus (Yang et al., 2025) O O [] ATP - Rust
= Laurel (Mugnier et al., 2025) O O [] ATP - Dafny
Pei et al. (2023) @) @)) ATP - Java
Baldur (First et al., 2023), Selene (Zhang et al., 2024) O O o ITP - Isabelle
Rango (Thompson et al., 2025), PALM (Lu et al., 2024) O O [] ITP - Coq
VERINA o) o ITP v Lean

modular design, which enables flexible evaluation of not
only individual tasks but also their combinations. This
compositionality captures diverse real-world scenarios—
from specification-guided code generation to end-to-end
verifiable code generation—enabling a comprehensive as-
sessment of different aspects of verifiable code generation.
This modularity also facilitates targeted research on specific
weaknesses, such as improving proof generation. On the
contrary, all other prior works lack compositionality. For ex-
ample, Dafny-Synthesis (Misu et al., 2024) and Clover (Sun
et al., 2024) mix specification and proof generation into a
single task, lacking support for separate evaluation of each.

3. VERINA: Data Format, Construction, and
Quality Assurance

We describe the VERINA benchmark, its data construction
pipeline, and quality assurance measures.

3.1. Overview and Data Format

VERINA consists of 189 programs, annotated with natural
language descriptions, code, specifications, proofs, and test
cases. The code, specification, and proof are all written in
Lean. An example is illustrated in Figure 1, consisting of:

* Natural language description (Line 1-4): informal de-
scription of the programming problem, capturing the in-
tent of the human developer.

* Code (Line 6-8): ground truth code implementation that
solves the programming problem.

* Specification (Line 10—18): ground truth formal specifi-
cation for the programming problem. It consists of a pre-
condition, which states properties the inputs must satisfy,
and a post-condition, which states desired relationship
between inputs and outputs.

* Proof (Optional, Line 20-22): formal proof establishing
that the code satisfies the specification. Ground truth
proofs are optional in VERINA, as they are not required
for evaluation. Model-generated proofs can be checked by
Lean directly. Nevertheless, we invest significant manual
effort in writing proofs for 46 out of 189 examples as they
help quality assurance (Section 3.2).

* Test suite (Line 24-29): a comprehensive suite of both pos-
itive and negative test cases. Positive tests are valid input-
output pairs that meet both the pre-condition and the post-
condition. Negative tests are invalid inputs-output pairs,
which means either the inputs violate the pre-condition
or the output violates the post-condition. These test cases
are useful for evaluating model-generated code and speci-
fications, as detailed in Section 4.1. They are formatted
in Lean during evaluation.

Benchmark statistics. Table 2 presents key statistics of
VERINA. Natural language descriptions have a median
length of 110 words, ensuring they are both informative and
detailed. Code ranges up to 38 lines and specifications up
to 62 lines, demonstrating that VERINA captures complex
tasks. With a median of 5 positive tests and 12 negative
tests per instance, the constructed test suites provide strong
evidence for the high quality and correctness of VERINA.

VERINA: Benchmarking Verifiable Code Generation

Code implementation
7 def removeElement (s :
s.eraseldx! k

Array Int) (k : Nat) (h_precond :

def removeElement_pre (s : Array Int) (k :

Nat) :
k < s.size —-- the index must L han

Prop :=

rray size

smaller t

def removeElement_post (s : Array Int) (k :
result.size = s.size - 1 A —— Only one ¢
(V i, 1 < k — result[i]! = s[i]!) A —
(V i, i < result.size — i > k — result[i]!

= s[i + 1]!) ——

21 theorem removeElement_spec (s: Array Int) (k: Nat) (h_precond :
22 removeElement_post s k (removeElement s k h_precond)

,
TEEw
RERRER

(

removeElement_pre s k)

Nat) (result: Array Int) (h_precond :

h_precond

: Array Int :=

removeElement_pre s k)

: Prop :=

removeElement_pre s k) :
:= by sorry The proof is omitted for brevity

Figure 1: An example instance of VERINA, consisting of a problem description, code implementation, specifications
(pre-condition and post-condition), a proof (optional), and comprehensive test cases. Note that we select this instance for
presentation purposes and VERINA contains more difficult ones.

Table 2: Statistics of VERINA.

Metric Median Max
Words in Description 110 296
LoC for Code 9 38
LoC for Spec. 4 62
Positive Tests 5 13
Negative Tests 12 27

3.2. Benchmark Construction and Quality Assurance

VERINA consists of two subsets sourced from different ori-
gins: VERINA-BASIC and VERINA-ADV. For VERINA-
BASIC, the maximum (median) LoC for code and specifica-
tion are 26 (6) and 17 (2), respectively. For VERINA-ADV,
they are 38 (16) and 62 (7). This underscores the diver-
sity and varying difficulty levels between VERINA-BASIC
and VERINA-ADV. We employ a meticulous data curation
process that combines careful translation, thorough manual
review, and automated mechanisms, leading to a rigorous
and high-quality benchmark for verifiable code generation.

VERINA-BASIC: translation from human-written Dafny
code. We first consider MBPP-DFY-50 (Misu et al., 2024),
which contains MBPP (Austin et al., 2021) coding prob-
lems paired with human-verified solutions in Dafny. Each
instance contains a natural language task description, code,
specifications, proof, and test cases. We manually trans-
lated 49 problems into Lean, refining and verifying each
translation. To extend the benchmark, we added 59 more
human-authored Dafny instances from CloverBench (Sun
et al., 2024). These were translated into Lean using Ope-
nAl 03-mini with few-shot prompting based on our manual

translations, followed by manual inspection and correction.
Overall, the coding difficulty in VERINA-BASIC, abstracting
away language differences, is comparable to MBPP.

VERINA-ADV: writing Lean code from scratch. VERINA-
ADV enhances the diversity of VERINA by incorporating
more advanced coding problems and solutions. They were
adapted from student submissions to a lab assignment in a
course on theorem proving and program verification. Stu-
dents, both undergraduate and graduate, were encouraged to
source problems from platforms like LeetCode or more chal-
lenging datasets such as LiveCodeBench (Jain et al., 2025).
They formalized and solved these problems in Lean, provid-
ing all necessary elements in VERINA’s format (Section 3.1).
We carefully selected the most suitable and high-quality sub-
missions, resulting in 81 benchmark instances. In addition,
we manually reviewed and edited the submissions to ensure
their correctness.

Quality assurance. During the data collection process, we
consistently enforce various manual and automatic mecha-
nisms to ensure the high quality of VERINA:

* Detailed problem descriptions: The original problem de-
scriptions, such as those from MBPP-DFY-50, can be
short and ambiguous, making them inadequate for specifi-
cation generation. To resolve this, we manually enhanced
the descriptions by clearly outlining the high-level intent,
specifying input parameters with explicit type informa-
tion, and detailing output specifications.

* Full code coverage with positive tests: Beyond the original
test cases, we expanded the set of positive tests to ensure

VERINA: Benchmarking Verifiable Code Generation

that they achieve full line coverage on the ground truth
code. We created these additional tests both manually and
with LLMs. We leveraged the standard coverage . py
tool to verify complete line coverage, since Lean lacks a
robust coverage tool. For Python reference implementa-
tions, we either used the original MBPP code or generated
an implementation from the enhanced problem descrip-
tion via OpenAl’s 04-mini with manual validation.

» Full test pass rate on ground truth specifications: We
evaluated the ground truth specifications against our com-
prehensive test suites. All ground truth specifications suc-
cessfully pass their respective positive tests, confirming
the quality of the specifications in VERINA.

* Necessary negative tests: We mutated each positive test
case to construct at least three different negative tests that
violate either the pre- or the post-condition, except when
the function’s output has boolean type, in which case only
a single negative test can be created. We made sure that
our ground truth code and specifications do not pass these
negative tests.

* Preventing trivial code generation: VERINA allows pro-
viding ground truth specifications as an optional input
for the code generation task (discussed in Section 4.1).
We crafted all ground truth specifications such that they
cannot be directly used to solve the coding problem. This
prevents LLMs from generating an implementation triv-
ially equivalent to the specification. As a result, the model
must genuinely demonstrate semantic comprehension of
the reference specification and non-trivial reasoning to
generate the corresponding implementation.

* Manual review and edits: Each benchmark instance was
manually reviewed by at least two authors, carefully edit-
ing them to ensure correctness and high quality.

4. Evaluating Verifiable Code Generation
Using VERINA

VERINA enables comprehensive evaluation of verifiable
code generation, covering foundational tasks—code, speci-
fication, and proof generation—and their combinations to
form an end-to-end pipeline from natural language descrip-
tions to verifiable code. We also introduce a novel frame-
work for a reliable automatic evaluation of model-generated
specifications.

4.1. Foundational Tasks and Metrics

As shown in Figure 2, all three foundational tasks include
natural language descriptions and function signatures (Lines
7, 11, and 15 in Figure 1) as model inputs, which captures
human intent and enforces consistent output formats, facili-
tating streamlined evaluation.

SpecGen Spec.

