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Abstract

In recent years, deep learning methods have been widely applied to chemical1

reaction prediction due to the time consuming and resource intensive nature of2

designing synthetic pathways. However, with the majority of models being trained3

on the US Patent Office dataset, many proposed architectures lack interpretability4

by modeling chemical reactions as overall transformations. These models map5

directly from reactants to products, and provide minimal insight into the underlying6

driving forces of a reaction. In order to improve interpretrability and provide7

insight into the causality of a chemical reaction, we train various machine learning8

frameworks on the PMechDB dataset. This dataset contains polar elementary9

steps, which model chemical reactions as a sequence of steps associated with10

movements of electrons. Through training on PMechDB, we have created a new11

system for polar mechanistic reaction prediction: PMechRP. Our findings indicate12

that PMechRP is able to provide both accurate and interpretrable predictions, with13

a novel two-step transformer based method achieving the highest top-5 accuracy at14

89.9%.15

1 Introduction16

Two main approaches exist for the prediction of chemical reactions: machine learning based methods,17

and quantum chemistry based methods [1, 13, 5, 8]. While quantum chemistry models offer detailed18

prediction of chemical properties, their computational demands render them feasible only for a19

limited scope of reaction systems, precluding their use for broad-spectrum, high-throughput reaction20

prediction. Conversely, ML models offer computational efficiency and scalability, making them21

well-suited for application across larger chemical systems and datasets. Countless ML models have22

been devised for tasks such as reaction yield prediction [16], reaction classification [14], chemical23

property prediction [4, 2], and both forward and reverse reaction prediction [6, 20, 3, 10].24

25

Although ML models offer a high-throughput and highly adaptable chemical prediction, a significant26

drawback lies in their lack of interpretability when compared to quantum chemistry or simulation27

based methods. The predominant approach of predicting reactions as overall transformations results28

in a black-box scenario, where predicted products emerge directly from reactants without insight into29

intermediate transition states. Although these models may achieve high accuracy on datasets like30

the US Patent Office dataset [11], their outputs pose challenges for organic chemists, who typically31

reason through chemical synthesis via arrow-pushing mechanisms rather than overall transformations.32

An example of a overall transformation vs a mechanistic elementary step approach can be seen in33

Figure 1. The elementary step approach breaks the overall transformation down into a sequence of34

arrow pushing steps, which illustrate the flow of electrons and the shifting of atoms.35
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Stepwise arrow-pushing mechanism

sales > $6 billion / yr
(anti-cancer)

Figure 1: Example of an overall transformation vs an elementary step approach. This is a the final
reaction step in the synthesis of enzalutamide, a drug used to treat prostate cancer that generates over
$6 billion a year in revenue [21].

By thinking about reactions as occurring through many elementary steps, organic chemists are36

able to reason about the underlying driving forces of a reaction. When training ML models to37

forecast elementary step reactions, we effectively guide them to emulate an organic chemists’ thought38

processes, thereby generating predictions that are readily interpretable and serve as practical aids for39

organic synthesis design.40

2 Data41

To develop predictive models for polar reaction mechanisms, we undertook training on the recently42

introduced PMechDB dataset. This dataset comprises more than 12,700 polar elementary steps,43

each balanced, partially atom mapped, and manually verified by a team of organic chemists. Each44

reaction represents a single elementary step polar reaction. These entries have been collected through45

manual curation from a diverse array of chemistry literature and textbooks [19]. These reactions46

are stored as smiles strings, and notably, the reactions contain arrow pushing information, providing47

insights into the reactivity of individual atoms within each reaction. Leveraging the manually curated48

reactions within the dataset, we conducted an 80/10/10 train/val/test split via random sampling from49

the "manually_curated_all.csv" file. For models which perform cross-validation, the validation data50

was combined with the training data.51

3 Methods52

Here we describe two different machine learning approaches for predicting polar elementary step53

mechanisms. Namely, we describe the reactive atom two-step approach, the single-step seq-to-seq54

prediction methods, and a spectator focused two-step transformer method.55
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3.1 Two-Step Prediction56

The two-step prediction model comprises distinct phases. Initially, the model undertakes the task57

of predicting reactive atoms within the given reaction. Subsequently, these identified reactive sites58

are paired to formulate potential reaction mechanisms, followed by the application of a ranker59

model to rank the plausibility of these proposed mechanisms. This architectural design yields60

highly interpretable predictions, enabling a granular understanding of the model’s rationale. When61

generating predictions, users can discern precisely which atoms are deemed reactive, and they can62

view the precise arrow-pushing mechanism predicted by the model. From the view point of organic63

chemists, the two-step architecture offers greater transparency compared to single-step approaches,64

as the arrow pushing mechanism provides justification for why the final products were predicted.65

3.1.1 Siamese Architecture66

The two-step siamese architecture [6] comprises three distinct models, each serving a specific function.67

