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Abstract
Federated Learning (FL) incurs high communi-
cation costs in both uplink and downlink. Prior
work largely focuses on lossy compression of
model updates in deterministic FL. In contrast,
stochastic (Bayesian) FL considers distributions
over parameters, enabling uncertainty quantifi-
cation, improved generalization, and inherently
communication-regularized training via a mirror-
descent structure. We address both uplink and
downlink communication in stochastic FL by
proposing a framework based on remote source
generation. Using Minimal Random Coding
(MRC) for remote generation, the server and
clients sample from global and local posteriors
(sources), respectively, instead of transmitting
locally sampled updates. The framework en-
ables communication-regularized local optimiza-
tion and principled model update compression,
leveraging gradually updated priors as side in-
formation. Extensive experiments show that our
method achieves a 5–32× reduction in total com-
munication while preserving accuracy. We refine
MRC bounds to precisely quantify uplink and
downlink trade-offs, and extend our approach to
conventional FL via stochastic quantization and
prove a contraction property for the biased MRC
compressor to enable convergence analysis.

1 Introduction
Federated learning (FL) enables collaborative machine
learning (ML) across multiple clients orchestrated by a cen-
tral federator (McMahan et al., 2017). Communication ef-
ficiency, privacy, security, and data heterogeneity are well-
established challenges in FL (Zhang et al., 2021; Wen et al.,
2023). As a bi-directional process, FL requires substan-
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tial uplink and downlink communication, posing increasing
pressure on communication networks as ML models grow
larger. To address this, lossy compression techniques have
been widely adopted to reduce uplink gradient transmis-
sions and downlink model broadcasts (Seide et al., 2014;
Alistarh et al., 2017; Philippenko & Dieuleveut, 2020;
Gruntkowska et al., 2023). However, these methods al-
most exclusively focus on conventional (non-stochastic)
FL, where clients train deterministic models and transmit
fixed updates.

Alternatively, stochastic (Bayesian) FL offers improved
generalization, robustness, and inherent uncertainty esti-
mation (Zhang et al., 2022; Milasheuski et al., 2025).
Rather than training deterministic models, clients learn lo-
cal posterior distributions, aggregated by the federator to
obtain a global posterior. Recently, (Isik et al., 2024)
empirically demonstrated state-of-the-art performance un-
der limited uplink bandwidth using stochastic compression
methods, outperforming classical approaches. This frame-
work can be applied to a variety of Bayesian FL solu-
tions such as QSGD (Alistarh et al., 2017), QLSD (Vono
et al., 2022), dithered quantization (Abdi & Fekri, 2019)
and FedPM (Isik et al., 2023), as well as to conventional
FL settings augmented with stochastic compression.

A key technique enabling stochastic FL is remote source
generation, which allows the federator to sample from the
clients’ local posterior, rather than obtaining samples lo-
cally generated by the clients. This avoids redundant trans-
mission and enables tight, stochastic control over commu-
nication. Such remote generation requires common ran-
domness shared between the transmitter and receiver in
the form of a common prior (Li, 2024), which we also
refer to as side information. If the downlink is unlim-
ited, this allows the server to broadcast the global poste-
rior to all the clients, and this posterior serves as a natural
common prior. However, when both uplink and downlink
are limited, the possibility for remote source generation
is restricted, which challenges the application of efficient
stochastic FL. Thus, in this paper, we explore and analyze
communication-efficient stochastic FL. The rigorous treat-
ment of stochastic FL in this scenario is further reinforced
by its two fundamental advantages: (i) Communication-
regularized training: we show that stochastic FL, as op-
posed to conventional solutions, inherently integrates com-
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munication constraints into the training process, effectively
treating communication as an integral part of the optimiza-
tion objective; (ii) Priors as side information: the proba-
bilistic structure allows principled integration of common
priors as side information, reducing communication costs
to the update from prior to posterior.

Concretely, we address the following question: Can joint
uplink and downlink compression significantly reduce com-
munication costs in stochastic FL without compromising
accuracy? We answer this affirmatively, tightening the
communication–accuracy trade-off in ways that determin-
istic methods cannot and achieving communication re-
ductions of up to 32× without performance loss. Below,
we summarize our key contributions.

• We propose two novel bi-directional compression al-
gorithms for stochastic FL with Minimal Random Cod-
ing (MRC): one leveraging globally shared randomness,
and one requiring private shared randomness between each
client and the federator. Both enable efficient sampling-
based communication by exploiting carefully selected side
information.
• We demonstrate substantial communication savings, re-
ducing total cost by factors of 5 − 32 while maintaining
competitive accuracy across standard benchmarks. Our ab-
lation studies analyze the effects of shared randomness and
the choice of side information.
• We extend our approach to conventional FL with
stochastic quantization, proving a contraction property of
the resulting (biased) compression operator. This enables
convergence guarantees in uni- and bi-directional settings.
• We develop a theoretical framework for communication
analysis in stochastic FL, quantifying uplink and down-
link costs under MRC. Our results refine and generalize
bounds from Chatterjee & Diaconis (2018), including tight
analyses for Bernoulli distributions and tools applicable to
broader distribution classes.

2 Preliminaries: Stochastic FL with
Bi-Directional Compression

In this section, we shortly review the concepts of stochastic
FL and compression based on MRC, which are employed
in our proposed stochastic bi-directional algorithm.

Stochastic FL. A set of n clients collaboratively and it-
eratively train a model, e.g., a neural network, under the
orchestration of a federator. Client i ∈ [n] := {1, . . . , n}
possesses a dataset Di. We differentiate between homo-
geneous data, where Di is drawn independently from the
same distribution for all clients (i.i.d.), and heterogeneous
data, where each Di may come from a different distribu-
tion (non i.i.d.). At each training iteration t, the federator
holds a model θt described by a probability distribution.

After downlink transmission, each client i has an estimate
θ̂i,t of θt, and locally optimizes θ̂i,t to obtain a local prob-
abilistic model, called the posterior qti . Compressed ver-
sions of the clients’ posteriors qti are transmitted back to
the federator on the uplink to obtain an estimate q̂ti . The
federator aggregates the received posteriors using an ag-
gregation rule R (·) to obtain a refined global distribution
θt+1 = R

(
{q̂ti}i∈[n]

)
. A simple aggregation rule R (·) is

the average over all clients’ posteriors. This process is re-
peated until a certain convergence criterion is met. In many
stochastic FL settings, the sent client updates q̂ti are just
samples from the posterior distribution qti .

In fact, conventional FL with stochastic quantization can
also be described by the procedure above, though with
the following differences: (i) the federator holds a model
θt with deterministic parameters; (ii) each client i locally
optimizes θ̂i,t to obtain a local gradient gti . A stochastic
compression Qs(·) is applied on the client’s gradient to
obtain a posterior distribution qti from Qs(g

t
i); (iii) sam-

ples of qti are transmitted to the federator on the uplink to
obtain an estimate of the gradient, which we still denote
by q̂ti ; and (iv) the federator updates the global model as
θt+1 = θt − ηR

(
{q̂ti}i∈[n]

)
, with learning rate η. In this

paper, we will investigate both settings, with a prominent
focus on the former.

Stochastic Compression by MRC. To efficiently transmit
samples from the posterior qti , we employ MRC (Havasi
et al., 2019), which allows to leverage shared random-
ness and side information common to the federator and
the clients. MRC is a stochastic compressor Cmrc(·),
whose input is a posterior distribution Q and a prior dis-
tribution P , and its output is a sample from a distribu-
tion Q̂ close to Q. It operates as follows: The encoder
and decoder generate nIS samples {Xi}i∈[nIS] from P .
The encoder computes a categorical distribution W , with
W (i) ∝ Q(Xi)/P (Xi), and transmits an index i ∼ W
with log2(nIS) bits. To obtain high accuracy, it is required
that nIS = Θ(exp(DKL (Q∥P ))), where DKL (Q∥P ) is the
KL-divergence between Q and P (Chatterjee & Diaconis,
2018). For brevity, in what follows, for two Bernoulli dis-
tributions with parameters q and p, we will use the short-
hands dKL (q||p) and Cmrc(q, p).

3 BICOMPFL
We next introduce our method BICOMPFL, a bi-directional
stochastic compression strategy, which uses MRC to re-
duce both uplink and downlink communication costs. The
scheme assumes that shared randomness between each of
the clients and the federator exists, which can be imple-
mented using pseudo-random sequences generated from a
common seed. We distinguish two types of shared ran-
domness: private shared randomness (between individual
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clients and the federator) and global shared common ran-
domness (among all parties), with the latter being more
challenging to achieve in practice. We assume all clients
and the federator share the same global model θ̂0 at ini-
tialization. This does not incur any communication when
global shared randomness is available, but necessitates an
initial model transmission from the federator to clients
when only private shared randomness exists.

BICOMPFL: The General Algorithm. Our method
serves as a general framework for stochastic optimization
procedures. We explain BICOMPFL for Bayesian FL and
show in the sequel how it can be used for conventional FL
with stochastic quantization. Consider probabilistic mask
training (similar to FedPM, (Isik et al., 2023)) as an exam-
ple of Bayesian FL. The models θt ∈ [0, 1]d of dimension
d are parameters of Bernoulli distributions. Those param-
eters determine for each weight of a randomly initialized
network with fixed weights w whether it is activated or not.
During inference, the weights w are masked with samples
xt ∈ {0, 1}d ∼ θt, i.e., the network weights are w ⊙ xt.
We start with a general description, which is valid for the
cases of global and private shared randomness.

At iteration t = 0, each client i ∈ [n] shares with the feder-
ator the same global model, i.e., θ̂i,0 = θ0, for all i ∈ [n].
At iteration t, each client i locally trains model θ̂i,t in L
local iterations. In our previous example, when training
Bernoulli distributions to mask a random network, the pa-
rameters are mapped to scores in a dual space, which are
then trained for L local iterations m ∈ [L] using stochas-
tic gradient descent. Mapping the trained scores back to
the primal space, each client i obtains a model update in
terms of a posterior qti . We refer to Appendix G for details.
This optimization principle is a special instance of mir-
ror descent, which, in the special case of optimizing over
Bernoulli distributions, leads to a point-wise minimization
with respect to a KL-proximity term (as opposed to the Eu-
clidean distance in standard SGD, cf. Appendix D for de-
tails). The KL-divergence between the updated local model
and the global model directly determines the communica-
tion cost. Hence, we regularize the minimization of the
loss function by the communication cost, thereby treating
communication as an inherent optimization objective.

To convey the model update qti to the federator, each client
employs Cmrc(·) in B blocks of size d/B each (assuming
for simplicity that B divides d) with a prior distribution
pti,u, which is set to p0i,u = θ̂i,0 at iteration t = 0. The
choice of pti,u for t > 0 will be clarified later. For each
block b ∈ [d/B], client i conveys nUL samples {yti,ℓ}ℓ∈[nUL]

of qti to the federator by transmitting for each block b an in-
dex Ibi,ℓ with log2(nIS) bits, where nIS is the number of
samples per block, generated from the prior distribution
pti,u at both the client and the federator using the available

shared randomness. The samples of all blocks are concate-
nated for each ℓ. Hence, the federator obtains an estimate
of client i’s posterior distribution using the empirical aver-
age q̂ti =

1
nUL

∑nUL
ℓ=1 y

t
i,ℓ.

By averaging the estimates q̂ti for all the clients’ models, the
federator updates the global model as θt+1 = 1

n

∑n
i=1 q̂

t
i .

To transmit the new model to each client i, we assume the
existence of a common prior pti,d shared by the federator
and the clients. With pti,d, the federator performs MRC in
B blocks of size d/B to make client i sample from, and
thereby estimate, the latest global model θt+1. The client
samples nDL masks {xt

i,ℓ}ℓ∈[nDL], each incurring a commu-
nication cost of B log2(nIS) bits. An estimate of the up-
dated global model is obtained by concatenating the recon-
structed samples for all the blocks b ∈ [B], and averaging
over all masks θ̂i,t+1 = 1

nDL

∑nDL
ℓ=1 x

t
i,ℓ.

