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Abstract

Labeling errors in datasets are common, if not systematic, in practice. They nat-1

urally arise in a variety of contexts—human labeling, noisy labeling, and weak2

labeling (i.e., image classification), for example. This presents a persistent and3

pervasive stress on machine learning practice. In particular, neural network (NN)4

architectures can withstand minor amounts of dataset imperfection with traditional5

countermeasures such as regularization, data augmentation, and batch normaliza-6

tion. However, major dataset imperfections often prove insurmountable. We pro-7

pose and study the implementation of Rockafellian Relaxation (RR), a new loss8

reweighting, architecture-independent methodology, for neural network training.9

Experiments indicate RR can enhance standard neural network methods to achieve10

robust performance across classification tasks in computer vision and natural lan-11

guage processing (sentiment analysis). We find that RR can mitigate the effects12

of dataset corruption due to both (heavy) labeling error and/or adversarial pertur-13

bation, demonstrating effectiveness across a variety of data domains and machine14

learning tasks.15

1 Introduction16

Labeling errors are systematic in practice, stemming from various sources. For example, the re-17

liability of human-generated labels can be negatively impacted by incomplete information, or the18

subjectivity of the labeling task - as is commonly seen in medical contexts, in which experts can19

often disagree on matters such as the location of electrocardiogram signal boundaries [8], prostate20

tumor region delineation, and tumor grading [20]. As well, labeling systems, such as Mechanical21

Turk1 often find expert labelers being replaced with unreliable non-experts [27]. For all these rea-22

sons, it would be advisable for any practitioner to operate under the assumption that their dataset is23

corrupted with labeling errors, and possibly to a large degree.24

In this paper, we propose a loss-reweighting methodology for the task of training a classifier on data25

having higher levels of labeling errors. We show that our method relates to optimistic and robust dis-26

tributional optimization formulations aimed at addressing adversarial training (AT). These findings27

underscore our numerical experiments on NNs that suggest this method of training can provide test28

performance robust to high levels of labeling error, and to some extent, feature perturbation. Over-29

all, we tackle the prevalent challenges of label corruption and class imbalance in training datasets,30

which are critical obstacles for deploying robust machine learning models. Our proposed approach31

implements Rockafellian Relaxations [23] to address corrupted labels and automatically manage32

class imbalances without the need for clean validation sets or sophisticated hyper-parameters - com-33

mon constraints of current methodologies. This distinct capability represents our key contribution,34

making our approach more practical for handling large industrial datasets.35

1http://mturk.com
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We proceed to discuss related works in section 2, and our specific contributions to the literature.36

In section 3 we discuss our methodology in detail and provide some theoretical justifications that37

motivate the effectiveness of our methodology. The datasets and NN model architectures upon which38

our experimental results are based are discussed in sections 4 and 5, respectively. We then conclude39

with numerical experiments and results in section 6.40

2 Related Work41

Corrupted datasets are of concern, as they potentially pose severe threats to classification perfor-42

mance of numerous machine-learning approaches [36], including, most notably, NNs [15, 33]. Nat-43

urally, there have been numerous efforts to mitigate this effect [28, 8]. These efforts can be cate-44

gorized into robust architectures, robust regularization, robust loss function, loss adjustment, and45

sample selection [28]. Robust architecture methods focus on developing custom NN layers and46

dedicated NN architectures. This differs from our approach, which is architecture agnostic and47

could potentially "wrap around" these methods. While robust regularization methods like data aug-48

mentation [26], weight decay [16], dropout [29], and batch normalization [14] can help to bolster49

performance, they generally do so under lower levels of dataset corruption. Our approach, on the50

other hand, is capable of handling high levels of corruption, and can seamlessly incorporate methods51

such as these. In label corruption settings, it has been shown that loss functions, such as robust mean52

absolute error (MAE) [10] and generalized cross entropy (GCE) [35] are more robust than categor-53

ical cross entropy (CCE). Again, our method is not dependent on a particular loss function, and it54

is possible that arbitrary loss functions, including robust MAE and GCE, can be swapped into our55

methodology with ease. Our approach resembles the loss adjustment methods most closely, where56

the overall loss is adjusted based on a (re)weighting scheme applied to training examples.57

In loss adjustment methods, individual training example losses are typically adjusted multiple times58

throughout the training process prior to NN updates. These methods can be further grouped into59

loss correction, loss reweighting, label refurbishment, and meta-learning [28]. Our approach most60

closely resembles the loss reweighting methods. Under this scheme each training example is as-61

signed a unique weight, where smaller weights are assigned to examples that have likely been cor-62

rupted. This reduces the influence of corrupted examples. A training example can be completely63

removed if its corresponding weight becomes zero. Indeed, a number of loss reweighting methods64

are similar to our approach. For example, Ren et al., [22] learn sample weights through the use of65

a noise-free validation set. Chang et al. [5] assign sample weights based on prediction variances,66

and Zhang et al. [34] examine the structural relationship among labels to assign sample weights.67

However, we view the need for a clean dataset, or at least one with sufficient class balance, by these68

methods as a shortcoming, and our method, in contrast, makes no assumption on the availability of69

such a dataset.70

Satoshi et al. [12] propose a two-phased approach to noise cleaning. The first phase trains a standard71

neural network to determine the top-m most influential training instances that influence the decision72

boundary; these are subsequently removed from the training set to create a cleaner dataset. In the73

second phase, the neural network is retrained using the cleansed training set. Their method demon-74

strates superior validation accuracy for various values of m on MNIST and CIFAR-10. Although75

impressive, their method does not address the fact that most industrial datasets have a reasonably76

large amount of label corruption [28] which, upon complete cleansing, could also remove informa-77

tive examples that lie close to the decision boundary. Additionally, the value of m is an additional78

hyper-parameter that could require significant tuning on different datasets and sources.79

Mengye et al. [22] propose dealing with label noise and class imbalance by learning exemplar80

weights automatically. They propose doing so in the following steps: a) Create a pristine noise-free81

validation set. b) Initially train on a large, noisy training dataset, compute the training loss on the82

training set, train on the clean validation set, and compute the training loss on the validation set.83

c) Finally, compute the exemplar weights that temper the training loss computed in step two with84

validation loss. This approach is algorithmically the most similar to ours, with some key differences.85

The major difference is that it treats noise and class imbalance similarly. Our approach deals with86

noisy labels explicitly and can cope with almost any amount of class imbalance automatically, as87

tested in our experiments with the open-source Hate-Speech dataset, where we experimented with88

different prevalence levels of Hate-Speech text. The biggest drawback of the method proposed89

by Mengye et al. is that it requires a clean validation set, which in practice is almost impossible90

