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ABSTRACT

We introduce super reinforcement learning in the batch setting, which takes the ob-
served action as input for enhanced policy learning. In the presence of unmeasured
confounders, the recommendations from human experts recorded in the observed
data allow us to recover certain unobserved information. Including this information
in the policy search, the proposed super reinforcement learning will yield a super-
policy that is guaranteed to outperform both the standard optimal policy and the
behavior one (e.g., the expert’s recommendation). Furthermore, to address the issue
of unmeasured confounding in finding super-policies, a number of non-parametric
identification results are established. Finally, we develop two super-policy learning
algorithms and derive their corresponding finite-sample regret guarantees.

1 INTRODUCTION

Offline reinforcement learning (RL) aims to find a sequence of optimal policies by leveraging the
batch data (Sutton & Barto, 2018; Levine et al., 2020). In many high-stake domains such as medical
studies (Kosorok & Laber, 2019), it is very costly or dangerous to interact with the environment for
online data collection, and learning must rely entirely on pre-collected observational or experimental
data. Recently, there is a surging interest in studying offline RL theories and methods. Most existing
solutions rely on the unconfoundedness assumption that excludes the existence of latent variables that
confound the action-reward/-next-observation associations. However, in practice we often encounter
unmeasured confounding, under which most existing RL algorithms will lead to sub-optimal polices.

In this paper, we study offline policy learning in confounded contextual bandits and sequential
decision making. Existing works on policy learning focused on searching an optimal policy that
purely depends on the past history, ignoring the recommended action given by the human expert
in the observed data. In many applications, there is a common belief that human decision-makers
have access to important information that is not recorded in the observed data when taking an action
(Kleinberg et al., 2018). For example, in the urgent care, clinicians leverage visual observations or
communications with patients to recommend treatments, where such unstructured information is
hard to quantify and often not recorded (McDonald, 1996). Another motivating example is given by
the deep brain stimulation (DBS Lozano et al., 2019). Due to recent advances in DBS technology,
it becomes feasible to instantly collect electroencephalogram data, based on which we are able to
provide adaptive stimulation to specific regions in the brain so as to treat patients with neurological
disorders including Parkinson’s disease, essential tremor, etc. In these applications, the patient is
allowed to determine the behavior policy (e.g., when to turn on/off the stimulation, for how long,
etc) based on information only known to herself (e.g., how she feels), therefore generating batch
data with unmeasured confounders. We notice that despite challenges in policy learning with latent
confounders, human recommendations may capture certain unobserved information as discussed in
aforementioned applications. Including this information as input of the policy can enhance policy
learning, which is indeed “a blessing from experts". Therefore, in this paper, we ask

Is it possible to consistently learn an optimal policy that takes both the data history and human
recommendation at the current time as input for better decision making?

We will answer the above question affirmatively. Specifically, we first introduce a novel framework
called super RL, which compared with the standard RL additionally takes the human’s recommenda-
tion as input for policy learning. In confounded environments, super RL can embrace the blessing
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from experts. In other words, it leverages the human expertise in discovering unobserved information
for enhanced policy learning. The resulting policy, which we call super-policy, is guaranteed to
outperform the standard optimal one learned from without using the human expertise and the behavior
policy that may depend on the hidden state. To implement the proposed super-policy for decision
making in the future, we require the human expert to recommend an action at each time, which is
commonly seen in practice. The super-policy then takes this action and other observations as input
and override the recommendation produced by the expert. Second, to address the challenge of partial
observability or unmeasured confounding, we establish several non-parametric identification results in
finding these super-policies in various confounded environments, leveraging the recent development
in causal inference (Tchetgen Tchetgen et al., 2020). Notably, our identification results prove that the
super-policy is learnable from the observed data despite the presence of unmeasured confounding.
Finally, we develop two super RL algorithms and derive the corresponding finite-sample regret
guarantees that are polynomial in terms of all relevant parameters in finding a desirable super-policy.

2 RELATED WORK

There is an increasing interest in studying off-policy evaluation (OPE) and learning in sequential
decision making problem with unmeasured confounding. Specifically, Zhang & Bareinboim (2016)
introduced the causal RL framework and the confounded Markov decision process (MDP) with
memoryless unmeasured confounding, under which the Markov property holds in the observed data.
Along this direction, many OPE and learning methods are proposed using instrumental or mediator
variables (Chen & Zhang, 2021; Liao et al., 2021; Li et al., 2021; Wang et al., 2021; Shi et al., 2022;
Fu et al., 2022; Yu et al., 2022). In addition, partial identification bounds for the off-policy’s value
have been established based on sensitivity analysis (Namkoong et al., 2020; Kallus & Zhou, 2020;
Bruns-Smith, 2021). Another streamline of research focuses on general confounded POMDP models
to allow for both unmeasured confounding and partial observability. Several point identification
results were established (Tennenholtz et al., 2020; Bennett & Kallus, 2021; Nair & Jiang, 2021; Shi
et al., 2021; Ying et al., 2021; Miao et al., 2022). However, none of the aforementioned works study
policy learning with the help of human expertise, i.e., taking recommended action in the observed
data for decision making. Different from these works, we tackle the policy learning problem from
a unique perspective and propose a novel super RL framework by leveraging human expertise in
discovering certain unobserved information to further improve decision making. We also rigorously
establish the super-optimality of the proposed super-policy over the standard optimal policy and
the behavior policy. Our paper is also related to a line of works on policy learning and evaluation
with partial observability using spectral decomposition and predictive state representation related
methods (see e.g., Littman & Sutton, 2001; Song et al., 2010; Boots et al., 2011; Hsu et al., 2012;
Singh et al., 2012; Anandkumar et al., 2014; Jin et al., 2020; Cai et al., 2022; Lu et al., 2022; Uehara
et al., 2022a;b). Nonetheless, these methods require the no-unmeasured-confounders assumption.

Finally, our proposal is motivated by the work of Stensrud & Sarvet (2022) that introduced the
concept of superoptimal treatment regime in contextual bandits. They used an instrumental variable
approach for discovering such regime. However, their method can only be applied in a restrictive
single-stage decision making setting with binary actions. In contrast, our super-RL framework is
generally applicable to both confounded contextual bandits and sequential decision making allowing
arbitrarily many actions. It is also worth mentioning that the proposed super RL differs from the
recently proposed safe RL via human intervention (Saunders et al., 2017), where human intervention
is performed to override bad actions recommended by the intelligent agent. We aim to leverage the
human expertise in the previously collected data for intelligent agents to make better decisions.

3 SUPER RL: A CONTEXTUAL BANDIT EXAMPLE

In this section, we introduce the super-policy in confounded contextual bandits (e.g., single-stage
decision making with unmeasured confounders). Consider a random tuple (S,U,A, {R(a)}a∈A),
where S and U denote the observed and unobserved features respectively, A denotes the action whose
space is given by a finite set A, and {R(a)}a∈A denotes a set of the potential/counterfactual rewards
under A = a, representing the reward that the agent would receive had action a been taken. The
observed reward, denoted by R, can then be written as R =

∑
a∈AR(a)I(A = a).
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Table 1: Policy values under different choices of ϵ in the toy example. In general, V(πb) = 0.6−1.2ϵ,
V(π∗) = 0.4, V(ν∗) = |0.7− ϵ|+ |ϵ− 0.3|. Bold values are the largest under different settings.

Policy Value V(πb) V(π∗) V(ν∗)

ϵ = 0.5 0.0 0.4 0.4
ϵ = 0 0.6 0.4 1.0
ϵ = 1 -0.6 0.4 1.0

Denote the spaces of S and U by S and U respectively. Let π : S → P(A) denote a policy depending
only on the observed information S, where P(A) refers to the class of all probability distributions
over A. In particular, π(a | s) refers to the probability of choosing an action a given that S = s. In
the batch setting, we are given i.i.d. copies of (S,A,R), where the action A is generated by some
behavior policy πb : S × U → P(A) that depends on both observed and unobserved features. Since
U is unobserved, nearly all existing solutions focused on finding an optimal policy π∗ given by

π∗(a∗ | s) = 1 if a∗ = argmaxa∈A E [R(a) | S = s] ∀s ∈ S, (1)

assuming the uniqueness of the maximization in equation 1 for every s ∈ S. In addition, notice that
U may confound the causal relationship of the action-reward in the observational data. Ignoring this
latent confounder will produce a biased estimator of π∗.

As discussed earlier, in this paper, we aim to find an optimal policy that leverages the input of
human expertise, since actions generated by the behavior policy depend on the latent information. In
particular, we search a super-policy ν∗ in a larger policy class Ω = {ν : S ×A → P(A)} such that

ν∗(a∗ | s, a′) = 1 if a∗ = argmaxa∈A E [R(a) | S = s,A = a′] ∀(s, a′) ∈ S ×A. (2)

The two optimal optimal policies are equivalent when unconfoundedness assumption holds. When this
condition is violated, E [R(a) | S = s,A = a′] ̸= E [R(a) | S = s] in general. More importantly, it
follows from Proposition 1 of Stensrud & Sarvet (2022) that the value under ν∗ is no worse and often
larger than that under π∗. This yields the super-optimality of ν∗ over π∗. It is also worth mentioning
that in the presence of latent confounders, there is no guarantee that the standard optimal policy
π∗ outperforms the behavior policy πb because πb depends on the unobserved information. To the
contrary, since πb ∈ Ω, the proposed super-policy is always better than πb. Specifically, let V(ν) be
the value under the intervention of a generic policy ν, i.e., V(ν) =

∑
a∈A E[R(a)ν(a | S,A)]. We

have the following lemma that demonstrates the super-optimality of ν∗ over both π∗ and πb.
Lemma 3.1 (Super-Optimality). V(ν∗) ≥ max{V(πb),V(π∗)}.

Intuitively speaking, the super-optimality of ν∗ comes from the use of unobserved information U
contained in πb. We consider the following toy example to elaborate.

Toy Example: Assume S and U independently follow a Bernoulli distribution with success probabil-
ity 0.5. Suppose the action is binary and the behavior policy satisfies P(A = 1|S,U = 1) = P(A =
0|S,U = 0) = 1− ε for some 0 ≤ ε ≤ 1. Let R = 8(A− 0.5)(S − 0.2)(U − 0.3). In this example,
the parameter ε measures the degree of unmeasured confounding. When ε = 0.5, the behavior policy
does not depend on U and the no-unmeasured-confounders assumption is automatically satisfied.
Otherwise, this condition is violated. In particular, when ε = 0 or 1, we can fully recover the latent
confounder based on the recommended action. Table 1 summarizes the policy values of πb, π∗ and
ν∗ under different ε, in which the super-optimality holds.

Despite its appealing property, it is generally impossible to learn the super-policy ν∗ without any
further assumptions, since the counterfactual effect E [R(a) | S = s,A = a′] is not identifiable from
the observed data due to unmeasured confounding. Toward that end, we adopt the proximal causal
inference framework developed by Tchetgen Tchetgen et al. (2020). Specifically, we assume the
existence of certain action and reward proxies Z ∈ Z and W ∈ W in additional to (S,A,R). These
proxies are required to satisfy the following assumptions (Miao et al., 2018b):
Assumption 1. (a) R |= Z | (S,U,A); (b) W |= (Z,A) | (S,U), W��|= U | S; (c) R(a) |= A | (S,U)
for a ∈ A; (d) There exists a bridge function q : W ×A× S → R such that

E [q(W,a, S) | U, S,A = a] = E [R | U, S,A = a] . (3)
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Assumptions 1(a)-(b) are standard in proximal causal inference, requiring these proxies to meet
certain conditional independence conditions. Assumptions 1(c), called latent unconfoundedness, is
mild as we allow U to be unobserved. The last assumption can be satisfied when some completeness
and regularity conditions hold. See Miao et al. (2018a) and also Lemma 3.3 below for more details.
Then the following lemma allows us to consistently learn the super-policy ν∗ from the observed data.
Lemma 3.2. Under Assumption 1, we have E [R(a) | S = s,A = a′] = E[q(W,a, S) | S = s,A =
a′], which further leads to that V(ν) = E

[∑
a∈A q(W,a, S)ν(a | S,A)

]
for any ν ∈ Ω.

In practice, one may want to include as many confounders in the policy as possible to achieve the
largest super-optimality. Hence under this proximal causal inference framework, with some abuse
of notation, we further extend the policy class to Ω = {ν : S × Z̃ × A → P(A)} and consider the
corresponding super-policy ν∗ as

ν∗(a∗ | s, z̃, a′) = 1 if a∗ = argmaxa∈A E
[
R(a) | S = s, Z̃ = z̃, A = a′

]
, (4)

where Z̃ is a subset of Z that continues to exist when we implement the super-policy. In applications
where the action proxy is no longer available in future decision making, equation 4 is reduced to
equation 2. We also remark that different from Z, W is obtained after intervention. As such, it does
not make sense to include W in the super-policy. The following corollary allows us to identify ν∗.
Corollary 3.1. Under Assumption 1, the policy value under a given ν ∈ Ω is given by V(ν) =

E
[∑

a∈A q(W,a, S)ν(a | S,A, Z̃)
]
. In addition, the optimal policy ν∗ is given by

ν∗(a∗ | s, z̃, a′) = 1 if a∗ = argmaxa∈A E
[
q(W,a, S) | S = s, Z̃ = z̃, A = a′

]
. (5)

It can be seen from Corollary 3.1 that to identify the super-policy, it remains to estimate the bridge
function q defined in Assumption 1(d). One can impose the following completeness condition.
Assumption 2. For any squared-integrable function g and for any (s, a) ∈ S ×A, E[g(U) | Z, S =
s,A = a] = 0 almost surely if and only if g(U) = 0 almost surely.
Lemma 3.3. Under Assumptions 1-2 and some regularity conditions (see Assumption 7 in Appendix
E, solving the following linear integral equation

E [q(W,a, S) | Z, S,A = a] = E [R | Z, S,A = a] , (6)

for every a ∈ A with respect to q gives a valid bridge function that satisfies Assumption 1(d).

Built upon Corollary 3.1 and Lemma 3.3, Algorithm 1 summarizes the procedure to find ν∗ from a
population perspective. Practical procedure that learns ν∗ given samples can be found in Appendix B.

Algorithm 1: Identification of ν∗ in confounded contextual bandits.
1 Input: i.i.d. copies of (S,Z,A,R,W ).
2 Compute q by solving E [q(W,a, S) | Z, S,A = a] = E [R | Z, S,A = a] for every a ∈ A.

3 Compute a∗ = argmaxa∈A E
[
q(W,a, S) | S = s, Z̃ = z̃, A = a′

]
∀(s, z̃, a′) ∈ S × Z̃ × A.