Since the number of clients is typically large, nUL = 1 of-
ten suffices. The clients’ contributions are averaged at the
federator, effectively reducing the noise due to the MRC
step. This allowed Isik et al. (2024) to theoretically analyze
the uplink communication cost for importance sampling-
based stochastic communication of model updates. We
will follow a similar approach for downlink communica-
tion; however, since downlink communication cannot ben-
efit from the averaging effect of multiple clients, we reduce
the variance of the model estimate in the downlink by set-
ting nDL = n · nUL.

The choice of the priors pti,u and pti,d for MRC in the up-
link and downlink channels, respectively, crucially affects
the performance and the communication cost of the algo-
rithm. As a first-order characterization, the communication
cost of MRC is determined by DKL(q

t
i∥pti,u) in the uplink

and by DKL(θt+1∥pti,d) in the downlink. We continue the
description with the easier setting in which global shared
randomness is available, before turning to the more chal-
lenging setting of private randomness.

Global Randomness. When global shared randomness is
available, all clients can maintain the same priors at each
iteration t, and, thereby, obtain the same global model esti-
mates θ̂i,t. The global model is known to the clients and the
federator from initialization, and synchronization among
all clients is ensured by choosing as prior pti,u = pti,d the
latest estimate of the global model θ̂i,t. The clients utilize
the globally shared randomness to sample the exact same
samples from the same prior for uplink transmission at all
iterations. Selected indices of such samples are transmit-
ted to the federator to convey an estimate q̂ti of the poste-
rior qti , who reconstructs the global model θt+1. Using the
same prior in the downlink, i.e., the global model from the
previous iteration, the updated model can be transmitted to
the clients through MRC. Leveraging the shared random-
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Algorithm 1 BICOMPFL-GR with Global Randomness

Require: Both clients and federator initialize the same
global model θ0 using a shared seed

Ensure: Clients set prior pt = θ̂i,0 = θ0,∀i ∈ [n]
1: repeat
2: for Client i ∈ [n] do
3: qti ← Local training of θ̂i,t
4: Sample indices Ibi,ℓ, ℓ ∈ [nUL], b ∈ [B] from qti with

prior pt and transmit to federator to reconstruct q̂ti
5: end for
6: Federator updates global model θt+1 = 1

n

∑n
i=1 q̂

t
i

7: Federator relays to client j the other clients’ indices
{Ibi,ℓ}ℓ∈[nUL],b∈[B],i∈[n]\{j}

8: for Clients i ∈ [n] do
9: Reconstruct θ̂i,t+1 = 1

n

∑n
i=1 q̂

t
i from {Ibi,ℓ}

10: end for
11: Clients and federator set prior pt = θ̂t+1

12: t← t+ 1
13: until Convergence

ness, all clients i ∈ [n] sample from the same prior, and
thus obtain the exact same estimate of the global model
θ̂i,t+1 = θ̂t+1, for all i ∈ [n]. Hence, we have that
pti,u = pti,d = θ̂t for all i ∈ [n].

In this version, the federator reconstructs the global model
from estimates of the client posteriors q̂ti . However, in the
uplink, all clients sample from the same prior, which en-
ables further improvements. Naively, the federator will re-
construct the global model using the indices Ibi,ℓ for b ∈
[B], ℓ ∈ [nUL] received by the clients i ∈ [n] through
MRC, followed by an additional MRC round for downlink
transmission. Instead, and more efficiently, the federator
can simply relay the indices to the respective other clients
(i.e., client j receives Ibi,ℓ for b ∈ [B], i ∈ [n] \ {j}, ℓ ∈
[nUL]), which reconstruct the updated global model indi-
vidually. This avoids additional noise by a second com-
pression round and allows better convergence without ad-
ditional communication facilitated by global randomness.
We term this approach BICOMPFL-GR and summarize the
procedure in Algorithm 1.

Private Randomness. Without global randomness, main-
taining the same prior among all clients is impossible with-
out additional communication. Instead, an additional round
of MRC is needed for the downlink transmission, and each
client obtains a different estimate of the global model θ̂i,t at
each iteration. Hence, the clients’ local trainings start from
different estimates of the global model. In a non-stochastic
setting, this has only been considered by Philippenko &
Dieuleveut (2021); Gruntkowska et al. (2024). Understand-
ing the additional cost incurred due to lack of shared ran-
domness in terms of both the convergence speed, commu-
nication load, and the choice of the priors pti,u and pti,d, is

Algorithm 2 BICOMPFL-PR with Private Randomness

Require: Both clients and federator initialize the same
global model θ0 using a shared seed

Ensure: Clients set prior pti,u = pti,d = θ̂i,0 = θ0,∀i ∈ [n]
1: repeat
2: for Client i ∈ [n] do
3: qti ← Local training of θ̂i,t
4: Federator employs Cmrc(q

t
i , p

t
i,u) to draw nUL sam-

ples yti,ℓ ∼ qti using prior pti,u
5: Federator est. client’s posterior q̂ti =

1
nUL

∑nUL
ℓ=1 y

t
i,ℓ

6: end for
7: Federator updates global model θt+1 = 1

n

∑n
i=1 q̂

t
i

8: for Clients i ∈ [n] do
9: Client employs Cmrc(θt+1, p

t
i,d) to draw nDL samples

xt
i,ℓ ∼ θt+1 using prior pti,d

10: Client est. global model: θ̂i,t+1 = 1
nDL

∑nDL
ℓ=1 x

t
i,ℓ

11: Clients set prior pti,u = pti,d = θ̂i,t+1

12: end for
13: t← t+ 1
14: until Convergence

then of interest.

For the uplink transmission of client i, any convex com-
bination of θ̂i,t and q̂ti can be used as prior, i.e., pti,u =

λθ̂i,t + (1 − λ)q̂ti , for some 0 ≤ λ ≤ 1 (cf. Appendix J.2
for details). This is due to the availability of both quan-
tities at the federator and client i. However, small λ val-
ues are not expected to reduce the cost of communication
reflected by dKL

(
qti ||pti,u

)
since the previous global model

estimate is likely to be similarly different from the posterior
(in terms of the KL-divergence) than the previous posterior
estimate of the federator. Indeed, our numerical experi-
ments have shown that the savings from choosing λ ̸= 1,
i.e., priors other than θ̂i,t, are not significant. For simplic-
ity, we thus propose to use pti,u = pti,d = θ̂i,t. We term
this approach BICOMPFL-PR and summarize the proce-
dure in Algorithm 2. Choosing different priors is possible
and only affects line 11 in Algorithm 2. We mention in
passing that BICOMPFL-PR allows partial client partici-
pation, which is incompatible with shared randomness and
the method BICOMPFL-GR.

Block Allocation. We consider three different block allo-
cation strategies: 1) fixed block size (referred to as “Fixed”
in the experiments), where each block b ∈ [B] is of the
same size and constant across all t; 2) adaptive block allo-
cation (Adaptive) as proposed by Isik et al. (2024), where
each block size is separately optimized each iteration t; and
3) adaptive average allocation (Adaptive-Avg), where the
block sizes are equal but optimized at each iteration t ac-
cording to the average KL-divergence per block. We refer
the reader to Appendix E for a detailed discussion on this.
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4 Experiments
We next evaluate the performance of our proposed
BICOMPFL-GR and BICOMPFL-PR schemes in experi-
ments, and compare against baseline FL strategies with-
out compression (FedAvg or PSGD) (McMahan et al.,
2017) and several non-stochastic bi-directional compres-
sion schemes that employ different combinations of com-
pression, error-feedback, and momentum. In particular,
we compare against DOUBLESQUEEZE (Tang et al., 2019),
MEM-SGD (Stich et al., 2018), NEOLITHIC (Huang et al.,
2022), CSER (Xie et al., 2020), and the recently proposed
LIEC (Cheng et al., 2024). SignSGD (Seide et al., 2014)
serves to compress the transmitted gradients for all the
schemes. We further compare with M3 (Gruntkowska
et al., 2024), which partitions the model into disjoint parts
for downlink transmission and transmits to each client a
different part of the model. While M3 is focused on RandK
compression for the uplink (i.e., transmitting random K en-
tries of the gradient), we use TopK (Wangni et al., 2018; Shi
et al., 2019), which achieved much more stable results.

As mentioned above, the mirror descent approach out-
lined in Section 3 inherently minimizes the communica-
tion cost as a by-product. Hence, it is a strong candi-
date for communication-efficient stochastic FL. Nonethe-
less, we show how our method can also be used to im-
prove the communication efficiency in conventional FL,
by using the uplink and downlink compression Cmrc(·)
combined with stochastic quantizers, e.g., (Alistarh et al.,
2017). In Section 5, we pave the way to convergence guar-
antees by proving a contraction property of Cmrc(·) com-
posed with a stochastic quantization Qs(·) of gradients gti .
To compare our method to the baselines that use SignSGD
as compressor, we evaluate BICOMPFL-GR in a conven-
tional federated learning (CFL) task with a stochastic vari-
ant of SignSGD. We replace mirror descent over Bernoulli
masks by a standard learning procedure over a determinis-
tic model, which takes as input the global model estimate
θ̂i,t, computes a gradient gti (over L local epochs, using
SGD and cross-entropy losses), and outputs a distribution
Qs(g

t
i). In stochastic SignSGD, Qs(·) transforms each gra-

dient entry gti,e to a Bernoulli random variable with pa-
rameter qti,e = 1/(1 + exp(−gti,e/K)) for some K > 0,
where the random variable takes value +1 with probability
qti,e, and −1 otherwise. We then employ Cmrc(q

t
i , p

t
i,u) to

obtain samples yti,ℓ, where the compression is performed
element-wise. We apply this method to BICOMPFL-GR
where Step 6 is replaced by θt+1 = θt − ηs

1
n

∑n
i=1 q̂

t
i ,

where q̂ti = 1
nUL

∑nUL
ℓ=1 y

t
i,ℓ and ηs is the federator’s learn-

ing rate. Step 9 is modified accordingly. The priors pt are
chosen as Bernoulli random variables with parameter 0.5.
We remark that while MRC samples are biased towards pt

(as we discuss in Section 5), this particular prior choice
avoids imbalance in stochastic SignSGD, and rather acts as
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Figure 1: Test accuracy for BICOMPFL and baselines on
Fashion MNIST 4CNN on i.i.d. data.

a regularizer, pulling the clients’ posteriors closer to max-
imum entropy distributions. Consequently, convergence is
achieved under bi-directional compression even without er-
ror feedback. For general prior choices, error feedback may
be needed, see Algorithm 3 and Appendix C. We will refer
to this method as BICOMPFL-GR-CFL.

We study n = 10 clients (see Appendix I for additional
experiments with more clients) collaboratively training a
convolutional neural network (CNN)-based classifier for
the datasets MNIST, Fashion-MNIST and CIFAR-10 un-
der the orchestration of a federator. For MNIST, we use
two different models, LeNet-5 (Lecun et al., 1998) and a
4-layer convolutional neural network (4CNN) proposed by
Ramanujan et al. (2020). The latter is also used to train on
Fashion MNIST. For CIFAR-10, we use a larger neural net-
work with 6 convolutional layers (6CNN). We train MNIST
and Fashion-MNIST for 200 global iterations and CIFAR-
10 for 400 global iterations. Through all experiments and
datasets, we carry L = 3 local iterations per client. The
learning rates are carefully selected to ensure convergence
and comparability across all methods. Particularly, we tune
the hyperparameters so that all algorithms achieve similar
accuracies, allowing a fair comparison of their communica-
tion costs (see Appendix J.6 for details). Our main claims
are the communication reduction of the bitrates per param-
eter per epoch, which are orthogonal to the choice of the
learning rates of the algorithms. The code to reproduce our
experiments is included in the supplementary material.