2



to obtain; if it were possible, it would not be very prohibitive to clean the entire dataset. Noise,91

typically, is an artifact of the generative distribution which cannot be cherry-picked as easily in92

practice. Our approach does not require a clean dataset to be operational or effective.93

3 Methodology94

3.1 Mislabeling95

Let X denote a feature space, with Y a corresponding label space. Then Z := X × Y will be96

a collection of feature-label pairs, with an unknown probability distribution D. Throughout the97

forthcoming discussions, {(xi, yi)}
N
i=1 will denote a sample of N feature-label pairs, for which98

some pairs will have a mislabeling. More precisely, we begin with a collection (xi, ỹi) drawn i.i.d.99

from D, but there is some unknown set C ( {1, . . . , N} denoting (corrupted) indices for which100

yi = ỹi if and only if i /∈ C. For those i ∈ C, yi is some incorrect label, selected uniformly at101

random, following the Noise Completely at Random (NCAR) model [8] also known as uniform102

label noise.103

3.2 Rockafellian Relaxation Method (RRM)104

We adopt the empirical risk minimization (ERM) [31] problem formulation:105

min
θ

1

N

N
∑

i=1

J(θ;xi, yi) + r(θ) (1)

as a baseline against which our method is measured. Given an NN architecture with (learned) param-106

eter setting θ that takes as input any feature x and outputs a prediction ŷ, J(θ;x, y) is the loss with107

which we evaluate the prediction ŷ with respect to y. Finally, r(θ) denotes a regularization term.108

In ERM it is common practice to assign each training observation i a probability pi = 1/N . How-109

ever, when given a corrupted dataset, we may desire to remove those samples that are affected; in110

other words, if C ( {1, ..., N} is the set of corrupted training observations, then we would desire to111

set the probabilities in the following alternative way:112

p = (p1, ..., pN ) with pi =

{

0, if i ∈ C
1

N−|C| , if i ∈ {1, ..., N} \ C,
(2)

where |C| is the cardinality of the unknown set C. In this work, we provide a procedure - the Rock-113

afellian Relaxation Method (RRM) - with the intention of aligning the pi values closer to the desired114

(but unknown) p of (2) in self-guided, automated fashion. It does so by adopting the Rockafellian115

Relaxation approach of [23]. More precisely, we consider the problem116

min
θ

[

v(θ) := min
u∈U

N
∑

i=1

(
1

N
+ ui) · J(θ;xi, yi) + γ‖u‖1

]

, (3)

where U := {u ∈ RN :
∑N

i=1 ui = 0, 1
N

+ ui ≥ 0 ∀i = 1, . . . , N}, and some γ > 0.117

We proceed to comment on this problem that is nonconvex in general, before providing an algorithm.118

3.3 Analysis and Interpretation of Rockafellian Relaxation119

Although problem (3) is nonconvex in general, the computation of v(θ) for any fixed θ amounts120

to a linear program. The following result characterizes the complete set of solutions to this linear121

program, and in doing so, provides an interpretation of the role that γ plays in the loss-reweighting122

action of RRM.123

Theorem 3.1. Let γ > 0 and c = (c1, . . . , cN ) ∈ RN , with cmin := mini ci, and cmax := maxi ci.124

Write Imin := {i : ci = cmin}, Ibig := {i : ci = cmin + 2γ}, and for any S1 ⊆ Imin, S2 ⊆ Ibig ,125
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define the polytope U∗
S1,S2

:=



















u∗
i ≥ 0 ∀i : ci = cmin

u∗
i = 0 ∀i : ci ∈ (cmin, cmin + 2γ)

u∗ ∈ U : u∗
i = − 1

N
∀i ∈ Ibig \ S2

u∗
i = − 1

N
∀i : ci > cmin + 2γ

u∗
i = 0 ∀i ∈ S1 ∪ S2



















. Then126

conv
(

∪S1,S2
U∗
S1,S2

)

= argmin
u∈U

N
∑

i=1

(
1

N
+ ui) · ci + γ‖u‖1. (4)

The theorem explains that the construction of any optimal solution u∗ essentially reduces to cate-127

gorizing each of the losses among {ci = J(θ;xi, yi)}
N
i=1 as “small" or “big", according to their128

position in the partitioning of [cmin,∞) = [cmin, cmin + 2γ) ∪ [cmin + 2γ,∞). For losses that129

occur at the break points of cmin and cmin + 2γ, this classification can be arbitrary - hence, the use130

of S1 and S2 set configurations to capture this degree of freedom.131

In particular, those points with losses ci exceeding cmin + 2γ are down-weighted to zero and ef-132

fectively removed from the dataset. And in the event that cmax − cmin < 2γ, no loss reweighting133

occurs. In this manner, while lasso produces sparse solutions in the model parameter space, RRM134

produces sparse weight vectors by assigning zero weight to data points with high losses.135

Consequently, if χ := {i : ci ∈ (cmin + 2γ,∞)} converges over the course of any algorithmic136

scheme, e.g., Algorithm 1, to some set C, then we can conclude that these data points are effectively137

removed from the dataset even if the training of θ might proceed. This convergence was observed in138

the experiments of Section 6. It is hence of possible consideration to tune γ for consistency with an139

estimate α ∈ [0, 1] of labeling error in the dataset {(xi, yi)}
N
i=1. More precisely, we may tune γ so140

that
|χ|
N
≈ α.141

3.4 RRM and Optimistic Wasserstein Distributionally Robust Optimization142

In this section, we discuss RRM’s relation to distributionally robust and optimistic optimization143

formulations. Indeed, (3)’s formulation as a min-min problem bears resemblance to optimistic for-144

mulations of recent works, e.g., [19]. We will see as well that the minimization in u, as considered145

in Theorem 3.1, relates to an approximation of a data-driven Wasserstein Distributionally Robust146

Optimization (DRO) formulation [30].147

3.4.1 Loss-reweighting via Data-Driven Wasserstein Formulation148

For this discussion, as it relates to reweighting, we will lift the feature-label space Z = X × Y .149

More precisely, we letW := R+ denote a space of weights. Next, we sayW ×Z has an unknown150

probability distribution D such that πZD = D and ΠWD({1}) = 1. In words, all possible (w.r.t.151

D) feature-label pairs have a weight of 1. Finally, we define an auxiliary loss ℓ : W × Z × Θ by152

ℓ(w, z; θ) := w · J(x, y; θ), for any z = (x, y) ∈ Z .153

Given a sample {(1, xi, yi)}
N
i=1, just as in Section 3.2, we can opt not to take as granted the result-154

ing empirical distribution DN because of the possibility that |C|-many have incorrect labels (i.e.,155

yi 6= ỹi). Instead, we will admit alternative distributions obtained by shifting the DN ’s probability156

mass off “corrupted" tuples (1, xi, yi)i∈C to possibly (0, xi, yi), (1, xi, ỹi), or even some other tuple157