4 Output: ν∗ with ν∗(a∗ | s, z, a′) = 1 for any (s, z, a′).

4 SUPER RL IN SEQUENTIAL DECISION MAKING

4.1 MODEL SETUP AND SUPER-POLICIES IN SEQUENTIAL DECISION MAKING

In this section, we formally introduce the super-policy in confounded sequential decision making,
demonstrate its super-optimality, and present several non-parametric identification results. Consider
an episodic and confounded POMDP denoted by M = (S,U ,A, T,P, r) where S and U denote the
spaces of observed and unobserved features respectively, A denotes the action space, T denotes the
total length of horizon, P = {Pt}Tt=1 where each Pt denotes transition kernel from S × U ×A to
S × U at time t, and r = {rt}Tt=1 denotes the set of reward functions over S × U × A. The data
following M can be summarized as {St, Ut, At, Rt}Tt=1 where St and Ut correspond to the observed
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and latent features at time t, At and Rt denote the action and the reward at time t. For simplicity, we
assume the action space is discrete and all rewards are uniformly bounded, i.e., |Rt| ≤ Rmax.

Given an offline dataset, our objective is to learn an (in-class) optimal policy to maximize the expected
cumulative rewards. All existing works consider policies defined as a sequence of functions mapping
from the past history (excluding the current action) to a probability mass function over the action
space A. Specifically, given a generic policy π = {πt}Tt=1, one can define its value function as

V π
t (s, u) = Eπ

[∑T
t′=tRt′

∣∣∣St = s, Ut = u
]
, for every (s, u) ∈ S × U , (7)

where Eπ denotes the expectation with respect to the distribution whose action at each time t follows
πt. Existing works aim to leverage the batch data to estimate an optimal policy that maximizes

V(π) = E[V π
1 (S1, U1)], (8)

where we use E to denote the expectation with respect to the initial data distribution. Under
unmeasured confounding, the observed action At in the batch data is generated by some behavior
policy πb

t : S × U → P(A) for 1 ≤ t ≤ T . Let πb = {πb
t}Tt=1.

To handle unmeasured confounding, we similarly assume the existence of certain reward proxies
{Wt}Tt=1 and action proxies {Zt}Tt=1 that can help identify policy values. In sequential decision
making, as shown in Tennenholtz et al. (2020), past and future observations can be served as the
two proxies in confounded partially observable Markov decision processes (POMDPs). As such,
our method can be applied to most confounded decision-making problems where human agents will
recommend actions in the future. Concrete examples of these proxies are given in later sections and
Appendix A. Previous works such as Lu et al. (2022) focus on finding π∗ ∈ Π ≡ {π = {πt}Tt=1 |
πt : S × Zt → P(A)} such that π∗ = argmaxπ∈Π V(π). In particular, when Zts are certain current
features that can serve as the action proxies (see Section 4.2), Π corresponds to the class of stationary
policies. When Zts are given by the entire data history (see Section 4.3), Π corresponds to the class
of general history-dependent policies. When Zts are given by the most recent k-step observations
(see Section 4.4), Π corresponds to the class of k-memory policies.

Motivated by the discussions in Section 3, we propose to learn a super policy ν∗ ∈ Ω ≡ {ν =
{νt}Tt=1 | νt : S ×Zt ×A → P(A)} which leverages human expertise for enhanced policy making
that maximizes V(ν). Here A in Ω reflects the action space at the current time point t. Actions
recommended by the expert before time t can be included in Zt. See Section 4.3 for more details.
When considering Ω, the policy value V(ν) indeed depends on πb as well because to implement the
proposed super-policy we require the human agent to produce an action according to πb and then
intervene using ν. However, to ease notation, we omit πb when referring to V(ν). Similar as before,
since the super-policy additionally uses the expert’s recommendation that depends on the unobserved
information, we expect the super-policy ν∗ to be superior to both π∗ and πb, which is shown below.
Theorem 4.1 (Super-Optimality). V(ν∗) ≥ max{V(π∗),V(πb)}.

4.2 IDENTIFICATION OF STATIONARY SUPER-POLICIES VIA Q-BRIDGE FUNCTIONS

Under unmeasured confounding, we apply the proximal causal inference framework to sequential
decision making and make following assumptions to identify the policy value V(ν) for each ν ∈ Ω.
Assumption 3. (a) (Markovianity) The process {St, Ut, At, Rt}Tt=1 satisfies the Markov prop-

erty, i.e., for any t, (Rt, St+1, Ut+1) depends on the past history only through (St, Ut, At).

(b) (Reward proxy) Wt |= (At, Ut−1, St−1) | (Ut, St), Wt��|= Ut | St, for 1 ≤ t ≤ T .

(c) (Action proxy) Zt |= (Rt,Wt, St+1, Ut+1,Wt+1) | (Ut, St, At) for 1 ≤ t ≤ T .

Assumption 3 is satisfied by a wide range of confounded sequential decision making models. See
Appendix A for detailed discussions. Specifically, Assumption (a) is mild. It essentially requires the
data to be Markovian if we were to observe {Ut}Tt=1. Assumptions (b) and (c) extends Assumption 1
to sequential decision making. In this section, we require the existence of current features that can
serve as action proxy and focus on learning an optimal stationary policy. Alternatively, one can set
the action proxy to past observations, as in Sections 4.3 – 4.5 and study history-dependent policies.
Without loss of generality, we also assume these action proxies continue to be available when making
decisions in the future. Otherwise, we can restrict the super-policy to be a function of (St, At) only.
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To identify V(ν) and ultimately ν∗ under unmeasured confounding, we rely on the existence of a class
of Q-bridge functions {qνt }Tt=1 defined over W ×S ×A such that for every (s, u, a) ∈ S × U ×A,

Eν
[∑T

t′=tRt′

∣∣∣Ut, St, At

]
= E

[∑
a∈A q

ν
t (Wt, St, a)νt(a | St, Zt, At) | Ut, St, At

]
. (9)

Theorem 4.2 (Identification). If there exist {qνt }Tt=1 that satisfy equation 9, then the value of policy
ν can be identified by V(ν) = E[

∑
a∈A q

ν
1 (W1, S1, a)ν1(a | S1, Z1, A1)].

The following theorem proves the identifiability of these Q-bridge functions under certain complete-
ness and regularity conditions. Together with Theorem 4.2, it forms the basis to learn the super-policy
from the observed data. Let V ν

t (Wt, St, Zt, At) = qνt (Wt, St, a)νt(a | St, Zt, At).
Theorem 4.3. Under Assumption 3 and certain completeness and regularity (Assumptions 8, 9 and
10 in Appendix F), there always exist Q-bridge functions {qνt }Tt=1 satisfying equation 9. In particular,
set qνT+1 = 0, qνt can be obtained by solving the following linear integral equations for t = T, . . . , 1,

E{qνt (Wt, St, At)−Rt − V ν
t+1(Wt+1, St+1, Zt+1, At+1) | Zt, St, At} = 0. (10)

4.3 IDENTIFICATION OF GENERAL HISTORY-DEPENDENT SUPER-POLICIES

In this section, we set Zt = {O1:t, A1:(t−1)}, St = ∅ and Wt to certain future features that can
serve as a reward proxy that satisfies Assumption 3(b) (e.g., conditionally independent of the current
action). The corresponding space of Zt is given by Zt =

∏t
t′=1 O ×

∏t−1
t′=1 A. Alternatively, one

may set Zt = {O1:(t−1), A1:(t−1)} and Wt to the current observation as in Tennenholtz et al. (2020);
Shi et al. (2021) to meet Assumption 3. The resulting model is reduced to a typical POMDP with
unmeasured confounding and we present the identification results in Section 4.5. We focus on the
case where A1:(t−1) in Zt are generated by the behavior policy instead of the super-policy. The policy
class we focus on is given by Ωhistory = {ν = {νt}Tt=1 | νt :

∏t
t′=1(O × A) → P(A)}, which

includes all actions recommended by the expert for decision making but those generated by ν ∈ Ω.
We leave the inclusion of these actions in the policy class as future work. To ease notation, we omit
“history" in Ωhistory when there is no confusion. Let O0 denote some pre-collected observation before
the decision process initiates. We impose the following additional assumption:
Assumption 4. (a) Zt+1⊥⊥O0 | Ut, Zt, At, for 1 ≤ t ≤ T − 1; (b) Wt⊥⊥O0 | Ut, Zt, At, for
1 ≤ t ≤ T ; (c) Ot ∈ O is generated from Ut by some unknown map Ht : U → O.

Assumption 4(a)-(b) can be easily satisfied by initializing the decision process at t = 2. Assumption
4(c) is often imposed in POMDPs. Then we have the following identification results.
Theorem 4.4. Assume assumptions 3, 4, and certain completeness and regularity conditions in
Appendix F hold. Define qνT+1 = 0, and {qνt }Tt=1 over W ×

∏t
t′=1(O ×A) as the solutions to the

following linear integral equations:

E

{
qνt (Wt, Zt, At)−Rt −

∑
a∈A

qνt+1(Wt+1, Zt+1, a)νt(a | Zt+1, At+1) | Zt, O0, At

}
= 0, (11)

for t = T, T − 1, . . . , 1. Then we could identify the policy value for ν ∈ Ωhistory as

V(ν) = E [qν1 (W1, Z1, A1)] . (12)

Theorem 4.4 allows us to identify general history-dependent policies.

4.4 IDENTIFICATION OF K-STEP HISTORY-DEPENDENT SUPER-POLICIES

In Section 4.3, we discuss how to identify the value of a history-dependent policy by taking Zt as
past observations up to time t. As a result, the dimension of Zt increases linearly with t, resulting
in the curse of dimensionality and history (Pineau et al., 2006). In this section, we consider a more
practical class of policies that only use the most recent k-step observations. Policies of this type are
widely used in practice (see e.g., Mnih et al., 2015; Berner et al., 2019).

To begin with, let Wt be the future proxy reward that satisfies Assumption 3(b). For any t ≥ k + 1,
let Zt ∈ Zt denote the observed history from time t− k up to time t, i.e., (O(t−k):t, A(t−k):(t−1)).
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We further define Z̃t = Zt ∩ Zt+1 ∈ Z̃t as a subset of Zt. Next, we define the Q-bridge functions
{qνt }Tt=k+1 over W × Z̃t ×A such that for every (u, a) ∈ U ×A and t ≥ k + 1,

Eνt:T [
∑T

t′=tRt′

∣∣∣Ut, At] = E[
∑

a∈A q
ν
t (Wt, Z̃t, a)νt(a | Zt, At) | Ut, At]. (13)

Under certain regularity conditions (Assumptions 13 and 14 specified in Appendix F), we are able to
identify the Q-bridge functions {qνt }Tt=k+1 through the following linear integral equations.

Theorem 4.5. Under Assumptions 3, 4(c), Assumptions 13 and 14 in Appendix F, there exist Q-
bridge functions {qνt }Tt=k+1 satisfying equation 13. In particular, set qνT+1 = 0, qνt can be obtained
by solving the following linear integral equations for t = T, · · · , k + 1:

E{qνt (Wt, Z̃t, At)−Rt −
∑
a∈A

qνt+1(Wt+1, Z̃t+1, a)νt+1(a | Zt+1, At+1) | Zt, At} = 0. (14)

As for 1 ≤ t ≤ k, take Zt = {O1:t, A1:(t−1)}, if additionally Assumptions 11, 12 in Appendix F and
Assumption 4(a)-(b) on O0 hold for 1 ≤ t ≤ k, then there exist {qνt }kt=1 over W × (

∏t
t′=1)(O ×A)

as the solution to the following linear integral equation for t = 1, . . . , k.

E{qνt (Wt, Zt, At)−Rt −
∑
a∈A

qνt+1(Wt+1, Zt+1, a)νt+1(a | Zt+1, At+1) | Zt, O0, At} = 0, (15)

where O0 denotes some pre-collected observation defined in Section 4.3. Finally, the policy value
can be identified as V(ν) = E[qν1 (W1, Z1, A1)].

We remark that the requirement for O0 in Theorem 4.5 is much weaker than that in Theorem 4.4. In
particular, here we only need Assumptions 4 (a)-(b), 11 and 12 to hold for the first k steps. When
t ≥ k + 1, we require the variability of Zt to cover the variability of (Ut, Z̃t), which to some extent
requires the observation at k-th lag has sufficient variability relative to the variability of unobserved
state at the current time (Ut). As the lag k increases, this assumption becomes more restrictive.

4.5 ALTERNATIVE IDENTIFICATION OF SUPER-POLICIES

In Section 4.2, we discuss how to identify the policy value via Q-bridge functions assuming the
existence of certain future observations (Wt) that can serve as reward proxy and are conditionally
independent of the current action. As commented earlier, this condition can be relaxed by setting
Wt = Ot, Zt = {O1:(t−1), A1:(t−1)} and St = ∅. The resulting data generating process is reduced
to the POMDP model studied in Tennenholtz et al. (2020). However, based on identification results
in Sections 4.3-4.4, this rules out the dependence of the super-policy on the most recent observation,
which could be restrictive. In the following, we provide a remedy for addressing this limitation.

For simplicity, we focus on identifying a given history-dependent super-policy ν = {νt}Tt=1’s value,
where νt :

∏t
t′=1(O ×A) → P(A) depends on all the past observations and recommended actions.

We consider a tabular setting where all random variables can only take finitely many values and
use boldface letters r ∈ Rdr , u ∈ Rdu , o ∈ Rdo to represent the vectors consisting of all possible
rewards, latent states and observations. Meanwhile, our results can be extended to general settings as
well using value-bridge functions (Shi et al., 2021). Let O0 denote some pre-collected observation.
The following assumption summarizes the conditions for the model:

Assumption 5. (a) The process {Ut, At}Tt=1 satisfies the Markov property; (b) For all 1 ≤ t ≤ T ,
the observation Ot is generated from Ut by some unknown map Ht : U → O; (c) For all 1 ≤ t ≤ T ,
Ot−1⊥⊥(Rt, Ot, Ut+1) | (Ut, At).

We define the following matrices:

[P (t,r)
o,a ]i,j = Pr(Rt = ri, Ot = o | At = a,Ot−1 = oj), P (r)

o,a ∈ Rdr×do ;

[P (t)
a ]i,j = Pr(Ot = oi | At = a,Ot−1 = oj), P (t)

a ∈ Rdo×do ;

[P
(t,o)
o,a′,a]i,j = Pr(Ot+1 = oi, Ot = o, At+1 = a′ | At = a,Ot−1 = oj), P

(t)
o,a′,a ∈ Rdo×do

[P (t)
a,u]i,j = Pr(Ut = ui | At = a,Ot−1 = oj), P (t)

a,u ∈ Rdu×do .

7
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Theorem 4.6. Under Assumption 5, as long as P (t)
a and P

(t)
a,u are invertible for any t = 1, . . . , T

and a ∈ A, the value function V(ν) for any ν ∈ Ω is identifiable. In particular,

V(ν) =
T∑

t=1

{
∑

o1,a1,a′
1,...,ot,at,a′

t

(

t∏
k=1

νk(ak | ok, a′k, . . . , o1, a′1))r⊺

(P (t,r)
ot,at

[P (t)
a1

]−1)(

1∏
k=t−1

P
(k,o)
ok,a′

k+1,ak
[P (k)

ak
]−1) Pr(O1 = o, A1 = a1)}.