) Description
‘ Signature

CodeGen f—> Code Co ProofGen Proof
|

Figure 2: VERINA’s three foundational tasks. Dashed ar-
rows represent optional inputs.

Specification generation (SpecGen). Given a description,
signature, and optionally code implementation, the model
generates a formal specification. Specifications must accu-
rately capture human intent. Let ¢ denote the set of correct
programs that satisfy human intent and ngS the set that aligns
with the generated specification. An ideal specification
should achieve ¢? = ¢, which entails two properties—(i)
soundness (¢ C ¢): it is “small enough” to cover only cor-
rect programs, and (ii) completeness (¢ C qAb): it is “large
enough” to cover all correct programs.

In practice, two challenges arise for evaluating dg First, we
must capture ¢ formally. VERINA addresses this by leverag-
ing high-quality ground truth specifications (see Section 3.2)
and comprehensive test suites. Second, we need to assess
the relationship between g{) and ¢ to establish soundness and
completeness. Since specifications consist of pre-conditions
and post-conditions, let P and P denote the ground truth and
model-generated pre-conditions, respectively, and () and Q
the corresponding post-conditions. In VERINA, we define
the soundness and completeness of P and Q as follows:

« P is sound iff VZ.P(Z) = P(Z), where T are the pro-
gram’s input values. Given the same post-condition (e.g.,
@), it is more difficult for a program to satisfy P than P.
This is because P allows more inputs, which the program
must handle to meet the post-condition. As a result, the
set of programs accepted by P a subset of those accepted
by P.

« P is complete iff Vz.P(Z) = P(z). Given the same
post-condition, the set of programs accepted by P is now
a superset of those accepted by P, since P is more restric-
tive than P.

« Q is sound iff Vz, y.P(T) A Q(f, y) = Q(T,y), where
y is the output value. For any valid inputs w.r.t. P, the set
of output accepted by Q is a subset of those accepted by
Q, establishing soundness.

¢ Symmetrically, Q is complete iff VZ,y.P(T) A
QT y) = QT,y).

To evaluate SpecGen, we need automatic and robust mech-
anisms to check if the above relationships hold. Formally
proving them is difficult, as they may contain nested quanti-
fiers and complex program properties. LLM-based provers
are ineffective in the verification domain, as shown in Sec-
tion 5, making them unreliable for this use case. Another

VERINA: Benchmarking Verifiable Code Generation

Simplify R to
R’ using tests
Decides if R holds

Cannot l Yes l No
decide

R holds R does
Property-based not hold
Testing for R’
Counterexample?
Cannot l No l Yes
test

R holds R does

Unknown not hold

Figure 3: Our evaluator for specification generation.

approach is to convert these relationships into ATP; however,
existing tools do not adequately model the necessary Lean
features (Mohamed et al., 2025). To overcome these limita-
tions, we leverage a practical testing-based evaluation frame-
work using our comprehensive test suites, as shown in Fig-
ure 3. We formalize a given soundness or completeness re-
lationship, denoted by R, in Lean. Instead of proving R for
universally quantified input and output variables, we check
R against concrete values in test cases. For example, to eval-
uate Qs soundness, we check if P(ZT) A Q(f, y) = Q(Z,y)
holds for all test cases (T, y) in our test suite. We denote this
simplified version of R as R’. For many cases, e.g., the spec-
ification in Figure 1, Lean can automatically determine if R’
holds (Selsam et al., 2020) and we return the corresponding
result. Otherwise, we employ property-based testing with
the plausible tactic in Lean (Lean Prover Community,
2024). It generates diverse inputs specifically targeting the
remaining universally and existentially quantified variables
in R/, extensively exploring the space of possible values to
test R’. In Appendix A.4, we provide a detailed description
on how we implement these metrics in Lean.

Since our evaluator is based on testing, it can prove that
R does not hold through counterexamples, as highlighted
in green in Figure 3. While it cannot formally establish

, it remains highly robust in this regard, due to our
comprehensive test suite with both positive and negative
tests, which achieve full coverage on ground truth code
implementations. Lean’s property-based testing cannot han-
dle a small number of complicated relationships, for which
our evaluator returns unknown. To further enhance the ac-
curacy of our metric, we repeat our evaluation framework
in Figure 3 to check —R. We compare the evaluator out-
comes on R and —R, and select the more accurate result
as the final output. Our final metrics for SpecGen include
individual pass@Fk (Chen et al., 2021) scores for sound-
ness and completeness of all generated pre-conditions and
post-conditions, as well as aggregated scores that soundness
and completeness hold simultaneously for pre-condition,
post-condition, and the complete specification. Since the
evaluation of the specification may return unknown, we plot
error bars indicating the lower bound (treating unknown as

broaf Generated
CodeGen |Code

ProofGen ng?“vrm"‘
roof
enerated SpecGen |Generated

Proof Spec.

Figure 4: Combinations of VERINA’s foundational tasks:
specification-guided code generation (fop left), specification
inference from code (bottom left), and end-to-end verifiable
code generation (right). Natural language descriptions and
function signatures are omitted in the figure for brevity.

R does not hold) and upper bound (treating as R holds).

To illustrate our metric, consider the ground truth pre-
condition k < s.size atLine 12 of Figure 1, and model-
generated pre-condition k < s.size - 1 and k < s.
size + 1. k < s.size - 1 can be determined as un-
sound using the positive test (s #[1, 2, 3, 4, 51)
(k : 4),while k < s.size + 1 is incomplete based
on the negative test (s #[1, 2, 3, 4, 51) (k
5). We more examples of our metrics for specification
generation in Appendix C.

Code generation (CodeGen). Given a natural language
description, function signature, and optionally specifica-
tion, the model generates code implementing the desired
functionality. Following standard practice, we evaluate the
generated code using positive test cases in VERINA and re-
porting the pass @k metric defined by Chen et al. (2021). In
Section 4.2, we will explore evaluating the code by proving
its correctness with respect to the formal specification.

Proof generation (ProofGen). Given a description, signa-
ture, code, and specification, the model generates a formal
proof in Lean to establish that the code satisfies the specifica-
tion. This task evaluates the model’s ability to reason about
code behavior and construct logically valid arguments for
correctness. We use Lean to automatically check the valid-
ity of generated proofs, and proofs containing placeholders
(e.g., the sorry tactic) are marked as incorrect.

4.2. Task Combinations

VERINA enables combining the three foundational tasks to
evaluate various capabilities in verifiable code generation.
These combined tasks reflect real-world scenarios where
developers utilize the model to automatically create veri-
fied software in an end-to-end manner. Such modularity
and compositionality highlight the generality of VERINA,
which encompasses various tasks studied in previous work
(Table 1). Three examples of combined tasks are (Figure 4):

* Specification-Guided Code Generation: Given a natural
language description, function signature, and the ground
truth specification, the model first generates the code and

VERINA: Benchmarking Verifiable Code Generation

then proves that the code satisfies the specification. This
aligns with tasks explored in FVAPPS (Dougherty and
Mehta, 2025) and AlphaVerus (Aggarwal et al., 2024).

 Specification Inference from Code: In some cases, devel-
opers may have the code implementation and want the
model to annotate it with a formal specification and prove
their alignment. This corresponds to the setting in Au-
toSpec (Wen et al., 2024), SpecGen (Ma et al., 2025), and
SAFE (Chen et al., 2024).

* End-to-End Verifiable Code Generation: For an even
higher degree of automation, developers might start with
only a high-level problem description in natural language
and instruct the model to generate code and specification
independently, and then generate the proof. This captures
the scenario in Dafny-Synthesis (Misu et al., 2024) and
Clover (Sun et al., 2024).

In these task combinations, a crucial design consideration is
the dependency between code and specification. For exam-
ple, in specification-guided code generation, it is important
to assess how beneficial the ground truth specification is
beyond the natural language description, which already cap-
tures the developer’s intent. Additionally, for end-to-end
verifiable code generation, it is essential to decide the or-
der of the CodeGen and SpecGen modules—whether to
make SpecGen dependent on the output of CodeGen, place
SpecGen before CodeGen, or run them independently (as in
Figure 4). We experimentally explore these design choices
using VERINA in Section 5.

In end-to-end verifiable code generation, it is crucial that
the model generates code and specification independently,
rather than sequentially. Otherwise, it may exploit shortcuts
by producing definitionally equivalent code-specification
pairs, making the proof task trivial. When designing VE-
RINA’s tasks, we enforce independence—for example, the
model cannot access the code when generating the specifica-
tion. While we do not yet check for definitional equivalence
(e.g., using BEq (Liu et al., 2025)), we leave this as an
important direction for future work.

5. Experimental Evaluation

Experimental setup. We evaluate a diverse set of nine
state-of-the-art LLMs on VERINA. We leverage 2-shot
prompting to enhance output format adherence, with the
2-shot examples excluded from the final benchmark. For
each task, we primarily report the pass@1 metric (Chen
et al., 2021). We provide detailed input prompts, output
formats, and LLM setups in Appendix A.