(1, xj , ỹj) with j /∈ C for example - equivalently, eliminating, correcting, or replacing the sample,158

respectively. In order to admit such favorable corrections to DN , we can consider the optimistic159

[19, 30] data-driven problem160

min
θ

(

vN (θ) := min
D̃:W1(DN ,D̃)≤ǫ

ED̃ [ℓ(w, z; θ)]

)

, (5)

in which for each parameter tuning θ, vN (θ) measures the expected auxiliary loss with respect to161

the most favorable distribution within an ǫ - prescribed W1 (1- Wasserstein) distance ofDN . It turns162

out that a budgeted deviation of the weights alone (and not the feature-label pairs) can approximate163

(up to an error diminishing in N ) vN (θ). More precisely, we derive the following approximation164

along similar lines to [30].165
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Proposition 3.2. Let ǫ > 0, and suppose for any θ, max(x,y)∈Z |J(θ;x, y)| <∞. Then there exists166

κ ≥ 0 such that for any θ, the following problem167

vMIX
N (θ) := min

u1,...,uN

N
∑

i=1

(
1

N
+ ui) · J(θ;xi, yi) + γθ

N
∑

i=1

|ui|

s.t. ui +
1

N
≥ 0 i = 1, . . . , N

satisfies vN (θ) + κ
N
≥ vMIX

N (θ) ≥ vN (θ).168

In particular, −γθ ≤ mini J(θ;xi, yi), and {i : J(θ;xi, yi) > γθ} are all down-weighted to zero,169

i.e., u∗
i = − 1

N
for any u∗ solving vMIX

N (θ).170

In summary, while the optimistic Wasserstein formulation would permit correction to DN with a171

combination of reweighting and/or feature-label revision, the above indicates that a process focused172

on reweighting alone could accomplish a reasonable approximation; further, upon comparison to173

(3), we see that RRM is a constrained version of this approximating problem, that is,174

v(θ) ≥ vMIX
N (θ) ≥ vN (θ).

Hence, in some sense, we can confirm that RRM is an optimistic methodology but that it is less175

optimistic than the data-driven Wasserstein approach.176

3.5 RRM Algorithm177

Towards solving problem (3) in the two decisions θ and u, we proceed iteratively with a block-178

coordinate descent heuristic outlined in Algorithm 1, whereby we update the two separately in cycli-179

cal fashion. In other words, we update θ while holding u fixed, and we update u whilst holding θ180

fixed. The update of θ is an SGD step on a batch of s− many samples. The update of u reduces181

to a linear program. In light of the discussion in 3.4, we also outline an Adversarial Rockafellian182

Relaxation method (A-RRM), an execution of RRM that includes a perturbation (parameterized by183

ǫ ≥ 0) to the feature x of a sample (x, y), for the purposes of adversarial training.184

Algorithm 1 (Adversarial) Rockafellian Relaxation Algorithm (A-RRM/RRM)

Require: Perturbation Multiplier ǫ ∈ [0, 1], Number of epochs σ, Batch size s ≥ 1, learning rate
η > 0, regularization parameter γ > 0, reweighting step µ ∈ (0, 1).
u← 0 ∈ RN

repeat
for e = 1, . . . , σ do

for b = 1, . . . , ⌈N
s
⌉ do

{(xb
i , y

b
i )}

s
i=1 ← Draw Batch of size s from {(xi, yi)}

N
i=1

for i = 1, . . . , s do
xb
i ← xb

i + ǫ · sign
(

∇xJ(θ; (x
b
i , y

b
i ))
)

end for
θ ← θ − η

∑s

i=1

(

1
N

+ ui

)

· ∇θJ(θ; (x
b
i , y

b
i ))

end for
end for
u∗ ← minu∈U

∑N

i=1

(

1
N

+ ui

)

· J(θ;xi, yi) + γ‖u‖1
u← µu∗ + (1− µ)u

until Desired Validation Accuracy or Loss

The stepsize parameters µ, η and the regularization parameter γ are hyper-parameters that may be185

tuned, or guided by the general discussions above in Section 3.3.186

The RRM algorithm, in which ǫ = 0, is meant for contexts in which only label corruption and no187

feature corruption occurs. The A-RRM algorithm, for which ǫ > 0, is intended for contexts in which188

both label and feature corruption is anticipated.189
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4 Datasets190

We select several datasets to evaluate RRM. In some cases, the selected dataset is nearly pristine. In191

these cases we perturb the dataset to achieve various types and levels of corruption. Other datasets192

consist of weakly labeled examples, which we maintain unaltered. The varied data domains and193

regimes of corruption enable a robust evaluation of RRM.194

MNIST [17]: A multi-class classification dataset consisting of 70000 images of digits zero through195

nine. 60000 digits are set aside for training and 10000 for testing. 0%, 5%, 10%, 20%, and 30%196

of the training labels are swapped for different, randomly selected digits. The test set labels are197

unmodified.198

Toxic Comments [6]: A multi-label classification problem from JIGSAW that consists of Wikipedia199

comments labeled by humans for toxic behavior. Comments can be any number (including zero) of200

six categories: toxic, severe toxic, obscene, threat, insult, and identity hate. We convert this into a201

binary classification problem by treating the label as either none of the six categories or at least one202

of the six categories. This dataset is a public dataset used as part of the Kaggle Toxic Comment203

Classification Challenge.204

IMDb [18]: A binary classification dataset consisting of 50000 movie reviews each assigned a posi-205

tive or negative sentiment label. 25000 reviews are selected randomly for training and the remaining206

are used for testing. 25%, 30%, 40%, and 45% of the labels of the training reviews are randomly207

selected and swapped from positive sentiment to negative sentiment, and vice versa, to achieve four208

training datasets of desired levels of label corruption. The test set labels are unmodified.209

Tissue Necrosis: A binary classification dataset consisting of 7874 256x256-pixel hematoxylin and210

eosin (H&E) stained RGB images derived from [2]. The training dataset consists of 3156 images211

labeled non-necrotic, as well as 3156 images labeled necrotic. The training images labeled non-212

necrotic contain no necrosis. However, only 25% of the images labeled necrotic contain necrotic213

tissue. This type of label error can be expected in cases of weakly-labeled Whole Slide Imagery214