Initially, two separate reactive atom predictor models are instantiated. One model is specifically68

trained for predicting source atoms, while the other is trained for predicting sink atoms. To train69

the source and sink models, the electron-donating atom from the intermolecular arrow is labeled70

as the source atom, while the electron-accepting atom is labeled as the sink atom. This labeling71

process employs the reactive sites identification method as detailed in [6]. Atoms are represented72

by continuous vectors derived from predefined atomic and graph-topological features, utilizing a73

neighborhood of size 3. Subsequently, both source and sink classifiers are trained to categorize these74

feature vectors accordingly. After the trained reactive atom classifiers predict source and sink atoms,75

these atoms are paired together to enumerate possible arrow pushing mechanisms. Afterwards, a76

siamese architecture is used as a plasubility ranker model, which then ranks the plausibility of each77

potential mechanism to generate a final set of predictions. A visual representation of the source and78

sink pair is provided in Figure 2.79

3.1.2 OrbChain80

A polar elementary step reaction Rxn can be modeled as the following: a set of reactant molecules81

R = {r0, r1, . . . , rn}, a set of product molecules P = {p0, p1, . . . , pn}, and a set of arrows α =82

{a0, a1, . . . , am}, which transforms R into P. We consider a molecular orbital (MO) m(∗)
i to be83

associated with four parameters: m = (a,e,n,c), where a represents the atom corresponding to the84

molecular orbital, e denotes the number of electrons contained in the MO, n corresponds to the atom85

adjacent to atom a in the case of a bond orbital, and c represents a possible chain of filled or unfilled86

MOs. Based on the methods described in [6, 9, 18], we model a polar mechanism as an interaction87

between two reactive molecular orbitals (m(∗)
1 ,m

(∗)
2 ), where one orbital is the "source" orbital and88

acts as a nucleophile, while the other orbital is the "sink" orbital and acts as the electrophile. Given89

atom mapped reactants and products, and A, we can uniquely determine the reactive pair of orbitals90

in R used to create P. Conversely, given the reactive pair of orbitals (m(∗)
1 ,m

(∗)
2 ) and the reactants R,91

we can generate P given R.92

3.1.3 Reactive Atom Prediction and Plausibility Ranking93

We enumerate over all molecular orbitals found in reactants R, and divide orbitals into reactive94

and non-reactive orbitals. These positive and negative examples are used to train the source and95

sink identification models. Rather than directly predicting the reactive MOs, we perform a binary96

classification prediction on the label of atom a, which is associated with the molecular orbital. We97

adopt the reactive sites identification method from [6] and represent atoms using continuous vectors98

becased on predefined graph-topological and physiochemical features. We train two models: a source99

model and a sink model. The source model predicts a binary classification label for whether or not an100

atom is a source, while the sink predicts a binary classification for whether or not an atom is a sink.101

The training data was constructed by extracting the labeled source, and the labeled sink atom from102

each reaction as positive examples, and then randomly sampling non-source or non-sink examples to103

use as negative examples.104
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Figure 2: An example of a simple polar elementary step. The electron pushing arrows can be seen in
blue, while the source and sink sites are seen in red. The bromine atom labeled 10 is the source atom.
The carbon atom labeled 20 is the sink atom. The corresponding SMILES string and arrow codes can
be seen below.

3.2 Plausibility Ranking105

Once a set of source atoms and sink atoms are predicted, these two sets are paired together to generate106

pairs of molecular orbitals. A siamese network is used to rank the resulting molecular orbital pairs to107

generate the final reaction mechanism predictions.108

3.3 Seq-to-seq Prediction109

In addition to exploring two-step models, we also explore the performance of text-based models. An110

exceedingly common representation of chemical reactions is in the form of SMILES strings (simplified111

molecular-input line-entry system), which is a text-based representation. This representation lends112

itself towards NLP models such as transformers. These architectures model reaction prediction as a113

translation problem, wherein they are translating from reactant SMILES to product SMILES. These114

models have achieved state-of-the-art accuracies when predicting overall chemical transformations.115

However, these models possess several drawbacks in that they are more difficult to interpret and do116

not explicitly encode important molecular information such as invariance to atom permutations. This117

means that the same reaction can be represented by a large number of different SMILES strings, and118

additional strategies such as data augmentation may be needed to prevent a transformer model from119

making different predictions for identical sets of reactants.120

3.3.1 Molecular Transformer121

We utilize the innovative text-based reaction predictor, Molecular Transformer [15], which employs a122

bidirectional encoder and autoregressive decoder coupled with a fully connected network to generate123

probability distributions over potential tokens. The pre-trained Molecular Transformers underwent124

training using various versions of the USPTO dataset. We did not separate reactants and reagents,125

so the model pre-trained using the USPTO_MIT_mixed dataset was selected and subsequently fine126

tuned on the PMechDB dataset.127

3.3.2 Chemformer128

In addition to the molecular transformer, we also adopt the Chemformer model [7], which is another129

transformer-based reaction predictor. The Chemformer model also employs a bidirectional encoder130

and autoregressive decoder with a fully connected network to generate probability distributions131