We evaluate the schemes in two settings: with a uniform
data allocation (i.i.d.), to model homogeneous systems, and
with a non-i.i.d. allocation, to model heterogeneous sys-
tems, where data allocation for each client is drawn from a
Dirichlet distribution with parameter α = 0.1. This regime
is challenging due to extreme class imbalance. Each result
shows the average across three simulation runs with differ-
ent seeds. Further details on the simulation setup and the
network architectures are deferred to Appendix F. Consis-

5



BiCompFL: Bi-Directional Compression for Stochastic Federated Learning

tently throughout all experiments, our proposed methods
provide order-wise improvements in the communication
cost, while achieving state-of-the art accuracies.

We plot in Fig. 1 the test accuracies for all the schemes
as a function of the total communication cost in bits per
parameter and per global iteration. While all the schemes
achieve approximately the same maximum test accuracy,
BICOMPFL-GR and BICOMPFL-PR require substantially
less communication. Hence, when the bandwidths of up-
link and downlink transmissions are limited, both vari-
ations of the proposed method achieve better test accu-
racies. Turning our focus to the different variations of
our scheme, it can be observed that, without partition-
ing the model for downlink compression, BICOMPFL-PR
converges significantly slower than BICOMPFL-GR for
any block allocation method. This highlights the intu-
ition above that the additional MRC step in downlink in-
curs further noise, which reduces the convergence speed.
However, when we partition the model in the downlink
and only send disjoint parts to each client through MRC
(BICOMPFL-PR-Fixed-SplitDL), the downlink commu-
nication cost reduces by a factor of n. In the regime
of Fashion MNIST with a uniform data allocation, this
comes without performance degradation, and is hence the
method of choice in this regime. We additionally simu-
lated BICOMPFL-GR with the suboptimal implementation
(BICOMPFL-GR-Reconst-Fixed), in which the federator
first reconstructs the global model, and then performs an
additional MRC step for downlink transmission. This nat-
urally reduces the convergence speed per iteration with-
out gains in the communication cost. Hence, justifying
the choice of BICOMPFL-GR. We show that, in conven-
tional FL, BICOMPFL-GR-CFL substantially reduces the
communication cost without loss in performance. In some
cases, especially for non-i.i.d. data, we even observe im-
proved performance, which we attribute to implicit regular-
ization. Note that BICOMPFL-GR-CFL provides improve-
ments even without error-feedback or momentum. How-
ever, our method is fully compatible with such techniques
and can be used as a plug-in approach to further minimize
the communication cost in many existing schemes. We
study the convergence in Section 5.

We plot in Fig. 2(a) the schemes’ average bitrates over the
maximum test accuracy for MNIST and 4CNN. The aver-
age bitrate is reduced by more than a factor of 1000 com-
pared to FedAvg, and more than a factor of 32 compared
to DOUBLESQUEEZE, NEOLITHIC and LIEC, which per-
form best among the conventional bi-directional compres-
sion methods. We repeat the study for non-i.i.d.data al-
location according to a Dirichlet distribution with param-
eter α = 0.1, and show maximum test accuracies over
average bitrates in Fig. 2(b). Partitioning the model in
BICOMPFL-PR worsens the final accuracy of the model.

While the model converges faster, it does not achieve the
same accuracies as BICOMPFL-GR and BICOMPFL-PR
without partitioning. This hints towards hybrid schemes
for BICOMPFL-PR, where the training begins with par-
titioning on the downlink, which is later switched to full
transmission. In Fig. 2(c), we provide the results for
CIFAR-10 and uniform data allocation. BICOMPFL-GR
and BICOMPFL-PR both achieve better results with a bi-
trate smaller by a factor of 5 than the best baselines. More
detailed numerical results can be found in Appendices I
and J.

The adaptive block allocation (Adaptive) of Isik et al.
(2024) saves communication costs in many settings and
provides better performance than the fixed block allocation
(Fixed), due to more accurate MRC tailored to the exact di-
vergences. The proposed low complexity adaptive strategy
based on the average KL-divergence (Adaptive-Avg) per
block can additionally save in communication (and compu-
tation) with no or little performance degradation. We refer
the reader to Appendix I for further extensive experiments,
graphs for accuracies over epochs, separate studies of up-
link and downlink costs, and comparisons for the case of
an available broadcast channel from federator to the clients.
Finally, we refer to Appendix J for various ablation studies
analyzing the sensitivity of BICOMPFL with respect to the
choices of the priors, n, nDL, nIS, the block size d/B, and
the learning rate η.

5 Theoretical Results
Convergence. In stochastic FL, the exact time dy-
namics of the system are challenging to analyze due to
the round-dependent interplay of the learning procedure
with the transmission noise. However, when using BI-
COMPFL for conventional FL with stochastic quantization
(cf. BICOMPFL-GR-CFL), convergence guarantees can
be given. We prove the convergence for a general and
widely used class of stochastic quantizers Qs(·), which are
natively unbiased. Qs(·) takes as input the entry ge of
a gradient vector g ∈ Rd and operates as follows. Let
s be the number of quantization intervals, and let 0 ≤
τe < s be an integer such that τe

s ≤
|ge|
∥g∥ ≤

τe+1
s , then

Qs(ge) outputs ∥g∥ · sign(ge)(τe + 1)/s with probability
s|ge|/∥g∥ − τe, and ∥g∥ · sign(ge)τe/s otherwise. Qs(·)
is unbiased, i.e., E[Qs(x)] = x, and its variance satisfies
E[∥Qs(x)−x∥2] ≤ min{d/s2,

√
d/s}∥x∥22 (Alistarh et al.,

2017).

Replacing stochastic SignSGD by Qs(·) in BICOMPFL-
GR-CFL, the posterior is given by a Bernoulli distribu-
tion with parameter qti,e = s|gti,e|/∥gti∥ − τe. The val-
ues ∥g∥, sign(g), and τe can be encoded independently,
e.g., using Elias coding. With a slight abuse of nota-
tion, let Cmrc(Qs(·), ·) denote the composition of Qs(·)
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Figure 2: Maximum test accuracy over total communication cost measured by bitrate per parameter.

and MRC with nIS samples per entry. The compression
Cmrc(Qs(g

t
i), ·) takes a gradient gti and outputs samples

from a distribution close to Qs(g
t
i), and falls in the class of

biased compressors. We can prove the following contrac-
tion property for Cmrc(Qs(·), ·), which will facilitate con-
vergence analysis for uni- and bi-directional compression.
This constitutes a substantial improvement over (Isik et al.,
2024), where such guarantees were missing, and hence no
convergence guarantees were given. A prominent biased
contractive compressor is TopK.

Lemma 1. For any x ∈ Rd and corresponding posterior
q following Qs(x), and a prior p ∈ [0, 1]d, let ∆̄ :=

maxe∈[d]
qe
pe
− 1−qe

1−pe
, ∆̄′ := maxe∈[d] qe

(
pe

qe
+ 1−pe

1−qe

)
,

and p̄ := maxe∈[d] pe. The compressor Cmrc(Qs(·))
satisfies the following contraction property for nIS =

O(max{
√
2∆̄′, log(6p̄(∆̄ + ∆̄2))

√
6p̄(∆̄ + ∆̄2)}) and

s ≥
√
2d:

E[∥Cmrc(Qs(x))− x∥2] ≤ (1− δ)∥x∥2,

for δ = 1− d
s2

(
1 + ∆̄′

n2
IS
+O

(
(∆̄ + ∆̄2)

√
6p̄ log(2nIS)

nIS

))
.

The underlying core result is a refinement of the MRC anal-
ysis, cf. Lemma 2 (Appendix B). Hence, for sufficiently
large nIS, the compressor Cmrc(Qs(·), ·) can be used as an
alternative to common compressors such as Qs(·). The
use of MRC introduces a bias into the otherwise unbiased
stochastic quantization. Based on the contraction property
in Lemma 1, standard convergence results (cf. Theorem 2)
follow easily by a straightforward extension of our conven-
tional FL algorithm BICOMPFL-GR-CFL to error feed-
back (cf. Algorithm 3) as detailed in Appendix C.

Communication Cost. We analyze the communication
cost in a specific iteration t and comment on the inter-
round dependency later. When the latest global model es-
timate θ̂i,t is chosen as a prior in MRC, the uplink cost
is determined by how far the model evolves during the
client’s training, i.e., dKL(q

t
i ||pti,u) = dKL(q

t
i ||θ̂i,t). Af-

ter communicating samples of the posteriors, the federa-
tor obtains an estimate q̂ti for all i ∈ [n]. The cost of
communication on the downlink to client i is then deter-

mined by dKL(
1
n

∑n
i=1 q̂

t
i ||θ̂i,t). While dKL(q

t
i ||θ̂i,t) de-

pends on the progress during client training, the core chal-
lenge is to bound the expected KL-divergence of each
model estimate dKL(q̂

t
i ||θ̂i,t) in the presence of poten-

tially different priors, i.e., θ̂i,t ̸= θ̂j,t, i ̸= j. For each
client i, the overall communication cost is in the order of
nDLexp

(
dKL
(
1
n

∑n
i=1 q̂

t
i∥pti,d

))
+nUL exp

(
dKL

(
qti ||pti,u

))
.

We will next quantify dKL(
1
n

∑n
i=1 q̂

t
i ||θ̂i,t) for the case

pti,u = pti,d, however, the analysis can be extended to
pti,u ̸= pti,d by an additional assumption on the divergence
between the two priors.

For the theoretical analysis, we focus on the scalar case for
a single iteration t, where client i ∈ [n] has a posterior
Qi, and the federator and client i share a common prior Pi,
both are Bernoulli distributions with parameters qi and pi,
respectively. In the context of FL, the client locally trains
Pi and results with Qi. According to Chatterjee & Dia-
conis (2018) and the multi-client extension of Isik et al.
(2024), the communication cost in the uplink is determined
by exp(dKL (Qi||Pi)). After uplink transmission, the fed-
erator obtains an estimate q̂i of qi; and hence, the updated
global model is given by 1

n

∑n
i=1 q̂i. The downlink cost for

client i is determined by dKL
(
1
n

∑n
i=1 q̂i||pi

)
.

We derive a new high probability upper bound on this quan-
tity, refining previous MRC analysis for the special case of
Bernoulli distributions. Let X be a Bernoulli sample ob-
tained through MRC. As an initial step, we bound the dif-
ference between qi and the probability Pr(X = 1) that the
samples are drawn from, which vanishes when pi = qi
(and hence dKL (qi||pi) = 0). We note that the bound
of Chatterjee & Diaconis (2018, Theorem 1.1) does not
satisfy this natural property. We formally state the re-
sult in Proposition 1 (Appendix B), which, however, does
not yet capture the dependency on the sample number nIS
used in MRC to sample an index. We refine Proposition 1
with Lemma 2 (cf. Appendix B), which additionally cap-
tures this dependency, and facilitates an upper bound on
dKL

(
1
n

∑n
i=1 q̂i||pi

)
. Lemma 2, a refinement of (Chatter-

jee & Diaconis, 2018) for Bernoulli distributions, is of in-
dependent interest and used to prove Theorem 1.
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For the statement of the following theorem, we assume
that the progress by one local client training is bounded by
|qj − pj | ≤ ρ for all j ∈ [n]. Using Pinsker’s inequality to
bound |qj − pj | ≤ 1

2

√
dKL (qj ||pj) /2, this is a natural as-

sumption given from the KL-proximity term of mirror de-
scent (for one local iteration), and can be strictly enforced
through the projection of qj onto a KL ball around pj of
fixed divergence. We assume that the difference between
the clients’ priors, i.e., their global model estimates in our
algorithms, are bounded as |pi − pj | ≤ ζ for all i, j ∈ [n].