5 SUPER-POLICY LEARNING WITH REGRET GUARANTEE

Based on the established identification results, we introduce our super-policy learning algorithms
and establish the corresponding finite-sample regret bounds. We only focus on settings described in
Sections 3 and 4.2. Other settings can be similarly studied, which we will leave as the future work.

5.1 CONFOUNDED CONTEXTUAL BANDITS: REGRET GUARANTEES

We develop a practical algorithm in Appendix B, based on the minimax estimation (Dikkala et al.,
2020). Let ν̂∗ denote the output of Algorithm 3 in Appendix B which relies on the estimation of the
bridge function q given by equation 6. Define the L2 norm of a generic function f as ∥f∥2 ≡

√
E[f2].

Let g(S,Z,A ; f) ≡ E[f(W,S) | S,Z,A] for any f defined over W × S. For a given projection
estimator Ê, let ĝ(S,Z,A ; f) ≡ Ê[f(W,S) | S,Z,A] denote the corresponding estimator. Define

pmax = sup
u,s,z,a′,ν∈Ω

∑
a∈A πb(A = a | U = u, S = s)ν(A′ = a′ | Z = z, S = s,A = a)

πb(A′ = a′ | U = u, S = s)
.

Lemma 5.1. Suppose q belongs to certain function class Q ⊂ W×S×A. Define the projection error
as ξn := supq∈Q,a∈A ∥g[·, ·, · ; q(·, ·, a)]− ĝ[·, ·, · ; q(·, ·, a)]∥2 , and the bridge function estimation
error as ζn := ∥q − q̂∥2 . Then we obtain the following regret decomposition

V(ν∗)− V(ν̂∗) ≤ 2(ξn + pmaxζn).

Suppose q̂ and the projection estimator are computed by the procedure described in Appendix B.
When Q (the function space for q) and G (the function space for the projected function) are VC-
subgraph classes, we have the following theorem for the regret guarantee. Results when G and Q are
reproducing kernel Hilbert spaces (RKHSs) are provided in Appendix I.3.

Theorem 5.1. If the star-shaped spaces G and Q are VC-subgraph classes with VC dimensions V(G),
and V(G) respectively. Under assumptions in Theorems I.2 and I.4, with probability at least 1− δ,

V(v̂∗)− V(v∗) ≲ n−1/2pmax

√
log(1/δ) + max {V(G),V(Q)},

where for any two positive sequences {an}n, {bn}n, an ≲ bn means that there exists some constant
C > 0 such that an ≤ Cbn for any n.

5.2 CONFOUNDED SEQUENTIAL DECISION MAKING: REGRET GUARANTEES

Now we present our super-policy learning algorithm for the sequential setting introduced in
Section 4.2. Given the identification results in Theorems 4.2 and 4.6, to obtain the super-
policy ν∗, one solution is to directly search over the space of super-policies that maximizes
the estimated value, i.e., ν̂ = argmaxv∈Ω V̂(ν). However, when T is large and models im-
posed for estimating bridge functions are complex (e.g., deep neural networks), direct opti-
mizing V̂(ν) requires extensive computational power. Motivated by Theorem 4.3, we pro-
pose a fitted-Q-iteration type algorithm (Algorithm 2) for practical implementation and estab-
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lish the regret bound in finding the super policy ν∗ under memoryless unmeasured confounding.

Algorithm 2: Super RL for the confounded POMDP

1 Input: Data D = {Dt}Tt=1 with Dt = {(Si,t, Zi,t, Ai,t, Ri,t,Wi,t, Si,t+1, Zi,t+1,Wi,t+1)}ni=1.
2 Let q̂T+1 = 0 and ν̂∗T be an arbitrary policy.
3 Repeat for t = T, . . . , 1:
4 Obtain an estimator q̂t for qt via a min-max estimation method in Appendix I.1 using Dt

5 Compute Ê[qt(Wt, St, a) | St = s, Zt = z,At = a′] for a ∈ A using the method in
Appendix I.2 and obtain the estimated super policy ν̂∗t as for every (a′, z, s),
ν̂∗t (a

∗ | s, z, a′) = 1

{
argmaxa∈A Ê[qt(Wt, St, a) | St = s, Zt = z,At = a′]

}
.

6 Output: ν̂∗ = {ν̂∗t }Tt=1.

Assumption 6 (Memoryless Unmeasured Confounding). For 2 ≤ t ≤ T , Ut is independent of past
data history (including latent factors in the past) up to time t− 1 given St.

We introduce some notations. Define pνt and pπb
t as the marginal distributions of all random variables

at time t under the policy ν and behavior policy πb respectively. Define constants pt,max :=

sups,z,a p
ν∗

t (s, z, a)/pπb
t (s, z, a), and pωt,max = sups,z,a,ν∈Ω ω

ν
t (s, z, a), where ων

t (s, z, a) denotes
certain density ratio whose explicit form is given in equation 29 of Appendix H.

Let Q(t) denote the class for modelling qt. Define gt[St, Zt, At ; q(·, ·, a)] := E[q(Wt, St, a) |
St, Zt, At] and ĝt[St, Zt, At ; q(·, ·, a)] := Ê[q(Wt, St, a) | St, Zt, At] for q ∈ Q(t) and a ∈ A.
Consider two projection errors ξt,n := supq∈Q(t),a∈A ∥gt[·, ·, · ; q(·, ·, a)]− ĝt[·, ·, · ; q(·, ·, a)]∥2
and ζt,n which denotes the projected error related to the computation in line 4 of Algorithm 2. The
exact definition of ζt,n is given in equation 37 of Appendix I. The finite-sample regret bound of ν̂∗
by Algorithm 2 relies on the following regret decomposition.

Lemma 5.2. Suppose qt ∈ Q(t) for 1 ≤ t ≤ T and ν̂∗ is computed via Algorithm 2. Then under
Assumptions 3, 6, 8, 9 and 10, we obtain the following regret decomposition,

V(ν∗)− V(ν̂∗) ≲

(
T∑

t=1

2pt,maxξt,n

)
+

√√√√T

T∑
t=1

(pωt,max)
2(ζt,n)2.

In Appendix I, we provide a detailed analysis of ξt,n and ζt,n regarding to the critical radii of local
Rademacher complexities of different spaces, when q̂t is estimated by the conditional moment method
and the projection E[q(Wt, St, a) | St, Zt, At] is estimated by the empirical risk minimization. Here
we provide a regret bound which is characterized by the VC dimensions. Let G(t) be the space of
testing functions in the min-max estimating procedure described in Appendix I.1, and H(t) be the
space of inner products between any policy ν ∈ Ω and q ∈ Q(t) with H(T+1) = {0}. See the exact
definitions of G(t) and H(t) in Appendix I.1.

Theorem 5.2. If the star-shaped spaces G(t), H(t+1) and Q(t) are VC-subgraph classes with VC
dimensions V(G(t)), V(H(t+1)) and V(G(t)) respectively for 1 ≤ t ≤ T . Under assumptions
specified in Theorems I.1 and I.3, with probability at least 1− δ,

V(v̂∗)− V(v∗) ≲
T∑

t=1

(pt,max + pωt,max)(T − t+ 1)2.5
√

log(T/δ) + max{V(G(t)),V(H(t+1)),V(Q(t))}
n

.

When G(t), Q(t) and H(t) are RKHSs, we establish the corresponding results in Appendix I.3.

6 CONCLUSION

In this paper, we introduce super reinforcement learning, which takes the observed action as input
for enhanced policy learning. We establish the identification results for the super-policy in various
confounded environments. Practical algorithms are proposed to perform the super-policy learning
and corresponding finite-sample regret guarantees are provided.
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A POMDP STRUCTURES AND PROXY VARIABLES

A.1 POMDP STRUCTURES

In Figure 1, we illustrate the general POMDP structure regarding to the variables {Ut, St, At, Rt}Tt=1.
Figure 2 provides an example of the POMDP structure under the memoryless assumption (Assumption
6). As Figure 2 shows, all the information from the past time steps is transited to the next step only
through the current observed state St. Figure 3 provides an illustration for the causal relationship
of all the variables involved in the confounded POMDP. At any time step t, the reward proxy Wt is
only related to the action At through St and Ut; the action proxy Zt is only related to the reward Rt

through St and Ut. In Section A.2, we provide more illustrations about the relationship of proxy
variables with other variables.
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Figure 1: The data generation process under a typical POMDP.

Figure 2: The data generation process under the memoryless POMDP.

Figure 3: An illustration of the causal relationship of variables involved in the confounded POMDP.

A.2 PROXY VARIABLES

In this section, we discuss several options for proxy variables Wt and Zt satisfying the basic
assumption (Assumption 3).
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In Figure 4, we list some plausible causal relationship among Wt, Ut, At. We require the effect
between Ut and Wt exists, but the effect between Wt and Rt is optional. For concrete examples of
Wt, readers can refer to the discussion of type c variables in Tchetgen Tchetgen et al. (2020).

Figure 4: Causal relationship between Wt and other variables. Dashed arrows indicate the causal
effect is optional.

Once we determine Wt, we can select Zt accordingly. Figure 5 shows several different relationships
of the action proxy Zt with other variables. In the left plot of Figure 5, Zt is one of the cause of
At and Zt⊥⊥(Ut, St) | At. In this case, Zt can be considered as an instrumental variable for At. In
the middle plot of Figure 5, (Ut, St) is a direct cause for Zt, the effect between Zt and At can be in
both directions and can be optional. As for the right plot in Figure 5, Zt is a direct effect of Ut and
St. And the effect between Zt and At can be in both directions and can be optional. For concrete
examples of choices of Zt in the observational study, readers can refer to the discussion of type b
variables in Tchetgen Tchetgen et al. (2020). In Section 4.3 and 4.4, we also discuss the cases when
Zt includes previous history.

Figure 5: Different causal relationship between Zt and other variables. Dashed arrows indicate the
causal effect is optional.

B LEARNING ALGORITHM FOR CONTEXTUAL BANDITS

In this section, we present the practical algorithm (Algorithm 3) for finding the super-policy in
our contextual bandit example. The key step is to estimate the bridge function q by the linear
integral equation stated in Lemma 3.3. When S × Z ×A×W are all finite and discrete, it can be
straightforwardly estimated. In the following, we discuss the estimation when the general space is
considered.
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Algorithm 3: Learning Algorithm for the contextual bandits under unmeasured confounding
1 Input: Data D = (Si, Zi, Ai, Ri,Wi)

n
i=1.

2 Obtain the estimation of the bridge function q̂ by solving the estimation equation equation 6
using data D

3 Implement any supervised learning method for estimating E [q̂(W,S, a) | S,Z,A].
4 Compute a∗ = argmaxa∈A Ê [q̂(W,S, a) | S = s, Z = z,A = a′] ∀(s, z, a′) ∈ S × Z ×A.
5 Output: ν̂∗ with ν̂(a∗ | s, z, a′) = 1 and ν̂(ã | s, z, a′) = 0 for ã ̸= a∗.

We consider the conditional moment estimation procedure in Dikkala et al. (2020), and propose to
estimate Q-bridge function by

q̂ := argmin
q∈Q

sup
g∈G

Ψ̃(q, g)− λ

(
∥g∥2G +

U

∆2
∥g∥22,n

)
+ λµ∥q∥2Q, (16)

where Ψ̃(q, g) = 1
n

∑n
i=1 {q(Wi, Si, Ai)−Ri} g(Zi, Si, Ai), Q is the function space that we as-

sume q∗ lies in, G is the function space where the test functions g come from, λ, µ,∆, U > 0 are
some tuning parameters.

As for the projection Ê[q̂(W,S, a) | S = s, Z = z,A = a′], the conditional moment framework
can be also adopted to perform the estimation, here we propose to estimate it via the empirical risk
minimization.

ĝ(·, ·, · ; q̂(·, ·, a)) := argmin
g∈G

1

n

n∑
i=1

[g(Si, Zi, Ai)− q̂(·, ·, a)]2 + µ∥g∥2G , (17)

where q̂ is defined in equation 16, µ > 0 is a tuning parameter.

C SIMULATIONS

C.1 SIMULATION STUDY FOR CONTEXTUAL BANDITS

In this section, we conduct two simulation studies to evaluate the performance of the proposed
super-policy. The first one is a contextual bandit example with tabular state values. We aim to
demonstrate the super-policy performs better when the behavior policy reveals more information
about the unmeasured confounders. The second one is a contextual bandit example with a continuous
state space. It is used to demonstrate the performance of our algorithm using the bridge function.

A contextual bandit with tabular state values

Similar to the toy example described in Section 3, we take S and U as independent binary variables
such that Pr(S = 1) = 0.5 and Pr(U = 1) = 0.5. The binary action A is generated by the following
conditional probabilities

Pr(A = 1 | U = 0) = ϵ, Pr(A = 1 | U = 1) = 1− ϵ,

with different choices of ϵ ∈ [0, 1]. The larger the |ϵ− 0.5| is, the more information of U is revealed
in the observed action A. Both the reward proxy W and the action proxy Z are binary and are
generated according to the following conditional probabilities

Pr(W = 1 | U = 0) = 0.4, Pr(W = 1 | U = 1) = 0.6;

Pr(Z = 1 | U = 0) = 0.4, Pr(Z = 1 | U = 1) = 0.6.

Moreover, W and Z are conditionally independent given U . The observed reward is computed by
R = (U − 0.5)(A− 0.5) + ϵ where ϵ ∼ N(0, 0.5).

Three types of policy classes are considered.

1. SONLY: S → P(A). The policy only depends on the observed state S.
2. SZONLY: S × Z → P(A). The policy depends on on the observed state S and the action

proxy Z.
3. SUPER: S × Z × A → P(A). The super-policy class where the policy depends on the

observed state S, the action proxy Zt, and observed action A.
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Table 2: Simulation results for the tabular setting described in C.1 under different choices of ϵ.
We replicate the simulation for 50 times. Mean regret values for estimated optimal policies under
different policy classes are provided (and a smaller regret value indicates a better performance).
Values in the parentheses are the standard deviations of the regret values.

SONLY SZONLY SUPER

ϵ = 0.5 0.25 (3.1e-04) 0.21 (1.7e-02) 0.21 (1.4e-02)
ϵ = 0.7 0.25 (3.1e-04) 0.22 (1.8e-02) 0.18 (3.5e-02)
ϵ = 0.9 0.25 (2.5e-04) 0.24 (1.2e-02) 0.17 (8.6e-02)

Table 3: Simulation results for the continuous setting described in C.1 under different choices of ϵ.
The simulation is performed over 50 simulated datasets. Mean regret values for estimated optimal
policies using different policy classes are provided. Smaller regret values indicate better performance.
Values in the parentheses are the standard deviations of the regret values.