over potential tokens. The Chemformer model was pre-trained on molecular reconstruction and132

classification tasks using a dataset of 100M SMILES strings from the ZINC-15 [17] dataset. Af-133

terwards, the model was fine-tuned on various downstream tasks including forward prediction and134

retrosynthesis. The pre-training substantially improved the model’s generalizability and convergence135

times on downstream tasks, such as USPTO forward prediction, compared to randomly initialized136

models. We chose to start from the model fine-tuned on USPTO-mixed since reactants and reagents137
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are not separated in the PMechDB dataset. This model was subsequently fine-tuned on the PMechDB138

dataset for mechanistic-level predictions. The vocabulary of the model was expanded by 66 tokens to139

account for unseen atoms in the PMechDB dataset.140

3.3.3 Two-Step Transformer Architecture141

During experiments, all models were observed to exhibit a significant decrease in performance142

in reaction prediction as the size of the reactants grows. A quantitative analysis of the effects143

of spectators, and the number of atoms can be found in Figure 5 and Figure 6 respectively. To144

combat this, we propose a novel two-step architecture for transformers. Firstly, we use the source145

and sink reactive atom models from the siamese architecture to predict top-2 reactive atoms of146

the model. Reactant molecules which contain the predicted reactive atoms are considered to be147

non-spectator molecules. Since we take top-2 predictions from the source and sink models, we148

predict at most 2 sink molecules, and at most 2 source molecules. Pairing the sinks and sources149

together, we can have at most 4-unique source-sink combinations. After the combinations are150

generated, we run a top-5 prediction using our best performing transformer on each combination.151

Hence a fine-tuned chemformer model was used on each combination, as well as on the original152

reactants. After generating predictions for the source-sink combinations, the molecules which were153

deemed as spectators and removed are added back into the predicted products. If there are fewer than154

4-unique source-sink combinations, more predictions are made on the original reactants until 5 total155

predictions are generated. For each reaction, we take the output predictions, canonicalize them, and156

then perform a simple majority vote with ties being broken randomly.157

158

159

This architecture takes inspiration from common practices in organic chemistry. Often times when160

an organic chemist aims to predict the outcome of a set of reactants, they quickly look through all161

reactant molecules, and filter away molecules which are likely to be spectators or non-reactive, before162

focusing on a few molecules of interest. By performing a two-step prediction, we are able to first163

filter away potential spectator ions, then predict the reaction mechanism after reducing the space of164

possible reactions exponentially. A considerable performance increase was observed after performing165

this method of ensembling. The results can be seen in Table 3 and Table 4.166

3.4 Multi-task learning167

Due to the highly related nature of many chemistry prediction tasks, multitask learning can be used to168

develop robust models which may demonstrate improved learning efficiency and prediction accuracy.169

T5Chem is one such model, which leverages multitask learning on a transformer architecture to170

perform 5 different tasks. The T5Chem multi-task transformer architecture is able to perform for-171

ward/backwards prediction, reaction yield prediction, reaction classification, and reagents prediction172

[12]. This architecture was first pretrained with a BERT-like MLM objective on 97 million PubChem173

molecules. Then, the model was further fine-tuned on 5 different tasks using the USPTO_500_MT174

dataset. We selected this model, and fine-tuned it using the 80/10/10 split of the manually curated175

PMechDB reactions.176

4 Results and Discussion177

4.1 Performance on PMechDB Dataset178

We assess the performance of the two-step prediction method, comprising reactive sites identification179

and plausibility ranking. The top-N accuracy of the reactive sites identification on PMechDB is180

presented in Table 7. Reactive site identification is considered correct if both the source and sink181

atom were correctly identified within the top-N predictions of each model.182

Table 1: Reactive Atom Classification for Siamese Architecture

Top-1 Top-2 Top-3 Top-5 Top-10
53.8 79.0 86.8 91.8 94.4
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The source and sink ranking models are able to predict the reactive atoms with relatively high183

accuracy. Although the reactive atom models are able to filter down the number of potentially reactive184

atoms significantly, due to the large number of atoms and aromatic structures contained in the polar185

reactions, enumerating all possible molecular orbital pairs leads to a large number of possible reaction186

mechanisms fed into the ranker model. Several reaction fingerprints were used for plausibility ranking.187

The results can be found in Table 2.188

Table 2: Plausibility Ranking for Two-Step Architecture

Model Type Top-1 Top-2 Top-3 Top-4 Top-5
reactionFP 39.5 56.3 65.6 70.3 73.0
DRFP 37.3 52.2 60.1 67.1 72.5
rxnfp 35.1 51.3 60.5 66.1 70.0

In order to perform two-step prediction, both reactive site identification and plausibility ranking must189

be performed. Thus for the best performing two-step model, we use the reactionFP fingerprint for190

plausibility ranking. Therefore in Table 3, we consider this as the best two-step siamese model. For191

the Chemformer, MolTransformer, and T5Chem models, we fine-tuned the pretrained models on the192

PMechDB datset. The results comparing all the trained models can be seen in Table 3193