Theorem 1. Assume pj>ζ for all j∈ [n], for ∆j :=
qj

pj−ζ−
1−qj

1−pj+ζ and ∆′
j := qj

(pj+ζ
qj

+
1−pj+ζ
1−qj

)
, with probability

1− δ′, the global model divergence dKL(
1
n

∑n
j=1 q̂j ||pi) is

upper bounded by
n∑

j=1

2

nmin{pi, 1− pi}

(
∆′

j

n2
IS
++

√
ln(2/δ′)

2nUL
+ρ+ζ2+

+O
(
(∆j +∆2

j )

√
6(pi + ζ) log (2nIS)

nIS

))
By Chatterjee & Diaconis (2018), this provides an imme-
diate bound on the cost of downlink transmission. The
bound applies to both algorithms BICOMPFL-PR and
BICOMPFL-GR. However, when all priors pj are the same
(such as in BICOMPFL-GR-Reconst), i.e., ζ = 0, the
bound simplifies accordingly. The explicit dependency on
the factor 1/

√
nUL reflects the interplay between uplink and

downlink cost. The parameter ζ gives rise to an inter-round
dependency of the communication cost. The more accu-
rate the estimation of the global model in the previous it-
eration (given the priors are chosen as θ̂i,t), the smaller ζ,
and hence the lower the transmission cost in the subsequent
iteration. The proofs of Proposition 1, Lemma 2, and The-
orem 1 can be found in Appendix B.

6 Related Work
Following the introduction of FL (McMahan et al., 2017),
lossy compression of gradients or model updates has been
a long-studied narrative in FL, with prominent represen-
tatives such as SignSGD, also known as 1-bit Stochastic
Gradient Descent (SGD) (Seide et al., 2014), QSGD (Alis-
tarh et al., 2017), TernGrad (Wen et al., 2017), SignSGD
with error feedback (Karimireddy et al., 2019), vector-
quantized SGD (Gandikota et al., 2021) and natural com-
pression (Horvóth et al., 2022). Such methods retain satis-
factory final model accuracy even with aggressive quanti-
zation. Sparsification-based methods have also been con-
sidered as alternatives, e.g., TopK (Wangni et al., 2018;
Shi et al., 2019). The importance of bi-directional gradi-
ent compression in many settings was outlined by Philip-
penko & Dieuleveut (2020). Many schemes were pro-
posed that leverage combinations of gradient compression

in the uplink and downlink, error-feedback, and momen-
tum, e.g., Mem-SGD (Stich et al., 2018), DoubleSqueeze
(Tang et al., 2019), block-wise SignSGD with momentum
(Zheng et al., 2019), communication-efficient SGD with
error reset (Cser) (Xie et al., 2020), Artemis (Philippenko
& Dieuleveut, 2020), Neolithic (Huang et al., 2022), DO-
COFL (Dorfman et al., 2023), EF21-P and friends (Grun-
tkowska et al., 2023), 2Direction (Tyurin & Richtárik,
2023), M3 (Gruntkowska et al., 2024), and LIEC (Cheng
et al., 2024). With the exception of the methods MCM
(Philippenko & Dieuleveut, 2021) and M3 (Gruntkowska
et al., 2024), each client receives the same broadcast, po-
tentially compressed, global gradient or model update.
Isik et al. (2024) studied uplink compression for stochas-
tic FL and showed significant communication reduction
with competitive performance. Their framework, termed
KLMS, applies to a variety of stochastic compressors and
to Bayesian FL settings, e.g., QLSD (Vono et al., 2022).
The compression is based on importance sampling and
MRC, thoroughly studied by Chatterjee & Diaconis (2018)
and Havasi et al. (2019). Such methods, known as relative
entropy coding, have been used in FL in conjunction with
differential privacy, cf. DP-REC (Triastcyn et al., 2022).

Since the lottery ticket hypothesis (Frankle & Carbin,
2019), finding sparse subnetworks of neural networks that
achieve satisfactory accuracy was investigated. Ramanujan
et al. (2020) showed that randomly weighted networks con-
tain suitable subnetworks of large neural networks capable
of achieving competitive performance. Isik et al. (2023)
formulated a probabilistic method of training neural net-
work masks collaboratively in an FL context.

7 Conclusion
We illuminated bi-directional compression in stochastic
FL via federated probabilistic mask training, which we
showed to inherently optimize both the learning objective
and the communication costs. By leveraging side informa-
tion through carefully chosen prior distributions, the total
communication costs are reduced by factors between 5−32
compared to non-stochastic FL baselines, while achieving
state-of-the-art accuracies on classification tasks, for both
homogeneous and heterogeneous data. We thus close the
gap of downlink compression for stochastic FL and com-
plement the existing literature on bi-directional compres-
sion for standard FL. Applying our methods to stochastic
quantization in conventional FL, we paved the way to con-
vergence analysis for MRC-based compression. Allowing
different priors among all clients, this work opens the door
to studying compression under side-information in decen-
tralized stochastic FL, where a central coordinator is miss-
ing. Our theoretical results are of independent interest and
may be applied in various scenarios where MRC is used.
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A Reproducibility
In addition to the algorithmic details and the clients’ training procedure function (cf. Algorithms 1, 2 and 4), we provide
in Section 4 the most important hyperparameters used in our experiments, such as local and global iterations, and data
allocation. Further parameter information, such as batch size, learning rates and the choice of the optimizer can be found
in Appendix I, together with details on the neural network architectures and the hardware cluster used for running the
experiments. Particularities of the block allocation required for the operation of our schemes are described in Appendix E.
All assumptions required for the theoretical analysis are stated in Section 5. Full proofs of all claims, including formal
statements, can be found in Appendix B.

B Proofs and Intermediate Results
In the following, we provide the formal statements of Proposition 1 and Lemma 2 including their proofs. Parts of the proof
of Proposition 1 will be used to prove Lemma 2. We prove Theorem 1 afterward.

Proposition 1. For a sample Xℓ transmitted by MRC with posterior and prior Bernoulli distributions with parameters q
and p, we have

|Pr(Xℓ = 1)− q| ≤ q

(
max

{
p

q
,
1− p

1− q
,
q

p
,
1− q

1− p

}
− 1

)
.

Proof of Proposition 1. Assume a party wants to sample from a Bernoulli distribution Q with parameter q, which is held
by another party. Both parties share a common prior P in the form of a Bernoulli distribution with parameter p and have
access to shared randomness. Fix any sample index ℓ for the moment (this index will be needed for the proof of Theorem 1).
Both parties sample KnIS i.i.d. samples Xℓ,i ∼ P for i ∈ [nIS] independently and identically from P . The party holding
Q constructs an auxiliary distribution

Wℓ(i) =
Q(Xℓ,i)/P (Xℓ,i)∑nIS
i=1 Q(Xℓ,i)/P (Xℓ,i)

,

from which it samples to obtain an index Iℓ. The index is transmitted to the other party, which reconstructs the correspond-
ing sample Xℓ,Iℓ .

To bound the difference |Pr(Xℓ = 1)−q|, i.e., the target Bernoulli parameter compared to the parameter which the sample
is drawn from, by the independence of the samples Xℓ,Iℓ for different ℓ, we focus on a single sample ℓ ∈ [K], for which it
holds that

Pr(Xℓ,Iℓ = 1)

=

nIS∑
i=1

∑
{x1,...,xnIS :xi=i}

Pr(Xℓ,1 = x1, . . . , Xℓ,nIS = xnIS) Pr(Iℓ = i | Xℓ,1 = x1, . . . , Xℓ,nIS = xnIS)

(a)
= nIS

∑
{x2,...,xnIS}

Pr(Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS)

· Pr(Iℓ = 1 | Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS)

(b)
= nIS

nIS−1∑
L=0

∑
{x2,...,xnIS :

∑nIS
i=2=L}

Pr(Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS)

· Pr(Iℓ = 1 | Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS),

where (a) follows from symmetry, (b) follows since by permutation invariance, the inner probability only depends on the
number of ones in {x2, . . . , xnIS}.

The inner probability is given by the distribution Wℓ(i). Given that Xℓ,1 = 1 and that
∑nIS

i=2 Xℓ,ℓ = L, it holds that

nIS∑
i=1

Q(Xℓ,i)/P (Xℓ,i) = (L + 1) · q
p
+ (nIS − L− 1) · 1− q

1− p
.

11
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Hence,

Pr(Iℓ = 1 | Xℓ,1 = 1, Xℓ,2 = x2, . . . , Xℓ,nIS = xnIS) =

q
p

(L + 1) · qp + (nIS − L− 1) · 1−q
1−p

,

which is independent of the exact choice of {x2, . . . , xnIS} given their sum
∑nIS

i=2 Xℓ,i = L. Since Pr(Xℓ,1 = 1, Xℓ,2 =
x2, . . . , Xℓ,nIS = xnIS) = pL+1(1− p)nIS−L−1 by the Bernoulli distribution assumption, we have

Pr(Xℓ,Iℓ = 1) = nIS

nIS−1∑
L=0

(
nIS − 1

L

)
pL+1(1− p)nIS−L−1

q
p

(L + 1) · qp + (nIS − L− 1) · 1−q
1−p

,

Defining a binary random variable M with sample space
{

q
p ,

1−q
1−p

}
, for a Bernoulli distribution Ber

(
L+1
nIS

)
with success

probability parameter L+1
nIS

, where a success refers to the outcome M = q
p , we can write that

Pr(Xℓ,Iℓ = 1) = q ·
nIS−1∑
L=0

(
n− 1

L

)
pL(1− p)nIS−L−1 1

L+1
nIS

q
p + nIS−L−1

nIS

1−q
1−p

= q · E

[
1

L+1
nIS

q
p + nIS−L−1

nIS

1−q
1−p

]
= qE

 1

E
Ber

(
L+1
nIS

)[M]

 (1)

(a)

≤ qE
[
E
Ber

(
L+1
nIS

) [ 1

M

]]
,

where the outer expectation is over the binomial distribution with nIS − 1 trials and success probability p, i.e., L ∼
Binomial(nIS − 1, p), and where (a) follows from Jensen’s inequality over the inner expectation. Hence,

Pr(Xℓ,Iℓ = 1)− q = q

(
Pr(Xℓ,Iℓ = 1)

q
− 1

)
≤ q

(
E
[
E
Ber

(
L+1
nIS

) [ 1

M

]]
− 1

)
(2)

Since 1
E
Ber

(
L+1
nIS

)[M] ≥ 2− E
Ber

(
L+1
nIS

)[M], it also follows from (1) that

Pr(Xℓ,Iℓ = 1) = q · E

[
1

L+1
nIS

q
p + nIS−L−1

nIS

1−q
1−p

]
= qE

 1

E
Ber

(
L+1
nIS

)[M]


≥ qE

[
2− E

Ber
(

L+1
nIS

)[M]

]
,

from which we have

Pr(Xℓ,Iℓ = 1)− q ≥ q

(
1− E

[
E
Ber

(
L+1
nIS

) [M]

])
. (3)

12
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Combining the upper and lower bound in (2) and (3), respectively, we derive

|Pr(Xℓ,Iℓ = 1)− q| ≤ q

(
max

{
E
[
1− E

Ber
(

L+1
nIS

) [M]

]
,E
[
E
Ber

(
L+1
nIS

) [ 1

M

]]}
− 1

)
≤ q

(
E
[
max

{
E
Ber

(
L+1
nIS

) [M] ,E
Ber

(
L+1
nIS

) [ 1

M

]}]
− 1

)
≤ q

(
E
[
E
Ber

(
L+1
nIS

) [max

{
M,

1

M

}]]
− 1

)
≤ q

(
E
[
max

{
p

q
,
1− p

1− q
,
q

p
,
1− q

1− p

}]
− 1

)
= q

(
max

{
p

q
,
1− p

1− q
,
q

p
,
1− q

1− p

}
− 1

)
.

This concludes the proof.

Lemma 2. For a sample Xℓ transmitted via MRC with posterior and prior being Bernoulli distributions with parameters
q and p, ∆ := q

p −
1−q
1−p and ∆′ := q

(
p
q + 1−p

1−q

)
, we have

|Pr(Xℓ = 1)− q| ≤ ∆′

n2
IS
+O

(∆ +∆2)

√
6p log (2nIS)

nIS

 .