SONLY SZONLY SUPER

ϵ = 0.5 0.40 (9.6e-04) 0.14 (6.1e-03) 0.12 (2.5e-03)
ϵ = 0.7 0.40 (9.2e-04) 0.12 (5.9e-03) 0.11 (3.5e-03)
ϵ = 0.9 0.40 (1e-03) 0.11 (1.3e-02) 0.065 (1e-02)

We implement Algorithm 1 to estimate the corresponding optimal policies for different policy classes.
Note that for SONLY and SZONLY, we perform the projection step (line 4) by conditioning on S
and (S,Z) respectively. Since this is a tabular setting, we use the empirical averages to approximate
all the conditional expectations. In this simulation study, we consider the sample size n = 5000.
As Table 2 shows, the super-policy produces smaller regret as ϵ deviates from 0.5 more, while the
estimated optimal policies such as SONLY and SZONLY do not change and have larger regrets.

A contextual bandit with a continuous state

In this setting, we take S and U as independent Gaussian random variables such that S ∼ N(0, 1)
and U ∼ N(0, 1). The binary action A is generated by the following conditional probabilities

Pr(A = 1 | U > 0) = ϵ, Pr(A = 1 | U ≤ 0) = 1− ϵ,

with different choices of ϵ ∈ [0, 1]. The larger the |ϵ− 0.5| is, the more information of U is revealed
in the observed action A. We generate W and Z according to the following conditional probabilities

W | (S,U) ∼ N(S + 3U, 1);

Z | (S,U,A) ∼ N(3S + U + 0.5A, 1).

Moreover, W and Z are conditionally independent given (S,U). The observed reward is computed
by R = (U − 0.5)(A − 0.5) + ϵ where ϵ ∼ N(0, 0.5). For this continuous setting, we compute
the Q-bridge function via the min-max conditional moment estimation described in Appendix I by
taking G, Q as reproducing kernel Hilbert Spaces (RKHSs) equipped with Gaussian kernels. The
bandwidths of Gaussian kernels are selected by the median heuristic. Tuning parameters of the
penalties are selected by cross-validation. Computation details can be found in Section E of Dikkala
et al. (2020). As for the projection step, we adopt kernel ridge regression (KRR) to perform the
estimation, and the tuning parameter of the penalty is selected by cross-validation. In this simulation
study, we take the sample size n = 1000.

Table 3 shows the simulation results over 50 replications. The observation is consistent with that in
the tabular setting. And the super-policy outperforms the other two commonly used optimal policies
when ϵ deviates from 0.5.

C.2 A SIMULATION STUDY FOR SEQUENTIAL DECISION MAKING

In this section, we perform a simulation study to evaluate the performance of the super-policy
in the sequential decision making. Specifically, we mainly follow the data generation process
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Table 4: Simulation results for the sequential decision making problem described in C.2. The
simulation is performed over 50 simulated datasets. Mean regret values for estimated optimal policies
under different policy classes are provided. The smaller regret values indicate better performances.
Values in the parentheses are the standard deviations of the regret values.

SONLY SZONLY SUPER

5.4 (1.9e-01) 5.3 (4.7e-01) 2.2 (4.9e-01)

described in Section F.1 of Miao et al. (2022)), and only change the reward function to Rt =
expit{Ut(At − 0.5)} + et, where et ∼ Uniform[−0.1, 0.1] and expit(x) = 1/(1 + exp(−x)).
We take the sample size as n = 1000 and the length of episode T = 20. Note that this setting
satisfies the memoryless assumption (i.e., Assumption 6). We implement Algorithm 2 to estimate
the optimal policies from three policy classes considered in Section C.1 by adjusting the projection
step accordingly. We again use the RKHS modeling to perform the min-max conditional moment
estimation for obtaining a sequence of Q-bridge functions and implement KRR to estimate the
projections at every iteration. See implementation details in the discussion of the continuous setting
in Section C.1. To obtain the regret value, we estimate the optimal policy which depends on both
St and Ut, and use it to approximate the oracle optimal value. Table 4 summarises the simulation
results over 50 simulated datasets. As we can see, the super policy performs significantly better than
the other two commonly used optimal policies.

D REAL DATA APPLICATIONS

D.1 APPLICATION TO RHC DATA

In this section, we evaluate the performance of our method on the dataset from the Study to Understand
Prognoses and Preferences for Outcomes and Risks of Treatments (SUPPORT Connors et al., 1996).
SUPPORT examined the effectiveness and safety of direct measurement of cardiac function by Right
Heart Catheterization (RHC) for certain critically ill patients in intensive care units (ICU). This
dataset has been studied by many existing works (e.g. Qi et al., 2021; Tchetgen Tchetgen et al., 2020).
Our goal is to find an optimal policy on the usage of RHC that maximizes 30-day survival rates
30-day survival rates of critically ill patients from the day admitted or transferred to ICU.

This dataset corresponds to the setting of contextual bandits. There are 5735 patients, of whom
2184 were measured by RHC in the first 24 hours (A = 1) and the remaining were considered in
the control group (A = 0). If a patient survived or censored at day 30, we let the response Y = 1,
otherwise, we take the response as Y = −1. Following the data pre-processing steps in Qi et al.
(2021), we consider 71 covariates including demographics, diagnosis, estimated survival probability,
comorbidity, vital signs, and physiological status among others in this study. See the full list of
covariates in https://hbiostat.org/data/repo/rhc.html. In particular, we take the
action proxy Z = (pafi1,paco21) and the reward proxy W = (ph1,hema1). For more details and
justifications of the choices of proxy variables, we refer readers to Section 6.1 of Tchetgen Tchetgen
et al. (2020).

We compare the super-policy with the following two policies considered in Qi et al. (2021): d1(L,Z)
and d1(L), where d1(L,Z) corresponds to the policy in the policy class SZONLY and d1(L) cor-
responds to the policy in the policy class SONLY. To make it more comparable, we use the same
estimating procedure for the bridge functions considered in these three methods. In addition, the
RKHS modeling for the min-max conditional moment estimation is taken to obtain the Q-bridge
function. See details of the RKHS modeling in the continuous setting in Section C.1. Since Qi et al.
(2021) adopt the linear modeling for the decision functions d1(L,Z) and d1(L), we also use the
linear regression to obtain the projection (line 4) in Algorithm 3.

To evaluate the value by different policies, we randomly separate 40% of the data and use it as
the evaluation set E . More specifically, after obtaining the estimated optimal policies using 60%
of the data, we perform the policy evaluation of these three estimated optimal policies using the
remaining 40% of the data. Take q̂ as the estimated bridge function using E . The evaluation is
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Table 5: Evaluation results of the optimal policies learned from three different policy classes using
the RHC data. The averages of evaluation values over 20 random splits are presented. Larger values
indicate better performances. Values in the parentheses are standard deviations.

SONLY SZONLY SUPER

0.55 (5.80e-02) 0.55 (5.78e-02) 0.69 (1.10e-02)

Table 6: Evaluation results of the optimal policies learned from three different policy classes using
the MIMIC-III data. The averages of evaluation values over 20 random splits are presented. Larger
values indicate better performances. Values in the parentheses are standard deviations.

SONLY SZONLY SUPER

-2.83 (5.30e-02) -2.81 (5.03e-02) -1.75 (1.14e-02)

conducted as follows. V(ν) = Ê{
∑

a∈A q̂(W,S, a)ν(a | S,Z,A)}, for ν ∈ SUPER; V(π) =

Ê{
∑

a∈A q̂(W,S, a)π(a | S,Z)}, for π ∈ SZONLY; V(π) = Ê{
∑

a∈A q̂(W,S, a)ν(a | S)}, for
π ∈ SONLY. The expectation Ê refers to the average with respect to the evaluation set E .

Table 5 shows the evaluation results over 20 random splits. As we can see, the super-policy produces
higher policy values compared with the other two methods.

D.2 APPLICATION TO MIMIC3 DATA

In this section, we use the Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC-III)
dataset (https://physionet.org/content/mimiciii/1.4/) to demonstrate the perfor-
mance of estimated optimal policies from three policy classes (SONLY, SZONLY and SUPER). This
dataset records the longitudinal information (including information of demographics, vitals, labs and
scores, see details in Section 4.3 of Nanayakkara et al. (2022)) of patients who satisfied the sepsis
criteria, and the goal is to learn an optimal personalized treatment strategy for sepsis. Despite the
richness of data collected at the ICU, the mapping between true patient states and clinical observations
is usually ambiguous (Nanayakkara et al., 2022), and therefore makes this dataset fit into the setting
of a confounded POMDP.

We obtain a clean dataset following the same data pre-processing steps described in Raghu et al.
(2017). Based on it, we take (vasopressor administration, fluid administration) as the action variable,
(-1)*SOFA as the reward function. We take (Weight, Temperature) as the reward proxy W since they
are not directly related to the action. All the remaining variables except for aforementioned ones are
treated as observed state variables. The action proxy is taken as (Weight, Temperature) observed
from the last time step. And it is natural to assume that (Weight, Temperature) observed from the last
time step is not directly related to the response at the current time step. To simplify the complexity of
the action space, we discretize vasopressor and fluid administrations into 2 bins, instead of 5 as in the
previous work (Raghu et al., 2017). This results in a 4-dimensional action space. The numbers of
episode length for every patient differ in the dataset. We decide to fix the horizon T = 2, and exclude
those patients with records less than 2 time steps.

Following the estimation steps described in Section C.2, we estimate the optimal policies under policy
classes SONLY, SZONLY and SUPER respectively. We also adopt the idea of “random splitting"
described in Section D.1 to evaluate different policies. Basically, we randomly divide the data into
two parts with equal sample sizes. We use one part as the training data to learn optimal policies. The
other part is used for evaluating the corresponding policies. We implement the off-policy evaluation
method proposed by Miao et al. (2022) in the confounded POMDP to calculate the policy values.
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Table 5 summarizes the evaluation results over 20 random splits. As we can see, the super-policy
produces higher policy values compared to the other two methods.

E TECHNICAL PROOFS IN SECTION 3

Proof of Lemma 3.1.

V(π∗) = E

{∑
a∈A

R(a)π∗(a | S)

}
= E

[
E

{∑
a∈A

R(a)π∗(a | S) | S,Z,A

}]

≤ E

[
E

{∑
a∈A

R(a)ν∗(a | S,Z,A) | S,Z,A

}]
= V(ν∗).

The first inequality is due to the optimality of ν∗. Similarly, for the behavior policy πb, we can show
that

V(πb) = E

[
E

{∑
a∈A

R(a)1(a = A) | S,Z,A

}]

≤ E

[
E

{∑
a∈A

R(a)ν∗(a | S,Z,A) | S,Z,A

}]
= V(ν∗).

Proof of Lemma 3.2.

E [R(a) | S = s,A = a′] = E [E {R(a) | U, S = s,A = a′} | S = s,A = a′]

= E [E {R(a) | U, S = s} | S = s,A = a′] (18)

= E [E {R | U, S = s,A = a} | S = s,A = a′]

= E [E {q(W,a, S) | U, S = s,A = a} | S = s,A = a′] (19)

= E [E {q(W,a, S) | U, S = s,A = a′} | S = s,A = a′] (20)

= E [q(W,a, S) | S = s,A = a′] ,

where equation 18 is because of Assumption 1(c), equation 19 is from equation 3 in Assumption 1
and equation 20 is due to Assumption 1(b).

To close this section, we prove Lemma 3.3. The following regularity condition is imposed. For a
probability measure function µ, let L2{µ(x)} denote the space of all squared integrable functions of
x with respect to measure µ(x), which is a Hilbert space endowed with the inner product ⟨g1, g2⟩ =∫
g1(x)g2(x)dµ(x). For all s, a, t, define the following operator

Ks,a : L2
{
µW |S,A(w | s, a)

}
→ L2

{
µZ|S,A(z | s, a)

}
h 7→ E {h(W ) | Z = z, S = s,A = a} ,

and its adjoint operator

K∗
s,a : L2

{
µZ|S,A(z | s, a)

}
→ L2

{
µW |S,A(w | s, a)

}
g 7→ E {g(Z) |W = w, S = s,A = a} .

Assumption 7 (Regularity conditions for contextual bandits). For any Z = z, S = s,W = w,A = a,

(a)
∫∫

W×Z
fW |Z,S,A(w | z, s, a)fZ|W,S,A(z | w, s, a)dwdz < ∞, where fWt|Zt,St,At

and
fZt|Wt,St,At

are conditional density functions.

(b) ∫
Z

[E {Rt | Z = z, S = s,A = a}]2 fZ|S,A(z | s, a)dz <∞.
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(c) There exists a singular decomposition (λs,a;ν , ϕs,a;ν , ψs,a;ν)
∞
ν=1 of Ks,a such that,

∞∑
ν=1

λ−2
s,a;ν |⟨E {Rt | Z = z, S = s,A = a} , ψs,a;t;ν⟩|2 <∞.

Proof of Lemma 3.3. From equation 6, we have

0 = E [R− q(W,A, S) | Z, S,A]
= E {E [R− q(W,A, S) | U,Z, S,A] | Z, S,A} (21)
= E {E [R− q(W,A, S) | U, S,A] | Z, S,A} ,

where equation 21 is due to Assumption 1(b). Then by Assumption 2, we have

E [R− q(W,A, S) | U, S,A] = 0,

which is exactly equation 3. In addition, by Proposition 1 in Miao et al. (2018a), the solution to
equation 6 exists under Assumption 7. Then Lemma 3.3 is proved.

F TECHNICAL PROOFS IN SECTION 4

Proof of Theorem 4.1. First of all, note that there is one-to-one corresponding policy of πb and π∗

in Ω respectively. Specifically, for {πb
t}Tt=1, we can let νπb

t (a | St, a
′) = 1(a = a′) almost surely

to recover πb. For π∗, we can always choose νπ
∗

such that νπ
∗
(a | St, At) = π∗(a | St). This

completes our proof that ν∗ achieves the super-optimality.

Next, to show Theorem 4.3, we need to make some additional conditions.
Assumption 8. (Zt+1, At+1) |= Zt | (Ut, St, At) for 1 ≤ t ≤ T − 1.
Assumption 9 (Completeness). For any (s, a) ∈ S ×A, t = 1, . . . , T ,

(a) For any square-integrable function g, E{g(Ut) | Zt, St = s,At = a} = 0 a.s. if and only if
g = 0 a.s;

(b) For any square-integrable function g, E{g(Zt) |Wt, St = s,At = a} = 0 a.s. if and only
if g = 0 a.s.

For a probability measure function µ, let L2{µ(x)} denote the space of all squared integrable
functions of x with respect to measure µ(x), which is a Hilbert space endowed with the inner product
⟨g1, g2⟩ =

∫
g1(x)g2(x)dµ(x).

Assumption 10 (Regularity conditions). For all s, a, t, define the following operator

Ks,a;t : L
2
{
µWt|St,At

(w | s, a)
}
→ L2

{
µZt|St,At

(z | s, a)
}

h 7→ E {h(Wt) | Zt = z, St = s,At = a} .
Take K∗

s,a;t as the adjoint operator of Ks,a,t.

For any Zt = z, St = s,Wt = w,At = a and 1 ≤ t ≤ T , following conditions hold:

(a)
∫∫

W×Z
fWt|Zt,St,At

(w | z, s, a)fZt|Wt,St,At
(z | w, s, a)dwdz < ∞, where fWt|Zt,St,At

and fZt|Wt,St,At
are conditional density functions.