All foundational tasks are challenging, especially Proof-
Gen. Figure 5 shows a clear difficulty hierarchy across
the three foundational tasks. Code generation achieves the

= GPT do-mini GPTdo = od-mini
. DeepSeek Prover 2 78 DeepSeek V3 mEE Quen 3 2358-A22B-p8 Gemini 2.5 flash

Code Spec Sound&Complete Proof

4 Ermor bars

Figure 5: pass@1 performance of LLMs on VERINA’s three
foundational tasks.

highest success rates across models, followed by specifica-
tion generation, while proof generation remains the most
challenging with pass@1 rates below 3.6% for all models.
All three tasks pose significant challenges for current LLMs,
with constructing Lean proofs that the implementation satis-
fies the specification being particularly hard and requiring
specialized theorem proving capabilities. This also means
that for any combined task involving ProofGen, LLMs’ per-
formance will be heavily bottlenecked by the ProofGen
subtask. Among the evaluated models, o4-mini, GPT 4.1,
Claude Sonnet 3.7, and Gemini 2.5 Flash demonstrate rela-
tively stronger performance across tasks. We report detailed
results on pre-condition and post-condition soundness and
completeness in Appendix B, where we observe that gener-
ating sound and complete post-conditions is generally more
difficult than pre-conditions.

= GPT 40-mini GPT 40 = od-mini
== DeepSeek Prover 2 78 DeepSeek V3 mmm Quen 3 2358-A22B-p8 Gemini 2.5 flash

Code (verina-basic) Spec Sound&Complete (verina-basic) Proof (verina-basic)

21 e e 34 00 13 0o

Code (verina-adv) Spec Sound&Complete (verina-adv) Proof (verina-adv)

4 rmor bars

Figure 6: pass@1 performance on three foundational tasks
for VERINA-BASIC and VERINA-ADV.

VERINA-ADV is much more challenging than VERINA-
BASIC. The comparison between VERINA-BASIC and VE-
RINA-ADV in Figure 6 reveals substantial difficulty gaps on
all three tasks. This demonstrates that problem complexity
significantly impacts all aspects of verifiable code genera-
tion, and VERINA-ADV provides a valuable challenge for
advancing future research in this domain.

Iterative proof refinement shows meaningful improve-
ments. For ProofGen task, besides pass@1, we also extend
the evaluation of the 4 best performing LLMs (04-mini,
GPT 4.1, Claude Sonnet 3.7, Gemini 2.5 Flash) to further in-
vestigate LLMSs’ theorem proving capabilities. We evaluate
them with iterative proof refinement, where the evaluated
model receives Lean verifier error messages and is prompted
to revise its proof, and with direct generation, where the

VERINA: Benchmarking Verifiable Code Generation

—— o4-mini —— GPT4.1 —— Claude Sonnet 3.7
With Refinement (verina-full) With (verina-basic) 25 With Refil

Gemini 2.5 flash

(verina-adv)

e

10 ﬁm F
. {F A2

5 P —
—

1 8 16 24 32 40 48 56 64
k

1 & 16 24 32 40 48 56 64 1 8 16 24 32 40 48 36 64
k k

Direct Generation (verina-full) Direct Generation (verina-basic) Direct Generation (verina-adv)

@1 @1 [hd
2 4 £ g
s/ﬁ/: s 5

T & 16 22 32 40 48 56 64
3

1 & 15 24 32 40 48 36 64 T 8 16 24 32 40 48 55 64
K 3

Figure 7: pass@Fk performance of selective LLMs on the
ProofGen tasks in VERINA using proof refinement (first
row) and direct generation (second row).

evaluated model generates responses independently in each
iteration. For both method, we report pass @£k, the success
rate after k£ rounds of iterations, for k up 64. This metric in-
vestigates how much additional interaction helps repair the
proof that a single-pass generation would miss, and whether
providing Lean verifier feedback improves success rates
compared to independent generation attempts.

As shown in Figure 7, iterative proof refinement yields
meaningful improvements on simpler problems, with 04-
mini improving from 7.4% to 22.2% on VERINA-BASIC
after 64 iterations. However, these gains are substantially
less on VERINA-ADV (1.2% to 6.2%), indicating that naive
refinement strategies are insufficient for complex proving
tasks. Furthermore, comparing refinements and direct gen-
eration without error messages demonstrates the clear value
of Lean verifier feedback.

= GPT do-mini P a0 = GPT od-mini - GpTal == Claude sonnet 3.7
Deepseck V3 mEE Quen 3 2358-4228-1p8

Gemini 2.5 lash

Figure 8: Impact of contextual information (reference code
or specification input) on CodeGen and SpecGen perfor-
mance.

Providing ground truth specification benefits CodeGen.
Providing ground truth specifications as context consistently
improves CodeGen performance across models. Since the
ground truth specifications cannot be used directly as code
(as explained in 3.2), all CodeGen improvements rely on
semantic understanding of the reference specification. On
the contrary, providing ground truth code as context shows
minimal or negative improvement for SpecGen. While it
is possible for LLMs to directly use the ground truth code
in the specification, manual inspection of our evaluation
results reveals no evidence of such behaviors. This is likely
because using code as specification is uncommon in stan-
dard development practices, and our prompts A.3 ask LLMs
to focus on constraining code behavior rather than replicat-
ing implementation details. The asymmetry in using ground

truth information for CodeGen versus SpecGen suggests
that formal specifications effectively constrain and guide
code synthesis, while verbose code implementations may
introduce noise to or over-constrain specification generation
rather than providing helpful guidance. Furthermore, when
using LLM-generated code or specifications as context in-
stead of ground truth, performance generally degrades. The
generated artifacts can be of insufficient quality to serve
as reliable reference. This suggests that combined tasks,
where LLMs must generate both code and specifications
jointly, might be significantly more challenging than indi-
vidual tasks in isolation.

Qualitative case studies. We present detailed qualitative
case studies with analysis of failure modes and success
patterns across different tasks in Appendix C.

6. Conclusion and Discussion

We have introduced VERINA, a comprehensive benchmark
comprising 189 carefully curated examples with detailed
task descriptions, high-quality codes and specifications in
Lean, and extensive test suites with full line coverage. This
benchmark enables systematic assessment of various veri-
fiable code generation capabilities, and our extensive eval-
uation result presents substantial challenges that expose
limitations of state-of-the-art language models on verifiable
code generation tasks. We hope that VERINA will serve as
a valuable resource by providing both a rigorous evaluation
framework and clear directions towards more reliable and
formally verified automated programming systems.

Limitations and future work. Despite advancing the
state-of-the-art in benchmarking verifiable code genera-
tion, VERINA has several limitations. First, its size (189
examples) is modest, scaling to a larger dataset suitable
for finetuning likely requires automated annotation with
LLM assistance. Second, it emphasizes simple, standalone
tasks—well-suited for benchmarking but not fully represen-
tative of complex real-world verification projects (Klein
et al., 2009; Leroy et al., 2016). Third, while existing
provers have limited capabilities for handling complex
soundness/completeness relationships, our SpecGen metric
(Section 4.1) could be improved by potential more capa-
ble provers in the future, including those based on LLMs
or SMT solvers, to prove soundness/completeness relation-
ships. Finally, while Lean programs in VERINA are newly
written, the underlying task topics are drawn from widely
used sources, posing a risk of data contamination.

References

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tian-
jun Zhang, Sida Wang, Armando Solar-Lezama, Koushik Sen,
and Ion Stoica. LiveCodeBench: Holistic and contamination
free evaluation of large language models for code. In Interna-

VERINA: Benchmarking Verifiable Code Generation

tional Conference on Learning Representations (ICLR), 2025.
1,2,4,11

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao,
Kexin Pei, Ofir Press, and Karthik R Narasimhan. SWE-bench:
Can language models resolve real-world GitHub issues? In
International Conference on Learning Representations (ICLR),
2024. 1

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Hen-
rique Ponde De Oliveira Pinto, Jared Kaplan, Harri Edwards,
Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evalu-
ating large language models trained on code. arXiv preprint
arXiv:2107.03374,2021. 1,2,3,6,7, 11

Eirini Kalliamvakou. Research: Quantifying GitHub Copi-
lot’s Impact on Developer Productivity and Happiness.
https://github.blog/2022-09-07-research—-
quantifying-github-copilots-impact-on-
developer—-productivity—-and-happiness. Ac-
cessed: 2025-05-10. 1

Jay Peters. More than a quarter of new code at Google is generated
by Al. https://www.theverge.com/2024/10/29/
24282757/google—new—code—generated-ai-q3-
2024,2024. 1

Zhijie Wang, Zijie Zhou, Da Song, Yuheng Huang, Shengmai
Chen, Lei Ma, and Tianyi Zhang. Towards Understanding
the Characteristics of Code Generation Errors Made by Large
Language Models . In International Conference on Software
Engineering (ICSE), 2025. 1

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-
Gavitt, and Ramesh Karri. Asleep at the keyboard? assessing the
security of Github Copilot’s code contributions. In Symposium
on Security and Privacy, 2022. 1