Table 3: Top-N Accuracy of Trained Models

Model Type Top-1 Top-3 Top-5 Top-10
Best Two-Step Siamese 39.5 65.6 73.0 76.6
MolTransformer 59.1 66.3 69.2 70.1
T5Chem 56.6 69.1 73.7 77.5
Chemformer 74.0 84.1 85.2 87.2
Two-Step Transformer 80.6 88.8 89.9 91.0

Although the Siamese two-step model allows for improved interpretability due to its direct prediction194

of arrows, the models based on Chemformer yield the most accurate predictions, with the two-step195

transformer model outperforming all other models significantly. The effects of various ensemble196

sizes can be seen in Table 4.197

Table 4: Effects of Ensemble Size on Top-N Accuracy

ensemblesize Top-1 Top-3 Top-5 Top-10
2 71.8 85.8 86.9 87.7
3 77.8 87.5 88.5 89.2
4 79.8 88.7 90.0 90.7
5 80.6 88.8 89.9 91.0

4.1.1 Pretraining198

Pretraining the Chemformer models made a large difference in performance, the effects of pretraining199

can be seen in Table 5.200

The large increase in performance from the pretraining, indicates overlap between the USPTO201

dataset and the PMechDB dataset. This is in stark contrast to radical mechanisms, which exhibited202

lower performance when using a pretrained model [18]. This suggests that radical reactions are203

underrepresented in USPTO datasets compared to polar reactions, and that pre-trained transformer204

models would be expected to have higher performance on polar reactions.205

4.2 Pathway Search206

In addition to predicting single-step elementary reactions, further work is being done to evaluate and207

improve the model’s performance on predicting polar mechanistic pathways. This involves chaining208
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Table 5: Top-N Accuracy of Chemformer Models

Model Type Top-1 Top-3 Top-5 Top-10
no-pretraining 39.9 55.6 58.7 60.4
pretrained on zinc 74.9 77.0 82.8 84.5
pretrained on zinc and USPTO Mixed 74.0 84.1 85.2 87.2

several elementary steps together to transform a list of starting reactants to a list of target products.209

An example of a simple two-step mechanism correctly predicted by the ensemble transformer model210

can be seen in Figure 3.211

N

O

OH

O

O N

+ +

H

O

OH N
H

+

Figure 3: A simple 2-step mechanism correctly predicted by ensemble transformer model.

Although the transformer architectures outperform all other models in single step predictions on212

the test dataset, the reactions contained in PMechDB are mostly 1-2 reactant reactions, and contain213

very limited spectator ions. This results in the transformer models having a strong performance on214

reactions which contain 1-2 reactants, but inconsistent performance on reactions with one or more215

spectator ions. An example of this can be seen in the following elementary step which contains a216

spectator benzene ring. 4217

When the chemformer model is asked to predict on Step A, it does not recover the correct products,218

while on Step B with spectators removed, it ranks the products as the top-1 prediction. Interestingly,219

the two-step transformer model is able to correctly predict this step. Comparing the various methods220

numerically, the two-step models appear to demonstrate significantly less performance degradation in221

predicting elementary steps with spectator molecules. Figure 5 demonstrates the top-5 accuracies of222

the various models as the number of reactant molecules is varied, while Figure 6 demonstrates the223

top-5 accuracies as the number of atoms contained in the reactants is varied.224

The two-step transformer model can be seen to outperform both the chemformer and siamese225

architectures. When comparing the models, it seems that the number of reactant atoms has a much226

smaller effect on the prediction accuracy of the transformer models when compared to the siamese227

architecture. Perhaps this indicates that the transformer models are able to implicitly learn which228

reactive atoms it should pay attention to without being distracted by large unreactive substructures.229

230
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Figure 4: Step A represents the elementary step with the spectator molecule benzene included. Step
B represents the elementary step with the benzene ring excluded.

7



85.7

93.8

82.5
87

80

78.1

60.1 59.5

80.2
92.3

79.1 80.4

50
55
60
65
70
75
80
85
90
95

100

1 2 3 4+

Ac
cu

ra
cy

Number of Molecules

Top-5 Accuracy vs Number of Molecules

Two-Step Chemformer Two-Step Siamese Chemformer

Figure 5: Comparing the top-5 accuracies of both the transformer and two-step models as number of
reactant molecules is varied.
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Notably, the two-step transformer model strongly outperforms the chemformer model when231

it views reactions which contain more than 2 reactant molecules. This suggests the first step232

manages to filter away the spectator ions to some extent and makes the prediction task easier for the233

transformer model.234

5 Limitations235

Lastly, we note there are several limitations with the current state of the PMechRP polar reaction236

system. Firsly, the PMechDB dataset includes less than 13,000 steps. This means the dataset is237

relatively small for training large architectures, and it may be difficult for these models to generalize238

well to all forms of experimental chemistry. Secondly, the transformer models directly translate from239

reactants to products, without generating the arrow pushing mechanisms. Although the elementary240

step predictions still offer significant interpretability, the two-step siamese method offers greater241

insight into the causality of a reaction by directly showing the flow of electrons. Additional methods242

could be developed to predict arrow codes or reactive orbitals using a transformer architecture in243

order to offer predictions with arrow pushing mechanisms.244

6 Conclusion245

We developed and compared several reaction prediction systems for polar reaction mechanisms.246