Proof of Lemma 2. The proof starts with the same derivations as for the proof of Proposition 1, which we follow until (1)
to get

Pr(Xℓ,Iℓ = 1) = qE

 1

E
Ber

(
L+1
nIS

)[M]


Since L is a random quantity that follows a Binomial distribution, we bound |Pr(Xℓ,Iℓ = 1) − q| using a concentration
bound on L. The relative (multiplicative) Chernoff bound states that

Pr(|L− ε(nISp)| ≥ εnISp) = Pr(L− ε(nISp) ≥ εnISp) + Pr(L− ε(nISp) ≤ −εnISp)

≤ 2 exp

(
−ε2nISp

3

)
for any ε ∈ [0, 1]. Setting ε =

√
3 log(2/δ)

nISp
implies that

|L− nISp| ≥
√

3nISp log(2/δ)

with probability at most δ. Setting δ = 1
n2

IS
, we obtain for a concentration parameter1 ηδ :=

√
6p log(2nIS)

nIS
that

E := {|L− nISp| ≥ nISηδ}

with probability Pr(E) ≤ 1
n2

IS
.

Then, we can write

Pr(Xℓ,Iℓ = 1) = qE

 1

E
Ber

(
L+1
nIS

)[M]


= qE

 1

E
Ber

(
L+1
nIS

)[M]
· 1{Ec}

+ qE

 1

E
Ber

(
L+1
nIS

)[M]
· 1{E}

 (4)

1Note that we can assume p+ ηδ ≤ 1 and p− ηδ ≥ 0, otherwise the concentration can be trivially bounded.

13
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Assume for now that q < p (we will later proof the opposite event), then 1
E
Ber

(
L+1
nIS

)[M] is strictly non-increasing in L since

q
p < 1−q

1−p , and hence, when Ec holds and hence L concentration around the average that

1

E
Ber

(
L+1
nIS

)[M]
≤ 1

E
Ber

(
(L+1)·(p−ηδ)

nIS

)[M]

=
1

(nIS−1)(p−ηδ)+1
nIS

q
p + nIS−1−(nIS−1)(p−ηδ)

nIS

1−q
1−p

=
1(

p− p
nIS

+ ηδ

nIS
− ηδ +

1
nIS

)
q
p +

(
1− p− 1

nIS
+ p

nIS
+ ηδ − ηδ

nIS

)
1−q
1−p

=
1

1 +
(

q
p −

1−q
1−p

)(
1−p+ηδ−nηδ

nIS

)
= 1 +

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p+ ηδ − nηδ

nIS

)κ

,

where the last step is by Taylor expansion. Using (4) and the monotonicity of 1
E
Ber

(
L+1
nIS

)[M] , we write

Pr(Xℓ,Iℓ = 1) = qE

 1

E
Ber

(
L+1
nIS

)[M]


≤ q

(
1 +

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p+ ηδ − nηδ

nIS

)κ
)

+ qδ
p

q
,

and hence

Pr(Xℓ,Iℓ = 1)− q ≤ δp+ (1− δ)

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p+ ηδ − nηδ

nIS

)κ

Similarly, we get by bounding 1
E
Ber

(
L+1
nIS

)[M] ≥
1

E
Ber

(
(L+1)·(p+ηδ)

nIS

)[M] and using (4) that

Pr(Xℓ,Iℓ = 1)− q ≥ δq
1− p

1− q
+ (1− δ)

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p− ηδ + nηδ

nIS

)κ

⇔

q − Pr(Xℓ,Iℓ = 1) ≤ −δq 1− p

1− q
+ (1− δ)

∞∑
κ=1

(−1)κ+1

(
q

p
− 1− q

1− p

)κ(
1− p− ηδ + nηδ

nIS

)κ

.

When p ≤ q, then 1
E
Ber

(
L+1
nIS

)[M] is strictly non-decreasing, hence, under E , we have

1

E
Ber

(
L+1
nIS

)[M]
≤ 1

E
Ber

(
(L+1)·(p+ηδ)

nIS

)[M]
= 1+

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p− ηδ + nηδ

nIS

)κ

,

and thus from (4) that

Pr(Xℓ,Iℓ = 1)− q ≤ qδ
1− p

1− q
+ (1− δ)

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p− ηδ + nηδ

nIS

)κ

.
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Similarly, we bound 1
E
Ber

(
L+1
nIS

)[M] ≤
1

E
Ber

(
(L+1)·(p+ηδ)

nIS

)[M] to obtain

Pr(Xℓ,Iℓ = 1)− q ≥ qδ
p

q
+ (1− δ)

∞∑
κ=1

(−1)κ
(
q

p
− 1− q

1− p

)κ(
1− p+ ηδ − nηδ

nIS

)κ

⇔

q − Pr(Xℓ,Iℓ = 1) ≤ −qδ p
q
+ (1− δ)

∞∑
κ=1

(−1)κ+1

(
q

p
− 1− q

1− p

)κ(
1− p+ ηδ − nηδ

nIS

)κ

Since 0 ≤ p + ηδ ≤ 1 and 1 ≥ p − ηδ ≥ 0 by an appropriate choice of the concentration intervals, we have by
approximations up to second order terms that

|Pr(Xℓ,Iℓ = 1)− q| ≤ qδmax

{
p

q
,
1− p

1− q

}
+ ηδ

(
q

p
− 1− q

1− p

)
+

(
q

p
− 1− q

1− p

)2

O
(

1

n2
IS

+ η2δ

)

=
q

n2
IS

(
p

q
+

1− p

1− q

)
+O

[(q

p
− 1− q

1− p

)
+

(
q

p
− 1− q

1− p

)2
]√

6p log (2nIS)

nIS

.

This concludes the proof.

Proof of Lemma 1. Using Lemma 2, we can show the following. Recall the following probability law of the stochastic
quantizer Qs(·) (Alistarh et al., 2017) using s > 0 quantization intervals, which takes as input the entry xe of a gradient
x ∈ Rd vector. Let 0 ≤ τe < s be an integer such that τe

s ≤
|xe|
∥x∥ ≤

τe+1
s , then Qs(xe) is defined as Ber

(
|xe|
∥x∥s− τe

)
,

which outputs ∥x∥ · sign(xe)(τe + 1)/s in case of success, and ∥x∥ · sign(xe)τe/s otherwise.

Focusing on an entry xe, we prove a contraction property for MRC with stochastic quantization with posterior qe =
|xe|
∥x∥s − τe, and an arbitrary prior pe. In fact, the MRC methodology Cmrc(·) leads to sampling from an approximate
distribution with parameter q̃e. To be more specific, Cmrc(xe) outputs ∥x∥ · sign(xe)(τe + 1)/s with probability q̃e, and
∥x∥ · sign(xe)τe/s with probability 1− q̃e. We established in Lemma 2 an upper bound on |qe − q̃e|, which will be useful
in the following.

To prove a contraction property of the kind

E[∥Cmrc(x)− x∥22] ≤ (1− δ)∥x∥2,
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we can write

E[∥Cmrc(x)− x∥2] = E

[
d∑

e=1

(Cmrc(xe)− xe)
2

]

= ∥x∥2
d∑

e=1

E

[(
Cmrc(xe)

∥x∥
− xe

∥x∥

)2
]

= ∥x∥2
d∑

e=1

[
q̃e

(
sign(xe)(τe + 1)

s
− xe

∥x∥

)2

+ (1− q̃e)

(
sign(xe)τe

s
− xe

∥x∥

)2
]

= ∥x∥2
d∑

e=1

[
(q̃e − qe + qe)

(
τe + 1

s
− |xe|
∥x∥

)2

+ (1− q̃e − qe + qe)

(
τe
s
− |xe|
∥x∥

)2
]

= ∥x∥2
d∑

e=1

[
(qe + q̃e − qe)

((
τe
s
− |xe|
∥x∥

)2

+
1

s2
+

1

s

(
τe
s
− |xe|
∥x∥

))

+ (1− qe + qe − q̃e)

(
τe
s
− |xe|
∥x∥

)2
]

= ∥x∥2
d∑

e=1

[
(q̃e − q)

(
1

s2
+

1

s

(
τe
s
− |xe|
∥x∥

))
+ qe

(
1

s2
+

1

s

(
τe
s
− |xe|
∥x∥

))
+

(
τe
s
− |xe|
∥x∥

)2
]
, (5)

where

qe

(
1

s2
+

1

s

(
τe
s
− |xe|
∥x∥

))
=

(
|xe|
∥x∥

s− τe

)(
1

s2
+

1

s

(
τe
s
− |xe|
∥x∥

))
= −s

(
τe
s
− |xe|
∥x∥

)
1

s

(
1

s
+

(
τe
s
− |xe|
∥x∥

))
= −

(
τe
s
− |xe|
∥x∥

)2

− 1

s

(
τe
s
− |xe|
∥x∥

)
.

Substituting the result in (5), obtain

E[∥Cmrc(x)− x∥∥2] = E

[
d∑

e=1

(Cmrc(xe)− xe)
2

]

= ∥x∥2
d∑

e=1

[
(q̃e − qe)

(
1

s2
+

1

s

(
τe
s
− |xe|
∥x∥

))
− 1

s

(
τe
s
− |xe|
∥x∥

)]

= ∥x∥2
d∑

e=1

[
(q̃e − qe)

1

s

(
τe + 1

s
− |xe|
∥x∥

)
− 1

s

(
τe
s
− |xe|
∥x∥

)]

≤ ∥x∥2
d∑

e=1

[
|q̃e − qe|

1

s

(
τe + 1

s
− |xe|
∥x∥

)
+

1

s

(
|xe|
∥x∥
− τe

s

)]

≤ ∥x∥2(|q̃e − qe|
d

s2
+

d

s2
),
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where, by Lemma 2, we have for ∆e :=
qe
pe
− 1−qe

1−pe
and ∆′

e := qe

(
pe

qe
+ 1−pe

1−qe

)
that

|q̃e − qe| ≤
∆′

e

n2
IS

+O

(∆e +∆2
e)

√
6pe log (2nIS)

nIS

 .

Let ∆̄ := maxe∈[d]
qe
pe
− 1−qe

1−pe
, ∆̄′ := maxe∈[d] qe

(
pe

qe
+ 1−pe

1−qe

)
, and p̄ := maxe∈[d] pe. We will ensure that ∆̄′

n2
IS
+

O
(
(∆̄ + ∆̄2)

√
6p̄ log(2nIS)

nIS

)
≤ 1 by making each of the individual terms ≤ 1

2 . By choosing nIS ≥
√
2∆̄′, we have ∆̄′

n2
IS
≤

1
2 . To ensure that (∆̄+∆̄2)

√
6p̄ log(2nIS)

nIS
≤ 1

2 , we require log(2nIS)
nIS

≤ 1√
6p̄(∆̄+∆̄2)

. By Weinberger & Yemini (2023, Lemma

15), this holds when nIS = O(log(6p̄(∆̄ + ∆̄2))
√
6p̄(∆̄ + ∆̄2)). Hence, choosing nIS = O(max{

√
2∆̄′, log(6p̄(∆̄ +

∆̄2))
√
6p̄(∆̄ + ∆̄2)}), we have ∆̄′

n2
IS
+O

(
(∆̄ + ∆̄2)

√
6p̄ log(2nIS)

nIS

)
≤ 1. Thus, we have 0 ≤ δ ≤ 1 if 2d

s2 ≤ 1, and hence

s ≥
√
2d. This concludes the proof.

Proof of Theorem 1. Assume a party estimates the Bernoulli distributions Qj with parameters qj held by parties j ∈ [n].
The estimating party shares with each of the other parties a common prior Pj in the form of a Bernoulli distribution
with parameter pj and access to unlimited shared randomness. To help estimate Qj , the j-th party sends K samples
to the estimator through MRC. Therefore, both parties sample KnIS i.i.d. samples Xℓ,i ∼ Pj for ℓ ∈ [K], i ∈ [nIS],
independently and identically from Pj . The party holding Qj constructs for each ℓ ∈ [K] an auxiliary distribution

Wℓ(i) =
Qj(Xℓ,i)/Pj(Xℓ,i)∑nIS
i=1 Qj(Xℓ,i)/Pj(Xℓ,i)

,

from which it samples to obtain an index Iℓ. The index is transmitted to the estimating party, which reconstructs the
corresponding sample Xℓ,Iℓ . Averaging the samples for all ℓ ∈ [K] gives an estimate q̂j of qj , i.e., q̂j = 1

K

∑K
ℓ=1 Xℓ,Iℓ .

This process is repeated for all j ∈ [n].

