
Variational Learning ISTA

Abstract

Compressed sensing combines the power of convex optimization techniques with
a sparsity inducing prior on the signal space to solve an underdetermined system
of equations. For many problems, the sparsifying dictionary is not directly given,
nor its existence can be assumed. Besides, the sensing matrix can change across
different scenarios. Addressing these issues requires solving a sparse representation
learning problem, namely dictionary learning, taking into account the epistemic
uncertainty on the learned dictionaries and, finally, jointly learning sparse represen-
tations and reconstructions under varying sensing matrix conditions. We propose
a variant of the LISTA architecture that incorporates the sensing matrix into the
architecture. In particular, we propose to learn a distribution over dictionaries
via a variational approach, dubbed Variational Learning ISTA (VLISTA), which
approximates a posterior distribution over the dictionaries as part of an unfolded
LISTA-based recovery network. Such a variational posterior distribution is updated
after each iteration, and thereby adapts the dictionary according to the optimiza-
tion dynamics. As a result, VLISTA provides a probabilistic way to jointly learn
the dictionary distribution and the reconstruction algorithm with varying sensing
matrices. We provide theoretical and experimental support for our architecture and
show that it learns calibrated uncertainties.

1 Introduction

Compressed sensing methods aim at solving under-determined inverse problems imposing a prior
about signal structure. Sparsity and linear inverse problems were canonical examples of the signal
structure and sensing mediums (modelled with a linear transformation Φ). Many works during recent
years focused on improving the performance and complexity of compressed sensing solvers for a
given dataset. A typical approach is based on unfolding iterative algorithms as layers of neural
networks and learning the parameters end-to-end starting from learning iterative soft thresholding
algorithm (LISTA) Gregor & LeCun (2010) with many follow-ups works. Varying sensing matrices
and unknown sparsifying dictionaries are some of the main challenges of data-driven approaches. The
works in Aberdam et al. (2021); Schnoor et al. (2022) address these issues by learning a dictionary
and include it in the optimization iteration. However, the data samples might not have any exact
sparse representations, which means that there is no ground truth dictionary. The issue can be more
severe for heterogeneous datasets where the choice of the dictionary might vary from one sample to
another. A principled approach to this problem would be to take a Bayesian approach and define a
distribution over the learned dictionaries with proper uncertainty quantification.

In this work, first, we formulate an augmented LISTA-like model, termed Augmented Dictionary
Learning ISTA (A-DLISTA), that can adapt its parameters to the current data instance. We theoreti-
cally motivate such a design and empirically prove that it can outperform other LISTA-like models in
a non-static measurement scenario, i.e., considering varying sensing matrices across data samples. We
are aware that an augmented version of LISTA, named Neurally Augmented ALISTA (NALISTA),
was already proposed in Behrens et al. (2021), however, there are some fundamental differences
between NALISTA and A-DLISTA. First, our model takes as input the per-sample sensing matrix
and the dictionary at the current layer. This means that A-DLISTA adapts the parameters to the
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current measurement setup as well as to the learned dictionaries. In contrast, NALISTA assumes to
have a fixed sensing matrix to analytically evaluate its weight matrix, W. Hypothetically, NALISTA
could handle varying sensing matrices, however, that comes at the price of having to solve for each
data sample the inner optimization step to evaluate the W matrix. Moreover, the architectures of the
augmentation networks are profoundly different. Indeed, while NALISTA uses an LSTM, A-DLISTA
employ a convolutional neural network, shared across all layers. Such a different choice reflects the
different types of dependencies between layers and input data that the networks try to model. We
report in subsection 3.3 a detailed discussion about the theoretical motivation and architectural design
for A-DLISTA. Moreover, the detailed architecture is described in Appendix A.

Finally, we introduce Variational Learning ISTA (VLISTA) where we learn a distribution over
dictionaries and update it after each iteration based on the outcome of the previous layer. In this
sense, our model learns an adaptive iterative optimization algorithm where the dictionary is iteratively
refined for the best performance. Besides, the uncertainties estimation provides an indicator for
detecting Out-Of-Distribution (OOD) samples. Intuitively, our model can be understood as a form of a
recurrent variational autoencoder, e.g., Chung et al. (2015), where on each iteration of the optimization
algorithm, we have an approximate posterior distribution over the dictionaries, conditioned on the
outcome of the last iteration. The main contributions of our work are as follows.

• We design an augmented version of LISTA, dubbed A-DLISTA, that can handle non-static
measurement setups, i.e., per-sample sensing matrices, and that can adapt parameters to the
current data instance.

• We propose Variational Learning ISTA (VLISTA) that learns a distribution over sparsifying
dictionaries. The model can be interpreted as a Bayesian LISTA model that leverage
A-DLISTA as the likelihood model.

• VLISTA adapts the dictionary to optimization dynamics and therefore can be interpreted
as a hierarchical representation learning approach, where the dictionary atoms gradually
permit more refined signal recovery.

• The dictionary distributions can be used for out-of-distribution detection.

The remaining part of the paper is organized as follows. In section 2 we briefly report related works
that are relevant to the current research, while in section 3 the model formulation is detailed. The
datasets description, as well as the experimental results, are reported in section 4. Finally, we report
our conclusion in section 5.

2 Related Works

Compressed sensing field is abound with works on theoretical and numerical analysis of recovery
algorithms (see Foucart & Rauhut (2013)) with iterative algorithms as one of the central approaches
like Iterative Soft-Thresholding Algorithm (ISTA) Daubechies et al. (2004), Approximate message
passing (AMP) Donoho et al. (2009) Orthogonal Matching Pursuit (OMP) Pati et al. (1993); Davis
et al. (1994) and Iterative Hard-Thresholding Algorithm (IHTA) Blumensath & Davies (2009). The
mentioned algorithms are characterized by a specific set of hyperparameters, e.g., number of iterations
and soft thresholds, that can be tuned to obtain a better trade-off between performance and complexity.
With unfolding iterative algorithms as layers of neural networks, these parameters can be learned
in an end-to-end fashion from a dataset, see for instance some variants Zhang & Ghanem (2018);
Metzler et al. (2017); yang et al. (2016); Borgerding et al. (2017); Sprechmann et al. (2015).