Klint Finley. How developers spend the time they save thanks
to Al coding tools. https://github.blog/ai-and-
ml/generative—ai/how-developers—spend—
the-time-they-save-thanks-to-ai-coding-
tools/. Accessed: 2025-05-10. 1

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Newman Wu,
Jieung Kim, Vilhelm Sjoberg, and David Costanzo. CertiKOS:
An extensible architecture for building certified concurrent OS
kernels. In Symposium on Operating Systems Design and Im-
plementation (OSDI), 2016. 1

Xavier Leroy, Sandrine Blazy, Daniel Késtner, Bernhard Schom-
mer, Markus Pister, and Christian Ferdinand. CompCert-a
formally verified optimizing compiler. In Embedded Real Time
Software and Systems (ERTS), 2016. 1, 8

Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Al-
fredo Pironti, and Pierre-Yves Strub. Implementing TLS with
verified cryptographic security. In Symposium on Security and
Privacy, 2013. 1

Chuyue Sun, Ying Sheng, Oded Padon, and Clark Barrett. Clover:
Closed-loop verifiable code generation. In International Sym-
posium on Al Verification, 2024. 1,2,3,4,7, 11

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin
Lauter, Swarat Chaudhuri, and Dawn Song. Formal math-
ematical reasoning: A new frontier in Al. arXiv preprint
arXiv:2412.16075,2024. 1

Chloe Loughridge, Qinyi Sun, Seth Ahrenbach, Federico Cassano,
Chuyue Sun, Ying Sheng, Anish Mudide, Md Rakib Hossain
Misu, Nada Amin, and Max Tegmark. DafnyBench: A bench-
mark for formal software verification. Transactions on Machine
Learning Research, 2025. 1,2, 3

Pranjal Aggarwal, Bryan Parno, and Sean Welleck. AlphaVerus:
Bootstrapping formally verified code generation through self-
improving translation and treefinement. arXiv preprint
arXiv:2412.06176,2024. 1, 3,7

Tianyu Chen, Shuai Lu, Shan Lu, Yeyun Gong, Chenyuan Yang,
Xuheng Li, Md Rakib Hossain Misu, Hao Yu, Nan Duan, Peng
Cheng, et al. Automated proof generation for Rust code via
self-evolution. In International Conference on Learning Repre-
sentations (ICLR), 2024. 1, 3,7

Quinn Dougherty and Ronak Mehta. Proving the coding interview:
A benchmark for formally verified code generation. arXiv
preprint arXiv:2502.05714, 2025. 1,2, 3,7

Md Rakib Hossain Misu, Cristina V Lopes, Iris Ma, and James
Noble. Towards Al-assisted synthesis of verified Dafny methods.
Proceedings of the ACM on Software Engineering, 2024. 1, 2,
3,4,7,11

Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem
prover and programming language. In International Conference
on Automated Deduction (CADE), 2021. 2

Mathlib community. The Lean mathematical library. In Certified
Programs and Proofs (CPP), 2020. 2

Mathlib Community. Completion of the liquid tensor exper-
iment. https://leanprover-community.github.
io/blog/posts/lte-final/, 2022. 2

Markus de Medeiros, Muhammad Naveed, Tancrede Lepoint,
Temesghen Kahsai, Tristan Ravitch, Stefan Zetzsche, Anjali
Joshi, Joseph Tassarotti, Aws Albarghouthi, and Jean-Baptiste
Tristan. Verified foundations for differential privacy. In Pro-
gramming Language Design and Implementation (PLDI), 2025.
2

Kesha Hietala and Emina Torlak. Lean into verified software
development. https://aws.amazon.com/blogs/
opensource/lean-into-verified-software—
development/, 2024. 2

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma,
Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai,
Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021. 2, 3,
4

Wen Fan, Marilyn Rego, Xin Hu, Sanya Dod, Zhaorui Ni, Danning
Xie, Jenna DiVincenzo, and Lin Tan. Evaluating the ability of
large language models to generate verifiable specifications in
verifast. arXiv preprint arXiv:2411.02318, 2024. 2

Evan Lohn and Sean Welleck. miniCodeProps: a minimal
benchmark for proving code properties. arXiv preprint
arXiv:2406.11915,2024. 2,3

Madeline Endres, Sarah Fakhoury, Saikat Chakraborty, and Shu-
vendu K Lahiri. Can large language models transform natural
language intent into formal method postconditions? Proceed-
ings of the ACM on Software Engineering, 2024. 3

https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness
https://www.theverge.com/2024/10/29/24282757/google-new-code-generated-ai-q3-2024
https://www.theverge.com/2024/10/29/24282757/google-new-code-generated-ai-q3-2024
https://www.theverge.com/2024/10/29/24282757/google-new-code-generated-ai-q3-2024
https://github.blog/ai-and-ml/generative-ai/how-developers-spend-the-time-they-save-thanks-to-ai-coding-tools/
https://github.blog/ai-and-ml/generative-ai/how-developers-spend-the-time-they-save-thanks-to-ai-coding-tools/
https://github.blog/ai-and-ml/generative-ai/how-developers-spend-the-time-they-save-thanks-to-ai-coding-tools/
https://github.blog/ai-and-ml/generative-ai/how-developers-spend-the-time-they-save-thanks-to-ai-coding-tools/
https://leanprover-community.github.io/blog/posts/lte-final/
https://leanprover-community.github.io/blog/posts/lte-final/
https://aws.amazon.com/blogs/opensource/lean-into-verified-software-development/
https://aws.amazon.com/blogs/opensource/lean-into-verified-software-development/
https://aws.amazon.com/blogs/opensource/lean-into-verified-software-development/

VERINA: Benchmarking Verifiable Code Generation

Cheng Wen, Jialun Cao, Jie Su, Zhiwu Xu, Shengchao Qin,
Mengda He, Haokun Li, Shing-Chi Cheung, and Cong Tian.
Enchanting program specification synthesis by large language
models using static analysis and program verification. In In-
ternational Conference on Computer Aided Verification (CAV),
2024. 2,3,7

Lezhi Ma, Shangqing Liu, Yi Li, Xiaofei Xie, and Lei Bu. Spec-
Gen: Automated generation of formal program specifications
via large language models. In International Conference on
Software Engineering (ICSE), 2025. 2, 3,7

Chenyuan Yang, Xuheng Li, Md Rakib Hossain Misu, Jianan
Yao, Weidong Cui, Yeyun Gong, Chris Hawblitzel, Shuvendu
Lahiri, Jacob R Lorch, Shuai Lu, et al. AutoVerus: Automated
proof generation for Rust code. In International Conference on
Learning Representations (ICLR), 2025. 3

Eric Mugnier, Emmanuel Anaya Gonzalez, Nadia Polikarpova,
Ranjit Jhala, and Zhou Yuanyuan. Laurel: Unblocking auto-
mated verification with large language models. Proceedings of
the ACM on Programming Languages, 2025. 2, 3

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and
Pengcheng Yin. Can large language models reason about pro-
gram invariants? In International Conference on Machine
Learning (ICML), 2023. 2,3

Emily First, Markus N Rabe, Talia Ringer, and Yuriy Brun. Baldur:
Whole-proof generation and repair with large language models.
In ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2023.
3

Lichen Zhang, Shuai Lu, and Nan Duan. Selene: Pioneering
automated proof in software verification. In Annual Meeting of
the Association for Computational Linguistics (ACL), 2024. 3

Kyle Thompson, Nuno Saavedra, Pedro Carrott, Kevin Fisher, Alex
Sanchez-Stern, Yuriy Brun, Jodo F Ferreira, Sorin Lerner, and
Emily First. Rango: Adaptive retrieval-augmented proving for
automated software verification. In International Conference
on Software Engineering (ICSE), 2025. 3

Minghai Lu, Benjamin Delaware, and Tianyi Zhang. Proof automa-
tion with large language models. In International Conference
on Automated Software Engineering (ASE), 2024. 3

K Rustan M Leino. Dafny: An automatic program verifier for
functional correctness. In International Conference on Logic
for Programming Artificial Intelligence and Reasoning (LPAR),
2010. 2

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun,
Isitha Subasinghe, Yi Zhou, Jon Howell, Bryan Parno, and Chris
Hawblitzel. Verus: Verifying rust programs using linear ghost
types. Proceedings of the ACM on Programming Languages,
2023. 2

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient SMT
solver. In International conference on Tools and Algorithms for
the Construction and Analysis of Systems, 2008. 2

Clark Barrett and Cesare Tinelli. Satisfiability modulo theories.
Handbook of model checking, 2018. 2

10

Yi Zhou, Jay Bosamiya, Yoshiki Takashima, Jessica Li, Marijn
Heule, and Bryan Parno. Mariposa: Measuring SMT instability
in automated program verification. In International Conference
on Formal Methods in Computer-Aided Design (FMCAD), 2023.
2

Google DeepMind. Al achieves silver-medal standard solving
international mathematical olympiad problems. https:
//deepmind.google/discover/blog/ai-solves—
imo-problems—at-silver-medal-level/, 2024. 2