(b) For any g ∈ G(t+1),∫
Z

[E {Rt + g(Wt+1, St+1, Zt+1, At+1) | Zt = z, St = s,At = a}]2 fZt|St,At
(z | s, a)dz <∞.

(c) There exists a singular decomposition (λs,a;t;ν , ϕs,a;t;ν , ψs,a;t;ν)
∞
ν=1 of Ks,a;t such that for

all g ∈ G(t+1),
∞∑
ν=1

λ−2
s,a;t;ν |⟨E {Rt + g(Wt+1, St+1, Zt+1, At+1) | Zt = z, St = s,At = a} , ψs,a;t;ν⟩|2 <∞.
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(d) For all 1 ≤ t ≤ T , vπt ∈ G(t) where G(t) satisfies the regularity conditions (b) and (c)
above.

Now we are ready to prove Theorem 4.3.

Proof of Theorem 4.3. Part I. We suppose there exists qπt satisfying equation 10, 1 ≤ t ≤ T .
Define V ν

t (Wt, St, Zt, At) =
∑

a∈A q
ν
t (Wt, St, a)π(a | St, Zt, At) and V ν

T+1 = 0. Then

E
{
Rt + V ν

t+1(Wt+1, St+1, Zt+1, At+1) | Zt, St, At

}
=E

[
E
{
Rt + V ν

t+1(Wt+1, St+1, Zt+1, At+1) | Ut, Zt, St, At

}
| Zt, St, At

]
=E

[
E
{
Rt + V ν

t+1(Wt+1, St+1, Zt+1, At+1) | Ut, St, At

}
| Zt, St, At

]
by Assumption 3 and 8,

and

E {qνt (Wt, St, At) | Zt, St, At}
=E [E {qνt (Wt, St, At) | Ut, Zt, St, At} | Zt, St, At]

=E [E {qνt (Wt, St, At) | Ut, St, At} | Zt, St, At] by Assumption 3.

Therefore, by Assumption 9 (a), we have

E
{
Rt + V ν

t+1(Wt+1, St+1, Zt+1, At+1) | Ut, St, At

}
= E {qνt (Wt, St, At) | Ut, St, At} a.s.

and for any a ∈ A,

E
{
Rt + V ν

t+1(Wt+1, St+1, Zt+1, At+1) | Ut, St, At = a
}

=E {qνt (Wt, St, At) | Ut, St, At = a} = E {qνt (Wt, St, a) | Ut, St, At = a}
=E {qνt (Wt, St, a) | Ut, St} . (22)

Next, we prove that

Eν
{
Rt + V ν

t+1(Wt+1, St+1, Zt+1, At+1) | Ut, St, Zt, At

}
= E

{∑
a∈A

qνt (Wt, St, a)νt(a | St, Zt, At) | Ut, St, Zt, At

}
a.s.

(23)
Take Wt+1(a), St+1(a), Zt+1(a), Ut+1(a) as the counterfactual variables had the action a is taken
at the current time t as a. For any a ∈,

Eν
{
Rt + V ν

t+1(Wt+1, St+1, Zt+1, At+1) | Ut, St, Zt, At = a
}

=
∑
a′∈A

E
[
Rt(a

′) + V ν
t+1(Wt+1(a

′), St+1(a
′), Zt+1(a

′), πb(St+1(a
′), Ut+1(a

′))) | Ut, St, Zt, At = a
]

νt(a
′ | St, Zt, At = a)

=
∑
a′∈A

E
[
Rt(a

′) + V ν
t+1(Wt+1(a

′), St+1(a
′), Zt+1(a

′), πb(St+1(a
′), Ut+1(a

′))) | Ut, St, At = a
]

νt(a
′ | St, Zt, At = a) by Assumption 3

=
∑
a′∈A

E
[
Rt(a

′) + V ν
t+1(Wt+1(a

′), St+1(a
′), Zt+1(a

′), πb(St+1(a
′), Ut+1(a

′)) | Ut, St

]
νt(a

′ | St, Zt, At = a)

=
∑
a′∈A

E
[
Rt + V π

t+1(Wt+1, St+1, Zt+1, At+1) | Ut, St, At = a′
]
νt(a

′ | St, Zt, At = a)

=
∑
a′∈A

E [qνt (Wt, St, a
′) | Ut, St] νt(a

′ | St, Zt, At = a) by equation 22

=
∑
a′∈A

E [qνt (Wt, St, a
′) | Ut, St, Zt, At = a] νt(a

′ | St, Zt, At = a),

where the fourth, fifth and last equations are based on the unconfoundedness assumption once Ut is
given and Wt is independent of (At, Zt) given Ut, St. Therefore, equation 23 is verified.
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Part II. We will use this Bellman-like equation equation 23 to verify equation 9 and thus establish
the identification results. First, at time T , by equation 23 and V ν

T+1 = 0,

Eν (RT | UT , ST , ZT , AT ) = E

[∑
a∈A

qνT (WT , ST , a)νT (a | ST , ZT , AT ) | UT , ST , ZT , AT

]
.

By induction, suppose that at time t + 1, Eν
[∑T

t′=t+1Rt′ | St+1, Ut+1, Zt+1, At+1

]
=

E
{
V ν
t+1(Wt+1, St+1, Zt+1, At+1) | St+1, Ut+1, Zt+1, At+1

}
. Then at time t,

Eν

(
T∑

t′=t

Rt′

∣∣∣Ut, St, Zt, At

)

=Eν

{
Rt + Eν

(
T∑

t′=t+1

Rt′

∣∣∣Ut+1, St+1, Zt+1, At+1, Ut, St, Zt, At

) ∣∣∣Ut, St, Zt, At

}

=Eν

{
Rt + Eν

(
T∑

t′=t+1

Rt′

∣∣∣Ut+1, St+1, Zt+1, At+1

) ∣∣∣Ut, St, Zt, At

}
by Assumption 3

=Eν
{
Rt + E

(
V ν
t+1(Wt+1, St+1, Zt+1, At+1)

∣∣∣Ut+1, St+1, Zt+1, At+1

) ∣∣∣Ut, St, Zt, At

}
=Eν

{
Rt + E

(
V ν
t+1(Wt+1, St+1, Zt+1, At+1)

∣∣∣Ut+1, St+1, Zt+1, At+1, Ut, St, Zt, At

) ∣∣∣Ut, St, Zt, At

}
by Assumption 3

=Eν
{
Rt + Eν

(
V ν
t+1(Wt+1, St+1, Zt+1, At+1)

∣∣∣Ut+1, St+1, Zt+1, At+1, Ut, St, Zt, At

) ∣∣∣Ut, St, Zt, At

}
=Eν

{
Rt + V ν

t+1(Wt+1, St+1, Zt+1, At+1) | Ut, St, Zt, At

}
by the law of total expectation

=E{
∑
a∈A

qνt (Wt, St, a)νt(a | St, Zt, At) | Ut, St, Zt, At} by equation 23.

Part III. Now we prove the existence of the solution to equation 10.

For t = T, . . . , 1, by Assumption 10 (a), Ks,a;t is a compact operator for each (s, a) ∈ S × A
(Carrasco et al., 2007, Example 2.3), so there exists a singular value system stated in Assumption
10 (c). Then by Assumption 9 (b), we have Ker(K∗

s,a;t) = 0, since for any g ∈ Ker(K∗
s,a;t),

we have, by the definition of Ker, K∗
s,a;tg = E [g(Zt) |Wt, St = s,At = a] = 0, which implies

that g = 0 a.s. Therefore Ker(K∗
s,a;t) = 0 and Ker(K∗

s,a;t)
⊥ = L2(µZt|St,At

(z | s, a)). By
Assumption 10 (b), E {Rt + g(Wt+1, St+1, Zt+1, At+1) | Zt = ·, St = s,At = a} ∈ Ker(K∗

s,a,;t)

for given (s, a) ∈ St ×A and any g ∈ G(t+1). Now condition (a) in Theorem 15.16 of Kress (1989)
has been verified. The condition (b) is satisfied given Assumption 10 (c). Recursively applying the
above argument from t = T to t = 1 yields the existence of the solution to equation 10.

Next, we show our generalized identification results stated in Section 4.3. Before that, we make the
following assumptions.
Assumption 11 (Completeness conditions for history-dependent policies). For any a ∈ A, t =
1, . . . , T ,

(a) For any square-integrable function g, E{g(Ut, Zt) | Zt, O0, At = a} = 0 a.s. if and only if
g = 0 a.s;

(b) For any square-integrable function g, E{g(Zt, Oo) |Wt, Zt, At = a} = 0 a.s. if and only
if g = 0 a.s.

Assumption 12 (Regularity Conditions for history-dependent policies). For all z, a, t, define the
following operator

Kz,a;t : L
2
{
µWt|Zt,At

(w | z, a)
}
→ L2

{
µO0|Zt,At

(z | o, a)
}

h 7→ E {h(Wt) | Zt = z,O0 = o,At = a} .
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Take K∗
z,a;t as the adjoint operator of Kz,a,t.

For any Zt = z,O0 = o,Wt = w,At = a and 1 ≤ t ≤ T , following conditions hold:

(a)
∫∫

W×O fWt|Zt,O0,At
(w | z, o, a)fO0|Wt,Zt,At

(o | w, z, a)dwdo <∞, where fWt|Zt,O0,At

and fO0|Wt,Zt,At
are conditional density functions.

(b) For any g ∈ G(t+1),∫
Z

[E {Rt + g(Wt+1, Zt+1, At+1) | Zt = z,O0 = o,At = a}]2 fO0|Zt,At
(o | z, a)dz <∞.

(c) There exists a singular decomposition (λz,a;t;ν , ϕz,a;t;ν , ψz,a;t;ν)
∞
ν=1 of Kz,a;t such that for

all g ∈ G(t+1),
∞∑
ν=1

λ−2
z,a;t;ν |⟨E {Rt + g(Wt+1, Zt+1, At+1) | Zt = z,O0 = o,At = a} , ψz,a;t;ν⟩|2 <∞.

(d) For all 1 ≤ t ≤ T , vπt ∈ G(t) where G(t) satisfies the regularity conditions (b) and (c)
above.

Now we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. The structure of the proof and related arguments are similar to the proof of
Theorem 4.3. Mainly, we will show the solution of equation 11 satisfies the following equation

Eν

[
T∑

t′=t

Rt′ | Ut, At

]
= E

[∑
a∈A

qνt (Wt, Zt, a)νt(a | Zt, At) | Ut, At

]
,

where Eν refers to expectation taken with respect to {νt}Tt=t. Therefore we only list several key steps
in the corresponding three parts of the proof. Take V ν

t (Wt, Zt, At) =
∑

a∈A q
ν
t (Wt, Zt, a)ν(a |

Zt, At).

Part I. By Assumption 3 and 4, we have

E
{
Rt + V ν

t+1(Wt+1, Zt+1, At+1) | Ut, Zt, O0, At

}
= E

{
Rt + V ν

t+1(Wt+1, Zt+1, At+1) | Ut, Zt, At

}
and

E {qνt (Wt, Zt, At) | Ut, Zt, O0, At} = E {qνt (Wt, Zt, At) | Ut, Zt, At} .
Then by Assumption 11 (a), we have

E
{
Rt + V ν

t+1(Wt+1, Zt+1, At+1) | Ut, Zt, At

}
= E {qνt (Wt, Zt, At) | Ut, Zt, At} a.s.

and therefore

Eν
{
Rt + V ν

t+1(Wt+1, Zt+1, At+1) | Ut, Zt, At

}
= E

{∑
a∈A

qνt (Wt, Zt, a)νt(a | Zt, At) | Ut, Zt, At

}
a.s.,

(24)
where Eν refers to expectation taken with respect to {νt}Tt=t.

Part II. Following the same induction idea, we can show that if
Eν
[∑T

t′=t+1Rt′ | Ut+1, Zt+1, At+1

]
= E

{
V ν
t+1(Wt+1, Zt+1, At+1) | Ut+1, Zt+1, At+1

}
,

then by utilizing equation 25, at time t, we can obtain

Eν

(
T∑

t′=t

Rt′

∣∣∣Ut, Zt, At

)
= E

{∑
a∈A

qνt (Wt, Zt, a)νt(a | Zt, At) | Ut, Zt, At

}
,

where Eν refers to expectation taken with respect to {νt}Tt=t. Part III. The existence of the solution
to equation 11 can be verified by utilizing Assumption 11(b) and Assumption 12.
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Lastly, in order to show our generalized identification results stated in Section 4.4, we adapt the
completeness and regularity assumptions as follows.
Assumption 13 (Completeness conditions for k-step history-dependent policies). For any a ∈ A,
t = k + 1, . . . , T ,

(a) For any square-integrable function g, E{g(Ut, Z̃t) | Zt, At = a} = 0 a.s. if and only if
g = 0;

(b) For any square-integrable function g, E{g(Zt) | Wt, Z̃t, At = a} = 0 a.s. if and only if
g = 0 a.s.

Assumption 14 (Regularity Conditions for k-step history-dependent policies). Define the following
conditional expectation operator:

Ks,a;t : L
2
{
µ(Wt,Z̃t)|St,At

((w, z̃) | s, a)
}
→ L2

{
µZt|St,At

(z | s, a)
}

h 7→ E
{
h(Wt, Z̃t) | Zt = z, St = s,At = a

}
,

and take K∗
s,a;t as its adjoint operator. For any Z̃t = z̃, Zt = z, St = s,Wt = w,At = a and

k + 1 ≤ t ≤ T ,

(a)
∫∫
f(Wt,Z̃t)|Zt,St,At

((w, z̃) | z, s, a)fZt|Wt,Z̃t,St,At
(z | w, z̃, s, a)dwdz̃dz < ∞, where

fZt|Wt,Z̃t,St,At
and f(Wt,Z̃t)|Zt,St,At

are conditional density functions.

(b) For any g ∈ G(t+1),∫
Z

[E {Rt + g(Wt+1, St+1, Zt+1, At+1) | Zt = z, St = s,At = a}]2 fZt|St,At
(z | s, a)dz <∞.

(c) There exists a singular decomposition (λs,a;t;ν , ϕs,a;t;ν , ψs,a;t;ν)
∞
ν=1 of Ks,a;t such that for

all g ∈ G(t+1),
∞∑
ν=1

λ−2
s,a;t;ν |⟨E {Rt + g(Wt+1, St+1, Zt+1, At+1) | Zt = z, St = s,At = a} , ψs,a;t;ν⟩|2 <∞.

(d) For all k + 1 ≤ t ≤ T , vπt ∈ G(t) where G(t) satisfies the regularity conditions (b) and (c)
above.

Now we are ready to prove Theorem 4.5.

Proof of Theorem 4.5. The results for 1 ≤ t ≤ k can be obtained by directly applying the proof
of Theorem 4.4. Here we only show the proof for the case when t > k. The proof structure and
argument are quite similar to the proof of Theorem 4.3. Therefore, we list several important steps in
three parts of the proof. Take vνt (Wt, Zt, At) =

∑
a∈A q

ν
t (Wt, Z̃t, a)ν(a | Zt, At).

