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Abstract

The joint visual-language model CLIP has enabled new
and exciting applications, such as open-vocabulary seg-
mentation, which can locate any segment given an arbi-
trary text query. In our research, we ask whether it is
possible to discover semantic segments without any user
guidance in the form of text queries or predefined classes,
and label them using natural language automatically? We
propose a novel problem zero-guidance segmentation and
the first baseline that leverages two pre-trained general-
ist models, DINO and CLIP, to solve this problem with-
out any fine-tuning or segmentation dataset. The general
idea is to first segment an image into small over-segments,
encode them into CLIP’s visual-language space, translate
them into text labels, and merge semantically similar seg-
ments together. The key challenge, however, is how to
encode a visual segment into a segment-specific embed-
ding that balances global and local context information,
both useful for recognition. Our main contribution is a
novel attention-masking technique that balances the two
contexts by analyzing the attention layers inside CLIP. We
also introduce several metrics for the evaluation of this
new task. With CLIP’s innate knowledge, our method can
precisely locate the Mona Lisa painting among a museum
crowd (Figure |Z|) More results are available at https:
//zero—guide—-seg.github.io/|

1. Introduction

Semantic segmentation is a core computer vision prob-
lem that seeks to partition an image into semantic regions.
Traditionally, the semantic classes of interest need to be pre-
defined and are limited in number [22]]. Earlier methods
thus cannot generalize beyond the training classes. With re-
cent advances in joint vision-language representation learn-
ing, e.g., CLIP [23], newer methods [21], can suc-
cessfully predict segments corresponding to arbitrary text
queries in a novel task called open-vocabulary segmenta-
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Figure 1. Zero-guidance Segmentation segments input images
and generated text labels for all segments without any guidance
or prompting. Our method produces these results using only pre-
trained networks with no fine-tuning or annotations.

tion. These segmentation methods are guided by a text
query, which describes what already exists in the image and
must be provided by the user. Another meaningful mile-
stone, however, is how we can segment an image with-
out user input or guidance like text queries or predefined
classes, and label such segments automatically using natu-
ral language. Our work provides the first baseline for this
novel problem, referred to as zero-guidance segmentation.

Our work is inspired by a recent research direction that
solves segmentation by leveraging CLIP [36, [39]; how-
ever, our key distinction is that we require no segmentation
datasets, no text query guidance, and no additional training
or fine-tuning. This problem is challenging partly because
CLIP has been trained with image captions that globally de-
scribe the scenes and provide no spatially specific informa-
tion for learning segmentation. Surprisingly, we show that it
is possible to distill the learned knowledge from two gener-
alist models: a self-supervised visual model, DINO [2], and
a visual-language model, CLIP [23]], to solve zero-guidance
segmentation without further training.

The overall idea is to first over-segment an image into
small segment candidates, then translate each segment into
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words, and finally join semantically similar segments to
form the output segments. In particular, we identify seg-
ment candidates by clustering deep pixel-wise features from
a DINO that takes as input our image. Despite using no
training labels, DINO has been shown to produce class-
discriminative features, allowing unsupervised segmenta-
tion of the primary object in an image [2] or part co-
segmentation across images [[L]. However, our main chal-
lenge lies in the next step, which maps each segment into
a meaningful representation that can be later translated to
words. We leverage CLIP’s joint space to model this inter-
mediate representation.

A naive way to project a segment to CLIP’s joint space
is to input the segment directly into CLIP’s image encoder,
but this entirely ignores the surrounding context needed for
object recognition and disambiguation [38l |5, 4]. Alterna-
tively, masking can be applied inside the attention layers, as
done with a transformer-based segmentation network [6].
However, when applied to CLIP’s encoder, which was not
trained for segmentation, these techniques struggle to pro-
duce segment-specific embeddings due to the domination
of global context information. Evidence in [40} 37, [13]] also
suggests that a transformer trained with image-level annota-
tions, such as CLIP, may lose local information in its tokens
in later layers. We discovered similar issues: masking in
earlier layers removes global contexts and hurts recognition,
whereas masking in later layers fails to focus the embedding
on a given segment, resulting in all embeddings describing
the same dominant object in the image.