(WSI). Here, an expert pathologist will provide a slide-level label for a potentially massive slide215

consisting of gigapixels, but they lack time or resources to provide granular, segmentation-level216

annotations of the location of the pathology in question. Also, the diseased tissue often occupies217

a small portion of the WSI, with the remainder consisting of normal tissue. When the gigapixel-218

sized WSI is subsequently divided into sub-images of manageable size for typical machine-learning219

workflows, many of the sub-images will contain no disease, but will be assigned the "weak" label220

chosen by the expert for the WSI. The test dataset consists of 718 necrosis and 781 non-necrosis221

256x256-pixel H&E images, which were also derived from [2]. For both the training and test images,222

[2] provide segmentation-level necrosis annotations, so we are able to ensure a pristine test set, and,223

in the case of the training set, we were able to identify the corrupted images for the purpose of224

algorithm evaluation.225

5 Architectures226

We do not strive to develop a novel NN architectures capable of defeating current state-of-the-art227

(SOA) performance in each data domain. Nor do we focus on developing robust architectures as228

described in [28]. Rather, we select a reasonable NN architecture and measure model performance229

with and without the application of RRM. This approach enables us to demonstrate the general230

superiority of RRM under varied data domains and NN architectures. We discuss the underlying231

NN architectures that we employ in this section.232

MNIST: The MNIST dataset has been studied extensively and harnessed to investigate novel233

machine-learning methods, including CNNs [4]. We adopt a basic CNN architecture with a few234

convolutional layers. The first layer has a depth of 32, and the next two layers have a depth of 64.235

Each convolutional layer employs a kernel of size three and the ReLU activation function followed236

by a max-pooling layer employing a kernal of size 2. The last convolutional layer is connected to a237

classification head consisting of a 100-unit dense layer with ReLU activation, followed by a 10-unit238

dense layer with softmax activation. In total, there are 159254 trainable parameters. Categorical239

cross-entropy is employed for the loss function.240
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Toxic Comments: We use a simple model with only a single convolutional layer. A pretrained241

embedding from FastText is first used to map the comments into a 300 dimension embedding space,242

followed by a single convolutional layer with a kernel size of two with a ReLU activation layer243

followed by a max-pooling layer. We then apply a 36-unit dense layer, followed by a 6 unit dense244

layer with sigmoid activation. Binary cross-entropy is used for the loss function.245

IMDb: Transformer architectures have achieved SOA performance on the IMDb dataset sentiment246

analysis task [7, 32]. As such, we a adopt a reasonable transformer architecture to assess RRM. We247

utilize the DistilBERT [25] architecture with low-rank adaptation (LoRA) [13] for large language248

models, which reduces the number of trainable weights from 67584004 to 628994. In this manner,249

we reduce the computational burden, while maintaining excellent sentiment analysis performance.250

Binary cross-entropy is employed for the loss function.251

Tissue Necrosis: Consistent with the computational histopathology literature [21], we employ a252

convolutional neural network (CNN) architecture for this classification task. In particular, a ResNet-253

50 architecture with pre-trained ImageNet weights is harnessed. The classification head is removed254

and replaced with a dense layer of 512 units and ReLU activation function, followed by an output255

layer with a single unit using a sigmoid activation function. All weights, with the exception of256

the new classification head are frozen, resulting in 1050114 trainable parameters out of 24637826.257

Binary cross-entropy is employed for the loss function.258

6 Experiments and Results259

In this work, we have discussed errors/perturbations/corruption to features and labels. We now260

perform experiments to see how RRM performs under one or the other, or both. The MNIST ex-261

periments are performed under a setting of both adversarial perturbation, as well as label corruption.262

The Toxic Comments experiments are performed under settings of label corruption only. All ex-263

periments are performed using a combination of GPU resources, both cloud-base, as well as access264

to an on-premise high-performance computing (HPC) facility. We refer the reader to the Appendix265

(Sections 6.3 and 6.4) for the experiments on IMDb and Tissue Necrosis.266

6.1 MNIST267

Twenty percent of the training data is set aside for validation purposes. Using Tensorflow 2.10 [1],268

50 iterations of RRM are executed with σ = 10 epochs per iteration for a total of 500 epochs for269

a given hyperparameter setting. For RRM, the hyperparameter settings of µ and γ at 0.5 and 2.0,270

respectively, are based on a search to optimize validation set accuracy. For contrast, we perform a271

comparable 500 epochs using ERM. Both ERM and RRM employ stochastic gradient descent (SGD)272

with a learning rate (η) of 0.1. Each time a batch is drawn, each training image is perturbed using273

the Fast Gradient Sign Method (FGSM) [11] adversarial attack: advx = x+ ǫ · sign(∇xJ(θ, x, y)),274

where advx is the resulting perturbed image, x is the original image, y is the image label, ǫ is a275

multiplier controlling the magnitude of the image perturbation, θ are the model parameters, and J is276

the loss. An ǫ = 1.0 is used for all training image perturbations.277

For each of the 0%, 5%, 10%, 20%, and 30% training label corruption levels, we compare ad-278

versarial training (AT) and adversarial RRM (A-RRM) performance under varios regimes of test set279

perturbation (ǫtest ∈ 0.0, 0.1, 0.25, 0.5, 1.0). In Table 1 we show the test set accuracy achieved when280

validation set accuracy peaks. We can see that training with an ǫtrain = 1.0 and testing with lower281

ǫtest levels of 0.00, 0.10, and 0.25, results in a drastic degradation in accuracy for AT for corruption282

levels greater than 0%. This performance collapse is not observed when using A-RRM. Given that283

it may be difficult to anticipate the adversarial regime in production environments, A-RRM seems284

to confer a greater benefit than AT.285

We examine the ui-value associated with each training observation, i, from iteration-to-iteration of286

the heuristic algorithm. Table 2 summarizes the progression of the ui-vector across its 49 updates287

for the dataset corruption level of 20%. Column “1. iteration” shows the distribution of ui-values288

following the first u-optimization for both the 9600 corrupted training observations and the 38400289

clean training observations. Initially, all ui-values are approximately equal to 0.0. It is once again290

observed that, over the course of iterations, the ui-values noticeably change. In column “10. itera-291

tion” it can be seen that a significant number of the ui-values of the corrupted training observations292
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Table 1: Test accuracy (%) for AT and A-RRM on MNIST under different levels of corruption C
and test-set adversarial perturbation ǫtest.