Through our analysis, we have created the reaction prediction system, PMechRP. This predictor offers247

a fresh perspective on reaction prediction by specifically targeting polar reactions and operating at248

the mechanistic reaction level. From the viewpoint of organic chemists, mechanistic level reaction249

prediction offers immense interpretabiltiy benefits, and has a lot of potential to aid in the prediction of250

synthetic pathways. We utilized PMechDB datasets to train and develop a wide range of architectures.251

Our findings demonstrate that the most accurate models are based on a two-step process, where252

spectators are filtered out to generate a variety of reactants before they are fed into an ensemble253

transformer architecture. Leveraging PMechDB datasets, our polar predictor marks a significant step254

towards interpretable reaction prediction.255
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A Appendix / supplemental material316

In this appendix, we provide additional details about the experiments and models trained.317

A.1 Compute Resources318

All models were trained using a single NVidia Titan X GPU.319

10



A.2 PMechDB Dataset320

Here we provide some Figures 7, 8 displaying the the number of atoms and atom types found in the321

PMechDB dataset [19]322
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Figure 7: The distribution of the total number of atoms contained in each reaction for the manually
curated training dataset.
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Figure 8: The distribution of atoms for the reactions in the manually curated training dataset.

A.3 Reactive Atom Prediction323

A fingerprint of length 800 is constructed for each atom. This fingerprint includes 700 graph-324

topological features. These features are extracted using a neighborhood of size 3 with the method325

described in [6]. The remaining features consist of physiochemical properties such as valence number,326

electronegativity, etc.327

The source and sink prediction models are trained using the "manually_curated_all.csv" file, where328

a 90/10 train/test split was performed. Each training reaction is processed to extract the atom329

fingerprints, the atom is given a label 1 if it is reactive, and 0 if it is non-reactive. The final output330

layer performs a binary classification on a reactive atom. The parameters of the source and sink331

prediction models can be seen below:332
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Table 6: Source and Sink Model Parameters

Batch Size Num Layers Layer Dim Act Reg
64 5 512-256-128-164-1 RELU L2

A.4 Plausibility Ranking333

We tested 3 fingerprints. The reactionFP fingerprint is extracted using the features explained in [6]334

to create a fingerprint of length 3200. For the rxnfp fingerprint, we use the default configuration to335

create a fingerprint of size 256. We use the DRFP fingerprint with a size of 2048 with the default336

configuration.337

The parameters of the ranker models can be seen below:338

Table 7: Source and Sink Model Parameters

Batch Size Num Layers Layer Dim Act Reg
200 3 360-360-1 Tanh Dropout (0.5)
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NeurIPS Paper Checklist339

The checklist is designed to encourage best practices for responsible machine learning research,340

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove341

the checklist: The papers not including the checklist will be desk rejected. The checklist should342

follow the references and follow the (optional) supplemental material. The checklist does NOT count343

towards the page limit.344

Please read the checklist guidelines carefully for information on how to answer these questions. For345

each question in the checklist:346

• You should answer [Yes] , [No] , or [NA] .347

• [NA] means either that the question is Not Applicable for that particular paper or the348

relevant information is Not Available.349

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).350

The checklist answers are an integral part of your paper submission. They are visible to the351

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it352

(after eventual revisions) with the final version of your paper, and its final version will be published353

with the paper.354

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.355

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a356

proper justification is given (e.g., "error bars are not reported because it would be too computationally357

expensive" or "we were unable to find the license for the dataset we used"). In general, answering358

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we359

acknowledge that the true answer is often more nuanced, so please just use your best judgment and360

write a justification to elaborate. All supporting evidence can appear either in the main paper or the361

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification362

please point to the section(s) where related material for the question can be found.363

IMPORTANT, please:364

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",365

• Keep the checklist subsection headings, questions/answers and guidelines below.366

• Do not modify the questions and only use the provided macros for your answers.367

1. Claims368

Question: Do the main claims made in the abstract and introduction accurately reflect the369

paper’s contributions and scope?370

Answer: [Yes]371

Justification: The paper clearly outlines its contributions and scope. All contributions are372

backed by evaluating the accuracy of the models, and providing tables and plots for the373

performance.374

Guidelines:375

• The answer NA means that the abstract and introduction do not include the claims376

made in the paper.377

• The abstract and/or introduction should clearly state the claims made, including the378

contributions made in the paper and important assumptions and limitations. A No or379

NA answer to this question will not be perceived well by the reviewers.380

• The claims made should match theoretical and experimental results, and reflect how381

much the results can be expected to generalize to other settings.382

• It is fine to include aspirational goals as motivation as long as it is clear that these goals383

are not attained by the paper.384

2. Limitations385

Question: Does the paper discuss the limitations of the work performed by the authors?386