Part I. By Assumption 3,

E
{
Rt + V ν

t+1(Wt+1, Zt+1, At+1) | Ut, Zt, At

}
= E

{
Rt + V ν

t+1(Wt+1, Zt+1, At+1) | Ut, Z̃t, At

}
and

E
{
qνt (Wt, Z̃t, At) | Ut, Zt, At

}
= E

{
qνt (Wt, Z̃t, At) | Ut, Z̃t, At

}
.

Then by Assumption 13 (a), we have

E
{
Rt + V ν

t+1(Wt+1, Zt+1, At+1) | Ut, Z̃t, At

}
= E

{
qνt (Wt, Z̃t, At) | Ut, Z̃t, At

}
a.s.

and therefore

Eν
{
Rt + V ν

t+1(Wt+1, Zt+1, At+1) | Ut, Zt, At

}
= E

{∑
a∈A

qνt (Wt, Z̃t, a)νt(a | Zt, At) | Ut, Zt, At

}
a.s.,

(25)
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where Eν refers to expectation taken with respect to {νt}Tt=t.

Part II. Following the same induction idea, we can show that if
Eν
[∑T

t′=t+1Rt′ | Ut+1, Zt+1, At+1

]
= E

{
V ν
t+1(Wt+1, Zt+1, At+1) | Ut+1, Zt+1, At+1

}
,

then by utilizing equation 25, at time t,

Eν

(
T∑

t′=t

Rt′

∣∣∣Ut, Zt, At

)
= E

{∑
a∈A

qνt (Wt, Z̃t, a)νt(a | Zt, At) | Ut, Zt, At

}
,

where Eν refers to expectation taken with respect to {νt}Tt=t. Part III. The existence of the solution
to equation 14 can be verified by utilizing Assumption 13(b) and Assumption 14.

G TECHNICAL PROOFS IN SECTION 4.5

Proof of Theorem 4.6. We notice that Ot−1 |= (Rt, Ot, Ut+1)|(Ut, At). Consequently, the condi-
tional distributions of (Rt, Ot) and (Ut+1, Ot) given (At, Ut) shall satisfy

Pr(Rt = r, Ot = o|At = a, Ut = u) Pr(Ut = u|At = a,Ot−1 = o)

= Pr(Rt = r, Ot = o|At = a,Ot−1 = o)︸ ︷︷ ︸
P

(t,r)
oa

,

Pr(Ut+1 = u, Ot = o|At = a, Ut = u) Pr(Ut = u|At = a,Ot−1 = o)

= Pr(Ut+1 = u, Ot = o|At = a,Ot−1 = o)︸ ︷︷ ︸
P

(t,u)
oa

,

Pr((Ut+1 = u, At+1 = a′, Ot = o|At = a, Ut = u) Pr(Ut = u|A = a,Ot−1 = o)

= Pr(Ut+1 = u, At+1 = a′, Ot = o|At = a,Ot−1 = o
¯
)︸ ︷︷ ︸

P
(t,u)

o,a′,a

,

Pr((Ot = o|Ut = u) Pr(Ut = u|At = a,Ot−1 = o) = Pr(Ot = o|At = a,Ot−1 = o)︸ ︷︷ ︸
P

(t)
a

.

Accordingly, Pr(Rt = r, Ot = o|At = a, Ut = u), Pr(Ut+1 = u, Ot = o|At = a, Ut = u),
Pr((Ut = u, At+1 = a′, Ot = o|At = a, Ut = u) and Pr((Ot = o|Ut = u) correspond to the
matrices consisting of all conditional probabilities. When P

(t)
a and Pr(Ut = u|At = a,Ot−1 = o)

are invertible, it allows us to represent Pr(Rt = r, Ot = o|At = a, Ut = u) and Pr(Ut+1 =
u, Ot = o|At = a, Ut = u) and Pr((Ut+1 = u, At+1 = a′, Ot = o|At = a, Ut = u) by

Pr(Rt = r, Ot = o|At = a, Ut = u) = P (t,r)
oa [P (t)

a ]−1Pr((Ot = o|Ut = u)

Pr(Ut+1 = u, Ot = o|At = a, Ut = u) = P (t,u)
oa [P (t)

a ]−1Pr((Ot = o|Ut = u)

Pr((Ut+1 = u, At+1 = a′, Ot = o|At = a, Ut = u) = P
(t,u)
o,a′,a[P

(t)
a ]−1Pr((Ot = o|Ut = u)

respectively. We first represent EνR1 using the observed data. Notice that

EνR1 =
∑
a′,u

[
E

{∑
a

R1(a)ν1(a|O1, A1)|A1 = a′, U1 = u

}]
Pr(A1 = a′, U1 = u)

=
∑
a′

[∑
a,o

ν1(a | o, a′)r⊤Pr(R1 = r, O1 = o|A1 = a, U1 = u)

]
Pr(A1 = a′, U1 = u)

=
∑
a′

[∑
a,o

ν1(a | o, a′)r⊤P (1,r)
oa [P (1)

a ]−1Pr((O1 = o|U1 = u)

]
Pr(A1 = a′, U1 = u)

=
∑
o,a,a′

ν1(a | o, a′)r⊤P (1,r)
oa [P (1)

a ]−1 Pr(O1 = o, A1 = a′)
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Next, consider EνR2. According to the Markov property, R2 and O2 are conditionally independent
of (A1, U0, O1) given (A1, U1). As such, we have that

EνR2 =
∑

o1,a′
1,a1

ν1(a1|o1, a′1)

∑
s2,a′

2,o2

{[∑
a2

ν2(a2|o2, o1, a′2, a′1)r⊤Pr(R2 = r, O2 = o2|A2 = a2, U2 = u)

]
Pr(U2 = u, A2 = a′2, O1 = o1|A1 = a1, U1 = u)}Pr(U1 = u, A1 = a′1).

=
∑

o1,a′
1,a1

ν1(a1|o1, a′1)
∑
a′
2,o2

{[∑
a2

ν2(a2|o2, a′1, o1, a′2)r⊤P (2,r)
o2,a2

[P (2)
a2

]−1Pr((O2 = o|U2 = u)

]
P

(1,u)
o1,a′

2,a1

}
[P (1)

a1
]−1Pr((O1 = o|U1 = u) Pr(U1 = u, A1 = a′1)

=
∑

o1,a′
1,a1

ν1(a1|o1, a′1)

 ∑
a′
2,o2,a2

ν2(a2|o2, a′1, o1, a′2)r⊤P (2,r)
o2,a2

[P (2)
a2

]−1P
(1,o)
o1,a′

2,a1


[P (1)

a1
]−1 Pr(O1 = o, A1 = a′1).

where P
(t,o)
ot,a′

t+1,at
= Pr(Ot+1 = o, At = a′t+1, Ot = ot|At = at, Ot−1 = o). Follow the similar

argument, one can derive the identification formula for t = 3, . . . , T .

H PROOF IN SECTION 5

Proof of Lemma 5.1.

V(ν∗)− V(ν̂∗)

=E

{
E

[∑
a∈A

q(W,S, a)ν∗(a | S,Z,A) | S,Z,A

]
− E

[∑
a∈A

q(W,S, a)ν̂∗(a | S,Z,A) | S,Z,A

]}

≤E

{
E

[∑
a∈A

q(W,S, a)ν∗(a | S,Z,A) | S,Z,A

]
− Ê

[∑
a∈A

q̂(W,S, a)ν∗(a | S,Z,A) | S,Z,A

]}

+ E

{
Ê

[∑
a∈A

q̂(W,S, a)ν̂∗(a | S,Z,A) | S,Z,A

]
− E

[∑
a∈A

q(W,S, a)ν̂∗(a | S,Z,A) | S,Z,A

]}
(26)

≤2ξn + E

{∑
a∈A

q(W,S, a)ν∗(a | S,Z,A)−
∑
a∈A

q̂(W,S, a)ν∗(a | S,Z,A)

}
(27)

+ E

{∑
a∈A

q̂(W,S, a)ν̂∗(a | S,Z,A)−
∑
a∈A

q(W,S, a)ν̂∗(a | S,Z,A)

}

=2ξn + E
{
(q(W,S,A′)− q̂(W,S,A′))

∑
a∈A πb(a | U, S)ν∗(A′ | Z, S, a)

πb(A′ | U, S)

}
(28)

+ E
{
(q(W,S,A′)− q̂(W,S,A′))

∑
a∈A πb(a | U, S)ν̂∗(A′ | Z, S, a)

πb(A′ | U, S)

}
≤ 2(ξn + pmaxζn),

where equation 26 is due to the optimality of q̂ and equation 27 is due to the definition of ξn.

Proof of Theorem 5.1. The bound in Theorem 5.1 can be derived by combining the results of Theorem
I.2, Theorem I.4 and Lemma I.2.
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In the following, we derive the regret bound stated in Section 5.2. Before that, we present the
following regret decomposition lemma. Define function class Q̃(t) over W × S such that Q̃(t) :=
{q(·, ·, a) : q ∈ Q(t), a ∈ A}.

Lemma H.1. Suppose ft ∈ Q(t) ⊂ W × S × A and take the policy νf = {νf,t}Tt=1 as the one
that is greedy with respect to Ê[ft(Wt, St, a) | St, Zt, At]. Take gt(St, Zt, At; q̃) := E[q̃(Wt, St) |
St, Zt, At] and ĝt(St, Zt, At; q̃) := Ê[q̃(Wt, St) | St, Zt, At] for q̃ ∈ Q̃(t). Define the projection
error

ξt,n := sup
q̃∈Q̃(t)

∥gt(·, ·, ·; q̃)− ĝt(·, ·, ·; q̃)∥2 ,

and

ζft,n :=

∥∥∥∥∥E
{
ft(Wt, St, At)−

[
Rt +

∑
a∈A

ft+1(Wt+1, St+1, At+1)νf,t+1(a | St+1, Zt+1, At+1)

]
| St, Zt, At

}∥∥∥∥∥
2

.

Define

pt,max := sup
s,z,a

pν
∗

t (St = s, Zt = z,At = a)

pπb
t (St = s, Zt = z,At = a)

,

and

pνmax,t = sup
s,z,a

ων
t (St = s, Zt = z,At = a),

where

ων
t (St, Zt, At) :=

∑
a∈A(

∫
u∈U πb(a | Ut = u, St)p

πb
t (u | St)du)ν(At | St, Zt, a)∫

u
πb(At | Ut = u, St)pπt (u | St, Zt)du

pνt (St, Zt)

pπb
t (St, Zt)

.

(29)

Then under Assumption 3, 8, 9 and 10, together with Assumption 6, we can obtain the following
regret bound

V(ν∗)− V(νf ) ≤

(
T∑

t=1

2pt,maxξt,n

)
+

√√√√T

T∑
t=1

[(pν
∗

t,max)
2 + (p

νf

t,max)
2](ζft,n)

2.

Proof of Lemma H.1. We start from the decomposition

V(ν∗)− V(νf )

≤V(ν∗)− E

[∑
a∈A

f1(W1, S1, a)ν
∗
1 (a | S1, Z1, A1)

]

+ E

[∑
a∈A

f1(W1, S1, a)ν
∗
1 (a | S1, Z1, A1)

]
− E

[
Ê

{∑
a∈A

f1(W1, S1, a)ν
∗
1 (a | S1, Z1, A1) | S1, Z1, A1

}]

+ E

[
Ê

{∑
a∈A

f1(W1, S1, a)ν̂f,1(a | S1, Z1, A1) | S1, Z1, A1

}]
− E

[∑
a∈A

f1(W1, S1, a)νf,1(a | S1, Z1, A1)

]

+ E

[∑
a∈A

f1(W1, S1, a)νf,1(a | S1, Z1, A1)

]
− V(ν̂∗)

≤2ξ1,n + V(ν∗)− E

[∑
a∈A

f1(W1, S1, a)ν
∗
1 (a | S1, Z1, A1)

]
+ E

[∑
a∈A

f1(W1, S1, a)νf,1(a | S1, Z1, A1)

]
− V(νf )

(30)
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First, we can show that for any policy ν ∈ Ω,

E

{∑
a∈A

f1(W1, S1, a)ν1(a | S1, Z1, A1)

}
− V(ν)

=E

{∑
a∈A

f1(W1, S1, a)ν1(a | S1, Z1, A1)

}
− Eν

[
T∑

t=1

Rt

]

=Eν
T∑

t=1

{[∑
a∈A

ft(Wt, St, a)νt(a | St, Zt, At)

]
− Eν

[
Rt +

∑
a∈A

ft+1(Wt+1, St+1, a)νt+1(a | St+1, Zt+1, At+1)

]}
(31)

At time t, because of the optimality of νf,t, we have

Ê

{∑
a∈A

ft(Wt, St, a)ν
∗
t (a | St, Zt, At) | St, Zt, At

}
≤ Ê

{∑
a∈A

ft(Wt, St, a)νf,t(a | St, Zt, At) | St, Zt, At

}
.

Then

E

{∑
a∈A

ft(Wt, St, a)ν
∗
t (a | St, Zt, At) | St, Zt, At

}
− E

{∑
a∈A

ft(Wt, St, a)νf,t(a | St, Zt, At) | St, Zt, At

}

≤E

{∑
a∈A

ft(Wt, St, a)ν
∗
t (a | St, Zt, At) | St, Zt, At

}
− Ê

{∑
a∈A

ft(Wt, St, a)ν
∗
t (a | St, Zt, At) | St, Zt, At

}

+ Ê

{∑
a∈A

ft(Wt, St, a)νf,t(a | St, Zt, At) | St, Zt, At

}
− E

{∑
a∈A

ft(Wt, St, a)νf,t(a | St, Zt, At) | St, Zt, At

}
,

(32)
and

E

{∑
a∈A

ft(Wt, St, a)ν
∗
t (a | St, Zt, At)−

∑
a∈A

ft(Wt, St, a)νf,t(a | St, Zt, At)

}

≤E1/2


[
E
∑
a∈A

ft(Wt, St, a)ν
∗
t (a | St, Zt, At)−

∑
a∈A

ft(Wt, St, a)νf,t(a | St, Zt, At) | St, Zt, At

]2 ≤ 2ξt,n.

(33)
The last inequality is due to the decomposition equation 32 and the definition of ξt,n.

Note that

Eν∗

{∑
a∈A

ft(Wt, St, a)ν
∗
t (a | St, Zt, At) | St, Zt, At

}
− Eν∗

{∑
a∈A

ft(Wt, St, a)νf,t(a | St, Zt, At) | St, Zt, At

}

=Eν∗

{
Eν∗

[∑
a∈A

ft(Wt, St, a) (ν
∗
t (a | St, Zt, At)− νf,t(a | St, Zt, At)) | Ut, St, Zt, At

]
| St, Zt, At

}

=Eν∗

{
E

[∑
a∈A

ft(Wt, St, a) (ν
∗
t (a | St, Zt, At)− νf,t(a | St, Zt, At)) | Ut, St, Zt, At

]
| St, Zt, At

}

=E

{
pν

∗

t (Ut | St, Zt, At)

pbt(Ut | St, Zt, At)
E

[∑
a∈A

ft(Wt, St, a) (ν
∗
t (a | St, Zt, At)− νf,t(a | St, Zt, At)) | Ut, St, Zt, At

]
| St, Zt, At

}
.