Percentage Corrupted Training Data

C 0% 5% 10% 20% 30%
ǫtest AT A-RRM AT A-RRM AT A-RRM AT A-RRM AT A-RRM

0.00 97 96 63 95 57 97 58 96 26 86

0.10 95 93 64 92 71 94 61 93 20 82

0.25 93 90 83 91 88 92 84 90 74 81

50 91 88 94 91 94 90 90 88 97 80

1.00 86 83 95 90 94 86 88 83 98 77

achieve negative values, while a large majority of the ui-values for the clean training observations293

remain close to 0.0. Finally, column “49. iteration” displays the final ui-values. 9286 out of 9600 of294

the corrupted training observations have achieved a ui ∈ (−2.08,−1.56] · 10− 5. This means these295

training observations are removed, or nearly-so, from consideration because this value cancels the296

nominal probability 1/N = 2.08 · 10-5. It is observed that a large majority (35246/38400) clean train-297

ing observations remain with their nominal probability. This helps explain the performance benefit298

of A-RRM over AT. A-RRM "removes" the corrupted data points in-situ, whereas AT does not. It299

appears that under adversarial training regimes with corrupted training data, it is essential to identify300

and "remove" the corrupted examples, especially if the level adversarial perturbation encountered in301

the test set is unknown, or possibly lower than the level of adversarial perturbation applied to the302

training set.303

Table 2: Evolution of u-vector across 9600 corrupted data points and 38400 clean data points. Note
that 1/(9600 + 38400) = 2.08 · 10-5.

1. iteration 10. iteration 49. iteration

ui value corrupted
data points

clean data
points

corrupted
data points

clean data
points

corrupted
data points

clean data
points

≫ 0 0 1 0 4. 0 25

≈ 0 8844 38385 2058 37524 91 35246

(-0.52, 0.00) · 10-5 0 0 7 36 146 1655

(-1.04, -0.52] · 10-5 0 0 41 45 43 155

(-1.56, -1.04] · 10-5 756 14 415 174 34 168

(-2.08, -1.56] · 10-5 0 0 7079 617 9286 1151

6.2 Toxic Comment304

We use the Toxic Comment dataset to test the efficacy of RRM on low prevalence text data. The305

positive (toxic) comments consist of only 3% of the data and we corrupt anywhere from 1% to 20%306

of the labels. There are a total of 148,000 samples, and we set aside 80% for training and 20% for307

test. σ = 2 with 3 iterations of the heuristic algorithm results in a total of 6 epochs, and ERM is308

run for a total of 6 epochs to make the results comparable. Since the data is highly imbalanced,309

we look at the area under the curve of the precision/recall curve to assess the performance of the310

models. Unsurprisingly, as the noise increase, the model performance decreases. We note that RRM311

outperforms ERM across all noise levels tested, though as the noise increase, the gap between RRM312

and ERM decreases.313

Table 3: Comparison of training and test area under the precision/recall curve for ERM and RRM at
noise levels ranging from 1% to 20%.

Method Percentage Corrupted Training Data
1% 5% 7% 10% 15% 20%

ERM (train) 0.2904 0.2006 0.1589 0.1302 0.1073 0.0920

RRM (train) 0.6875 0.4458 0.3805 0.3087 0.2438 0.1966

ERM (test) 0.5861 0.3970 0.3246 0.2550 0.2013 0.1717

RRM (test) 0.6705 0.4338 0.3619 0.2824 0.2208 0.1861
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6.3 IMDb314

Twenty percent of the training data is set aside for validation purposes. Using Pytorch 2.1.0 [3],315

30 iterations of RRM are executed, with σ = 10 epochs per iteration for a total of 300 epochs for316

a given hyperparameter setting. For RRM, the hyperparameter settings of µ and γ at 0.5 and 0.4,317

respectively, are based on a search to optimize validation set accuracy. For contrast, we perform318

a comparable 300 epochs using ERM. Both ERM and RRM employ stochastic gradient descent319

(SGD) with a learning rate (η) of 0.001. In Table 4 we record both the test set accuracy achieved320

when validation set accuracy peaks, as well as the maximum test set accuracy. At these high levels321

of corruption RRM consistently achieves a better maximum test set accuracy.322

Table 4: Test accuracy (%) for ERM and RRM on IMDb under different levels of corruption. Test
set accuracy at peak validation accuracy and maximum test set accuracy are recorded.

Method Percentage Corrupted Training Data
25% 30% 40% 45%

ERM 90.2, 90.2 89.5, 89.6 86.4, 86.6 80.7, 81.1

RRM 90.1, 90.4 90.2, 90.4 88.4, 88.7 76.9, 82.6

6.4 Tissue Necrosis323

Twenty percent of the training data is set aside for validation purposes, including hyperparameter324

selection. 60 iterations of RRM are executed, with σ = 10 epochs per iteration, for a total of 600325

epochs for a given hyperparameter setting. For RRM, the hyperparameter settings of µ and γ at326

0.5 and 0.016, respectively, are based on a search to optimize validation set accuracy. For contrast,327

we perform a comparable 600 epochs using ERM. Both ERM and RRM employ stochastic gradient328

descent (SGD) with a learning rate (η) of 5.0 and 1.0, respectively. RRM achieves a test set accuracy329

at peak validation accuracy of 74.6, and a maximum test set accuracy 77.2, whereas ERM achieves330

71.7 and 73.2, respectively. RRM appears to confer a performance benefit under this regime of331

weakly labeled data.332

7 Conclusion333

In this study, we demonstrate the robustness of the A-RRM algorithm in a variety of data domains,334

data corruption schemes, model architectures and machine learning applications. In the MNIST335

example we show that conducting training in preparation for deployment environments with varied336

levels of adversarial attacks, one can benefit from implementation of the A-RRM algorithm. This337

can lead to a model more robust across levels of both feature perturbation and high levels of label338

corruption. We also demonstrate the mechanism by which A-RRM operates and confers superior339

results: by automatically identifying and removing the corrupted training observations at training340

time execution.341

The Toxic Comment example presents another challenging classification problem, characterized by342

a low prevalence target class amidst label noise. Our experiments demonstrate that as the amount of343

label noise increases, standard methods become increasingly ineffective. However, RRM remains344

reasonably robust under varying degrees of label corruption. Therefore, RRM could be a valuable345

addition to the set of tools being developed to enhance the robustness of AI-based decision engines.346

In the IMDb example we demonstrate that RRM can confer benefits to the sentiment analysis classi-347

fication task using pre-trained large models under conditions of high label corruption. The success348

of fine-tuning in LLMs depends, in large part, on access to high quality training examples. We have349

shown that RRM can mitigate this need by allowing effective training in scenarios of high training350

data corruption. As such, resource allocation dedicated to dataset curation may be lessened by the351

usage of RRM.352

In the Tissue Necrosis example, we demonstrate that RRM also confers accuracy benefits to the353

necrosis identification task provided weakly labeled WSIs. Again, RRM can mitigate the need for354

expert-curated, detailed pathology annotations, which are costly and time-consuming to generate.355
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A Appendix / supplemental material475