Answer: [Yes]387
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Justification: The paper does discuss the limitations of the work. We analyze and address388

situations where the model performs poorly, such as on reactions with a large number of389

spectator ions or atoms.390

Guidelines:391

• The answer NA means that the paper has no limitation while the answer No means that392

the paper has limitations, but those are not discussed in the paper.393

• The authors are encouraged to create a separate "Limitations" section in their paper.394

• The paper should point out any strong assumptions and how robust the results are to395

violations of these assumptions (e.g., independence assumptions, noiseless settings,396

model well-specification, asymptotic approximations only holding locally). The authors397

should reflect on how these assumptions might be violated in practice and what the398

implications would be.399

• The authors should reflect on the scope of the claims made, e.g., if the approach was400

only tested on a few datasets or with a few runs. In general, empirical results often401

depend on implicit assumptions, which should be articulated.402

• The authors should reflect on the factors that influence the performance of the approach.403

For example, a facial recognition algorithm may perform poorly when image resolution404

is low or images are taken in low lighting. Or a speech-to-text system might not be405

used reliably to provide closed captions for online lectures because it fails to handle406

technical jargon.407

• The authors should discuss the computational efficiency of the proposed algorithms408

and how they scale with dataset size.409

• If applicable, the authors should discuss possible limitations of their approach to410

address problems of privacy and fairness.411

• While the authors might fear that complete honesty about limitations might be used by412

reviewers as grounds for rejection, a worse outcome might be that reviewers discover413

limitations that aren’t acknowledged in the paper. The authors should use their best414

judgment and recognize that individual actions in favor of transparency play an impor-415

tant role in developing norms that preserve the integrity of the community. Reviewers416

will be specifically instructed to not penalize honesty concerning limitations.417

3. Theory Assumptions and Proofs418

Question: For each theoretical result, does the paper provide the full set of assumptions and419

a complete (and correct) proof?420

Answer: [NA]421

Justification: The paper does not include theoretical results.422

Guidelines:423

• The answer NA means that the paper does not include theoretical results.424

• All the theorems, formulas, and proofs in the paper should be numbered and cross-425

referenced.426

• All assumptions should be clearly stated or referenced in the statement of any theorems.427

• The proofs can either appear in the main paper or the supplemental material, but if428

they appear in the supplemental material, the authors are encouraged to provide a short429

proof sketch to provide intuition.430

• Inversely, any informal proof provided in the core of the paper should be complemented431

by formal proofs provided in appendix or supplemental material.432

• Theorems and Lemmas that the proof relies upon should be properly referenced.433

4. Experimental Result Reproducibility434

Question: Does the paper fully disclose all the information needed to reproduce the main ex-435

perimental results of the paper to the extent that it affects the main claims and/or conclusions436

of the paper (regardless of whether the code and data are provided or not)?437

Answer: [Yes]438

Justification: We clearly describe the architectures used, as well as any modifications made439

to them. The hyperparameters and dimensions of the models can be found in the appendix.440

The PMechDB dataset is publically available and can be accessed by any user.441
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Guidelines:442

• The answer NA means that the paper does not include experiments.443

• If the paper includes experiments, a No answer to this question will not be perceived444

well by the reviewers: Making the paper reproducible is important, regardless of445

whether the code and data are provided or not.446

• If the contribution is a dataset and/or model, the authors should describe the steps taken447

to make their results reproducible or verifiable.448

• Depending on the contribution, reproducibility can be accomplished in various ways.449

For example, if the contribution is a novel architecture, describing the architecture fully450

might suffice, or if the contribution is a specific model and empirical evaluation, it may451

be necessary to either make it possible for others to replicate the model with the same452

dataset, or provide access to the model. In general. releasing code and data is often453

one good way to accomplish this, but reproducibility can also be provided via detailed454

instructions for how to replicate the results, access to a hosted model (e.g., in the case455

of a large language model), releasing of a model checkpoint, or other means that are456

appropriate to the research performed.457

• While NeurIPS does not require releasing code, the conference does require all submis-458

sions to provide some reasonable avenue for reproducibility, which may depend on the459

nature of the contribution. For example460

(a) If the contribution is primarily a new algorithm, the paper should make it clear how461

to reproduce that algorithm.462

(b) If the contribution is primarily a new model architecture, the paper should describe463

the architecture clearly and fully.464

(c) If the contribution is a new model (e.g., a large language model), then there should465

either be a way to access this model for reproducing the results or a way to reproduce466

the model (e.g., with an open-source dataset or instructions for how to construct467

the dataset).468

(d) We recognize that reproducibility may be tricky in some cases, in which case469

authors are welcome to describe the particular way they provide for reproducibility.470

