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Abstract. Digital pathology opens new pathways for computational al-
gorithms to play a significant role in the prognosis, diagnosis, and anal-
ysis of cancer. However, handling large whole slide images (WSIs) is a
vital challenge that these algorithms encounter. In this paper, we propose
a novel technique that creates a compressed representation of histology
images. This representation is composed of cellular maps and compresses
the WSIs while keeping relevant information at hand including the spatial
relationships between cells. The compression technique is used to predict
the status of ER & PR expressions from H&E WSIs. Our results show that
the proposed compression technique can improve the prediction perfor-
mance by 11-26%.

Keywords: Computational Pathology · ER/PR prediction · Compressed
representations · Breast cancer.

1 Introduction
Processing the histopathological whole slide images (WSIs) is a challenging
task due to their multi-gigapixel sizes. A naı̈ve solution to handle these im-
ages in machine learning (ML) models is down-sampling them to a small size
image. However, down-sampling destroys high amount of contextual informa-
tion and may lead to poor results. In practice, analysing the WSIs at cellular
level is essential to understand the tumour micro-environment or TME [3]. An
alternative solution for handling these images in the ML models is by splitting
them into small image patches of manageable size. Despite the fact that this so-
lution is popular, the relation between different patches and their surrounding
contextual information is lost.

In [21], the authors compress the image using self-supervised approaches
where a CNN is trained in a self-supervised manner and then the feature maps
that are generated by the CNN are used as the compressed representation of a
given image. Streaming convolution and gradient check-pointing used by [15]
is a technique which reduces the memory consumption at the cost of increasing
computations. In this approach, large images at multiple branches are fed into
the model. Multiple Instance Learning (MIL) approaches presented in the com-
putational pathology literature have also been widely used recently for dealing
with weakly-supervised tasks by treating WSIs as bags of images [2]. However,
these approaches lack interpretability and do not account for information about
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nuclei positions and categories. Moreover, most of them ignore the relational
information within the WSIs.

In this paper, we propose a novel representation (CellMaps) that not only re-
duces the image size, but also represents the WSIs based on the cellular density.
The aim of CellMaps is to keep all the relevant information intact while reduc-
ing the image size. This representation keeps the cellular level details, besides
capturing spatial information from the original image. In our experiments, we
show that representing the cellular density along with the contextual informa-
tion improves the final predictions. CellMaps can be used for compressing im-
ages at different desired levels, depending on the task and available computa-
tional capacity.

We employ our approach for the evaluation of Oestrogen Receptor (ER) and
Progesterone Receptor (PR) expression which are essential prognostic and pre-
dictive factors for breast cancer (BC) patients [7]. Based on the level of positivity
of ER/PR, chemotherapy or endocrine therapy is often determined [12].

BC tissues are stained with Immunohistochemistry (IHC) biomarkers in
routine clinical practice, followed by a visual assessment by pathologists es-
timating ER/PR expression distribution across all the tumour tissues [13]. This
practice poses two main challenges: First, the IHC makers are costly and labori-
ous. Second, it may face lack of reproducibility as it relies on visual analysis by
the pathologists. Therefore, objective automated techniques that can overcome
these challenges are in high demand, specially for predicting ER/PR expres-
sions which are costly and highly subjective tasks.

Recent studies proposed techniques and automated tools predicting the hor-
monal expression in BC tissue. Several studies conduct experiments on tissue
micro-array (TMA) core images [20, 17, 18]. On the other hand, some studies
have been conducted at the WSI level. Naik et al. [14] reported the state-of-
art results with an AUC of 0.92, but the approach was trained in a supervised
manner on detailed regions of interest (ROIs) that were annotated by patholo-
gists. Rawat et al. [16] perform a study on a large cohort. Nevertheless, their ap-
proach neither includes the entire extracted patches from the WSI nor set clear
exclusion criteria. The approach randomly selected patches that may face repro-
ducibility issues. Likewise, Lu et al. [11] proposed the Slide Graph technique,
which is based on graph convolutional neural network (GCN). Their technique
processes the entire WSI to predict PR and Her2 status, with AUCs of 0.73 and
0.62, respectively. To the best of our knowledge, ours is the first study to pre-
dict ER as well as PR by including the entire WSIs with clear exclusion criteria,
which is more relevant clinically.

The main contributions of this paper are as follows:

1. We present a novel compression technique (CellMaps) that represents image
patches by the cellular density, while keeping the spatial information intact.

2. We present a pipeline predicting the status of ER and PR in TCGA BC cohort
using CellMaps of WSIs, with specific and clear exclusion criteria.

3. We show that the prediction performance is improved when using the com-
pressed images, compared to using the raw H&E image.
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The paper is organised as follows: In Section 2, we describe the materials
and methods, followed by a discussion of our results in Section 3. We conclude
the paper in Section 4.
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Fig. 1. An overview of the proposed pipeline. Step III generates the CellMaps compressed
representation for every patch that is then fed into a model for patch level prediction.