Bayesian Compressed Sensing (BCS) and Dictionary learning. A non-parametric Bayesian
approach to dictionary learning has been introduced in Zhou et al. (2009, 2012), where the authors
consider a fully Bayesian joint compressed sensing inversion and dictionary learning. Besides, their
atoms are drawn and fixed a priori. Bayesian compressed sensing Ji et al. (2008) leverages relevance
vector machines (RVMs) Tipping (2001) and uses a hierarchical prior to model distributions of each
entry. This line of work quantifies uncertainty of recovered entries while assuming a fixed dictionary.
In contrast, in our work, the source of uncertainty is the unknown dictionary over which we define a
distribution.

LISTA models. Learning ISTA was first introduced in Gregor & LeCun (2010) with many follow-up
variations. The follow-up works in Behrens et al. (2021); Liu et al. (2019); Chen et al. (2021); Wu
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et al. (2020) provides various guidelines for architecture change to improve LISTA for example
in convergence, parameter efficiency, step size and threshold adaptation, and overshooting. The
common assumptions of these works are fixed and known sparsifying dictionary and fixed sensing
matrix. Steps toward relaxing these assumptions were taken in Aberdam et al. (2021); Behboodi et al.
(2022); Schnoor et al. (2022). In Aberdam et al. (2021), the authors propose a model to deal with
varying sensing matrix (dictionary). The authors in Schnoor et al. (2022); Behboodi et al. (2022)
provide an architecture that can both incorporate varying sensing matrices and learn dictionaries,
although their focus is on learning theoretical analysis of the model. There are theoretical studies
on the convergence and generalization of unfolded networks, see for example Giryes et al. (2018);
Pu et al. (2022); Aberdam et al. (2021); Pu et al. (2022); Chen et al. (2018); Behboodi et al. (2022);
Schnoor et al. (2022). In our paper, not only we consider varying sensing matrix and dictionary, but
we also model distribution over dictionaries and thereby characterizing the epistemic uncertainty.

Recurrent Variational models. Variational autoencoders (VAEs) is a framework, that learns a
generative model over the data through latent variables Kingma & Welling (2013); Rezende et al.
(2014). When there are data-sample specific dictionaries in our proposed model, it reminisces
extensions of VAEs to the recurrent setting Chung et al. (2015, 2016), which assumes a sequential
structure in the data and imposes temporal correlations between the latent variables. There are also
connections and similarities to Markov state-space models, such as the ones described at Krishnan
et al. (2017).

Bayesian Deep Learning. When we employ global dictionaries in VLISTA, the model essentially
becomes a variational Bayesian Recurrent Neural Network. Variational Bayesian neural networks
have been introduced at Blundell et al. (2015), with independent priors and variational posteriors for
each layer. This work has been further extended to recurrent settings at Fortunato et al. (2019). The
main difference between these works with our setting is the prior and variational posterior; in our
case where the prior and variational posterior for each step is conditioned on previous steps, instead
of being fixed across steps.

3 Variational Learning ISTA

In this section, we briefly report on the ISTA and LISTA models to solve linear inverse problems.
Then, we introduce our first model, A-DLISTA, capable of learning the sparsifying dictionary and
adapting to different sensing matrices. Finally, we focus on the VISTA model, a variational framework
for solving linear inverse problems that leverages A-DLISTA as the likelihood model and achieves
high power to reject OOD samples.

3.1 Linear inverse problems

We consider the following linear inverse problem: y = Φx.

The matrix Φ is called the sensing matrix. If the vector x is sparse in a dictionary basis Ψ, the
problem can be cast as a sparse recovery problem y = ΦΨz with z given as a sparse vector. A
proximal gradient descent-based approach to this problem yields ISTA iterations:

zt = ηθt
(
zt−1 + γt(ΦΨ)H(y −ΦΨzt−1)

)
, (1)

where θt, γt > 0 are hyper-parameters of the model meaning that the algorithm does not possess
any trainable parameters. Generally speaking, γt is called the step size and its value is given as
the inverse of the spectral norm of the matrix A, where A = ΦΨ. The hyper-parameter θt is
termed threshold and it is the value characterizing the so-called soft-threshold function given by:
ηθ(x) = sign(x)(|x| − θ)+. In the ISTA formulation, those two parameters are shared across all the
iterations. Therefore, we have γt, θt → γ, θ.

3.2 LISTA

LISTA Gregor & LeCun (2010) is a reparametrized unfolded version of the ISTA algorithm in which
each iteration, or layer, is characterized by learnable matrices. Specifically, LISTA reinterpret Equa-
tion 1 as defining the layer of a feed-forward neural network implemented as Sθt (Vtxt−1 +Wty)
where Vt,Wt are learnt from a dataset. In that way, those weights implicitly contain information
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about Φ and Ψ. However, in many problems, the dictionary Ψ is not given, and the sensing ma-
trix Φ can change for each sample in the dataset. As LISTA, also its variations, e.g., Analytic
LISTA (ALISTA) Liu et al. (2019), NALISTA Behrens et al. (2021) and HyperLISTA Chen et al.
(2021), require similar constraints such a fix dictionary and sensing matrix. Thus, making those
algorithms fail in situations where either Φ is not fixed or Ψ is not known.