We assume that |qj − pj | ≤ ρ for all i, j ∈ [n], and that the difference between the priors, is bounded as |pi − pj | ≤ ζ for

all i, j ∈ [n]. The goal is to bound dKL

(
1
n

∑n
j=1 q̂j ||pi

)
from above for any i ∈ [n].

By the convexity of KL-divergence, we have

dKL

 1

n

n∑
j=1

q̂j ||pi

 ≤ 1

n

n∑
i=1

dKL (q̂j ||pi) .

To bound dKL (q̂j ||pi) for any i, j ∈ [n], by the triangle inequality, we can write

|q̂j − pi| ≤ |q̂j − Pr(Xℓ = 1)|+ |Pr(Xℓ = 1)− qj |+ |qj − pj |+ |pj − pi|,

where |q̂j −Pr(Xℓ = 1)| is bounded by Lemma 2. By Hoeffding’s inequality, we have with probability at least 1− δ′ that

|q̂ − Pr(Xℓ = 1)| ≤

√
− ln(δ′/2)

2nIS
.

Thus, with probability at least 1 − δ′, since pj ≤ pi + ζ, we have with ∆j :=
qj

pj−ζ −
1−qj

1−pj+ζ and ∆′
j :=

qj

(
pj+ζ
qj

+
1−pj+ζ
1−qj

)
that

|q̂j − pi| ≤
∆′

j

n2
IS

+O

(∆j +∆2
j )

√
6(pi + ζ) log (2nIS)

nIS

+

√
− ln(δ′/2)

2nIS
+ ρ+ ζ.
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This holds under the assumption that pj > ζ for all j ∈ [n]. By the reversed Pinsker’s inequality, we obtain

DKL (q̂j∥pi) ≤
2

min{pi, 1− pi}

∆′
j

n2
IS

+O

(∆j +∆2
j )

√
6(pi + ζ) log (2nIS)

nIS


+

√
− ln(δ′/2)

2nIS
+ ρ+ ζ

2

.

The statement of the theorem follows by the convexity of KL-divergence.

C Convergence Analysis
Using the contraction property derived in Lemma 1, we can show that a straightforward extension of BICOMPFL-GR-CFL
to error-feedback as used in (Richtárik et al., 2021) leads to the following convergence guarantee. The algorithmic details
of the extension can be found in Algorithm 3. Therefore, assume that for all for x,y ∈ Rd and i ∈ [n], the following
Lipschitz property holds:

∥∇F (x,Di)−∇F (y,Di)∥ ≤ Li∥x− y∥

Let F (θ) := 1
n

∑n
i=1∇F (θ,Di) be the global loss function and L′ :=

√
1
n

∑n
i=1 Li.

Theorem 2. If F ⋆ := infθ∈Rd{F (θ)} > −∞ and E[∥gt − ∇F (θt)∥2] ≤ σ2, then with η ≤
(
L+ L′

√
1−δ

(1−
√
1−δ)2

)−1

,

L = 1, s ≥
√
2d, and nIS satisfying Lemma 1 in every iteration t, we have for Algorithm 3 that

T∑
t=1

E
[
∥F (θt)∥2

]
≤ 2(F (θ0)− F ⋆

ηT
+

σ2

(1−
√
1− δ)T

.

Similarly, guarantees can be derived for other algorithms, such as modified versions of BICOMPFL-PR with error-feedback
and momentum, using Lemma 1. However, we emphasize the generality of BICOMPFL, reaching beyond conventional FL
with stochastic compression to pure stochastic narratives.

D Gradient Descent with a KL-Proximity

Mirror descent employs point-wise optimization in the form of a first-order approximation of F (θ̂t,Di) with proximity
term DF (p, q), where DF is the Bregman divergence associated with function F (·). When F (x) = ∥x∥2, and hence the
Bregman divergence is the Euclidean distance, this is known as gradient descent. Let now p and q be vectors with the entries
corresponding to independent Bernoulli parameters. When we choose F (x) = x log(x)+(1−x) log(1−x), the Bregman
divergence becomes DF (p, q) =

∑d
k=1 DKL (pk∥qk). Hence, we are optimizing with respect to a KL-proximity constraint.

The mapping between dual and primal spaces is then given by ∇F (x) = log(x)− log(1− x) and (∇F (x))
−1

= 1
e−x+1 ,

respectively; also known as the inverse sigmoid and the sigmoid functions.

E Block Allocation
The simplest yet effective strategy for block allocation is to partition the model into equally-sized blocks of size d/B
for MRC (Fixed). The partitioning into blocks is required to make MRC practically feasible in this setting. It is known
that for vanishing MRC error, the number of samples nIS from a block pti,u,b of the prior is supposed to be in the order

of exp
(
DKL

(
qti,b∥pti,u,b

))
, where qti,b is the b-th block of posterior qti . It was observed by (Isik et al., 2024) that the

KL-divergence decreases as the training progresses with the global model used as a prior, which is intuitive since the
local training will change the posterior less and less as training converges. To adapt the block size according to the
divergence from the posterior with respect to the prior, (Isik et al., 2024) proposed an adaptive block allocation strategy
(Adaptive), where upon realizing a large deviation from the target KL-divergence per block, clients partition their model
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Algorithm 3 BICOMPFL-GR-CFL with stochastic quantization Qs(·) and EF21 from (Richtárik et al., 2021)

Require: Both clients and federator initialize the same global model θ0 using a shared seed
Ensure: Set t = 0, clients set prior pt = θ̂0 = θ0,∀i ∈ [n], clients compute and broadcast v0

i = Cmrc(Qs(g
t
i), p

t), with
gti the local gradient for θ0; hence, v0 = 1

n

∑n
i=1 v

0
i public

1: Update ∀i : θ̂t+1 = θ̂t − ηvt+1

2: repeat
3: for Client i ∈ [n] do
4: Compute gradient gti by local training over L local iterations
5: Stochastic compression qti ← Qs(g

t
i − vt

i)
6: Sample indices Ibi,ℓ, ℓ ∈ [nUL], b ∈ [B] from qti with prior pt and transmit to federator to reconstruct q̂ti = Cmrc(q

t
i , p

t)

7: Update vt+1
i = vt

i + q̂ti
8: end for
9: Federator reconstructs and computes vt+1 = vt + 1

n

∑n
j=1 q̂

t
j from {Ibi,ℓ}

10: Federator updates θt+1 = θt − ηvt+1

11: Federator relays to client j the other clients’ indices {Ibi,ℓ}ℓ∈[nUL],b∈[B],i∈[n]\{j}
12: for Clients i ∈ [n] do
13: Reconstruct and compute vt+1 = vt + 1

n

∑n
j=1 q̂

t
j from {Ibi,ℓ}

14: Update θ̂t+1 = θ̂t − ηvt+1 from {Ibi,ℓ}
15: end for
16: Clients and federator set prior pt = θ̂t+1

17: t← t+ 1
18: until Convergence

into blocks with equal sums of parameter-wise KL-divergences and transmit the block intervals to the federator. The
federator aggregates the indices of all the clients, and broadcasts the updated block allocation. We propose in this work
a low complexity solution that adapts the block size according to the average KL-divergence per block (Adaptive-Avg).
This alleviates the cost of computing and transmitting the exact block partitions, where the transmission of each block size
requires log2(bmax) bits, with bmax the maximum pre-defined block size. Instead, the transmission of one size is enough in
our solution. If the average KL per block DKL

(
qti,b∥pti,u,b

)
deviates more than a given factor, the clients request to update

the blocks. In the next iteration, each client proposes a block size, and the federator averages and broadcasts an updated
size.

F Additional Experimental Details
We use the cross-entropy loss and a batch size of 128 in all our experiments. We use Adam (Kingma & Ba, 2015) as an
optimizer with learning rate η = 0.0003 for all non-stochastic methods, and η = 0.1 for probabilistic mask training. For
non-stochastic FL, we use a federator (server) learning rate of 0.1, i.e., the clients’ gradients are averaged, and the federator
updates the global model with learning rate 0.1, and with a learning rate of 0.005 for BICOMPFL-GR with SignSGD. For
M3, we use a federator learning rate of 0.02 to obtain reliable results. For LIEC and CSER, we use an average period
of 50 global iterations (cf. (Cheng et al., 2024; Xie et al., 2020)). For M3, we use TopK with K = ⌊d/n⌋. To run the
simulations, we use a cluster of different architectures, which we list in the following table.
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CPU(s) RAM GPU(s) VRAM
2x Intel Xeon Platinum 8176 (56 cores) 256 GB 2x NVIDIA GeForce GTX 1080 Ti 11 GB
2x AMD EPYC 7282 (32 cores) 512 GB NVIDIA GeForce RTX 4090 24 GB
2x AMD EPYC 7282 (32 cores) 640 GB NVIDIA GeForce RTX 4090 24 GB
2x AMD EPYC 7282 (32 cores) 448 GB NVIDIA GeForce RTX 4080 16 GB
2x AMD EPYC 7282 (32 cores) 256 GB NVIDIA GeForce RTX 4080 16 GB
HGX-A100 (96 cores) 1 TB 4x NVIDIA A100 80 GB
DGX-A100 (252 cores) 2 TB 8x NVIDIA Tesla A100 80 GB
DGX-1-V100 (76 cores) 512 GB 8x NVIDIA Tesla V100 16 GB
DGX-1-P100 (76 cores) 512 GB 8x NVIDIA Tesla P100 16 GB
HPE-P100 (28 cores) 256 GB 4x NVIDIA Tesla P100 16 GB

Table 1: System specifications of our simulation cluster.

The details of the CNN architectures used in our experiments are summarized in the following. The parameter count is
61706 for LeNet5, 1933258 for 4CNN, and 2262602 for 6CNN.

Table 2: LeNet5 Architecture Overview

Layer Specification Activation
5x5 Conv 6 filters, stride 1 ReLU, AvgPool (2x2)
5x5 Conv 16 filters, stride 1 ReLU, AvgPool (2x2)
Linear 120 units ReLU
Linear 84 units ReLU
Linear 10 units Softmax

Table 3: 4-layer CNN (4CNN) Architecture Overview

Layer Specification Activation
3x3 Conv 64 filters, stride 1 ReLU
3x3 Conv 64 filters, stride 1 ReLU, MaxPool (2x2)
3x3 Conv 128 filters, stride 1 ReLU
3x3 Conv 128 filters, stride 1 ReLU, MaxPool (2x2)
Linear 256 units ReLU
Linear 256 units ReLU
Linear 10 units Softmax

Table 4: 6-layer CNN (6CNN) Architecture Overview

Layer Specification Activation
3x3 Conv 64 filters, stride 1 ReLU
3x3 Conv 64 filters, stride 1 ReLU, MaxPool (2x2)
3x3 Conv 128 filters, stride 1 ReLU
3x3 Conv 128 filters, stride 1 ReLU, MaxPool (2x2)
3x3 Conv 256 filters, stride 1 ReLU
3x3 Conv 256 filters, stride 1 ReLU, MaxPool (2x2)
Linear 256 units ReLU
Linear 256 units ReLU
Linear 10 units Softmax

For the sake of clarity, in the paper we restrict the analysis to a fixed number of importance samples nIS, block sizes B, and
choice of priors pti,u, p

t
i,d. Our experiments have shown that, while increasing nIS beyond the ones used in our algorithms
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Algorithm 4 Local Training at Client i

Require: Model θ̂i,t
1: Map model to scores in the dual space: s(0)i,t = σ−1(θ̂i,t) = log

(
θ̂i,t

1−θ̂i,t

)
2: for Local iterations m ∈ [L] do
3: s

(ℓ)
i,t = s

(0)
i,t − η∇

s
(ℓ−1)
i,t

F (θ̂
(m−1)
i,t ,Di), where θ̂

(m−1)
i,t = σ(s

(ℓ−1)
i,t )

4: end for
5: Map back to primal space: qti = σ(s

(L)
i,t )

slightly improves the convergence over the number of epochs, the convergence with respect to the communication cost
did not significantly improve. The block size is mainly limited by the system resources at hand, and one would choose
the largest possible for best efficiency while complying with memory resources. We investigated many different prior
choices and found the former global model to be reasonably good in almost all cases. With high heterogeneity, it might
be beneficial to use different convex combinations as priors, which mix the former global model with the latest posterior
estimate of a certain client, but the gains we experienced were minor. Hence, we settled on the former global estimate for
simplicity in presenting the algorithm.