Abdalrhman Mohamed, Tomaz Mascarenhas, Harun Khan, Haniel
Barbosa, Andrew Reynolds, Yicheng Qian, Cesare Tinelli, and
Clark Barrett. Lean-smt: An smt tactic for discharging proof
goals in lean. arXiv preprint arXiv:2505.15796, 2025. 6

Daniel Selsam, Sebastian Ullrich, and Leonardo de Moura. Tabled
typeclass resolution. arXiv preprint arXiv:2001.04301, 2020. 6

Lean Prover Community. Plausible: =~ A property test-
ing framework for Lean 4 that integrates into the tac-
tic framework. https://github.com/leanprover—
community/plausible, 2024. 6

Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, and Junchi
Yan. Rethinking and improving autoformalization: towards a
faithful metric and a dependency retrieval-based approach. In
International Conference on Learning Representations (ICLR),
2025. 7

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engel-
hardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch, and Simon Winwood. selL4: Formal verification of an OS
kernel. In Symposium on Operating systems principles (SOSP),
2009. 8

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora,
Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt.
Measuring mathematical problem solving with the MATH
dataset. In Neural Information Processing Systems (NeurlPS),
Datasets and Benchmarks Track, 2021. 11

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan
Zhang, Keshav Santhanam, Sri Vardhamanan, Saiful Haq,
Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather
Miller, Matei Zaharia, and Christopher Potts. Dspy: Com-
piling declarative language model calls into self-improving
pipelines. In International Conference on Learning Representa-

tions (ICLR), 2024. 11

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://github.com/leanprover-community/plausible
https://github.com/leanprover-community/plausible

VERINA: Benchmarking Verifiable Code Generation

A. Datasets and Detailed Experimental Setup
A.1. License

We ensure compliance with all relevant licenses: MBPP-
DFY-50 (Misu et al., 2024) is licensed under GPL-3.0,
while both CloverBench (Sun et al., 2024) and Live-
CodeBench (Jain et al., 2025) use MIT licenses. Our
datasets VERINA is licensed under GPL-3.0. Consistent
with established research practices (Hendrycks et al., 2021;
Jain et al., 2025), we only use publicly available materials
from competitive programming platforms such as LeetCode.
Our collection and use of these problems is strictly for aca-
demic research purposes, and VERINA involves no model
training or fine-tuning processes.

A.2. Model Configurations and Compute

Table 3 presents the configuration details and total experi-
ment costs for all nine evaluated LLMs. For all LLMs, we
use a temperature of 1.0 and a maximum output token bud-
get of 10,000. For reasoning models, we use default settings
of reasoning efforts or budgets. We host DeepSeek Prover
2 7B and Qwen 3 235B-A22B locally using 8 NVIDIA
H100 80GB GPUs. We run other LLMs through APIs, for
which we provide the total cost and cost per million to-
kens. The costs marked with asterisks include the additional
expenses incurred during iterative proof refinement exper-
iments, which required up to 64 refinement attempts per
datapoint.

A.3. Prompts

We employ a consistent 2-shot prompting approach across
all models and tasks to enhance output format adherence
and task understanding. The 2-shot examples are excluded
from the final benchmark evaluation. For each problem
instance, we sample 5 responses from each model and cal-
culate pass@1 metrics (Chen et al., 2021) using these 5
samples to ensure robust evaluation statistics. We utilize
DSPy (Khattab et al., 2024) for structural prompting. We
provide the detailed prompts in the following: Prompt 1 for
CodeGen, Prompt 2 for SpecGen, Prompt 3 for ProofGen,
and Prompt 4 for ProofGen with iterative refinement.

11

VERINA: Benchmarking Verifiable Code Generation

Table 3: Detailed configurations and costs for evaluated LLMs.

Pri 1M tok
Vendor Model Name Checkpoint Type rice ($/ okens) Cost
(Input / Output)
GPT 40-mini gpt-40-mini-2024-07-18 API $0.15 / $0.60 $10.94
OvenAl GPT 4o gpt-40-2024-08-06 API $2.50/%$10.0 $153.01
P GPT 4.1 gpt-4.1-2025-04-14 API $2.00/$8.00 $453.72"
04 mini 04-mini-2025-04-16 API $1.10/$4.40 $894.38"
Anthropic Claude Sonnet 3.7 claude-3-7-sonnet-20250219 API $3.00/$15.0 $777.60"
Google Gemini 2.5 Flash gemini-2.5-flash-preview-04-17 API $0.15/$0.60 $295.20"
DeepSeek V3 DeepSeek-V3-0324 API $1.25/%$1.25 $51.15
DeepSeek
DeepSeek Prover 2 7B DeepSeek-Prover-V2-7B GPU - -
Qwen Qwen 3 235B-A22B Qwen3-235B-A22B-FP8 GPU - -

" Including costs for iterative proof refinement experiments.

12

VERINA: Benchmarking Verifiable Code Generation

Prompt 1 (CodeGen)

Instructions

You are an expert in Lean 4 programming and theorem proving.

Please generate a Lean 4 program that finishes the task described in
‘task_description' using the template provided in ‘task_template‘.

The ‘task_template' is a Lean 4 code snippet that contains placeholders
(warpped with {{}}) for the code to be generated.

The program should:

- Be well-documented with comments if necessary

- Follow Lean 4 best practices and use appropriate Lean 4 syntax and features
— DO NOT use Lean 3 syntax or features

- DO NOT import Std or Init

Hint:

- Use a[i]! instead of a[i] when a is an array or a list when necessary

Input Fields

* task_description
Description of the Lean 4 programming task to be solved.

* task_template
Lean 4 template with placeholders for code generation and optional reference
specification.

Output Fields

e imports
Imports needed for ‘code'. Keep it empty if not needed.

e code_aux
Auxiliary definitions for ‘code‘. Keep it empty if not needed.

* code
Generated Lean 4 code following the template signature and complete the task.

13

VERINA: Benchmarking Verifiable Code Generation

Prompt 2 (SpecGen)

Instructions

You are an expert in Lean 4 programming and theorem proving.

Please generate a Lean 4 specification that constrains the program
implementation using the template provided in ‘task_template’.

The ‘task_template' is a Lean 4 code snippet that contains placeholders
(warpped with {{}}) for the spec to be generated.

The precondition should be as permissive as possible, and the postcondition
should model a sound an complete relationship between input and output of the
program based on the ‘task_description‘.

The generated specification should:

- Be well-documented with comments if necessary

- Follow Lean 4 best practices and use appropriate Lean 4 syntax and features
— DO NOT use Lean 3 syntax or features

- DO NOT import Std or Init

— Only use ‘precond_aux' or ‘postcond_aux' when you cannot express

the precondition or postcondition in the main body of the specification

- add @[reducible, simp] attribute to the definitions in ‘precond_aux‘' or
‘postcond_aux®

Hint:
- Use a[i]! instead of a[i] when a is an array or a list when necessary
Input Fields

* task_description
Description of the Lean 4 programming task to be solved.

* task_template
Lean 4 template with placeholders for specfication generation and optional
reference code.

Output Fields

e imports
Imports needed for ‘precond' and ‘postcond'. Keep it empty if not needed.

e precond_aux
Auxiliary definitions for ‘precond'. Keep it empty if not needed.

* precond
Generated Lean 4 code specifying the precondition.

* postcond_aux
Auxiliary definitions for ‘postcond‘. Keep it empty if not needed.

* postcond
Generated Lean 4 code specifying the postcondition.

14

VERINA: Benchmarking Verifiable Code Generation

Prompt 3 (ProofGen)

Instructions

You are an expert in Lean 4 programming and theorem proving.

Please generate a Lean 4 proof that the program satisfies the specification
using the template provided in ‘task_template’.

The ‘task_template' is a Lean 4 code snippet that contains placeholders
(warpped with {{}}) for the proof to be generated.

The proof should:

- Be well-documented with comments if necessary

— Follow Lean 4 best practices and use appropriate Lean 4 syntax and features
— DO NOT use Lean 3 syntax or features

— DO NOT import Std or Init

— DO NOT use cheat codes like ‘sorry?!

Hint:

— Unfold the implementation and specification definitions when necessary

— Unfold the precondition definitions at h_precond when necessary

Input Fields

* task_description
Description of the Lean 4 programming task to be solved.

* task_template
Lean 4 template with code and specification to be proved, and placeholders
for proof generation.

Output Fields

* imports
Imports needed for ‘proof'. Keep it empty if not needed.

* proof_aux
Auxiliary definitions and lemma for ‘proof'. Keep it empty if not needed.

* proof
Generated Lean 4 proof that the program satisfies the specification.

15

VERINA: Benchmarking Verifiable Code Generation

Prompt 4 (ProofGen with Iterative Refinement)

Instructions

You are an expert in Lean 4 programming and theorem proving.

Please generate a Lean 4 proof that the program satisfies the specification
using the template provided in ‘task_template‘.

The ‘task_template' is a Lean 4 code snippet that contains placeholders
(warpped with {{}}) for the proof to be generated.