3.3 Augmented Dictionary Learning ISTA

To deal with situations where the underlying dictionary is not known, and moreover the sensing
matrix is changing across samples, one can use an unfolded version of ISTA in which the dictionary
is considered as a learnable matrix, termed Dictionary Learning ISTA (DLISTA), for which each
layer is given as follows:

zt = ηθt
(
zt−1 + γt(ΦΨt)

⊤(y −ΦΨtzt−1)
)
, (2)

with one last linear layer mapping z to reconstructed input. The model can be trained end to end to
learn all θt, γt,Ψt. The base model is very similar to Behboodi et al. (2022); Aberdam et al. (2021)
but as we will see further, it requires additional changes. To see this, consider the basic scenario
where the sensing matrix is fixed to Φ, there is a ground-truth (unknown) dictionary Ψo such that
x∗ = Ψoz∗ with sparse z∗ having support S, i.e., supp(z∗) = S.

Consider the layer t of DLISTA with a fixed sensing matrix Φ, and define:

µ̃ := max
1≤i̸=j≤N

∣∣((ΦΨt)i)
⊤(ΦΨt)j

∣∣ (3)

µ̃2 := max
1≤i,j≤N

∣∣((ΦΨt)i)
⊤(Φ(Ψt −Ψo))j

∣∣ (4)

δ(γ) := max
i

∣∣∣1− γ ∥(ΦΨt)i∥22
∣∣∣ (5)

The term µ̃ is called the mutual coherence of the matrix ΦΨt. The term µ̃2 is closely connected
to generalized mutual coherence, however it differs in that unlike generalized mutual coherence, it
includes the diagonal inner product for i = j. Finally, the term δ(γ) is the reminiscent of restricted
isometry property (RIP) constant Foucart & Rauhut (2013), a key condition for many recovery
guarantees in compressed sensing. Note that there is a dependency on γ. For simplicity, we only kept
the dependence on γ in the notation and dropped the dependence of µ̃, µ̃2 and δ on Φ and Ψt from
the notation.

The following theorem provides conditions on each layer improving the reconstruction error.
Theorem 3.1. Consider the layer t of DLISTA given by equation 2, and suppose that y = ΦΨoz∗
with supp(z∗) = S. We have

1. Suppose zt−1 has the same support as z∗, i.e., supp(z∗) = supp(zt−1). If

γt (µ̃ ∥z∗ − zt−1∥1 + µ̃2 ∥z∗∥1) ≤ θt, (6)
then supp(zt) ⊆ supp(z∗).

2. Assuming that the conditions of the last step hold, then we get the following bound on the
error:

∥zt − z∗∥1 ≤ (δ(γt) + γtµ̃(|S| − 1)) ∥zt−1 − z∗∥1 + γtµ̃2|S| ∥z∗∥1 + |S|θt.

We provide the derivations in the supplementary materials. Theorem 3.1 provides insights about
the choice of γt and θt, and also suggests that (δ(γt) + γtµ̃(|S| − 1)) needs to be smaller than one
to reduce the error at each step. Similar to many existing works in the literature, Theorem 3.1
emphasizes the role of small mutual coherence, equation 3, for good convergence.

Looking at the theorem, it can be seen that γt and θt play crucial role for the convergence. However,
there is trade-off underlying these choices. Let’s fix θt. Decreasing γt can guarantee good support
selection but can increase δ(γt). When the sensing matrix is fixed, the network can hopefully
find good choices by end-to-end training. However, when the sensing matrix Φ changes across
different data samples, i.e., Φ → Φi, it is not guaranteed anymore that there is a unique choice
of γt and θt for all different Φi. Since these parameters can be determined for a fixed Φ and
Ψt, we propose using an augmentation network that determines γt and θt from each pair of Φ
and Ψt. Following from theory, we show in Figure 1 the resulting model named A-DLISTA.
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Figure 1: A-DLISTA architecture. The blue
blocks represent a single soft-thresholding oper-
ation parametrized by the dictionary Ψt together
with threshold and step size {θt, γt} at layer t.
The red blocks represent the augmentation net-
work (with shared parameters across layers) that
adapts {θt, γt} for layer t based on the dictionary
Ψt and the current measurement setup Φi for the
i−th data sample. The dashed arrows connecting
each blue block with a red one mean that, at each
iteration, the augmentation newtork receives the
learned dictionary at the current iteration as input
(together with the sensing matrix).

A-DLISTA relies on two basic operations at
each layer, namely, soft-threshold (blue blocks
in Figure 1) and augmentation (red blocks in
Figure 1). The former represents an ISTA-like
iteration parametrized by the set of learnable
weights: {Ψt, θt, γt}, whilst the latter is im-
plemented using an encoder-decoder-like type
of network. As shown in the figure, the aug-
mentation network takes as input the sensing
matrix for the given data sample, Φi, together
with the dictionary learned at the layer for which
the augmentation model will generate the θ and
γ parameters. Through such an operation, the
A-DLISTA adapts those last two parameters to
the current data sample. We report more details
about the augmentation network in Appendix A.

3.4 VLISTA

Although A-DLISTA possesses adaptivity to
data samples, it is still based on the assump-
tion that a ground truth dictionary exists. We
relax that hypothesis by defining a probability
distribution over the sparsifying dictionary and
formulate a variational approach, titled VLISTA,
to jointly solve the dictionary learning and the sparse recovery problems. To forge our variational
framework whilst retaining the helpful adaptivity property of A-DLISTA, we re-interpret the soft-
thresholding layers of the latter as part of a likelihood model that defines the output mean for the
reconstructed signal. Given its recurrent-like structure Chung et al. (2015), we equip VLISTA with a
conditional trainable prior where the condition is given by the dictionary sampled at the previous
iteration. Therefore, the full model comprises three components, namely, the conditional prior pξ(·),
the variational posterior qϕ(·), and the likelihood model, pΘ(·). All components are parametrized by
neural networks whose outputs represent the parameters for the underlying probability distribution.
In what follows, we describe more in detail the various building blocks of the VLISTA model.