G Federated Probabilistic Mask Training
The idea in federated probabilistic mask training (FedPM) (Isik et al., 2023) is to collaboratively train a probabilistic mask
that determines which weights to maintain from a randomly initialized network. The motivation stems from the lottery-
ticket hypothesis (Frankle & Carbin, 2019), which claims that randomly initialized networks contain sub-networks capable
of reaching accuracy comparable to that of the full network. The weights w of the network are randomly initialized at
the start of training, and remain fixed. The federator and clients only train a mask, which determines for each parameter
whether it is activated or not, i.e., identifying an efficient subnetwork within the given fixed network. The probabilistic
masks θt are described by Bernoulli distributions, i.e., θt ∈ [0, 1]d contains a Bernoulli parameter to be trained for each
weight of the network. These parameters determine the probability of retaining the corresponding weights. During infer-
ence, the weights w are masked with samples xt ∈ {0, 1}d ∼ θt from the distribution θt, i.e., the inference is conducted on
a network with weights w⊙ xt. In FedPM, clients sample from their locally trained models, and send these samples to the
federator, which, in turn, updates the global model by averaging these samples. The communication cost of this scheme
is fixed for all iterations, even though the communication cost can be reduced since the KL-divergence between the global
model and the locally trained models diminishes as the training progresses.

We adopt the following federated learning procedure for collaboratively learning network masks, and highlight in the
following the parallels to mirror descent by referring to primal and dual spaces. Starting from a common model θ0, at
iteration t, each client i locally trains the model θ̂i,t in L local iterations. To enable gradient descent, the model θ̂i,t is
mapped to scores s

(0)
i,t in a dual space by the inverse Sigmoid function s

(0)
i,t = σ−1(θ̂i,t) = log(θ̂i,t) − log(1 − θ̂i,t).

The scores are then trained for L local iterations m ∈ [L] by computing the gradient ∇
s
(ℓ−1)
i,t

F (θ̂
(m−1)
i,t ,Di), where the

straight-through estimator is used to compute the gradient of the non-differentiable Bernoulli sampling operation based
on the distribution θ̂

(m−1)
i,t = σ(s

(ℓ−1)
i,t ), i.e., the gradient equals the Bernoulli parameter. By mapping the model back to

the primal space, each client i obtains a model update in terms of a posterior qti = σ(s
(L)
i,t ). The client training process is

summarized in Algorithm 4.

H Minimal Random Coding (MRC)
Isik et al. (2024) proposed a method, called KL minimization with side information (KLMS), to reduce the cost of trans-
mitting the local models qti to the federator. Consequently, the communication cost depends on the KL-divergence between
the desired distribution and the common prior. This method utilizes the common side information available at both the
clients and the federator, as well as shared randomness. The idea is that instead of sampling locally and sending the
samples to the federator, the federator in the KLMS method samples from the desired distribution through MRC. In a
nutshell, MRC (Havasi et al., 2019) is based on importance sampling (Srinivasan, 2002) and makes use of a common prior
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to sample from a desired distribution. Consider two distributions P and Q, where P is known to both parties, and Q is
only known to the client. To make the federator sample from Q, both parties sample nIS samples {Xi}i∈[nIS] from P .
The client forms an auxiliary distribution W (i) = Q(Xi)/P (Xi)∑nIS

i=1 Q(Xi)/P (Xi)
capturing the importance of the samples. A sample

from W is fully described by its index i, which can be transmitted with log2(nIS) bits, and approximates a sample from Q.
Chatterjee & Diaconis (2018) shown that importance sampling with posterior Q and prior P requires nIS to be in the order
of Θ(exp(DKL (Q∥P ))) , where DKL (Q∥P ) denotes the KL-divergence between distributions Q and P . In what follows,
we will also denote the KL-divergence between two Bernoulli distributions Q and P with parameters q and p by dKL (q||p).

I Additional Experiments
We provide in the following experiments for both uniform (i.i.d.) and heterogeneous (non-i.i.d.) data distributions for
training LeNet5 and a 4-layer CNN on MNIST, a 4-layer CNN on Fashion MNIST, and a 6-layer CNN on CIFAR-10. The
details of the neural networks can be found in Tables 2 to 4. For each setting and method depicted, we show the average
of three simulation runs with different seeds. We plot for each setting the test accuracies over the communication cost in
bits, and the maximum test accuracy over the bitrate. We provide tables summarizing the maximum test accuracies with
their standard deviation over multiple runs, the total bitrates and the bitrates split into uplink and downlink. The overall
bitrates per parameter (bpp) are computed assuming point-to-point links between all participants, i.e., uplink and downlink
costs have equal weight. For the case when a broadcast (BC) link between the federator and the clients is available, the
bitrate per parameter for all baseline schemes reduces by a factor of n. BICOMPFL-GRprofits similarly from the broadcast
link, but BICOMPFL-PRcannot profit due to the absence of shared randomness, giving the same overall bitrate compared
to the point-to-point link scenario. We highlight for each of the measures the scheme with the best result. Consistently
throughout all experiments, BICOMPFL achieves order-wise savings in the bitrates per parameter while reaching state-
of-the-art accuracies in the classification task. While the sampling can introduce an additional computational overhead
depending on the implementation, the storage cost is similar to the baselines. Since we leverage as priors the former global
model, the additional storage cost incurred is limited to storing until the next iteration the estimate of the former global
model at each client, i.e., where the training started, which is usually not a bottleneck. This can be cheaper than some
baselines, which require storing data for momentum and error-feedback.
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Figure 3: MNIST LeNet i.i.d.

For LeNet5 on MNIST, it can be observed that all our proposed methods converge significantly faster to satisfying ac-
curacies with respect to the communication cost, while achieving higher maximum accuracies after 200 epochs than the
non-stochastic baselines. Partitioning the model on the downlink can help to further reduce the communication cost with
only a minor loss in performance, especially in the i.i.d. setting. For non-i.i.d. data distribution, the loss in performance
is larger than for i.i.d. distribution. However, at the beginning of the training, the model improves faster with respect to
the communication cost than all other schemes. The bitrates are comparable for all our methods, with the exception of
BICOMPFL-PR-Fixed-SplitDL. Further, BICOMPFL-GR-Reconst-Fixed does not suffer notable performance degradation
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from employing an additional MRC step (especially for i.i.d. data allocation).

Table 5: MNIST LeNet i.i.d.

Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.978 ± 0.1 64.0 35.0 32.0 32.0
Doublesqueeze 0.981 ± 0.1 2.0 1.1 1.0 1.0
Memsgd 0.977 ± 0.1 33.0 4.2 1.0 32.0
Liec 0.983 ± 0.1 4.5 2.5 2.3 2.3
Cser 0.982 ± 0.09 34.0 4.3 1.0 33.0
Neolithic 0.982 ± 0.1 4.0 2.2 2.0 2.0
M3 0.925 ± 0.2 15.0 2.2 8.0 7.1
BiCompFL-GR-Adaptive 0.992 ± 0.0006 0.36 0.068 0.036 0.32
BiCompFL-GR-Adaptive-Avg 0.992 ± 0.0003 0.29 0.055 0.029 0.26
BiCompFL-GR-Fixed 0.992 ± 0.0002 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.99 ± 0.0002 0.34 0.063 0.031 0.31
BiCompFL-PR-Fixed 0.99 ± 0.0004 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.988 ± 0.0009 0.063 0.063 0.031 0.031
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Figure 4: MNIST LeNet non-i.i.d.
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Table 6: MNIST LeNet non-i.i.d.

Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.911 ± 0.2 64.0 35.0 32.0 32.0
Doublesqueeze 0.899 ± 0.2 2.0 1.1 1.0 1.0
Memsgd 0.906 ± 0.2 33.0 4.2 1.0 32.0
Liec 0.866 ± 0.2 4.5 2.5 2.3 2.3
Cser 0.744 ± 0.2 34.0 4.3 1.0 33.0
Neolithic 0.904 ± 0.2 4.0 2.2 2.0 2.0
M3 0.697 ± 0.2 15.0 2.2 7.3 7.2
BiCompFL-GR-Adaptive 0.965 ± 0.02 0.42 0.079 0.042 0.37
BiCompFL-GR-Adaptive-Avg 0.966 ± 0.02 0.29 0.056 0.029 0.26
BiCompFL-GR-Fixed 0.96 ± 0.03 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.949 ± 0.03 0.34 0.063 0.031 0.31
BiCompFL-PR-Fixed 0.966 ± 0.02 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.926 ± 0.04 0.063 0.063 0.031 0.031

For 4CNN trained on MNIST, the differences between the proposed approaches become more visible. In the i.i.d. setting,
we can observe that the adaptive block allocations (both Adaptive and Adaptive-Avg) can drastically reduce the average
bitrate in BICOMPFL-GR. Partitioning the model in the downlink (BICOMPFL-PR-Fixed-SplitDL) improves the accuracy
over bitrate significantly compared to BICOMPFL-PR-Fixed.
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Figure 5: MNIST 4CNN i.i.d.
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Table 7: MNIST 4CNN i.i.d.

Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.994 ± 0.06 64.0 35.0 32.0 32.0
Doublesqueeze 0.994 ± 0.1 2.0 1.1 1.0 1.0
Memsgd 0.994 ± 0.08 33.0 4.2 1.0 32.0
Liec 0.993 ± 0.07 3.7 2.0 1.8 1.8
Cser 0.993 ± 0.06 33.0 4.3 1.0 32.0
Neolithic 0.994 ± 0.08 4.0 2.2 2.0 2.0
M3 0.989 ± 0.2 16.0 2.2 8.4 7.4
BiCompFL-GR-Adaptive 0.996 ± 0.0001 0.18 0.034 0.018 0.16
BiCompFL-GR-Adaptive-Avg 0.995 ± 0.0001 0.15 0.029 0.015 0.14
BiCompFL-GR-Fixed 0.995 ± 0.0002 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.995 ± 0.0001 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.995 ± 0.0002 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.995 ± 0.0002 0.062 0.062 0.031 0.031
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Figure 6: MNIST 4CNN non-i.i.d.

In the non-i.i.d. case of 4CNN on MNIST, the adaptive average allocation strategy provides a significant reduction in the
bitrate for BICOMPFL-GR, with similar loss in the accuracy as SplitDL for BICOMPFL-PR. In this setting, it is also
apparent that the reconstruction in BICOMPFL-GR degrades the performance without gains in the bitrate compared to the
proposed Algorithm 1.
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Table 8: MNIST 4CNN non-i.i.d.

Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.983 ± 0.1 64.0 35.0 32.0 32.0
Doublesqueeze 0.982 ± 0.2 2.0 1.1 1.0 1.0
Memsgd 0.982 ± 0.2 33.0 4.2 1.0 32.0
Liec 0.963 ± 0.2 4.5 2.5 2.3 2.3
Cser 0.915 ± 0.1 34.0 4.3 1.0 33.0
Neolithic 0.983 ± 0.2 4.0 2.2 2.0 2.0
M3 0.929 ± 0.3 15.0 2.2 7.8 7.1
BiCompFL-GR-Adaptive 0.984 ± 0.009 0.27 0.051 0.026 0.24
BiCompFL-GR-Adaptive-Avg 0.974 ± 0.02 0.067 0.013 0.0068 0.061
BiCompFL-GR-Fixed 0.985 ± 0.008 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.977 ± 0.01 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.984 ± 0.009 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.971 ± 0.02 0.062 0.062 0.031 0.031
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(b) Test Accuracy over Bitrate

Figure 7: Fashion MNIST 4CNN i.i.d.
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Table 9: Fashion MNIST 4CNN i.i.d.

Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.927 ± 0.07 64.0 35.0 32.0 32.0
Doublesqueeze 0.928 ± 0.1 2.0 1.1 1.0 1.0
Memsgd 0.928 ± 0.09 33.0 4.2 1.0 32.0
Liec 0.923 ± 0.08 4.5 2.5 2.3 2.3
Cser 0.92 ± 0.08 34.0 4.3 1.0 33.0
Neolithic 0.928 ± 0.09 4.0 2.2 2.0 2.0
M3 0.892 ± 0.2 16.0 2.2 8.3 7.6
BiCompFL-GR-Adaptive 0.925 ± 0.001 0.31 0.059 0.031 0.28
BiCompFL-GR-Adaptive-Avg 0.927 ± 0.0007 0.31 0.059 0.031 0.28
BiCompFL-GR-Fixed 0.925 ± 0.0007 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.922 ± 0.001 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.924 ± 0.002 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.921 ± 0.002 0.062 0.062 0.031 0.031
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Figure 8: Fashion MNIST 4CNN non-i.i.d.

The results for Fashion MNIST are similar compared to the MNIST case. However, it becomes clear that BICOMPFL-PR
can significantly suffer from the unavailability of shared randomness in terms of the achieved accuracy when data is highly
heterogeneous.
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Table 10: Fashion MNIST 4CNN non-i.i.d.

Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.867 ± 0.1 64.0 35.0 32.0 32.0
Doublesqueeze 0.861 ± 0.2 2.0 1.1 1.0 1.0
Memsgd 0.863 ± 0.2 33.0 4.2 1.0 32.0
Liec 0.853 ± 0.1 4.5 2.5 2.3 2.3
Cser 0.781 ± 0.1 34.0 4.3 1.0 33.0
Neolithic 0.864 ± 0.2 4.0 2.2 2.0 2.0
M3 0.782 ± 0.2 15.0 2.2 8.0 6.9
BiCompFL-GR-Adaptive 0.866 ± 0.03 0.21 0.04 0.021 0.19
BiCompFL-GR-Adaptive-Avg 0.853 ± 0.04 0.11 0.021 0.011 0.1
BiCompFL-GR-Fixed 0.868 ± 0.03 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.86 ± 0.02 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.869 ± 0.03 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.831 ± 0.03 0.062 0.062 0.031 0.031

For 6CNN trained on CIFAR-10, the negative effects of missing global shared randomness and reconstructing in the case
of BICOMPFL-GR are prominent. For non-i.i.d. data distributions, the adaptive average allocation shows improvements
over the fixed or the average block allocation. Partitioning the model is not a viable option in this setting, especially under
non-i.i.d. data.
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Figure 9: CIFAR-10 6CNN i.i.d.
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Table 11: CIFAR-10 6CNN i.i.d.

Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.742 ± 0.1 64.0 35.0 32.0 32.0
Doublesqueeze 0.723 ± 0.1 2.0 1.1 1.0 1.0
Memsgd 0.727 ± 0.1 33.0 4.2 1.0 32.0
Liec 0.684 ± 0.09 4.5 2.5 2.3 2.3
Cser 0.663 ± 0.08 34.0 4.3 1.0 33.0
Neolithic 0.73 ± 0.1 4.0 2.2 2.0 2.0
M3 0.614 ± 0.1 16.0 2.2 8.3 7.5
BiCompFL-GR-Adaptive 0.793 ± 0.002 0.3 0.057 0.03 0.27
BiCompFL-GR-Adaptive-Avg 0.793 ± 0.002 0.32 0.061 0.032 0.29
BiCompFL-GR-Fixed 0.793 ± 0.004 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.777 ± 0.002 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.751 ± 0.003 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.732 ± 0.02 0.062 0.062 0.031 0.031
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Figure 10: CIFAR-10 6CNN non-i.i.d.
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Table 12: CIFAR-10 6CNN non-i.i.d.

Method Acc (mean ± std) bpp bpp (BC) Uplink Downlink

FedAvg 0.599 ± 0.1 64.0 35.0 32.0 32.0
Doublesqueeze 0.575 ± 0.1 2.0 1.1 1.0 1.0
Memsgd 0.589 ± 0.1 33.0 4.2 1.0 32.0
Liec 0.589 ± 0.2 4.5 2.5 2.3 2.3
Cser 0.419 ± 0.09 34.0 4.3 1.0 33.0
Neolithic 0.587 ± 0.1 4.0 2.2 2.0 2.0
M3 0.385 ± 0.1 15.0 2.2 8.3 6.7
BiCompFL-GR-Adaptive 0.655 ± 0.04 0.18 0.034 0.018 0.16
BiCompFL-GR-Adaptive-Avg 0.636 ± 0.05 0.15 0.028 0.015 0.13
BiCompFL-GR-Fixed 0.665 ± 0.03 0.31 0.059 0.031 0.28
BiCompFL-GR-Reconst-Fixed 0.606 ± 0.05 0.34 0.062 0.031 0.31
BiCompFL-PR-Fixed 0.626 ± 0.03 0.34 0.34 0.031 0.31
BiCompFL-PR-Fixed-SplitDL 0.47 ± 0.07 0.062 0.062 0.031 0.031

For completeness, we present in Fig. 11 the test accuracies over the number of trained epochs for all scenarios considered
above. The setting of interest to this work is that of limited communication cost, and in particular, which performance is
achievable given a fixed communication budget. Nonetheless, we can find that our proposed methods are not inferior in
convergence speed over epochs compared to the baselines.
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(a) MNIST LeNet i.i.d.
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(b) MNIST LeNet non-i.i.d.

100 101 102

Epochs

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

FedAvg
Doublesqueeze
Memsgd
Liec
Cser
Neolithic
M3

BiCompFL-GR-Adaptive
BiCompFL-GR-Adaptive-Avg
BiCompFL-GR-Fixed
BiCompFL-GR-Reconst-Fixed
BiCompFL-PR-Fixed
BiCompFL-PR-Fixed-SplitDL

(c) MNIST 4CNN i.i.d.
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(d) MNIST 4CNN non-i.i.d.
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(e) Fashion MNIST 4CNN i.i.d.
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(f) Fashion MNIST 4CNN non-i.i.d.

100 101 102

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

FedAvg
Doublesqueeze
Memsgd
Liec
Cser
Neolithic
M3

BiCompFL-GR-Adaptive
BiCompFL-GR-Adaptive-Avg
BiCompFL-GR-Fixed
BiCompFL-GR-Reconst-Fixed
BiCompFL-PR-Fixed
BiCompFL-PR-Fixed-SplitDL

(g) Cifar-10 6CNN i.i.d.
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(h) Cifar-10 6CNN non-i.i.d.

Figure 11: Test Accuracy over Epochs
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J Ablation Studies

J.1 Number of Clients

We study in what follows the sensitivity to various hyperparameters of our algorithms. For comparability, we conduct all
experiments on the model 4CNN, Fashion MNIST, and i.i.d.data. We plot for all experiments the accuracies over the num-
ber of epochs, and over the communication cost in bits. We first evaluate in Fig. 12 the effectiveness of BICOMPFL-PR
and BICOMPFL-PR for different numbers of clients. It can be found that both algorithms exhibit satisfying performance
even for n = 50, given that the same data is now distributed on more clients. The overall communication cost increases by
roughly the factor of the increase in the number of n. To illustrate this further, we additionally plot in Fig. 13 the bitrates
per parameter.
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Figure 12: BICOMPFL-GR and BICOMPFL-GR With Different Number of Clients
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Figure 13: Bitrates for BICOMPFL-GR and BICOMPFL-GR With Different Number of Clients

J.2 Optimization of the Prior

As described in the main body of the paper, BICOMPFL-PR allows for optimizing the choice of the prior at the clients by
optimizing the convexity parameter λ that mixes the global model estimate with the posterior transmitted by the client an
iteration ahead, i.e., pti,u = λθ̂i,t+(1−λ)q̂ti to reduce the communication cost. To evaluate the potential of this method, we
optimize λ so that it minimized the KL-divergence between the current posterior qti (to be transmitted) and the prior pti,u,
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representative for the uplink communication cost. The KL-minimizing λ is transmitted to the federator, which is necessary
for the federator to reconstruct the importance samples. This optimization is conducted at each iteration individually at the
clients. We present in Fig. 14 the performance of this method compared with the algorithms that use as priors exclusively
the global model estimates of the clients. Note that optimizing the prior individually at the clients is only possible for
BICOMPFL-PRẆe plot the performance of BICOMPFL-GR for reference only. To assess the potential, we ignore for
the moment the cost of transmitting λ, which could be reduced by further compression techniques and leveraging the
inter-round dependencies of the choice of λ.
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Figure 14: BICOMPFL-PR With and Without Optimization over the Prior. Optimization over the Priors is denoted by OP.

It can be found that, while optimizing the prior improves the accuracy over epochs and with respect to the communication
cost compared to BICOMPFL-PR the improvements are rather insignificant. We therefore present for clarity the algorithm
with a fixed choice of the prior as the former global model estimate, which additionally reduce the computation overhead
at the clients by avoiding the optimization over λ. Nonetheless, we note that in certain edge cases, there can be merit in the
optimization approach, for instance when the number nDL of samples on the downlink is very small, and hence the global
model estimate is inaccurate.

J.3 Number of Samples

We continue to assess the impact of the number nDL of samples on the downlink. We therefore evaluate the performance
of BICOMPFL-PR for nDL ∈ {5, 10, 20}. We evaluate the differences on BICOMPFL-PRṪhe results in Fig. 15 reflect
the obvious: the larger nDL, the better the accuracy when plotted over the number of epochs. On the contrary, the larger
nDL, the larger the communication cost per epoch. The final accuracies do not show substantial differences, and hence,
nDL = 5 is sufficient in this setting. To avoid assessing our method overly optimistic and provide a fair comparison to other
methods, we choose nDL = 10 in all our experiments, noting that the communication can further be reduced in certain
scenarios by lowering nDL without notable performance loss.
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Figure 15: BICOMPFL-PR for Different Number of Downlink Samples and a Single Uplink Sample.

J.4 Block Size

We compare in Fig. 16 the performance of BICOMPFL-GR for different block sizes BS = d/B ∈ {128, 256, 512}. As
expected, fixing nIS, larger block sizes worsen the performance of the algorithm when evaluated over the number of
epochs. However, larger block sizes simultaneously reduce the communication cost, and can hence be beneficial in many
scenarios. However, we also note that larger block sizes comes at the expense of increases sampling complexities, and
hence, the maximum block sizes are also dominated by the resources of the clients and the federator.
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Figure 16: BICOMPFL-GR With Fixed Block Allocation for Varying Block Sizes (BS) d/B.

J.5 Number of Importance Samples

In Fig. 17, we study the sensitivity of our algorithms with respect to the number of importance samples nIS at the example of
BICOMPFL-GR. While larger number of nIS slightly improves the performance as of the epoch number, the improvements
do not outweigh the additional communication costs. Overall, our algorithm proves rather stable within reasonable ranges
for nIS. We fix in all our experiments nIS = 256, presenting a good trade-off between performance and efficiency.
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Figure 18: BICOMPFL-GR with Varying Number of Importance Samples nIS per Block.
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Figure 17: BICOMPFL-GR with Varying Number of Importance Samples nIS per Block.

J.6 Learning Rate

Our main claims are centered around the per-client bitrates per parameter, rendering the choices of learning rate secondary
to our reasoning. Nonetheless, we tune the learning rates of all methods so that the baselines and BICOMPFL achieve
roughly the same final accuracies, allowing a fair comparison of resulting communication costs. We analyze the impact
of the learning rate choice on BICOMPFL in Fig. 18, for η ∈ {0.01, 0.05, 0.1, 0.2, 0.5}. It is particularly noteworthy
that BICOMPFL exhibits stable performance across most learning rates we study, which we attribute to the regularization
effects that occur in stochastic FL, detailed in the main body of the paper. Only for η = 0.01, the final performance is
decreased, indicating that BICOMPFL is not able to escape local optima in this setting. Although η = 0.05 provides the
best communication efficiency, we choose a moderate learning rate of η = 0.1 not to overestimate our method compared
to other approaches.
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