The proof should:

- Be well-documented with comments if necessary

— Follow Lean 4 best practices and use appropriate Lean 4 syntax and features
— DO NOT use Lean 3 syntax or features

— DO NOT import Std or Init

— DO NOT use cheat codes like ‘sorry?

Hint:

— Unfold the implementation and specification definitions when necessary

— Unfold the precondition definitions at h_precond when necessary

Furthermore, ‘prev_error' is the error message from the previous proving
attempt.

Please use the ‘prev_imports‘, ‘prev_proof_aux‘, and ‘prev_proof' as
references to improve the generated proof.

- You can ignore unused variable warnings in the error message.

Input Fields

* task_description
Description of the Lean 4 programming task to be solved.

* task_template
Lean 4 template with code and specification to be proved, and placeholders
for proof generation.

* prev_imports
Previously generated imports for reference.

* prev_proof_aux
Previously generated proof auxiliary for reference.

* prev_proof
Previously generated proof for reference.

¢ prev_error
Error message from the previous proving attempt.

Output Fields

* imports
Imports needed for ‘proof'. Keep it empty if not needed.

e proof_aux
Auxiliary definitions and lemma for ‘proof‘'. Keep it empty if not needed.

* proof
Generated Lean 4 proof that the program satisfies the specification.

16

VERINA: Benchmarking Verifiable Code Generation

A.4. Implementation of Evaluation Metrics in Lean

In Section 4.1, we provide a high-level description of our
evaluation metrics for the three foundational tasks of verifi-
able code generation. Now we describe how we implement
these metrics in Lean 4.

Proof evaluation. We directly evaluate generated proofs
using the Lean compiler and filter out any proofs containing
placeholders, as described in Section 4.1.

Code evaluation. We evaluate generated code on unit tests
using #guard statements in Lean 4, ensuring the imple-
mentation produces correct outputs for given inputs. The
evaluation harness for generated codes is illustrated in 2?.

Specification evaluation. Recall in Section 4.1, we define
the soundness and completeness of model-generated pre-
condition P and post-condition Q in relation to their ground
truth counterparts P and Q: (i) P is sound iff VZ.P(T) =
P(Z); (ii) P is complete iff VZ.P(Z) = P(Z); (iii) Q
is sound iff VZ,y.P(Z) A Q(T,y) = Q(T,y); (iv) Q is
complete iff VZ,y.P(Z) A Q(Z,y) = Q(T,y). Moreover,
since our evaluator is based on testing, we only require that ©
and y are from our test suite. Our quality assurance process
in Section 3.2 ensures that all ground truth pre-conditions
and post-conditions pass our positive tests and do not pass
our negative tests. Therefore, we can simplify the soundness
and completeness metrics as follows:

* Deciding the soundness of Pis equivalent to verifying
whether P (%) holds for all positive tests T in our test
suite. This is because for all negative tests Z, P(x) does
not hold, making P(Z) = P(Z) true by default. For all
positive tests Z, P(Z) holds, and P(z) = P(Z) is true iff
P(T) is true.

* Similarly, deciding the completeness of Pis equivalent
to verifying whether P(Z) does not hold for all negative
tests 7 in our test suite.

« The soundness of) can be evaluated using our negative
test cases.

* The completeness of Q can be evaluated using our positive
test cases.

For each test case evaluation, we employ the two-step ap-
proach described in Section 4.1. First, we check if the rela-
tionship (with the specific test case incorporated) is directly
decidable in Lean 4 on the test case via decide. If not,
we proceed to property-based testing using plausible tac-
tic. The evaluation implementation in Lean 4 is illustrated

17

VERINA: Benchmarking Verifiable Code Generation

B. Additional Experimental Evaluation
Results

Achieving simultaneous soundness and completeness
poses great challenge, particularly for post-conditions.
As shown in Figure 12, the substantial performance gap
between preconditions and postconditions confirms that gen-
erating complex input-output relationships remains signif-
icantly more challenging than input validation constraints.
Furthermore, the drop in performance when requiring both
soundness and completeness simultaneously—compared
to achieving either individually—demonstrates that partial
correctness is insufficient and justifies our comprehensive
evaluation framework for specification quality.

= GPT do-mini GPTdo m—od-mini - GPT41 == Claude Sonnet 3.7
= DeepSeek Prover 2 78 DeepSeek V3 mEE Quen 3 235B-A22B-p8 Gemini 2.5 flash

Precond Sound Precond Complete Precond Sound&Complete
pYy
a3 4 Error pars

4 Ermor bars + Emorbars

182

s 2

a2

Postcond Sound Postcond Complete Postcond Sound&Complete

4 Error bars + Ermor bars + Ermor bars

27 s s

Figure 12: Detailed performance of LLMs on VERINA’s
SpecGen task.

Detailed performance breakdown. Tables 4 to 6 provide
detailed breakdowns of model performance across the three
foundational tasks. They reveal that syntax incorrectness
and use of non-existent library functions (as demonstrated
in Appendix C) represent the major problems, especially
for less capable models. Specifically, after manual inspec-
tion of the evaluation result, DeepSeek Prover 2 7B and
Qwen 3 235B-A22B-FP8 suffer from instruction following
ability, failing to output the desired format specified in our
prompts (cf. Appendix A.3). The relatively low unknown
percentages across most evaluations demonstrate that our
specification evaluation metric is reliable. Pre-conditions are
generally simpler than post-conditions, resulting in lower
unknown rates during evaluation. More capable models
often generate specifications with more complicated logi-
cal structures, leading to higher unknown percentages in
post-condition evaluation. We present a case study in Ap-
pendix C on the challenge of automatically evaluating LLM-
generated specifications. In our main results, we report the
uncertainty from unknown cases using error bars, where the
lower bound represents the Pass% in the table and the upper
bound represents Pass%+Unknown% in the table.

18

VERINA: Benchmarking Verifiable Code Generation

Table 4: Detailed performance of CodeGen.

Model Cannot Compile% Fail Unit Test% Pass%
GPT 40-mini 70.1 14 28.6
GPT 4o 51.6 2.8 45.7
GPT 4.1 40.5 3.1 56.4
04-mini 34.1 4.5 61.4
Claude Sonnet 3.7 54.1 1.7 442
Gemini 2.5 Flash 62.9 0.6 36.5
DeepSeek Prover 2 7B 96.8 0.8 2.5
DeepSeek V3 62.3 1.7 36.0
Qwen 3 235B-A22B-fp8 80.0 0.0 20.0

Table 5: Detailed performance of SpecGen for pre-condition.

Model Cannot Compile % Soundness Completeness

Pass% Fail% Unknown% Pass% Fail% Unknown%
GPT 40-mini 40.8 58.2 1.1 0.0 47.5 11.8 0.0
GPT 4o 19.8 77.7 1.8 0.8 71.1 8.7 04
GPT 4.1 24.3 70.7 1.1 4.0 69.1 35 3.1
04-mini 54 91.0 0.6 3.0 82.1 10.7 1.8
Claude Sonnet 3.7 4.9 84.4 2.3 8.5 84.5 3.7 6.8
Gemini 2.5 Flash 14.7 81.4 1.5 2.5 79.4 5.0 1.0
DeepSeek Prover 2 7B 85.9 13.6 0.5 0.0 11.1 3.0 0.0
DeepSeek V3 43.7 54.3 0.8 1.2 52.1 3.1 1.1
Qwen 3 235B-A22B-fp8 80.4 19.6 0.0 0.0 18.8 0.8 0.0

Table 6: Detailed performance of SpecGen for post-condition.

Model Cannot Compile% Soundness Completeness

Pass% Fail% Unknown% Pass% Fail% Unknown%
GPT 40-mini 68.3 27.1 4.2 0.4 28.2 2.6 0.9
GPT 4o 49.1 41.7 4.6 4.6 41.0 1.8 8.1
GPT 4.1 41.8 49.2 1.8 7.2 43.1 0.8 14.3
04-mini 22.7 58.5 3.1 15.7 55.6 2.7 19.0
Claude Sonnet 3.7 30.6 53.9 3.2 12.3 48.2 1.6 19.6
Gemini 2.5 Flash 40.6 50.4 1.5 7.5 47.5 1.0 10.9
DeepSeek Prover 2 7B 97.2 1.7 1.0 0.1 2.1 0.5 0.1
DeepSeek V3 53.9 39.9 2.6 3.6 37.5 3.6 4.9
Qwen 3 235B-A22B-fp8 83.0 16.4 0.6 0.0 17.0 0.0 0.0

19

VERINA: Benchmarking Verifiable Code Generation

C. Case Studies of Model Failures and
Evaluation Metrics

In this appendix section, we provide a detailed qualitative
analysis of common model failure patterns across the three
foundational tasks and illustrate how LLMs struggle with
different aspects of verifiable code generation through con-
crete examples. We also discuss how our evaluation metrics
flag these failures, highlighting both their effectiveness and
limitations.