3.4.1 Prior distribution over dictionaries

The conditional prior, pξ(Ψt|Ψt−1), is modelled as a Gaussian distribution with parameters con-
ditioned on the previously sampled dictionary. We parametrize pξ(·) using a neural network,
fξ(·) = [fµ

ξ1
◦ gξ0(·), fσ2

ξ2
◦ gξ0(·)], with trainable parameters ξ = {ξ0, ξ1, ξ2}. The model’s ar-

chitecture comprises a shared convolutional block followed by two different branches generating
the mean and the standard deviation, respectively, of the Gaussian distribution. Therefore, at
layer t, the prior conditional distribution is given by: pξ(Ψt|Ψt−1) =

∏
i,j N (Ψt,i,j |µt,i,j =

fµ
ξ1
(gξ0(Ψt−1))i,j ;σt,i,j = fσ2

ξ2
(gξ0(Ψt−1))i,j), where the indices i, j run over the rows and

columns of Ψt. In order to simplify our expressions, we will abuse notation and refer to distri-
butions like the former as pξ(Ψt|Ψt−1) = N (Ψt|µt = fµ

ξ1
(gξ0(Ψt−1));σ

2
t = fσ2

ξ2
(gξ0(Ψt−1))).

We will use the same type of notation throughout the rest of the manuscript to simplify formulas. The
prior’s design allows for enforcing a dependence of the dictionary at iteration t to the one sampled at
the previous iteration. Thus, allowing us to refine the Ψ as the iterations proceed. The only exception
to such a process is the prior imposed over the dictionary at t = 1, since there is no a previously
sampled dictionary in this case. We handle such an exception by assuming a standard Gaussian
distributed Ψ1. Finally, the joint prior distribution over the dictionaries for VLISTA is given by:

pξ(Ψ1:T ) = N (Ψ1|µ = 0;σ2 = 1)

T∏
t=2

N (Ψt|µt = fµ
ξ1
(gξ0(Ψt−1));σ

2
t = fσ2

ξ2 (gξ0(Ψt−1)))

(7)
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3.4.2 Posterior distribution over dictionaries

Similarly to the prior model, the variational posterior too is modeled as a Gaussian distribution
parametrized by a neural network fϕ(·) = [fµ

ϕ1
◦ hϕ0

(·), fσ2

ϕ2
◦ hϕ0

(·)] which outputs the mean
and variance for the underlying probability distribution: qϕ(Ψt|x̂t−1,y

i,Φi) = N (Ψt|µ =

fµ
ϕ1
(hϕ0

(x̂t−1,y
i,Φi));σ2 = fσ2

ϕ2
(hϕ0

(x̂t−1,y
i,Φi))). The posterior distribution is conditioned

on the data, {yi,Φi}, as well as on the reconstructed signal at the previous layer, x̂t−1. Therefore,
the joint posterior probability over the dictionaries at each layer is given by:

qϕ(Ψ1:T |x̂1:T ,y
i,Φi) =

T∏
t=1

qϕ(Ψt|x̂t−1,y
i,Φi) (8)

3.4.3 Likelihood model

At the heart o the reconstruction module there is the soft-thresholding block of A-DLISTA. Similarly
to the prior and posterior, the likelihood distribution is modelled as a Gaussian parametrized by
the output of a A-DLISTA block. Specifically, the likelihood network generates the mean vector
only for the Gaussian distribution since we treat the standard deviation as a tunable hyper-parameter.
Therefore, we interpret the reconstructed sparse vector at a given layer as the mean of the likelihood
distribution. The joint log-likelihood distribution can then be formulated as:

log pΘ(x̂1:T |Ψ1:t,y
i,Φi) =

T∑
t=1

log N (µt = A-DLISTA(Ψ1:t,y
i,Φi; Θ),σ2

t = δ) (9)

where δ is a hyper-parameter of the network.

We train all the different components of VLISTA, in an end-to-end fashion by the maximization of
the Evidence Lower Bound (ELBO). The full objective function is given by:

ELBO =

T∑
t=1

EΨ1:t∼qϕ(Ψ1:t|yi,Φi,x̂0:t−1)

[
log pΘ(xt = xi

gt|Ψ1:t,y
i,Φi)

]
(10)

−
T∑

t=2

EΨ1:t−1∼qϕ(Ψ1:t−1|yi,Φi,x̂t−1)

[
DKL

(
qϕ(Ψt|yi,Φi, x̂t−1) ∥ pξ(Ψt|Ψt−1)

)]
−DKL

(
qϕ(Ψ1|x̂0) ∥ pξ(Ψ1)

)
The first term in Equation 10 represents the likelihood contribution whilst the second and third terms
account for the KL divergence. We report more details about models’ architecture and the objective
function in Appendix A and Appendix B, respectively.

4 Experimental Results

To assess the performance of the proposed approach, we employ three datasets, namely, MNIST,
CIFAR10, and a synthetic one. We compare our models’ performance against ISTA, LISTA Gregor &
LeCun (2010), and BCS Ji et al. (2008). However, we do not consider other LISTA variations such as
ALISTA Liu et al. (2019) or NALISTA Behrens et al. (2021) since assuming a varying measurement
setup across the dataset requires solving an inner optimization problem to evaluate the W matrix for
each data sample. As a result, training such models is extremely slow. Moreover, to prove the benefit
of adaptivity, we conduct an ablation study on A-DLISTA by removing its augmentation network and
making the parameters θt, γt learnable through backprop. We refer to the non-augmented version of
A-DLISTA as DLISTA (see subsection 3.3 for more details). Hence, for DLISTA, θt and γt cannot
be adapted anymore to the specific input sensing matrix. For all models that we train, we consider
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three layers. However, being ISTA a classical method with no learning properties, we also considered
the results obtained using 1000 iterations. To consider a scenario with varying sensing matrices, we
adopt the following procedure. For each data sample in the training and test sets, xi, we generate a
sensing matrix, Φi, by randomly sampling its entries from a standard distribution. Subsequently, for
each pair of sensing matrix and ground truth signal, we generate the corresponding observations as
yi = Φi · xi. We report more details about the training of the models in Appendix B.