Due to Assumption 6, we have pν
∗

t (Ut | St) = pπb
t (Ut | St) and

pν
∗

t (Ut | St, Zt, At) =
pν

∗

t (Zt, At | Ut, St)p
ν∗

t (Ut | St)∫
u∈U p

ν∗
t (Zt, At | Ut = u, St)pν

∗
t (Ut = u | St)du

=
pπb
t (Zt, At | Ut, St)p

πb
t (Ut | St)∫

u∈U p
πb
t (Zt, At | Ut = u, St)p

πb
t (Ut = u | St)du

= pπb
t (Ut | St, Zt, At).
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Therefore,

Eν∗

[
Eν∗

{∑
a∈A

ft(Wt, St, a)ν
∗
t (a | St, Zt, At) | St, Zt, At

}
− Eν∗

{∑
a∈A

ft(Wt, St, a)νf,t(a | St, Zt, At) | St, Zt, At

}]

=Eν∗

[
E

{∑
a∈A

ft(Wt, St, a)ν
∗
t (a | St, Zt, At) | St, Zt, At

}
− E

{∑
a∈A

ft(Wt, St, a)νf,t(a | St, Zt, At) | St, Zt, At

}]

=E

[
pν

∗

t (St, Zt, At)

pπb
t (St, Zt, At)

E

{∑
a∈A

ft(Wt, St, a)(ν
∗
t (a | St, Zt, At)− νf,t(a | St, Zt, At)) | St, Zt, At

}]
≤2pmax,tξt,n. (34)

The last inequality is due to equation 33 and the definition of pmax,t.
Now let’s go back to equation 30, we have

E

[∑
a∈A

f1(W1, S1, a)νf,1(a | S1, Z1, A1)

]
− V(νf,t)

=Eνf

T∑
t=1

{[∑
a∈A

ft(Wt, St, a)νt(a | St, Zt, At)

]
− Eνf

[
Rt +

∑
a∈A

ft+1(Wt+1, St+1, a)νf,t+1(a | St+1, Zt+1, At+1)

]}
,

because of equation 31, and

E

[∑
a∈A

f1(W1, S1, a)ν
∗
t (a | S1, Z1, A1)

]
− V(ν∗)

=Eν∗
T∑

t=1

{[∑
a∈A

ft(Wt, St, a)ν
∗
t (a | St, Zt, At)

]
− Eν∗

[
Rt +

∑
a∈A

ft+1(Wt+1, St+1, a)ν
∗
t+1(a | St+1, Zt+1, At+1)

]}

≥
T∑

t=1

Eν∗

[∑
a∈A

ft(Wt, St, a)ν
∗
t (a | St, Zt, At)

]
− Eν∗

[
Rt +

∑
a∈A

ft+1(Wt+1, St+1, a)νf,t+1(a | St+1, Zt+1, At+1)

]
− 2pt+1,maxξt+1,n

because of equation 34. Then

V(ν∗)− V(νf )

≤2ξ1,n + Eνf

T∑
t=1

{[∑
a∈A

ft(Wt, St, a)νf,t(a | St, Zt, At)

]

−Eνf

[
Rt +

∑
a∈A

ft+1(Wt+1, St+1, a)νf,t+1(a | St+1, Zt+1, At+1) | St, Zt, At

]}

− Eν∗
T∑

t=1

{[∑
a∈A

ft(Wt, St, a)ν
∗
t (a | St, Zt, At)

]

+Eν∗

[
Rt +

∑
a∈A

ft+1(Wt+1, St+1, a)νf,t+1(a | St+1, Zt+1, At+1) | St, Zt, At

]}
+

T∑
t=2

2pt,maxξt,n

We know that for ν,∈ {ν∗, νf},

Eν

[
Rt +

∑
a∈A

ft+1(Wt+1, St+1, a)νf,t+1(a | St+1, Zt+1, At+1) | Ut, St, Zt, At

]

=Eν

[∑
a∈A

E

{
Rt +

∑
a′∈A

ft+1(Wt+1, St+1, a
′)νf,t+1(a

′ | St+1, Zt+1, At+1) | Ut, St, Zt, At = a

}
νt(a | St, Zt, At)

]
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Take

ων
t (St, Zt, At) =

∑
a∈A(

∫
u∈U πb(a | Ut = u, St)p

πb
t (u | St, Zt)du)ν(At | St, Zt, a)∫

u
ππb

(At | Ut = u, St)pπt (u | St, Zt)du

pνt (St, Zt)

pπb
t (St, Zt)

.

Then at any t,

Eνf

{[∑
a∈A

ft(Wt, St, a)νf,t(a | St, Zt, At)

]

−Eνf

[
Rt +

∑
a∈A

ft+1(Wt+1, St+1, a)νf,t+1(a | St+1, Zt+1, At+1) | St, Zt, At

]}

=Eνf

{∑
a∈A

νf,t(a | St, Zt, At)

E

[
ft(Wt, St, At)−

(
Rt +

∑
a′∈A

ft+1(Wt+1, St+1, a
′)νf,t+1(a

′ | St+1, Zt+1, At+1)

)
| Ut, St, Zt, At = a

]}

=Eνf

{∑
a∈A

νf,t(a | St, Zt, At)

E

[
ft(Wt, St, At)−

(
Rt +

∑
a′∈A

ft+1(Wt+1, St+1, a
′)νf,t+1(a

′ | St+1, Zt+1, At+1)

)
| St, Zt, At = a

]}

=E

{
ωνf (St, Zt, At)

[
ft(Wt, St, At)−

(
Rt +

∑
a′∈A

ft+1(Wt+1, St+1, a
′)νf,t+1(a

′ | St+1, Zt+1, At+1)

)]}
.

The second equality is due to that pπb
t (Ut | St, Zt, At = a) = p

νf

t (Ut | St, Zt, At = a).∣∣∣∣∣
T∑

t=1

Eνf

{[∑
a∈A

ft(Wt, St, a)νf,t(a | St, Zt, At)

]
−

[
Rt +

∑
a∈A

ft+1(Wt+1, St+1, a)νf,t+1(a | St+1, Zt+1, At+1)

]}∣∣∣∣∣
≤

(
T

T∑
t=1

(E {ωνf (St, Zt, At) [ft(Wt, St, At)

−

(
Rt +

∑
a′∈A

ft+1(Wt+1, St+1, a
′)νf,t+1(a

′ | St+1, Zt+1, At+1)

)]
| St, Zt, At

})2
1/2

≤

√√√√T

T∑
t=1

(p
νf

max,t)
2(ζft,n)

2

Similarly, we have∣∣∣∣∣
T∑

t=1

Eνf

{[∑
a∈A

ft(Wt, St, a)νf,t(a | St, Zt, At)

]
−

[
Rt +

∑
a∈A

ft+1(Wt+1, St+1, a)νf,t+1(a | St+1, Zt+1, At+1)

]}∣∣∣∣∣
≤

√√√√T

T∑
t=1

(pν
∗

max,t)
2(ζft,n)

2

Therefore, overall we have

V(ν∗)− V(νf ) ≤

(
T∑

t=1

2pt,maxξt,n

)
+

√√√√T

T∑
t=1

[(pν
∗

t,max)
2 + (p

νf

t,max)
2](ζft,n)

2.

30



Under review as a conference paper at ICLR 2023

Proof of Lemma 5.2. Proof of Lemma 5.2 is a direct adaption of Lemma H.1.

Proof of Theorem 5.2. The result is concluded by directly combining Theorems I.1, I.3 and Lemma
I.1.

I MIN-MAX CONDITIONAL MOMENT ESTIMATION AND PROJECTION
ESTIMATION

I.1 MIN-MAX CONDITIONAL MOMENT ESTIMATION

We take the min-max estimation procedure to solve the estimation equation equation 10. More specif-
ically, we follow the construction in Dikkala et al. (2020) and propose the following estimators for
Q-bridge functions. For the following discussion, without loss of generality, we assume max |Rt| ≤ 1
for t = 1, . . . , T , and function spaces Q(t), G(t) H(t) below are classes of bounded functions whose
image is a subset of [−1, 1]. Take q̂T+1 = 0. For t = T, . . . , 1,

q̂t = (T − t+ 1) argmin
q∈Q(t)

sup
g∈G(t)

Ψn(q, V̂t+1, g)− λ

(
∥g∥2G(t) +

U

∆2
∥g∥22,n

)
+ λµ∥q∥2Q(t) , (35)

where ∥ · ∥2,n is the empirical norm, λ, U , δ and µ are positive tuning parameters, and

Ψn(q, V̂t+1, g) =
1

n

n∑
i=1

{
q(Wi,t, Si,t, Ai,t)−

Ri,t + V̂t+1(Wi,t+1, Si,t+1, Zi,t+1, Ai,t+1)

T − t+ 1

}
g(Zi,t, Si,t, Ai,t),

V̂t+1(Wi,t+1, Si,t+1, Zi,t+1, Ai,t+1) =
∑
a∈A

q̂t+1(Wi,t+1, Si,t+1, a)ν̂
∗
t+1(a | Si,t+1, Zi,t+1, Ai,t+1).

(36)

In the following, we utilize a uniform error bound to study ξt,n. Define the operator Tt = T̄ −1
t T̃t,

where [T̃th](St, Zt, At) = E[h(Rt,Wt+1, St+1, Zt+1, At+1) | St, Zt, At] for h ∈ L2{R × W ×
S × Z ×A} and [T̄tq](St, Zt, At) = E[q(Wt, St, At) | St, Zt, At] for h ∈ L2{W × S ×A}. And
take [⟨ν, q⟩](Wt, St, Zt, At) =

∑
a∈A q̂(Wt, St, a)ν̂(a | St, Zt, At). For a function space F , we

define αF = {αf : f ∈ F} and FB = {f ∈ F : ∥f∥2F ≤ B}.
Assumption 15. The following conditions hold for t = 1, . . . , T .

(a) For any ν ∈ V and q ∈ Q(t), ⟨ν, q⟩ ∈ H(t). For any h ∈ H(t+1), Tt(h+Rt) ∈ Q(t).

(b) For any q ∈ (T − t)Q(t+1) and any ν ∈ V , we have
∥∥∥Tt (Rt+⟨ν,q⟩

T−t+1

)∥∥∥2
Q(t)

≤
∥∥∥ q
T−t

∥∥∥2
Q(t+1)

.

(c) For any q ∈ Q(t) and ν ∈ V , we have ∥⟨ν, q⟩∥2H(t) ≤ Cv∥q∥2Q(t) for some constant Cv > 0.

(d) There exists L > 0 such that ∥g∗ − T̄tqt∥2 ≤ ϱt,n, where g∗ ∈ argmin
g∈G(t)

L2∥qt∥2
Q(t)

∥g −

T̄tqt∥2 for all qt ∈ Q(t).

Take Q(t)
B , H(t)

D and G(t)
3U as balls in Q(t), H(t) and G(t) respectively for some fixed constants

B,D,U > 0 such that functions in Q(t)
B , H(t)

D and G(t)
3U are uniformly bounded by 1. Consider the

following two spaces:

Ω(t) = {(wt, st, zt, at, wt+1, st+1, zt+1, at+1) 7→ r[q∗h(wt, st, at)− h(wt+1, st+1, zt+1, at+1)]g(zt, st, at) :

h ∈ H(t+1)
D , g ∈ G(t)

3U , r ∈ [0, 1]
}

Ξ(t) =
{
(wt, st, zt, at) 7→ r[q − q∗h(wt, st, at)]g

L2B(zt, st, at) :

q ∈ Q(t), q − q∗h ∈ Q(t)
B , h ∈ H(t+1)

D , r ∈ [0, 1]
}
,
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where q∗h ∈ Q(t) is the solution to E[q(Wt, St, At)− h(Wt+1, St+1, Zt+1, At+1) | Zt, St, At] = 0

and gL
2B = argmin

g∈G(t)

L2B

∥g − T̃t(q − q∗h)∥2 for a given L > 0.

We use the Rademacher complexity to characterize the complexity of a function class. For a generic
real-valued function space F ⊂ RX , the local Rademacher complexity with radius δ > 0 is defined
as

Rn(F , r) =

(
sup

f∈F,∥f∥2≤r2

∣∣∣∣∣ 1n
n∑

i=1

ϵif(Xi)

∣∣∣∣∣
)
,

where {Xi}ni=1 are i.i.d. copies of X and {ϵi}ni=1 are i.i.d. Rademacher random variables.

Suppose F is star-shape and ∥f∥∞ ≤ 1 for f ∈ F . The critical radius of the local Rademacher
complexity Rn(F , r), denoted by r∗, is the smallest value satisfying r2 ≥ Rn(F , r).
Theorem I.1. Suppose G(t), t = 1, . . . , T are symmetric and start-convex set of test functions
and ∥TT (RT )∥QT ≤ MQ. Under Assumption 15, take ∆ = ∆̃t,n + c0

√
log(c1T/δ)/n for some

universal constants c0, c1 > 0, where ∆̃t,n is the maximum of critical radius of G(t)
3U , Ω(t) and

Ξ(t). Assume that ϱt,n in Assumption 15(d) ≤ ∆. Then (Rt + V̂t+1)/(T − t+ 1) ∈ H(t+1)
D with

D = Cv(T − t+ 1)MQ.

If we further assume tuning parameters satisfy Uλ ≍ (∆)2 and µ ≥ O(L2 + U/B), then the
following equality holds uniformly for all t = 1, . . . , T with probability 1− δ:

∥q̂t/(T − t+ 1)∥2Q(t) ≤ (T − t+ 2)MQ,

where q̂t is the solution of equation 35; and

ζt,n ≲MQ(T − t+ 1)2(∆̃t,n +
√
log(c1T/δ)/n),

where

ζt,n =

∥∥∥∥∥E
{
q̂t(Wt, St, At)−

(
Rt +

∑
a∈A

V̂t+1(Wt+1, St+1, Zt+1, At+1)

)
| St, Zt, At

}∥∥∥∥∥
2

(37)

with V̂t+1 defined in equation 36.

Proof of Theorem I.1. Proof of Theorem I.1 is a direct adaption of Theorem 6.2 and Lemma D.2 in
Miao et al. (2022).

Remark 1. Under the setting of contextual bandits, the Q function estimation can be considered as a
special case of equation 35 by setting t = T . Then the result of bounding ζn can be adopted from
Theorem I.1 accordingly. And we have the following theorem.