Code generation failure: hallucinated method usage. Fig-
ure 13 demonstrates a common LLM failure mode where
o4-mini generates code that appears syntactically correct
but contains non-existent methods. While the model cor-
rectly identifies the XOR-based algorithmic approach and
provides accurate comments, it hallucinates the Int.xor
method that does not exist in Lean 4’s standard library. This
shows that current LLMs fall short in understanding Lean
4’s language features.

Code generation failures: unit test rejections. Figure 14
illustrates how subtle logical errors in LLM-generated code
can lead to unit test failures. The task requires implement-
ing a function that finds the next greater element for each
number in nums1 within the array nums2, or outputs —1
if there is none. o4-mini generates a nextGreaterOne
helper function with a bug in the state management logic.
After finding the target element, the function incorrectly
calls aux t1 false instead of aux tl true in Line 22,
causing it to lose track of having found the target and fail to
identify subsequent greater elements. This results in incor-
rect outputs for the test case where nums1 (1, 2, 3]

and nums2 = [3, 2, 1, 4] shouldreturn [4, 4, 4].

Specification generation failures: unsound pre-
conditions. Figure 15 demonstrates how LLMs can gener-
ate specifications that are too restrictive, leading to unsound
pre-conditions. The task description states “Assuming k <
number of distinct elements in nums”. The ground truth pre-
condition correctly uses k < nums.eraseDups.length
to allow k to equal the number of distinct elements. How-
ever, the LLM-generated version uses strict inequality k <

(distinct nums) .length, which incorrectly excludes
valid cases where k equals the total number of distinct ele-
ments. This makes the pre-condition unsound as it rejects
legitimate inputs that should be accepted by the specification.
In our test suites, we have a positive test case with nums

[5] and k = 1. Since the LLM-generated pre-condition
rejects this test case, our evaluation metric determines that
it is unsound.

Specification generation failures: incomplete pre-
conditions. Figure 16 demonstrates how LLMs can gen-
erate overly permissive preconditions that fail to capture
essential constraints. The task description specifies that “All

20

integers in both arrays are unique" and that "nums1: A list
of integers, which is a subset of nums2”. The ground truth
precondition correctly enforces three critical requirements:
List.Nodup numsl ensures uniqueness in the first array,
List.Nodup nums2 ensures uniqueness in the second ar-
ray, and numsl.all (fun x => x € nums2) verifies
that nums1 is indeed a subset of nums2. However, the
LLM-generated precondition simply uses True, completely
ignoring all stated constraints. This makes the precondi-
tion incomplete as it accepts invalid inputs that violate the
problem’s fundamental assumptions, potentially leading to
incorrect behavior in the implementation and proof genera-
tion phases. In our test suites, we have a negative test case
with nums1 [1, 1] and nums2 = [1, 2]. Since the
LLM-generated pre-condition accepts this negative test case,
our evaluation metric determines that the LLM-generated
pre-condition is incomplete.

Specification generation failures: unsound post-
conditions. Figure 17 illustrates how LLMs can gener-
ate post-conditions that miss critical constraints, leading to
unsound specifications. The task involves adding two num-
bers represented as digit lists in reverse order. The ground
truth post-condition correctly enforces three essential prop-
erties: arithmetic correctness, digit validity (each digit < 10),
and prohibition of leading zeros except for the special case
where the result is zero. However, the LLM-generated post-
condition omits the leading zero constraint entirely, only
checking that the result is non-empty and digits are valid.
This unsound specification would accept invalid outputs like
[2, 1, 0] representing 012 (which is one of the negative
test case), which should be rejected in favor of [2, 11. The
missing constraint demonstrates how LLMs may capture the
primary functional requirements while overlooking more
subtle constraints that are crucial for correctness.

Specification generation failures: unsound and incom-
plete post-conditions. Figure 18 demonstrates how LLMs
can generate post-conditions that are both unsound and in-
complete by failing to handle edge cases properly. The
task involves finding the smallest single-digit prime fac-
tor of a natural number. The ground truth post-condition
correctly handles all cases including the edge case where
n = 0, specifying that the result should be O when the in-
put is O or when no single-digit prime divides n. However,
the LLM-generated post-condition fails to consider n = 0
entirely. When n = 0, the conditionn % p # 0 is false
for any prime p (since 0 $ p = 0), making the first dis-
junct impossible to satisfy. This renders the specification
both unsound (accepts incorrect outputs) and incomplete
(rejects valid cases where n = 0). The missing edge case
handling demonstrates how LLMs may overlook corner
cases that are crucial for specification completeness (and
soundness). We have a positive test case where n = 0 and
0 and a corresponding negative test case where

result

VERINA: Benchmarking Verifiable Code Generation

: List Int) (h_precond : FindSingleNumber_precond (nums)) : Int :=

icates can 1
nums.foldl (fun acc x => Int.xor acc x) 0
5 —-— !benchmark @end code
Figure 13: Example (verina_advanced_1): o4-mini generates code with hallucinated Int . xor method that does not
exist in Lean 4.

1

2 Ibe ark (>_aux

4 lper function to find the next ter element of ‘target' in ‘num N
B We v 1e list, first loca ‘target‘, then se hing for th irst element > ‘target‘.
6 If not found, returns -1.

-/

8 def nextGreaterOne (nums2 : List Int) (target : Int) : Int :=

) let rec aux (1 : List Int) (foundTarget : Bool) : Int :=
10 match 1 with
11 [=> -1
12 | hd::tl =>
1 if !foundTarget then
1 if hd == target then
15 aux tl true
16 else
17 aux tl false
18 else
19 if hd > target then
20 hd
21 else
22 aux tl false
2 aux nums2 false
24 —— !benchmark @end code_aux
2
26 def nextGreaterElement (numsl : List Int) (nums2 : List Int)
2 (h_precond nextGreaterElement_precond (numsl) (nums2)) : List Int :=
E —-— For each el ' 2
30 numsl.map fun
31 —-— !bench

Figure 14: Example (verina_advanced_57): o4-mini generates code with logical error in state management, causing
unit test failure.

@[reducible, simp]
def topKFrequent_precond (nums : List Int) (k : Nat) : Prop :=

N

!'b ark @s t
k < nums.eraseDups.length
-— !be

precc

ark @end precond

(a) Ground truth pre-condition.

1 -— Ibe ark @start pr

2 @[reducible, simp]

def contains (xs : List Int) (x : Int) : Bool :=
xs.foldl (fun b y => b || y == x) false
5 @[reducible, simp]
def distinct (xs : List Int) : List Int :=
xs.foldl (fun acc y => if contains acc y then acc else acc ++ [y]) []
8 -- !be k @end pre aux
9 @[reducible, simp]
10 def topKFrequent_precond (nums : List Int) (k : Nat) : Prop :=
11 !ben k tart precond
12 k < (distinct nums).length
13 !ben k @end precond

(b) Unsound pre-condition generated by o4-mini.

Figure 15: Example (verina_advanced_76): o4-mini generates unsound pre-condition using strict inequality instead
of allowing k to equal the number of distinct elements.

21

VERINA: Benchmarking Verifiable Code Generation

@[reduclble,

Gr pre-cc

simp]

def nextGreaterElement recond (numsl : List Int) (nums2 : List Int) Prop :=
b t

List.Nodup numsl /\

List.Nodup nums2 A

numsl. all (fun x => x € nums2)

—— Ibe ark @end prec]

(a) Ground truth pre-condition.

@[reducible, simp]
def nextGreaterElement precond (numsl : List Int) (nums2 : List Int) : Prop :=

—-- !benchmark @
True

—— !benchmark @end precond

t precond

(b) Incomplete pre-condition generated by o4-mini.

Figure 16: Example (verina_advanced_57): o4-mini generates incomplete pre-condition using True instead of
enforcing uniqueness and subset constraints.

(RN

@[reduclble,

@[reducible,

@ [reduCLble,
def addTwoNumbers_postcond (11 :

’nc

simp]

def addTwoNumbers_postcond (11 : List Nat) (12 : List Nat) (result: List Nat) (h_precond :
- t postcond
llstToNat result = listToNat 11 + listToNat 12 A
(V d € result, d < 10) A
— No leading zeros unl is zero
(result.getLast! # 0 V = [0] A result = [0]))
!benchmark @end r

(a) Ground truth post-condition.

[_aux

simp]
def listToNatRev : List Nat — Nat
[1 => 0
ds =>d + 10 * listToNatRev ds

rk @end post d_
51mp]

aux

List Nat) (12 : List Nat) (result: List Nat) (h_precond :

! t postcond
result # [] A
listToNatRev result = listToNatRev 11 + listToNatRev 12 A
V d, d € result = d < 10

—— !benchmark @end ¢

(b) Unsound post-condition generated by 04-mini.

addTwoNumbers_precond (11) (12)) : Prop

addTwoNumbers_precond (11) (12)) : Prop

Figure 17: Example (verina_advanced_5): o4-mini generates unsound postcondition that fails to rule out leading
zeros in the result.