4.1 MNIST & CIFAR10

The first task we test our models against is image reconstruction considering the MNIST and CIFAR10
datasets. We report the results in terms of the Structural Similarity Index Measure (SSIM) considering
the following setups. We fix the number of layers, or iterations, for all models to three and then we
measured SSIM varying the number of measurements. To compute the observation vector (yi) we
generate a different sensing matrix, for each digit, by sampling its entries from a standard Gaussian
distribution (more details about the data generation can be found in Appendix B). The results are
reported in Table 1 and Table 2 for MNIST abd CIFAR10, respectively.

Table 1: MNIST SSIM (the higher the better) for different number of measurements. Top three rows
concern non-Bayesian models whilst the bottom two report results for Bayesian approaches. For each
of the two set of results, we highlight in bold the best performance.

SSIM ↑

number of measurements
1 10 100 300 500

ISTA 0.10 0.07 0.06 0.20 0.34
ISTA (1000 iterations) 0.10 0.07 0.12 0.46 0.76
LISTA 0.21 0.54 0.56 0.63 0.75
DLISTA 0.27 0.60 0.64 0.64 0.76
A-DLISTA 0.33 0.66 0.81 0.84 0.88
BCS 0.09 0.12 0.19 0.45 0.73
VLISTA 0.22 0.45 0.56 0.65 0.78

Table 2: CIFAR10 SSIM (the higher the better) for different number of measurements. Top three
rows concern non-Bayesian models whilst the bottom two report results for Bayesian approaches.
For each of the two set of results, we highlight in bold the best performance.

SSIM ↑

number of measurements
10 50 100 300 500 700 850

ISTA 0.001 0.004 0.009 0.025 0.035 0.040 0.041
ISTA (1000 iterations) 0.002 0.009 0.015 0.038 0.051 0.057 0.055
LISTA 0.008 0.227 0.271 0.597 0.658 0.716 0.779
DLISTA 0.348 0.458 0.472 0.581 0.647 0.713 0.778
A-DLISTA 0.581 0.684 0.717 0.776 0.799 0.812 0.852
BCS 0.005 0.028 0.046 0.114 0.194 0.286 0.359
VLISTA 0.265 0.286 0.464 0.617 0.692 0.731 0.774

From Table 1 and Table 2, we can draw the following conclusions. Concerning the non-Bayesian
models, our A-DLISTA model outperforms all the others. Moreover, by comparing the performance
of A-DLISTA with its non-augmented version, i.e., DLISTA, we see the benefits of using an aug-
mentation network to make the model adaptive. Instead, concerning the Bayesian approaches, our
VLISTA model outperforms BCS. Especially, we see that our models outperform others considering
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a low number of measurements. Concerning the lower performance of VLISTA compared to A-
DLISTA, we can mention a few reasons that could explain such behaviour. One contribution to such
a difference might come from the noise that is naturally injected at training time due to the random
sampling procedure to generate the dictionaries. Also, another contribution is represented by the
amortization gap that affects all models based on amortized variational inference. However, although
VLISTA shows lower performance than A-DLISTA, it is important to notice that it still performs
better than BCS. Moreover, it can detect OODs, a characteristic that Bayesian models only possess.

4.2 Synthetic Dataset

To generate the synthetic dataset, we follow a similar protocol as inLiu & Chen (2019). First, we
generate a sensing matrix and a sparsifying dictionary, for each data sample, by sampling their entries
from a standard Gaussian distribution. Then, the components of the ground truth sparse signal, z∗,
are sampled from a standard Gaussian distribution as well. Finally, some of the components of z∗ are
set to zero as dictated by a Bernoulli distribution with p = 0.1. The overall dataset accounts for 1000
samples shared across the train and test sets. To compare the performance of different models, first,
we draw the c.d.f of the Normalized Mean Square Error (NMSE) on the test set and then we compute
the 40% quantile. Results are reported in Table 3. Similarly to the setup we used in the previous
section, also for the synthetic dataset we fix the number of layers, or iterations, for each model to
three and then we varied the number of measurements.

Table 3: NMSE’s quantile (the lower the better) for different number of measurements. Top three
rows concern non-Bayesian models whilst the bottom two report results for Bayesian approaches.
For each of the two set of results, we highlight in bold the best performance.

Q=0.4 ↓

number of measurements
1 10 100 300 500

ISTA +0.38 +0.05 -0.13 -1.90 -3.28
ISTA (1000 iterations) +0.01 -0.04 -1.62 -8.30 -15.76
LISTA -0.01 -1.60 -1.28 -2.82 -4.37
DLISTA -3.12 -5.22 -7.18 -10.62 -17.92
A-DLISTA -5.45 -14.82 -20.91 -19.47 -22.35
BCS +0.16 +0.17 +1.91 +2.34 +2.55
VLISTA -3.67 -8.20 -13.94 -15.31 -14.02

By looking at Table 3 we can draw a similar conclusion as for the MNIST and CIFAR10 datasets.