A.1 Section 3 Proofs476

Theorem 3.1. Let γ > 0 and c = (c1, . . . , cN ) ∈ RN , with cmin := mini ci, and cmax := maxi ci.477

Write Imin := {i : ci = cmin}, Ibig := {i : ci = cmin + 2γ}, and for any S1 ⊆ Imin, S2 ⊆ Ibig ,478

define the polytope U∗
S1,S2

:=



















u∗
i ≥ 0 ∀i : ci = cmin

u∗
i = 0 ∀i : ci ∈ (cmin, cmin + 2γ)

u∗ ∈ U : u∗
i = − 1

N
∀i ∈ Ibig \ S2

u∗
i = − 1

N
∀i : ci > cmin + 2γ

u∗
i = 0 ∀i ∈ S1 ∪ S2



















. Then479

conv
(

∪S1,S2
U∗
S1,S2

)

= argmin
u∈U

N
∑

i=1

(
1

N
+ ui) · ci + γ‖u‖1. (4)

Proof. For any set C, let ιC(x) = 0 and ιC(x) = ∞ otherwise. We recognize that u⋆ is a solution480

of the minimization problem if and only if it is a minimizer of the function h given by481

h(u) =

N
∑

i=1

(

ci/N + uici + γ|ui|+ ι[0,∞)(1/N + ui)
)

+ ι{0}

(

N
∑

i=1

ui

)

Thus, because h(u) > −∞ for all u ∈ RN and h is convex, u⋆ is a solution of the minimization482

problem if and only if 0 ∈ ∂h(u⋆) by Theorem 2.19 in [24]. We proceed by characterizing ∂h.483

Consider the univariate function hi given by484

hi(ui) = ci/N + uici + γ|ui|+ ι[0,∞)(1/N + ui).
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For ui ≥ −1/N , the Moreau-Rockafellar sum rule (see, e.g, [24, Theorem 2.26]) gives that485

∂hi(ui) = ci +















{γ} if ui > 0

[−γ, γ] if ui = 0

{−γ} if − 1/N < ui < 0

(−∞,−γ] if ui = −1/N.

For u = (u1, . . . , uN ) ∈ [−1/N,∞)N , we obtain by Proposition 4.63 in [24] that486

∂
(

N
∑

i=1

hi

)

(u) = ∂h1(u1)× · · · × ∂hN (uN ).

Let h0 be the function given by h0(u) = ι{0}(
∑N

i=1 ui). Again invoking the Moreau-Rockafellar487

sum rule while recognizing that the interior of the domain of
∑N

i=1 hi intersects with the domain of488

h0, we obtain489

∂h(u) = ∂
(

N
∑

i=1

hi

)

(u) + ∂h0(u) = ∂h1(u1)× · · · × ∂hN (uN ) +







1
...
1






R

for any u = (u1, . . . , uN ) with ui ≥ −1/N , i = 1, . . . , N , and
∑N

i=1 ui = 0. Hence, u∗ ∈ U is490

optimal if and only if for some λ ∈ R,491

λ ∈















{ci + γ} if u⋆
i > 0

[ci − γ, ci + γ] if u⋆
i = 0

{ci − γ} if u⋆
i ∈ (−1/N, 0)

(−∞, ci − γ] if u⋆
i = −1/N.

It follows that λ = cmin + γ can accompany any optimal u∗ in satisfying the above; hence, the492

result follows.493

494

Proposition A.1. Let ǫ > 0, and suppose for any θ, max(x,y)∈Z |J(θ;x, y)| <∞. Then there exists495

κ ≥ 0 such that for any θ, the following problem496

vMIX
N (θ) := min

u1,...,uN

N
∑

i=1

(
1

N
+ ui) · J(θ;xi, yi) + γθ

N
∑

i=1

|ui|

s.t. ui +
1

N
≥ 0 i = 1, . . . , N

satisfies vN (θ) + κ
N
≥ vMIX

N (θ) ≥ vN (θ).497

In particular, −γθ ≤ mini J(θ;xi, yi), and {i : J(θ;xi, yi) > γθ} are all down-weighted to zero,498

i.e., u∗
i = − 1

N
for any u∗ solving vMIX

N (θ).499

Proof. Fix θ. Then for any z = (x, y) ∈ Z , the function ℓ(·, z, θ) is linear, and hence Lipschitz with500

constant ℓ(1, z, θ) = J(θ;x, y) ≤ max(x,y)∈Z |J(θ;x, y)| <∞.501

By Lemma 3.1 of [30] and/or Corollary 2 of [9],502

vMIX
N (θ) := min

w̃1,...,w̃N≥0

1

N

N
∑

i=1

ℓ(w̃i, zi; θ)

s.t.
1

N

N
∑

i=1

|w̃i − wi| ≤ ǫ

provides the stated approximation of v(θ).503
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Upon introducing the change of variable ui =
w̃i

N
− 1

N
, and applying a Lagrange multiplier γθ to504

the ǫ− budget constraint (any convex dual optimal multiplier), we recover505

min
u1,...,uN

N
∑

i=1

ℓ(ui +
1

N
, zi; θ) + γθ

N
∑

i=1

|ui|

s.t. ui +
1

N
≥ 0 i = 1, . . . , N

506
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1. Claims508

Question: Do the main claims made in the abstract and introduction accurately reflect the509

paper’s contributions and scope?510

Answer: [Yes]511

Justification: Sections 6.1, 6.2, 6.3, 6.4512

Guidelines:513

• The answer NA means that the abstract and introduction do not include the claims514

made in the paper.515

• The abstract and/or introduction should clearly state the claims made, including the516

contributions made in the paper and important assumptions and limitations. A No or517

NA answer to this question will not be perceived well by the reviewers.518

• The claims made should match theoretical and experimental results, and reflect how519

much the results can be expected to generalize to other settings.520

• It is fine to include aspirational goals as motivation as long as it is clear that these521

goals are not attained by the paper.522

2. Limitations523

Question: Does the paper discuss the limitations of the work performed by the authors?524

Answer: [Yes]525

Justification: The paper has focused more on label corruption, rather than feature perturba-526

tion settings.527

Guidelines:528

• The answer NA means that the paper has no limitation while the answer No means529

that the paper has limitations, but those are not discussed in the paper.530

• The authors are encouraged to create a separate "Limitations" section in their paper.531