22

VERINA: Benchmarking Verifiable Code Generation

n = 0 and result = 2 that capture this edge case. The
LLM-generated post-condition rejects the positive test case
and accepts the negative test case, therefore our evaluation
metric determines that this generated post-condition is both
unsound and incomplete.

Untestable post-conditions. Figure 19 demonstrates
the limitations of our testing-based evaluation framework
when encountering specifications with quantifiers over
complicated structures or infinite domains. The LLM-
generated post-condition for finding the length of the
longest increasing subsequence contains a universal quanti-
fierV s : List Int thatranges over all possible integer
lists, making it impossible to evaluate even with plausible
testing. Our evaluation framework returns unknown for
such cases, as neither decidable testing nor plausible explo-
ration can adequately handle the unbounded quantification.
This example highlights a fundamental challenge in auto-
matically evaluating LLM-generated formal specifications:
while our framework successfully handles most practical
cases, very complicated specifications require more com-
prehensive approaches such as automated theorem provers
or LLM-based proof generation, which we leave to future
work.

Proof generation success with iterative refinement. Fig-
ure 20, 21, 22, and 23 demonstrate o4-mini’s iterative proof
refinement process over 24 attempts. The task involves
proving that a list element removal function satisfies its
specification. Initially, o4-mini generates an overly simple
proof using direct induction and simp tactics, which fails
to handle the complex logical structure. After 23 failed
refinement attempts, the model makes useful improvements
based on Lean compiler error messages, significantly re-
structuring its approach. The error message from the 23rd
attempt reveals that the proof got stuck on conditional ex-
pressions involving decide predicates. In the successful
24th attempt, o4-mini improves its strategy by introducing
an auxiliary lemma helper_eq_filter and using explicit
case analysis with by_cases. This demonstrates how iter-
ative refinement with compiler feedback can guide LLMs
toward substantially different and correct proof strategies,
though it may require many attempts to achieve success.

23

VERINA: Benchmarking Verifiable Code Generation

1 - I
2 @[reducible, simp]
3 def singleDigitPrime
4 —— !be ark art
E result € [0, 2, 3, 5
6 (result = 0 — (n = [2, 3, 5, 71.all (n % - # 0))) A

(result # 0 — # n % result == 0 A (List.range result).all (fun x => x € [2, 3, 5, 7] = n % x # 0))

o

8 —— !benchmark @end postco

(n : Nat) (result: Nat) (h_precond : singleDigitPrimeFactor_precond (n)) : Prop :=

(a) Ground truth post-condition.

@[reducible, simp]

def isSingleDigitPrime (p : Nat) : Prop :=

5 P =7

6 Iber]

7 @[reducible,

8 def singleDigitPrimeFactor_postcond (n : Nat) (result: Nat) (h_precond : singleDigitPrimeFactor_precond (n)) : Prop :=
9 ! k @start postcc
10 e n, so we return 0
11 (result isSingleDigitPrime p — n % p # 0)

12 \2

13 —— Or result is the sm st -s
14 (isSingleDigitPrime result A n

1E —— !be ark @end post

0 AV g, isSingleDigitPrime q — n % g = 0 — result < q)

ond

(b) Unsound and incomplete post-condition generated by o4-mini.

Figure 18: Example (verina_advanced_72): o4-mini generates unsound and incomplete post-condition that fails to
handle the edge case n = 0.

rk @start

1 -= !be
2 @[reducible, simp]
def IsSubsequence : List Int — List Int — Prop

|11, _ => True
5 |t _, 1] => False

| x 1t xs, Yy 11 ys =>

if x = y then IsSubsequence Xs ys

8 else IsSubsequence (X :: Xs) ys
10 @[reducible, simp]
11 def strictlyIncreasing : List Int — Prop
12 | => True
13 | => True
14 | rest => x < y A strictlyIncreasing (y :: rest)
1 ¢ -— !b k @end postc l aux
16 @[reducible, simp]
1 def lengthOfLIS_postcond (nums : List Int) (result: Nat) (h_precond : lengthOfLIS_precond (nums)) : Prop :=
18 —— !be ark @start postcond
19 (V s : List Int, IsSubsequence s nums A strictlyIncreasing s — List.length s < result)
20 A I s : List Int, IsSubsequence s nums A strictlylncreasing s A List.length s = result
21 —— !benchmark @end postcond

Figure 19: Example (verina_advanced_25): o4-mini generates post-condition with quantifiers over lists that cannot
be evaluated by plausible testing.

24

VERINA: Benchmarking Verifiable Code Generation

1 @[reducible, simp]

2 def removeElement_precond (lst : List Nat) (target : Nat) : Prop :=
3 —-— !ben rk @start precond

4 True

5 —— !benc! rk @end precond

7 def removeElement (lst : List Nat) (target : Nat) (h_precond : removeElement_precond (lst) (target)) : List Nat :=
8 !benct rk @start code

9 let rec helper (lst : List Nat) (target : Nat) : List Nat :=
10 match lst with
11 |01 => 1
12 | x :: xs
13 let rest helper xs target
14 if x = target then rest else x :: rest
15 helper 1lst target

16 —— !benchmark @end code

1
18 @[reducible]
1¢ def removeElement_postcond (lst : List Nat) (target : Nat) (result: List Nat) (h_precond : removeElement_precond (lst) (target)):

— P
—-— !ben postcond
result (fun x => x # target)

—— !benc! rk @end postcond

NN
1o

N

theorem removeElement_spec_satisfied (lst: List Nat) (target: Nat) (h_precond : removeElement_precond (lst) (target)):
removeElement_postcond (lst) (target) (removeElement (lst) (target) h_precond) h_precond := by
proof

W N
o ©

IR

the definitions of r reElement and the postcondition
dsimp [removeElement, removeElement_postcond]

—— Proceed by induction on the input list

34 induction lst with
3 | nil =>
36 —-- Base case:]
3 simp
| cons x xs ih =>
39 —— Induc step:
40 simp
41 !benchmark @end proof

Figure 20: Example (verina_advanced_64): o4-mini generates incorrect proof on the first attempt.

1 aux
2 helper® 1ction produces exactly ‘lst.filter (fun x
3 st : List Nat) (target : Nat)
4 removeElement .helper lst target = lst.filter (fun x => x # target) := by
5 induction 1lst with
6 | nil =>
7 both sides reduce to
8 simp [removeElement.helper]
9 | cons x xs ih =>
10 -—u 1 one step of ‘helper’
11 dsimp [removeElement.helper]
12 —— solve the 'if' state indu /pothesis
13 simp [ih]
14 —— !benchmark @end proof.
1E
5 theorem removeElement_spec_satisfied (lst: List Nat) (target: Nat) (h_precond : removeElement_precond (lst) (target)):
removeElement_postcond (lst) (target) (removeElement (lst) (target) h_precond) h_precond := by
—— !benchmark @st proof

tcondition and the definition of ‘removeElement

1d the po

dsimp [removeElement_postcond, removeElement]

—- the precondition is trivial

clear h_precond

-— apply the auxiliary

exact helper_eq filter 1lst target
!ben

a to conclude

rk @end proof

Figure 21: Example (verina_advanced_64): o4-mini generates incorrect proof after 23 refinement attempts.

1 unsolved goals

2 case cons

3 target x : Nat
xs : List Nat

5 ih : removeElement.helper xs target = List.filter (fun x => decide (x # target)) xs
6 b (if x = target then List.filter (fun x => !decide (x = target)) xs

7 else x :: List.filter (fun x => !decide (x = target)) xs) =

8 List.filter (fun x => !decide (x = target)) (x :: xs)

Figure 22: Example (verina_advanced_64): Lean 4 compiler error message from the 23rd refinement attempt.

25

VERINA: Benchmarking Verifiable Code Generation

2 —-— Au ‘helper ' function produces exac

y 1 (fun x => x # target)'
3 theorem helper_eq _filter (lst : List Nat) (target : Nat)

removeElement .helper lst target = lst.filter (fun x => x # target) := by
5 induction lst with
6 | nil =>
7 -— both sides reduce to ‘'
8 simp [removeElement.helper]

9 cons x xs ih =>
10 un

1d one step of '
11 dsimp [removeElement.helper
12 —-— case-sp on whet '‘x = target®
13 by_cases h : x = target
14 case pos =>
15 -—- 1f 'x = target' ‘helper ' drops it, and it

18 -- if 'x # target', ‘helper' keeps it, it

19 simp [h, ih]

20 -- !benchmark @end

21

22 theorem removeElement_spec_satisfied (lst: List Nat) (target: Nat) (h_precond : removeElement_precond (lst) (target)):
2 removeElement_postcond (lst) (target) (removeElement (lst) (target) h_precond) h_precond := by

-— !ben rk @start proof

ion of ‘remove

ion and the defin

e pos

dsimp [removeElement_postcond, removeElement]
the precondit 1

clear h_precond

—— apply the auxiliary 1
exact helper_eq filter 1lst target
—-- !ben

to conclude

rk @end proof

Figure 23: Example (verina_advanced_64): o4-mini generates correct proof on the 24th attempt.

26