4.3 Out Of Distribution detection

In this section, we focus on one of the most important differences among non-Bayesian models for
solving inverse linear problems and VLISTA. Indeed, differently from any non-Bayesian approach
to compressed sensing, VLISTA allows for quantifying uncertainties on the reconstructed signals
which, in turn, enables OOD detection without the need to access ground truth data at inference
time. Moreover, whilst other Bayesian approaches Ji et al. (2008); Zhou et al. (2014) usually
focus on designing specific priors to satisfy the sparsity constraint on the reconstructed signal after
marginalization, VLISTA completely overcomes such an issue as the thresholding operations is not
affected by the the marginalization over dictionaries. To prove that VLISTA can detect OOD samples,
we employ the MNIST dataset. First, we split the full dataset into two subsets named “Train”, or
In-Distribution (ID), and OOD. The ID subset contains images from three digits only, namely, 0, 3,
and 7 (randomly chosen). Instead, the OOD subset contains images from all the other digits. Then,
we split the ID partition into training and test sets and train VLISTA on the former one. Once trained,
we evaluate the model performance by considering reconstructions from the test set (ID) and the
OOD partition. We reconstruct 100 times every single image, sampling every time a new dictionary.
Subsequently, as a summarizing statistics we compute the variance’s c.d.f. of the per-pixel standard
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deviation (varσpp) across reconstructions. Subsequently, to assess whether a given digit belongs to
the ID or OOD distribution, we compute the p-value for varσpp by employing the two-sample t-test.

Figure 2: p-value for OOD rejection as a function
of the noise level. The green line represents a
reference p-value equal to 0.05.
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Moreover, to assess whether the OOD detec-
tion is robust to measurement noise, we repeat
the same test for different levels of noise. As a
baseline for the current task, we consider BCS.
Due to the different nature of the BCS frame-
work, we employ a slightly different procedure
to evaluate the p-values for it. Specifically, we
use the same ID and OOD splits as for VLISTA.
However, for BCS, we consider the c.d.f. of
the reconstruction error that is evaluated by the
model itself. The rest of the procedure is the
same as for VLISTA. We report the results for
OOD detection in Figure 2. As we can see from
the figure, VLISTA outperforms BCS for each
level of noise showing a lower p-value than BCS
which corresponds to a higher rejection power.
As expected, by increasing the level of noise we
observe a larger p-value meaning that the OOD
rejection becomes harder for more noisy data.
However, we can see that whilst VLISTA is still
capable of detecting OOD samples, BCS fails in doing so when the Signal-to-Noise Ratio (SNR),
expressed in decibels, is greater than 10. As a reference point to define whether the model is correctly
rejecting OOD samples or not, we report in Figure 2 the 5% line for the p-value. Such a value
is typically used as a reference in hypothesis testing to decide whether or not to reject the null
hypothesis.

5 Conclusion

We report about a variational approach, dubbed VLISTA, to solve the dictionary learning and the
sparse recovery problems jointly. Typically, compressed sensing frameworks assume the existence of
a ground truth dictionary used to reconstruct the signal. Furthermore, in state-of-the-art LISTA-like
models, a stationary measurement setup is usually considered. In our work, we relax both assumptions.
First, we show that it is possible to design a soft-thresholding algorithm, termed A-DLISTA, that
can handle different sensing matrices and that can adapt its parameters to the given data instance.
We theoretically justify the use of an augmentation network which adapts the threshold and step
size for each layer based on the current input and the learned dictionary. Finally, we also relax
the hypothesis concerning the existence of a ground truth dictionary by introducing a probability
distribution for it. Given such an assumption, we formulate the VLISTA variational framework to
solve the compressed sensing task. We report results for both our models, A-DLISTA and VLISTA,
concerning non-Bayesian and Bayesian approaches to solve the sparse recovery and dictionary
learning problems jointly. We empirically show that the adaptation capability of A-DLISTA results in
a boost in performance compared to ISTA and LISTA models, in a non-static measurements scenario.
Although we observe that in terms of reconstruction, VLISTA does not outperform A-DLISTA, the
variational framework enables us to evaluate uncertainties over the reconstructed signals useful to
detect OOD. On the other hand, none of the LISTA-like models allows for such a task. Moreover,
differently from other Bayesian approaches to compressed sensing, VLISTA does not need to design
specific priors to retain sparsity after marginalization of the reconstructed sparse signal; the averaging
operation concerns the sparsifying dictionary instead of the sparse signal itself.
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A Architecture Details

In this section we report the details of the architecture for our proposed models.

Concerning A-DLISTA, as we show in Figure 1, the reconstruction network, i.e., blue blocks, is an
unfolded ISTA-like model with parametrized dictionary Ψt. Each layer is characterized by its own
dictionary which used to both reconstruct the sparse vector and as an input for the augmentation
network. As mentioned in subsection 3.3, the augmentation model, red block in Figure 1, takes
as input the measurement matrix, Φi, and the dictionary at a given reconstruction layer t, Ψt,
and generates the adaptive parameters {γt, θt} for the t-th layer. We show the architecture for the
augmentation network in Figure 3.

Figure 3: Augmentation network for A-DLISTA. Each red block in Figure 1 corresponds to the
shown model.

Concerning VLISTA, as introduced in subsection 3.4, it comprises three different models: prior,
posterior, and likelihood. Concerning the likelihood model, it is assumed to represent a gaussian
distribution whose mean is parametrized by means of the A-DLISTA model (subsubsection 3.4.3).
Instead, the prior (subsubsection 3.4.1) and posterior (subsubsection 3.4.2) models are implemented
using an encoder-decoder scheme based on convolutional layers. We report in Figure 4 the architecture
for the prior and posterior mdoels.

Finally, we report in Figure 5 the graphical model for the posterior and conditional prior in the left
and right plot, respectively.