Theorem I.2. Suppose there exists q∗ ∈ G that satisfy the E[q∗ −R | S,Z,A] = 0. The functions
in G and Q are uniformly bounded by 1. |R| ≤ 1. Take ∆ = ∆̃n + c0

√
log(c1/δ)/n with some

positive universal constants c0 and c1, and ∆̃n the maximum of critical radius of G3U and

Ξ =
{
(w, s, z, a) 7→ r[q − q∗](w, s, a)gL

2B(z, s, a) : q − q∗ ∈ QB , r ∈ [0, 1]
}
,

where gL
2B = argminf∈GL2B

∥g − E(q − q∗ | S,Z,A)∥2. In addition, we suppose that for any

q ∈ Q, ∥gL2∥h−h∗∥2
2−E(q−q∗ | S,Z,A)∥2 ≲ ηn ≲ ∆. By taking the tuning parameters λ ≈ ∆2/U

and µ ≳ L2 +∆2/(Bλ), with probability at least 1− δ, we have

ζn ≲ ∆̃n +
√
log(c1/δ)/n.

I.2 PROJECTION ESTIMATION

In this section, we discuss how to perform the projection step Ê[q̂t(Wt, St, a) | St = s, Zt = z,At =

a′] in Algorithm 2. Take Q̃(t) as a space defined over W × S such that Q̃(t) := {q(·, ·, a) : q ∈
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Q(t), a ∈ A}. Take g∗t (s, z, a; q̃) := E[q̃(Wt, St) | St = s, Zt = z,At = a] for q̃ ∈ Q̃(t). We
estimate g∗ by

ĝt(·, ·, ·; q̃) := argmin
g∈Q(t)

1

n

n∑
i=1

[g(Si,t, Zi,t, Ai,t)− q̃(Wi,t, Si,t)]
2
+ µ∥g∥2G(t) ;

and Ê[q̂t(Wt, St, a) | St = s, Zt = z,At = a′] = (T − t+ 1)ĝt(·, ·, ·; q̂t(·, ·, a)/(T − t+ 1)).
(38)

Take Q̃(t)

B̃
and G(t)

M as balls in Q̃ and Q(t) respectively for some fixed constants B̃ and M such that

functions in Q̃(t)

B̃
and G(t)

M are uniformly bounded by 1.

Consider the following space:

Υ(t) =
{
(wt, st, zt, at) 7→ [g(st, zt, at)− q̃(wt, st)]

2 − [g∗(st, zt, at; q̃)− q̃(wt, st)]
2 :

g, g∗ ∈ G(t)
M , q̃ ∈ Q̃(t)

B̃

}
Theorem I.3. Suppose for any q ∈ Q(t) and a ∈ A, ∥q(·, ·, a)∥2Q̃(t) ≤ C̃v∥q∥2Q(t) ; for any q̃ ∈ Q̃(t),

g∗(·, ·, ·; q̃) ∈ G(t) and ∥g∗(·, ·, ·; q̃)∥2G(t) ≤ Cg∥q̃∥2Q̃(t) . Take κt,n = κ̃t,n + c0
√

log(c1T/δ)/n for

some universal positive constants c0 and c1, where κ̃(t)n is the critical radius of function space Υ(t). If
we further assume the tuning parameter µ in equation 38 satisfying µ ≳ (κt,n)

2, then with probability
at least 1− δ, we have

for any t = 1, . . . , T, ξt,n ≲ (T − t+ 1)
(
κt,n

√
1 + ∥q̂πt /(T − t+ 1)∥2Q(t) +

√
µ∥q̂πt /(T − t+ 1)∥2Q(t)

)
≲ (T − t+ 1)1.5

√
MQκt,n.

Remark 2. Under the setting of contextual bandits, the estimation for the projection (equation 17)
can be considered as a special case of equation 38 by setting t = T . Then the corresponding result
for bounding ξn can be obtained by taking t = T , Q̃ = {q(·, ·, a) : q ∈ G, a ∈ A} in Theorem I.3.
And we obtain
Theorem I.4. Suppose for any q ∈ Q and a ∈ A, ∥q(·, ·, a)∥2Q̃ ≤ C̃v∥q∥2Q; for any q̃ ∈ Q̃,

g∗(·, ·, ·; q̃) ∈ G and ∥g∗(·, ·, ·; q̃)∥2G ≤ Cg∥q̃∥2Q̃. Take κn = κ̃n + c0
√

log(c1/δ)/n for some
universal positive constants c0 and c1, where κ̃n is the critical radius of function space

Υ =
{
(w, s, z, a) 7→ [g(s, z, a)− q̃(w, s)]2 − [g∗(s, z, a; q̃)− q̃(w, s)]2 : g, g∗ ∈ GM , q̃ ∈ Q̃B̃

}
If we further assume the tuning parameter µ in equation 17 satisfying µ ≳ (κn)

2, then with probability
at least 1− δ, we have

ξn ≲

(
κn

√
1 + ∥q̂π∥2Q +

√
µ∥q̂π∥2Q

)
≲ κn.

Proof of Theorem I.3. First, we note that for any g ∈ G(t),

E [g(St, Zt, At)− q̃(Wt, St)]
2 − E [g∗(St, Zt, At; q̃)− q̃(Wt, St)]

2

=E [{g(St, Zt, At)− g∗(St, Zt, At; q̃)} {g(St, Zt, At) + g∗(St, Zt, At; q̃)− 2q̃(Wt, St)}]
=E [{g(St, Zt, At)− g∗(St, Zt, At; q̃)} {g(St, Zt, At)− g∗(St, Zt, At; q̃) + 2g∗(St, Zt, At; q̃)− 2q̃(Wt, St)}]

=E
[
{g(St, Zt, At)− g∗(St, Zt, At; q̃)}2

]
(39)

The last equality is due to the fact that Eg(St, Zt, At)[g
∗(St, Zt, At; q̃) − q̃(Wt, St)] = 0 for any

g ∈ G(t). From the basic inequality, we have

1

n

n∑
i=1

[ĝ(Si,t, Zi,t, Ai,t)− q̃(Wi,t, Si,t)]
2 ≤ 1

n

n∑
i=1

[g∗(Si,t, Zi,t, Ai,t; q̃)− q̃(Wi,t, Si,t)]
2
+ µ∥g∗∥2G(t) − µ∥ĝ∥2G(t) .

(40)
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Next, we will establish the different between

E [g(St, Zt, At)− q̃(Wt, St)]
2 − E [g∗(St, Zt, At; q̃)− q̃(Wt, St)]

2

and{
1

n

n∑
i=1

[g(Si,t, Zi,t, Ai,t)− q̃(Wi,t, Si,t)]
2

}
−

{
1

n

n∑
i=1

[g∗(Si,t, Zi,t, Ai,t; q̃)− q̃(Wi,t, Si,t)]
2

}
,

to study the bound for E
[
{g(St, Zt, At)− g∗(St, Zt, At; q̃)}2

]
.

To begin with, for any g, g∗ ∈ G(t) and q̃ ∈ Q̃(t),

Var
{
[g(St, Zt, At)− q̃(Wt, St)]

2 − [g∗(St, Zt, At; q̃)− q̃(Wt, St)]
2
}

≤E
{
[g(St, Zt, At)− q̃(Wt, St)]

2 − [g∗(St, Zt, At; q̃)− q̃(Wt, St)]
2
}2

≤16E {g(St, Zt, At)− g∗(St, Zt, At; q̃)}2

=16E
{
[g(St, Zt, At)− q̃(Wt, St)]

2 − [g∗(St, Zt, At; q̃)− q̃(Wt, St)]
2
}
,

where the second inequality is due to the uniform boundness of g and q̃, and the last equality is from
equation 39.

Then we apply Corollary of Theorem 3.3 in Bartlett et al. (2005) to the function class Υ(t). For
any function f ∈ Υ(t), ∥f∥∞ ≤ 1, and Var(f) ≤ 16Ef . Take the functional T in Theorem 3.3 of
Bartlett et al. (2005) as T (f) = Ef2 and define r∗ as the fixed point of a sub-root function ψ such
that for any r ≥ r∗,

ψ(r) ≥ 16ERn(Υ
(t), T (f) ≤ r).

Then with probability at least 1- δ, the following inequality holds for any f ∈ Υ(t),

Ef ≲ 2
1

n

n∑
i=1

f(Wi,t, Si,t, Zi,t, Ai,t) + r∗ +
log(1/δ)

n
.

If we take κ̃t,n = c
√
r∗ for some universal constant c, and the sub-root function ψ as the identity

function. Then κn is the critical radius of Rn(Υ
(t)).

Therefore, for any g ∈ G(t)
M , q̃ ∈ Q(t)

B̃
, we have

E
[
{g(St, Zt, At)− g∗(St, Zt, At; q̃)}2

]
(41)

≲
1

n

n∑
i=1

[g(Si,t, Zi,t, Ai,t)− q̃(Wi,t, Si,t)]
2 − 1

n

n∑
i=1

[g∗(Si,t, Zi,t, Ai,t; q̃)− q̃(Wi,t, Si,t)]
2
+ κ̃2t,n +

log(1/δ)

n

(42)

Therefore, for any g ∈ G(t), q̃ ∈ Q(t), if ∥g∥2G(t) ≤ M and ∥g∥2Q̃(t) ≤ B̃, then equation 41 is still

valid. Otherwise, take z = ∥q̃∥Q(t)/min{
√
B̃,
√
M/Cg}+ ∥g∥G(t)/

√
M , we can verify that

∥g/z∥2G(t) ≤M

∥q̃/z∥2Q̃(t) ≤ B̃

∥g∗(·, ·, ·; q̃/z)∥2G(t) ≤ Cg ∥q̃/z∥2Q̃(t) ≤M.
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Then

E
[
{g(St, Zt, At)/z − g∗(St, Zt, At; q̃)/z}2

]
≲
1

n

n∑
i=1

[g(Si,t, Zi,t, Ai,t)/z − q̃(Wi,t, Si,t)/z]
2 − 1

n

n∑
i=1

[g∗(Si,t, Zi,t, Ai,t; q̃)/z − q̃(Wi,t, Si,t)/z]
2
+ κ̃2t,n +

log(1/δ)

n

E
[
{g(St, Zt, At)− g∗(St, Zt, At; q̃)}2

]
≲
1

n

n∑
i=1

[g(Si,t, Zi,t, Ai,t)− q̃(Wi,t, Si,t)]
2 − 1

n

n∑
i=1

[g∗(Si,t, Zi,t, Ai,t; q̃)− q̃(Wi,t, Si,t)]
2

+max

{
1,

∥g∥2G(t)

M
+

∥q̃∥2Q(t)

min{B̃,M/Cg}

}[
κ2n +

log(1/δ)

n

]
.

hold with probability at least 1− δ.

Then combine with the basic inequality equation 40, with probability at least 1− δ, we have

∥ĝ(St, Zt, At)− g∗(St, Zt, At; q̃)∥22 ≲ max

{
1,

∥ĝ∥2G(t)

M
+

∥q̃∥2Q(t)

min{B̃,M/Cg}

}[
r∗ +

log(1/δ)

n

]
+ µ∥g∗∥2G(t) − µ∥ĝ∥2G(t)

≲ max

{
1,

∥q̃∥2Q(t)

min{B̃,M/Cg}

}[
κ2n +

log(1/δ)

n

]
+ µ∥g∗∥2G(t) .

The last inequality is from the condition of tuning parameter µ.

I.3 BOUND THE CRITICAL RADIUS

In this section, we characterize the bound of critical radius mentioned above.

Lemma I.1. Suppose G(t), H(t+1) and Q(t) are VC-subgraph classed with VC dimensions V(G(t)),
V(H(t)) and V(G(t)) respectively, then we have

∆̃t,n ≲ (T − t+ 1)1/2

√
max

{
V(G(t)),V(H(t+1)),V(Q(t))

}
n

(43)

κ̃t,n ≲

√
max

{
V(G(t)),V(Q(t))

}
n

(44)

Proof. Note that for any h ∈ H(t+1), we have ∥h∥2H(t+1) ≲ Cv(T − t+1)MQ by Theorem I.1. And
equation 43 is derived directly from Section D.3.1 in Miao et al. (2022). As for equation 44, note that

Υ(t) = {(wt, st, zt, at) 7→ [g(st, zt, at)− g∗(st, zt, at; q̃)][g(st, zt, at) + g∗(st, zt, at; q̃)− 2q̃(wt, st)] :

g, g∗ ∈ G(t)
M , q̃ ∈ Q̃(t)

B̃

}
.

By the similar argument in bounding logNn(t,Ω
(t)) in Section D.4.2 in Miao et al. (2022), we have

logNn(t,Υ
(t)) ≲ logNn(t,G(t)

M ) + logNn(t, Q̃(t)

B̃
)

≲ logNn(t,G(t)
M ) + logNn(t,Q(t)

B ),

where Nn(ϵ,G) denotes the smallest empirical ϵ-covering of G. And the bound in equation 44 is
obtained by bounding the local Rademacher complexity by entropy integral (See Section D.3.1 in
Miao et al. (2022)).

Similar results apply to ∆̃n and κ̃n and we get
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Lemma I.2. Suppose G and Q are VC-subgraph classed with VC dimensions V(G) and V(G)
respectively, then we have

∆̃n + κ̃n ≲

√
max {V(G),V(Q)}

n
. (45)

Lemma I.3. Suppose G(t), Q(t) and H(t+1) are RKHSs endowed with reproducing kernel KG ,
KQ and KG with decreasing sorted eigenvalues {λj(KG)}∞j=1, {λj(KQ)}∞j=1 and {λj(KH)}∞j=1,
respectively.
Then ∆̃t,n is upper bounded by δ satisfies√

1

n

√√√√ ∞∑
i,j=1

min {λi(KG)λj(KQ), δ2} ≲ δ2

√
(T − t+ 1)

n

√√√√ ∞∑
i,j=1

min {[λi(KG) + λi(KH)]λj(KQ), δ2} ≲ δ2

Then κ̃t,n is upper bounded by δ satisfies√
(T − t+ 1)

n

√√√√ ∞∑
i,j=1

min {[λi(KG) + λi(KQ)]λj(KQ), δ2} ≲ δ2.

Proof. The proof follows the similar argument in the proof of Lemma D.7 in Miao et al. (2022). (See
Section D.4.3 in Miao et al. (2022).)

With different decay rates of eigenvalues, by directly applying Lemma I.3, we obtain the following
corollary.
Corollary I.1. With the same conditions in Lemma I.3, if λj(KQ) ∝ j−2αQ , λj(KG) ∝ j−2αG ,
λj(KH) ∝ j−2αH , where αG , αH, αQ > 1/2, then we have

∆̃t,n ≲
√

(T − t+ 1)n
1

2+max{1/αQ,1/αG ,1/αH} log n,

κ̃t,n ≲ n
1

2+max{1/αQ,1/αG} log n.

Similar results apply to ∆̃n and κ̃n.
Corollary I.2. Suppose G, Q are RKHSs endowed with reproducing kernel KG , KQ and KG with
decreasing sorted eigenvalues {λj(KG)}∞j=1, {λj(KQ)}∞j=1 respectively.
Then if λj(KQ) ∝ j−2αQ , λj(KG) ∝ j−2αG , we have

∆̃n + κ̃n ≲ n
1

2+max{1/αQ,1/αG} log n.
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