In the case of closed-source models, it may be that access to the model is limited in471

some way (e.g., to registered users), but it should be possible for other researchers472

to have some path to reproducing or verifying the results.473

5. Open access to data and code474

Question: Does the paper provide open access to the data and code, with sufficient instruc-475

tions to faithfully reproduce the main experimental results, as described in supplemental476

material?477

Answer: [No]478

Justification: For the existing models, their codes can be found online at their respective git479

repositories. For the two-step models which predict reactive atoms, the codes use openeye480

software, which is a commercial library to do most of the chemoinformatics processing and481

thus this code cannot be released. Everything else from the paper is publically available482

including the PMechDB dataset.483

Guidelines:484

• The answer NA means that paper does not include experiments requiring code.485

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/486

public/guides/CodeSubmissionPolicy) for more details.487

• While we encourage the release of code and data, we understand that this might not be488

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not489

including code, unless this is central to the contribution (e.g., for a new open-source490

benchmark).491

• The instructions should contain the exact command and environment needed to run to492

reproduce the results. See the NeurIPS code and data submission guidelines (https:493

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.494

• The authors should provide instructions on data access and preparation, including how495

to access the raw data, preprocessed data, intermediate data, and generated data, etc.496
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• The authors should provide scripts to reproduce all experimental results for the new497

proposed method and baselines. If only a subset of experiments are reproducible, they498

should state which ones are omitted from the script and why.499

• At submission time, to preserve anonymity, the authors should release anonymized500

versions (if applicable).501

• Providing as much information as possible in supplemental material (appended to the502

paper) is recommended, but including URLs to data and code is permitted.503

6. Experimental Setting/Details504

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-505

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the506

results?507

Answer: [Yes]508

Justification: The paper specifies the data splits and hyperparameters necessary to reproduce509

the results.510

Guidelines:511

• The answer NA means that the paper does not include experiments.512

• The experimental setting should be presented in the core of the paper to a level of detail513

that is necessary to appreciate the results and make sense of them.514

• The full details can be provided either with the code, in appendix, or as supplemental515

material.516

7. Experiment Statistical Significance517

Question: Does the paper report error bars suitably and correctly defined or other appropriate518

information about the statistical significance of the experiments?519

Answer: [No]520

Justification: There are not error bars to report, the models were assessed based on their521

reaction prediction accuracy. They were evaluated once on the test set, so there are no error522

bars.523

Guidelines:524

• The answer NA means that the paper does not include experiments.525

• The authors should answer "Yes" if the results are accompanied by error bars, confi-526

dence intervals, or statistical significance tests, at least for the experiments that support527

the main claims of the paper.528

• The factors of variability that the error bars are capturing should be clearly stated (for529

example, train/test split, initialization, random drawing of some parameter, or overall530

run with given experimental conditions).531

• The method for calculating the error bars should be explained (closed form formula,532

call to a library function, bootstrap, etc.)533

• The assumptions made should be given (e.g., Normally distributed errors).534

• It should be clear whether the error bar is the standard deviation or the standard error535

of the mean.536

• It is OK to report 1-sigma error bars, but one should state it. The authors should537

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis538

of Normality of errors is not verified.539

• For asymmetric distributions, the authors should be careful not to show in tables or540

figures symmetric error bars that would yield results that are out of range (e.g. negative541

error rates).542

• If error bars are reported in tables or plots, The authors should explain in the text how543

they were calculated and reference the corresponding figures or tables in the text.544

8. Experiments Compute Resources545

Question: For each experiment, does the paper provide sufficient information on the com-546

puter resources (type of compute workers, memory, time of execution) needed to reproduce547

the experiments?548
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Answer: [Yes]549

Justification: This information can be found in the appendix.550

Guidelines:551

• The answer NA means that the paper does not include experiments.552

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,553

or cloud provider, including relevant memory and storage.554

• The paper should provide the amount of compute required for each of the individual555

experimental runs as well as estimate the total compute.556

• The paper should disclose whether the full research project required more compute557

than the experiments reported in the paper (e.g., preliminary or failed experiments that558

didn’t make it into the paper).559

9. Code Of Ethics560

Question: Does the research conducted in the paper conform, in every respect, with the561

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?562

Answer: [Yes]563

Justification: To our knowledge the paper conforms with the code of ethics.564

Guidelines:565

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.566

• If the authors answer No, they should explain the special circumstances that require a567

deviation from the Code of Ethics.568

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-569

eration due to laws or regulations in their jurisdiction).570

10. Broader Impacts571

Question: Does the paper discuss both potential positive societal impacts and negative572

societal impacts of the work performed?573

Answer: [Yes]574

Justification: The paper discussed the ability of the model to be applied to synthetic pathway575

prediction, which is a very important challenge of chemistry, and the ability of the models576

to provide interpretable predictions for chemistry.577

Guidelines:578

• The answer NA means that there is no societal impact of the work performed.579

• If the authors answer NA or No, they should explain why their work has no societal580

impact or why the paper does not address societal impact.581

• Examples of negative societal impacts include potential malicious or unintended uses582