B Implementation and Training Details

We report in this section a few details about the implementation and training of the A-DLISTA and
VLISTA models. We implemented both using the Lightning framework. As we mentioned in the
main body of the manuscript, ISTA and LISTA require a known dictionary in order to reconstruct
the non-sparse signal. Concerning the three datasets that we consider, we define the dictionaries
in the following way: canonical for MNIST (since MNIST is already sparse) with 784 atoms and
wavelet for CIFAR10 with 1024 atoms. Regarding the synthetic dataset, we randomly generated
the dictionary from a standard distribution and we consider 765 atoms. Concerning A-DLISTA,
we trained both the reconstruction and the augmentation network, blue and red blocks in Figure 1,
respectively, end-to-end using the Adam optimizer. We set the initial learning rate to 1.e−2 and 1.e−3

for the reconstruction and augmentation network respectively, and we dropped its value by a factor 10
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Figure 4: Left: prior network architecture. Right: posterior network architecture. For the posterior
model we show in the figure the output shape from each of the three head. Such a structure is
necessary since the posterior model accepts as input three quantities, namely, the observations, the
sensing matrix, and the reconstruction from the previous layer which are characterized by different
shapes. The term “B“ indicates the batch size.

Figure 5: Graphical model of the Variational LISTA model - dependencies on yi,Φi are factored out
for simplicity. The sampling is done only based on the posterior qϕ(Ψt|x̂t−1,y

i,Φi). The dashed
line shows variational approximations
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every time the loss stopped to improve for more than 30 training steps. Moreover, we set the weight
decay to 5.e−4 and the batch size to 128. We applied the same scheme across all the dataets we used.
As the objective function, we used the MSE between the ground truth signal and the reconstructed
one for image datasets and the NMSE for the synthetic dataset, respectively.

Concerning the VLISTA training, similarly to what we did for A-DLISTA, we train the full model
end-to-end. However, compared to A-DLISTA, in this case the hyperparameter space has a much
higher dimension. Therefore, we employed the Tune library for hyperparameter search. Specifically,
we used HyperOptSearch and ASHAScheduler as searcher and scheduler, respectively. We set the
learning rates to 7.e−3, 5.e−3, and 1.e−4 for the likelihood, posterior, and prior models, respectively.
Also in this case, we use a scheduler for reducing the learning rate similarly to what we did for
A-DLISTA. Concerning the objective function, we maximize the ELBO as typically done for such a
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type of models. Moreover, we set the weight for the KL divergence to 1.e−3. We report in Equation 11
details about the obejctive.

log
(
p(x1:T = xi

gt|yi,Φi)
)
= log

∫
p(x1:T = xi

gt|Ψ1:T ,y
i,Φi)p(Ψ1:T )dΨ1:T (11)

= log

∫
p(x1:T = xi

gt|Ψ1:T ,y
i,Φi)p(Ψ1:T )q(Ψ1:T |yi,Φi, x̂1:T )

q(Ψ1:T |yi,Φi, x̂1:T )
dΨ1:T

≥
∫

q(Ψ1:T |yi,Φi, x̂1:T ) log
p(x1:T = xi

gt|Ψ1:T ,y
i,Φi)p(Ψ1:T )

q(Ψ1:T |yi,Φi, x̂1:T )
dΨ1:T

=

∫
q(Ψ1:T |yi,Φi, x̂1:T ) log p(x1:T = xi

gt|Ψ1:T ,y
i,Φi)dΨ1:T

+

∫
q(Ψ1:T |yi,Φi, x̂1:T ) log

p(Ψ1:T )

q(Ψ1:T |yi,Φi, x̂1:T )
dΨ1:T

=

T∑
t=1

EΨ1:t∼q(Ψ1:t|yi,Φi,x̂0:t−1)

[
log p(xt = xi

gt|Ψ1:t,y
i,Φi)

]
−

T∑
t=2

EΨ1:t−1∼q(Ψ1:t−1|yi,Φi,x̂t−1)

[
DKL

(
q(Ψt|yi,Φi, x̂t−1) ∥ p(Ψt|Ψt−1)

)]
−DKL

(
q(Ψ1|x̂0) ∥ p(Ψ1)

)
Finally, to give an overall overview of the training scheme for VLISTA, Figure 6 shows a diagram of
the full training pipeline.

Figure 6: Variational LISTA oveall architecture and training pipeline. Note that to simplify the figure,
we did not report the index for the data sample (i) but only for the iteration (t).
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C Derivation for Theorem 3.1

Convergence proofs of ISTA type models involve two steps in general. First, it is investigated how the
support is found and locked in, and second how the error shrinks at each step. We focus on these two
steps, which matter mainly for our architecture design. Our analysis is similar in nature to Chen et al.
(2018); Aberdam et al. (2021), however it differs from Aberdam et al. (2021) in considering unknown
dictionaries and from Chen et al. (2018) in both considered architecture and varying sensing matrix.
In what follows, we consider noiseless setting. However, the results can be extended to noisy setups
by adding additional terms containing noise norm similar to Chen et al. (2018). We make following
assumptions:

1. There is a ground-truth (unknown) dictionary Ψo such that x∗ = Ψoz∗.
2. As a consequence, y = ΦΨoz∗.
3. We assume that z∗ is sparse with its support contained in S. In other words: zi,∗ = 0 for

i ∈ Sc.