• The paper should point out any strong assumptions and how robust the results are to532

violations of these assumptions (e.g., independence assumptions, noiseless settings,533

model well-specification, asymptotic approximations only holding locally). The au-534

thors should reflect on how these assumptions might be violated in practice and what535

the implications would be.536

• The authors should reflect on the scope of the claims made, e.g., if the approach was537

only tested on a few datasets or with a few runs. In general, empirical results often538

depend on implicit assumptions, which should be articulated.539

• The authors should reflect on the factors that influence the performance of the ap-540

proach. For example, a facial recognition algorithm may perform poorly when image541

resolution is low or images are taken in low lighting. Or a speech-to-text system might542

not be used reliably to provide closed captions for online lectures because it fails to543

handle technical jargon.544

• The authors should discuss the computational efficiency of the proposed algorithms545

and how they scale with dataset size.546

• If applicable, the authors should discuss possible limitations of their approach to ad-547

dress problems of privacy and fairness.548

• While the authors might fear that complete honesty about limitations might be used by549

reviewers as grounds for rejection, a worse outcome might be that reviewers discover550

limitations that aren’t acknowledged in the paper. The authors should use their best551

judgment and recognize that individual actions in favor of transparency play an impor-552

tant role in developing norms that preserve the integrity of the community. Reviewers553

will be specifically instructed to not penalize honesty concerning limitations.554

3. Theory Assumptions and Proofs555

Question: For each theoretical result, does the paper provide the full set of assumptions and556

a complete (and correct) proof?557

Answer: [Yes]558
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Justification: Section 3559

Guidelines:560

• The answer NA means that the paper does not include theoretical results.561

• All the theorems, formulas, and proofs in the paper should be numbered and cross-562

referenced.563

• All assumptions should be clearly stated or referenced in the statement of any theo-564

rems.565

• The proofs can either appear in the main paper or the supplemental material, but if566

they appear in the supplemental material, the authors are encouraged to provide a567

short proof sketch to provide intuition.568

• Inversely, any informal proof provided in the core of the paper should be comple-569

mented by formal proofs provided in appendix or supplemental material.570

• Theorems and Lemmas that the proof relies upon should be properly referenced.571

4. Experimental Result Reproducibility572

Question: Does the paper fully disclose all the information needed to reproduce the main573

experimental results of the paper to the extent that it affects the main claims and/or conclu-574

sions of the paper (regardless of whether the code and data are provided or not)?575

Answer: [Yes]576

Justification: Sections 3.2, 4, 5, 6577

Guidelines:578

• The answer NA means that the paper does not include experiments.579

• If the paper includes experiments, a No answer to this question will not be perceived580

well by the reviewers: Making the paper reproducible is important, regardless of581

whether the code and data are provided or not.582

• If the contribution is a dataset and/or model, the authors should describe the steps583

taken to make their results reproducible or verifiable.584

• Depending on the contribution, reproducibility can be accomplished in various ways.585

For example, if the contribution is a novel architecture, describing the architecture586

fully might suffice, or if the contribution is a specific model and empirical evaluation,587

it may be necessary to either make it possible for others to replicate the model with588

the same dataset, or provide access to the model. In general. releasing code and data589

is often one good way to accomplish this, but reproducibility can also be provided via590

detailed instructions for how to replicate the results, access to a hosted model (e.g., in591

the case of a large language model), releasing of a model checkpoint, or other means592

that are appropriate to the research performed.593

• While NeurIPS does not require releasing code, the conference does require all sub-594

missions to provide some reasonable avenue for reproducibility, which may depend595

on the nature of the contribution. For example596

(a) If the contribution is primarily a new algorithm, the paper should make it clear597

how to reproduce that algorithm.598

(b) If the contribution is primarily a new model architecture, the paper should describe599

the architecture clearly and fully.600

(c) If the contribution is a new model (e.g., a large language model), then there should601

either be a way to access this model for reproducing the results or a way to re-602

produce the model (e.g., with an open-source dataset or instructions for how to603

construct the dataset).604

(d) We recognize that reproducibility may be tricky in some cases, in which case au-605

thors are welcome to describe the particular way they provide for reproducibility.606

In the case of closed-source models, it may be that access to the model is limited in607

some way (e.g., to registered users), but it should be possible for other researchers608

to have some path to reproducing or verifying the results.609

5. Open access to data and code610

Question: Does the paper provide open access to the data and code, with sufficient instruc-611

tions to faithfully reproduce the main experimental results, as described in supplemental612

material?613
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Answer: [No]614

Justification: The datasets are open-source, and the code will be made available pending615

conference review of this work616

Guidelines:617

• The answer NA means that paper does not include experiments requiring code.618

• Please see the NeurIPS code and data submission guidelines619

(https://nips.cc/public/guides/CodeSubmissionPolicy) for more de-620

tails.621

• While we encourage the release of code and data, we understand that this might not622

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not623

including code, unless this is central to the contribution (e.g., for a new open-source624

benchmark).625

• The instructions should contain the exact command and environment needed to run626

to reproduce the results. See the NeurIPS code and data submission guidelines627

(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.628

• The authors should provide instructions on data access and preparation, including how629

to access the raw data, preprocessed data, intermediate data, and generated data, etc.630

• The authors should provide scripts to reproduce all experimental results for the new631

proposed method and baselines. If only a subset of experiments are reproducible, they632

should state which ones are omitted from the script and why.633

• At submission time, to preserve anonymity, the authors should release anonymized634

versions (if applicable).635

• Providing as much information as possible in supplemental material (appended to the636

paper) is recommended, but including URLs to data and code is permitted.637

6. Experimental Setting/Details638

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-639

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the640

results?641

Answer: [Yes]642

Justification: Sections 4, 5, 6643

Guidelines:644

• The answer NA means that the paper does not include experiments.645

• The experimental setting should be presented in the core of the paper to a level of646

detail that is necessary to appreciate the results and make sense of them.647

• The full details can be provided either with the code, in appendix, or as supplemental648

material.649

7. Experiment Statistical Significance650

Question: Does the paper report error bars suitably and correctly defined or other appropri-651

ate information about the statistical significance of the experiments?652

Answer: [No]653

Justification: Error bars are not reported because it would be too computationally expen-654

sive.655

Guidelines:656

• The answer NA means that the paper does not include experiments.657

• The authors should answer "Yes" if the results are accompanied by error bars, confi-658

dence intervals, or statistical significance tests, at least for the experiments that support659

the main claims of the paper.660

• The factors of variability that the error bars are capturing should be clearly stated (for661

example, train/test split, initialization, random drawing of some parameter, or overall662

run with given experimental conditions).663

• The method for calculating the error bars should be explained (closed form formula,664

call to a library function, bootstrap, etc.)665

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).666

• It should be clear whether the error bar is the standard deviation or the standard error667

of the mean.668

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-669

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of670

Normality of errors is not verified.671

• For asymmetric distributions, the authors should be careful not to show in tables or672

figures symmetric error bars that would yield results that are out of range (e.g. negative673

error rates).674

• If error bars are reported in tables or plots, The authors should explain in the text how675

they were calculated and reference the corresponding figures or tables in the text.676