2 Materials and Methods

2.1 Materials

We gathered 356 WSIs from The Cancer Genome Atlas (TCGA), multi-center
data [8]. The collected cohort is a subset of diagnostic cases of TCGA. Addi-
tionally, the corresponding molecular status (i.e., ER and PR status) of the co-
hort were also collected.

2.2 The Proposed Methodology

Our pipeline consists of five main phases. We first exclude fatty regions from
the study as they relatively provide less cellular information, compared to other
tissue types. Afterwards, we extract the location of five different cell types in a
WSI in order to build a cell map. The representation of the cell map is shown in
Fig 2, where each cell type is represented in a single layer in the cell map image.
We then extract a fixed tile size from each WSI in our study so that we maintain
a fixed input size for our model. Next, we utilised the widely-used Resnet18 to
classify the cell map representation of each extracted tile into +ve or -ve based
on the patient-level label from TCGA. We train two separate models for each
task (i.e., ER and PR classification). Lastly, we aggregate the tile results at the
patient level.
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Fig. 2. An example of how a tile and is compressed. (a) is an image tile. (b) shows a set of
images after extracting the nuclei locations and types. (c) is the CellMaps representation
of the tile.

(I) Fatty regions exclusion. During tile extraction, we build a mask identifying
eleven tissue types, one of which is adipose (i.e., fatty) tissue. The Resnet18

model was pre-trained with Kather100k dataset [9]. A tile is excluded if the
majority of its tissue (50% or more) contains fatty regions.

(II) Detection and classification of nuclei. To find the locations and types of
cells in a given image, we leveraged HoVer-Net [5]. The HoVer-Net model was
trained with the PanNuke dataset [4] consisting of more than 200k labelled nu-
clei from 19 different tissue types.

Having identified the location and type of each nucleus presented in a given
tile, we generate a preliminary cell map representation. This representation has
three dimensions: x, y and z, see Fig 2 (b). The x and y dimensions of the pre-
liminary representation are the same as the x and y of the original tile shape,
presented in Fig 2 (a), whereas, the z dimension corresponds to the number of
cell types, each of which is represented in a single layer. In our experiment, we
have five different cell types (neoplastic, inflammatory, connective, dead, and
non-neoplastic), so the representation has five different layers, i.e., z = 5.

(III) Construction of cell maps. The aim of this stage is to compress the ex-
tracted tiles into a smaller size that the classification model (in stage (IV) of our
pipeline) can handle. The representation (as in Fig 2 (c)) shows the cellular den-
sity of a given tile for many cell types. It has three dimensions: compressed(x),
compressed(y) and z.

CellMaps can compress a given image/tile into a smaller size but keeping
cellular level details, along with their spatial maps to keep the information
about cell-cell interactions. The technique utilises average filtering, which com-
putes the number of cells presented in a pre-defined size of the average fil-
ter. Then each pixel in the representation image is assigned a ratio (between 0
and 1) based on the cell density of the original image corresponding to a win-
dow filter size. The larger the filter size, the smaller the CellMaps representation.
Fig 3 shows an example of tile and its representations with various sizes using
CellMaps.
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Fig. 3. An example of tile and its representations with various filter sizes (i.e., size of avg
filter) using CellMaps. The filter sizes are 160, 320, and 480 pixels, from the top row to
the bottom. The images from each cell type is concatenating to build the compression
representation, as shown in the first row.

The CellMaps assists ML models in handling the entire WSIs (or large tile im-
ages) without losing the detailed cellular level information. In our experiment,
we choose to deal with large tiles in order to overcome the WSI size variations
in TCGA data.

(IV) Model prediction. Resnet18 [6] is employed for binary classification of
the CellMaps representations of the extracted tiles into +ve or -ve. The tiles’
ground truth labels are based on the patient level ER and PR status. Two sepa-
rate models are being trained (i.e., one for ER and the other for PR status).

(V) Aggregation. The different tiles belonging to one WSI are aggregated to
find the ER/PR status at the patient level. We apply majority voting (MV) of
the tile predictions. A WSI is considered positive if more than 50% of tiles are
predicted positive by the models in stage IV.

3 Experiments and Results

3.1 Datasets

The TCGA collected cases are randomly divided into three datasets: (1) training
(50% of cohort), (2) validation (25%), and (3) testing (25%). Table 1 shows the
datasets used for both experiments (i.e., ER & PR prediction). We maintained
the same distribution of positive and negative classes among all datasets.

Our experiment can be designed at compressing each WSI as a single CellMaps
representation, i.e., each WSI is compressed and then fed into the model as one
single image. However, this is challenging due to size variations in WSIs. To
overcome this challenge, the experiment was designed at dividing the WSIs
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Table 1. The training, validation, and testing datasets.

Molecular ER PR

Classes (+)ve (-)ve Total cases (+)ve (-)ve Total cases

Training 139 39 178 120 57 177
Validation 69 19 88 60 29 89
Testing 70 20 90 60 29 89

Entire 278 78 356 240 115 355

into tiles. Nevertheless, we chose to extract large tiles, sized 9600 × 9600 at 40×
magnification, so that the model captures significant contextual information
during training. Table 2 presents the number of tiles extracted for each dataset.