As a first step, we fix the sensing matrix Φ and conduct the analysis. First define the following:

µ̃ := max
1≤i̸=j≤N

∣∣((ΦΨt)i)
⊤(ΦΨt)j

∣∣ (12)

µ̃2 := max
1≤i,j≤N

∣∣((ΦΨt)i)
⊤(Φ(Ψt −Ψo))j

∣∣ (13)

δ(γ) := max
i

∣∣∣1− γ ∥(ΦΨt)i∥22
∣∣∣ (14)

The main step of soft-thresholding algorithm is given as follows:

zt = ηθt
(
zt−1 + γt(ΦΨt)

⊤(y −ΦΨtzt−1)
)
, (15)

with entry-wise relation given by

zt,i = ηθt
(
zt−1,i + γt((ΦΨt)i)

⊤(y −ΦΨtzt−1)
)
. (16)

Using the assumptions we have:

(ΦΨt)
⊤(y −ΦΨtzt−1) = (ΦΨt)

⊤(ΦΨoz∗ −ΦΨtzt−1)

= (ΦΨt)
⊤Φ(Ψoz∗ −Ψtzt−1). (17)

C.1 Locking the support

First, we show under what conditions, the algorithm locks on the support. Suppose that the support
of zt−1 is already the same as z∗, namely supp(zt−1) = supp(z∗) = S. Consider i ∈ Sc. We have

zt,i = ηθt
(
γt((ΦΨt)i)

⊤(y −ΦΨtzt−1)
)
. (18)

To lock the support, we need to guarantee that:∣∣γt((ΦΨt)i)
⊤(y −ΦΨtzt−1)

∣∣ ≤ θt. (19)

We have:

((ΦΨt)i)
⊤Φ(Ψoz∗ −Ψtzt−1) =((ΦΨt)i)

⊤Φ(Ψtz∗ −Ψtzt−1)

+ ((ΦΨt)i)
⊤Φ(Ψoz∗ −Ψtz∗) (20)

=
∑
j∈S

((ΦΨt)i)
⊤(ΦΨt)j(z∗,j − zt−1,j) (21)

+ ((ΦΨt)i)
⊤Φ(Ψoz∗ −Ψtz∗) (22)

We can bound the norm by:∣∣∣∣∣∣
∑
j∈S

((ΦΨt)i)
⊤(ΦΨt)j(z∗,j − zt−1,j)

∣∣∣∣∣∣ ≤
∑
j∈S

∣∣((ΦΨt)i)
⊤(ΦΨt)j

∣∣ |(z∗,j − zt−1,j)| (23)

≤ µ̃ ∥z∗ − zt−1∥1 , (24)

15



where we use the definition of mutual coherence for the upper bound.

The other norm is bounded by

∣∣((ΦΨt)i)
⊤Φ(Ψoz∗ −Ψtz∗)

∣∣ =
∣∣∣∣∣∣
∑
j∈S

((ΦΨt)i)
⊤(Φ(Ψo −Ψt))jzj,∗

∣∣∣∣∣∣ (25)

≤
∑
j∈S

∣∣((ΦΨt)i)
⊤(Φ(Ψo −Ψt))j

∣∣ |zj,∗| (26)

≤ µ̃2 ∥z∗∥1 . (27)

Therefore, we obtain the following sufficient condition for locking the support:

γt (µ̃ ∥z∗ − zt−1∥1 + µ̃2 ∥z∗∥1) ≤ θt (28)

If this condition is satisfied, we get to lock the support.

C.2 Controlling the errors

For i ∈ S, we have:

|zt,i − z∗,i| ≤
∣∣zt−1,i + γt((ΦΨt)i)

⊤(y −ΦΨtzt−1)− z∗,i
∣∣+ θt. (29)

We start again with equation 16 but with i ∈ S:

zt−1,i + γt((ΦΨt)i)
⊤(y −ΦΨtzt−1) =

zt−1,i + γt(
∑
j∈S

((ΦΨt)i)
⊤(ΦΨt)j(z∗,j − zt−1,j) + ((ΦΨt)i)

⊤Φ(Ψoz∗ −Ψtz∗))

For the first part, we get:

zt−1,i + γt
∑
j∈S

((ΦΨt)i)
⊤(ΦΨt)j(z∗,j − zt−1,j) =

(I − γt(ΦΨt)i)
⊤(ΦΨt)i))zt−1,i + γt(ΦΨt)i)

⊤(ΦΨt)i)z∗,i + γt
∑

j∈S,j ̸=i

((ΦΨt)i)
⊤(ΦΨt)j(z∗,j − zt−1,j).

Therefore:∣∣zt−1,i + γt((ΦΨt)i)
⊤(y −ΦΨtzt−1)− z∗,i

∣∣ ≤ ∣∣(1− γt(ΦΨt)i)
⊤(ΦΨt)i))(zt−1,i − z∗,i)

∣∣
+ γt

∣∣∣∣∣∣
∑

j∈S,j ̸=i

((ΦΨt)i)
⊤(ΦΨt)j(z∗,j − zt−1,j)

∣∣∣∣∣∣+ γt
∣∣((ΦΨt)i)

⊤Φ(Ψoz∗ −Ψtz∗))
∣∣

≤ δ(γt) |(zt−1,i − z∗,i)|+ γt
∑

j∈S,j ̸=i

µ̃ |z∗,j − zt−1,j |+ γtµ̃2 ∥z∗∥1

Therefore, we have:

∥zS,t − z∗∥1 =
∑
i∈S

|zt,i − z∗,i| ≤

≤ (δ(γt) + γtµ̃(|S| − 1)) ∥zS,t−1 − z∗∥1 + γtµ̃2|S| ∥z∗∥1 + |S|θt.

Note that this analysis shows that we strive for having smaller µ̃2, namely being close to the dictionary,
small enough θt as iterations grow, and small µ̃ and δ(γt).

In general, if we have

γt (µ̃ ∥z∗ − zt−1∥1 + µ̃2 ∥z∗∥1) ≤ θt. (30)

Then we get the final result:

∥zt − z∗∥1 =
∑
i∈S

|zt,i − z∗,i| ≤ (δ(γt) + γtµ̃(|S| − 1)) ∥zt−1 − z∗∥1 + γtµ̃2|S| ∥z∗∥1 + |S|θt.
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