8. Experiments Compute Resources677

Question: For each experiment, does the paper provide sufficient information on the com-678

puter resources (type of compute workers, memory, time of execution) needed to reproduce679

the experiments?680

Answer: [Yes]681

Justification: See section 6682

Guidelines:683

• The answer NA means that the paper does not include experiments.684

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,685

or cloud provider, including relevant memory and storage.686

• The paper should provide the amount of compute required for each of the individual687

experimental runs as well as estimate the total compute.688

• The paper should disclose whether the full research project required more compute689

than the experiments reported in the paper (e.g., preliminary or failed experiments690

that didn’t make it into the paper).691

9. Code Of Ethics692

Question: Does the research conducted in the paper conform, in every respect, with the693

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?694

Answer: [Yes]695

Justification: The paper conforms with the NeurIPS Code of Ethics696

Guidelines:697

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.698

• If the authors answer No, they should explain the special circumstances that require a699

deviation from the Code of Ethics.700

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-701

eration due to laws or regulations in their jurisdiction).702

10. Broader Impacts703

Question: Does the paper discuss both potential positive societal impacts and negative704

societal impacts of the work performed?705

Answer: [No]706

Justification: The work in the paper is foundational research and is not tied to a particular707

application or deployment.708

Guidelines:709

• The answer NA means that there is no societal impact of the work performed.710

• If the authors answer NA or No, they should explain why their work has no societal711

impact or why the paper does not address societal impact.712

• Examples of negative societal impacts include potential malicious or unintended uses713

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations714

(e.g., deployment of technologies that could make decisions that unfairly impact spe-715

cific groups), privacy considerations, and security considerations.716
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• The conference expects that many papers will be foundational research and not tied717

to particular applications, let alone deployments. However, if there is a direct path to718

any negative applications, the authors should point it out. For example, it is legitimate719

to point out that an improvement in the quality of generative models could be used to720

generate deepfakes for disinformation. On the other hand, it is not needed to point out721

that a generic algorithm for optimizing neural networks could enable people to train722

models that generate Deepfakes faster.723

• The authors should consider possible harms that could arise when the technology is724

being used as intended and functioning correctly, harms that could arise when the725

technology is being used as intended but gives incorrect results, and harms following726

from (intentional or unintentional) misuse of the technology.727

• If there are negative societal impacts, the authors could also discuss possible mitiga-728

tion strategies (e.g., gated release of models, providing defenses in addition to attacks,729

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from730

feedback over time, improving the efficiency and accessibility of ML).731

11. Safeguards732

Question: Does the paper describe safeguards that have been put in place for responsible733

release of data or models that have a high risk for misuse (e.g., pretrained language models,734

image generators, or scraped datasets)?735

Answer: [No]736

Justification: No models are released as part of this work, and the datasets are publicly737

available.738

Guidelines:739

• The answer NA means that the paper poses no such risks.740

• Released models that have a high risk for misuse or dual-use should be released with741

necessary safeguards to allow for controlled use of the model, for example by re-742

quiring that users adhere to usage guidelines or restrictions to access the model or743

implementing safety filters.744

• Datasets that have been scraped from the Internet could pose safety risks. The authors745

should describe how they avoided releasing unsafe images.746

• We recognize that providing effective safeguards is challenging, and many papers do747

not require this, but we encourage authors to take this into account and make a best748

faith effort.749

12. Licenses for existing assets750

Question: Are the creators or original owners of assets (e.g., code, data, models), used in751

the paper, properly credited and are the license and terms of use explicitly mentioned and752

properly respected?753

Answer: [Yes]754

Justification: Citations for publicly available datasets and code are provided.755

Guidelines:756

• The answer NA means that the paper does not use existing assets.757

• The authors should cite the original paper that produced the code package or dataset.758

• The authors should state which version of the asset is used and, if possible, include a759

URL.760

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.761

• For scraped data from a particular source (e.g., website), the copyright and terms of762

service of that source should be provided.763

• If assets are released, the license, copyright information, and terms of use in the pack-764

age should be provided. For popular datasets, paperswithcode.com/datasets has765

curated licenses for some datasets. Their licensing guide can help determine the li-766

cense of a dataset.767

• For existing datasets that are re-packaged, both the original license and the license of768

the derived asset (if it has changed) should be provided.769
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• If this information is not available online, the authors are encouraged to reach out to770

the asset’s creators.771

13. New Assets772

Question: Are new assets introduced in the paper well documented and is the documenta-773

tion provided alongside the assets?774

Answer: [No]775

Justification: No new assets are introduced in the paper.776

Guidelines:777

• The answer NA means that the paper does not release new assets.778

• Researchers should communicate the details of the dataset/code/model as part of their779

submissions via structured templates. This includes details about training, license,780

limitations, etc.781

• The paper should discuss whether and how consent was obtained from people whose782

asset is used.783

• At submission time, remember to anonymize your assets (if applicable). You can784

either create an anonymized URL or include an anonymized zip file.785

14. Crowdsourcing and Research with Human Subjects786

Question: For crowdsourcing experiments and research with human subjects, does the pa-787

per include the full text of instructions given to participants and screenshots, if applicable,788

as well as details about compensation (if any)?789

Answer: [NA]790

Justification: No crowdsourcing experiments or research with human subjects was con-791

ducted.792

Guidelines:793

• The answer NA means that the paper does not involve crowdsourcing nor research794

with human subjects.795

• Including this information in the supplemental material is fine, but if the main contri-796

bution of the paper involves human subjects, then as much detail as possible should797

be included in the main paper.798

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-799

tion, or other labor should be paid at least the minimum wage in the country of the800

data collector.801

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human802

Subjects803

Question: Does the paper describe potential risks incurred by study participants, whether804

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)805

approvals (or an equivalent approval/review based on the requirements of your country or806

institution) were obtained?807

Answer: [NA]808

Justification: The paper does not involve research with human subjects.809

Guidelines:810

• The answer NA means that the paper does not involve crowdsourcing nor research811

with human subjects.812

• Depending on the country in which research is conducted, IRB approval (or equiva-813

lent) may be required for any human subjects research. If you obtained IRB approval,814

you should clearly state this in the paper.815

• We recognize that the procedures for this may vary significantly between institutions816

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the817

guidelines for their institution.818

• For initial submissions, do not include any information that would break anonymity819

(if applicable), such as the institution conducting the review.820
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