Table 2. Number of extracted tiles for each dataset.

Molecular Training Testing Validation Entire dataset

ER 8, 026 3, 730 4, 387 16, 143
PR 8, 212 3, 922 3, 929 16, 063

3.2 Experimental setup

Resnet18 was chosen as a binary classifier for its robustness, reliability, and
wide usage in medical imaging applications [1, 10, 19]. The model was trained
for 100 epochs, and we added a dropout layer (with the configuration of 0.2)
before the last fully connected layer to avoid over-fitting. The learning rate was
initialised with a value of 0.01, and a scheduler was implemented to decrease
the learning rate after each epoch such that the model becomes more stable at
the later training stages. The threshold determining the tile positivity are set
based on the best performance on the validation dataset.

3.3 Evaluation of classification performance

The significance of excluding fatty region. We conducted several experiments, one
of which was conducted without filtering out the fatty regions (FRs) of WSIs in
order to draw a fair evaluation of adding this stage to our proposed pipeline.
Table 3 shows the performance of two experiments: (1) with and (2) without the
FR exclusion. The four columns to the right side present the performance with-
out excluding FRs, while the columns to the left side present the performance
with the exclusion of FRs.

Fig 4 presents the area under the receiver operating characteristic (AUC-
ROC) for validation and testing datasets for both ER and PR experiments. The
bottom row presents the performance when excluding the FRs, whereas the
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Table 3. The performance of both experiments, with and without excluding FRs.

Experiment With excluding FRs Without excluding FRs

Molecular ER PR ER PR
Dataset ValidationTestingValidationTestingValidationTestingValidationTesting

Accuracy 0.83 0.81 0.69 0.66 0.84 0.78 0.64 0.674
Precision 0.88 0.84 0.79 0.72 0.83 0.80 0.7 0.72

Recall 0.91 0.93 0.73 0.8 1.00 0.96 0.8 0.85
f1-score 0.89 0.88 0.76 0.76 0.91 0.87 0.75 0.78
AUC 0.83 0.77 0.73 0.65 0.83 0.72 0.69 0.61

WITHOUT
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Validation 
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ER PR
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Fig. 4. The ROCs of the pipeline before and after excluding the FRs

top row shows the experiment results without filtering the FRs. We can see a
noticeable improvement when excluding the FRs, with 4-5% in the AUCs of the
testing datasets for ER and PR predictions.

Table 4. The performance when using raw H&E images.

Molecular ER PR
Datasets Validation Testing Validation Testing

Accuracy 0.7 0.63 0.63 0.62
Precision 0.86 0.77 0.82 0.73
Recall 0.73 0.75 0.66 0.67
f1-score 0.79 0.76 0.73 0.7
AUC 0.62 0.51 0.72 0.54

Comparing CellMaps vs raw (H&E) images. To examine the relevance of our
CellMaps technique, another experiment was also conducted. We compare the
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performance using the raw H&E images (instead of the compressed images)
with the same proposed pipeline, including the filtration of the FRs. The aggre-
gation of the raw images are also based on the majority vote. Table 4 shows a
considerable drop of (11 − 26%) in the AUCs for the prediction of ER and PR.

The sensitivity of filter size. Different filter sizes were implemented so as to eval-
uate its sensitivity. Table 5 presents four different filter sizes: 160, 320, 480, and
640 pixels at 40× magnification. The Table does not show a major drop/jump
in the performance (i.e., AUCs of testing datasets) when changing the filter size
of the compression technique (CellMaps). These results indicate that the model
captures the cell density of a given image, regardless of the level of details.
Hence, using our CellMaps input images can be compressed to the desired size
that the ML model can handle without destructing the performance.

Table 5. The performance when changing the filter size.

Molecular Performance
metrics

filter size
(in pixels at 40× magnification)

160 320 480 640

ER

Accuracy 0.72 0.74 0.72 0.81
Precision 0.85 0.85 0.83 0.84
Recall 0.79 0.81 0.81 0.93
f1-score 0.81 0.83 0.82 0.88
AUC 0.72 0.75 0.71 0.77

PR

Accuracy 0.68 0.64 0.60 0.66
Precision 0.71 0.71 0.75 0.72
Recall 0.88 0.78 0.61 0.80
f1-score 0.79 0.74 0.67 0.76
AUC 0.65 0.65 0.61 0.65

4 Conclusions and Future Work

Computational algorithms encounter a crucial challenge while processing multi-
gigapixel histology images. Most machine learning or ML models cannot han-
dle such large sizes, requiring a division into small patches. Instead, one may
design an algorithm handling large images but down-sampled. ML models
usually capture patterns from the detailed information in histology images.

In this paper, we presented a novel compression technique, the CellMaps.
Our technique is based on average-filtering, yet efficient as it keeps spatial in-
formation intact which is useful for analysing the TME. It does not only reduce
the image size, but also represents the cellular density, which can improve the
prediction performance, as our results show. In future, we will explore the effi-
cacy of this representation for other tasks in computational pathology.
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