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations583

(e.g., deployment of technologies that could make decisions that unfairly impact specific584

groups), privacy considerations, and security considerations.585

• The conference expects that many papers will be foundational research and not tied586

to particular applications, let alone deployments. However, if there is a direct path to587

any negative applications, the authors should point it out. For example, it is legitimate588

to point out that an improvement in the quality of generative models could be used to589

generate deepfakes for disinformation. On the other hand, it is not needed to point out590

that a generic algorithm for optimizing neural networks could enable people to train591

models that generate Deepfakes faster.592

• The authors should consider possible harms that could arise when the technology is593

being used as intended and functioning correctly, harms that could arise when the594

technology is being used as intended but gives incorrect results, and harms following595

from (intentional or unintentional) misuse of the technology.596

• If there are negative societal impacts, the authors could also discuss possible mitigation597

strategies (e.g., gated release of models, providing defenses in addition to attacks,598

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from599

feedback over time, improving the efficiency and accessibility of ML).600
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11. Safeguards601

Question: Does the paper describe safeguards that have been put in place for responsible602

release of data or models that have a high risk for misuse (e.g., pretrained language models,603

image generators, or scraped datasets)?604

Answer: [NA]605

Justification: The paper does not have risk for misuse. It simply describes architectures606

which are useful for specifically predicting elementary step reactions. The models currently607

have no ability to design synthetic pathways for a target molecule, they must be first provided608

with a list of reactants to produce a set of products.609

Guidelines:610

• The answer NA means that the paper poses no such risks.611

• Released models that have a high risk for misuse or dual-use should be released with612

necessary safeguards to allow for controlled use of the model, for example by requiring613

that users adhere to usage guidelines or restrictions to access the model or implementing614

safety filters.615

• Datasets that have been scraped from the Internet could pose safety risks. The authors616

should describe how they avoided releasing unsafe images.617

• We recognize that providing effective safeguards is challenging, and many papers do618

not require this, but we encourage authors to take this into account and make a best619

faith effort.620

12. Licenses for existing assets621

Question: Are the creators or original owners of assets (e.g., code, data, models), used in622

the paper, properly credited and are the license and terms of use explicitly mentioned and623

properly respected?624

Answer: [Yes]625

Justification: Papers are cited. The models used have public access git repos. The PMechDB626

dataset is governed by the Creative Commons Attribution-NonCommercial-NoDerivs (CC-627

BY-NC-ND) license.628

Guidelines:629

• The answer NA means that the paper does not use existing assets.630

• The authors should cite the original paper that produced the code package or dataset.631

• The authors should state which version of the asset is used and, if possible, include a632

URL.633

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.634

• For scraped data from a particular source (e.g., website), the copyright and terms of635

service of that source should be provided.636

• If assets are released, the license, copyright information, and terms of use in the637

package should be provided. For popular datasets, paperswithcode.com/datasets638

has curated licenses for some datasets. Their licensing guide can help determine the639

license of a dataset.640

• For existing datasets that are re-packaged, both the original license and the license of641

the derived asset (if it has changed) should be provided.642

• If this information is not available online, the authors are encouraged to reach out to643

the asset’s creators.644

13. New Assets645

Question: Are new assets introduced in the paper well documented and is the documentation646

provided alongside the assets?647

Answer: [Yes]648

Justification: We have provided descriptions of the various methods and experiments, as649

well as their limitations.650

Guidelines:651

• The answer NA means that the paper does not release new assets.652
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• Researchers should communicate the details of the dataset/code/model as part of their653

submissions via structured templates. This includes details about training, license,654

limitations, etc.655

• The paper should discuss whether and how consent was obtained from people whose656

asset is used.657

• At submission time, remember to anonymize your assets (if applicable). You can either658

create an anonymized URL or include an anonymized zip file.659

14. Crowdsourcing and Research with Human Subjects660

Question: For crowdsourcing experiments and research with human subjects, does the paper661

include the full text of instructions given to participants and screenshots, if applicable, as662

well as details about compensation (if any)?663

Answer: [NA]664

Justification: This does not apply.665

Guidelines:666

• The answer NA means that the paper does not involve crowdsourcing nor research with667

human subjects.668

• Including this information in the supplemental material is fine, but if the main contribu-669

tion of the paper involves human subjects, then as much detail as possible should be670

included in the main paper.671

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,672

or other labor should be paid at least the minimum wage in the country of the data673

collector.674

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human675

Subjects676

Question: Does the paper describe potential risks incurred by study participants, whether677

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)678

approvals (or an equivalent approval/review based on the requirements of your country or679

institution) were obtained?680

Answer: [NA]681

Justification: This does not apply.682

Guidelines:683

• The answer NA means that the paper does not involve crowdsourcing nor research with684

human subjects.685

• Depending on the country in which research is conducted, IRB approval (or equivalent)686

may be required for any human subjects research. If you obtained IRB approval, you687

should clearly state this in the paper.688

• We recognize that the procedures for this may vary significantly between institutions689

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the690

guidelines for their institution.691

• For initial submissions, do not include any information that would break anonymity (if692

applicable), such as the institution conducting the review.693
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