Another difficulty in balancing global and local contexts
is that different objects may require different degrees of
context balancing. For small objects, their CLIP embed-
dings can be dominated by global contexts, which describe
other prominent objects in the scene. This phenomenon
matches the characteristics of CLIP’s training captions,
which often ignore unimportant objects in the image. As a
result, less prominent objects may require less of the global
contexts to highlight their semantics and local contexts.

To solve this, we introduce a novel attention-masking
technique called global subtraction, which helps adjust the
influence of global contexts in the output embedding. The
key idea is to first estimate the saliency or the presence of a
given segment in the global contexts by analyzing CLIP’s
attention values. Then, this saliency value will be used
to determine how much global contexts should be attenu-
ated in the segment’s embedding. The resulting embedding
in CLIP’s joint vision-language space allows us to readily
translate it to text labels with an existing image-to-text gen-
eration algorithm [30]. And finally, we merge semantically
similar segments with simple thresholding by considering
both their visual and text similarities.

To evaluate our algorithm that can output arbitrary text
labels, we also propose new evaluation metrics. Evaluating

an algorithm under this setup is not straightforward as pre-
dicted labels may not necessarily match predefined labels
in the test set but can still be correct. This may result from
the use of synonyms, such as “cat” vs. “feline,” or differ-
ences in label granularity, such as “cat” vs. “orange cat” or
“cat’s nose” or “kitten.” Generally, there is no single correct
level of granularity, and each dataset may arbitrarily adopt
any level. To address this, we propose to first map the pre-
dicted semantic labels to the existing ones in a given test
set. After that, we can use standard measurements, such
as segment loU, to evaluate the results as if the algorithm
performs segmentation with the predefined test classes. We
also introduce Segment Recall, which measures how often
ground-truth objects are discovered, and Text Generation
Quality, which tests the quality of our embedding technique
given ground-truth oracle segmentation.

Our technique can automatically segment an image into
meaningful segments as shown in Figure [I] without any
supervision or text guidance. There are still performance
gaps between our technique and other supervised methods
or methods fine-tuned on segmentation datasets—but none
can specifically solve our problem that lacks user guidance.
Nonetheless, we provide a detailed analysis on obstacles
that lie ahead as well as ablation studies for the first ap-
proach to this problem. In summary, our contributions are:

* We introduce the first baseline to a novel problem,
zero-guidance segmentation, which aims to segment
and label an input image in natural language without
predefined classes or text query guidance. Our method
does not require a segmentation dataset or fine-tuning.

* We propose a novel attention-masking technique to
convert a segment into an embedding in CLIP’s joint
space by balancing global and local contexts.

* We present evaluation metrics for the proposed setup.

2. Related Work

Open-vocabulary segmentation. This problem aims to
predict segments in an input image that correspond to a set
of input texts not necessarily seen during training. Prior
solutions often involve a shared latent space between the
image and text domains. OpenSeg [11] uses datasets of
images, captions, and class-agnostic segmentation masks
to train a mask proposal network before matching the pre-
dicted masks with nouns in the captions using a shared la-
tent space. OVSeg [21] built a segmentation pipeline that
fine-tunes CLIP on masked images to make it more suitable
for masked image classification. Xu et al. [36] proposed
a zero-shot segmentation baseline by matching CLIP’s em-
beddings of masked images to text embeddings of classes.
ZegFormer [8]] performs class-agnostic pixel grouping to
create segments and uses CLIP to classify them. Lseg [19]

1163



trains an image pixel encoder that encodes each pixel into
an embedding that is close to the corresponding text labels’
embeddings in CLIP’s space. These methods show impres-
sive results but still demand expensive segmentation labels.

To avoid the use of segmentation datasets, GroupViT
[34]] proposes a new method based on hierarchical vision
transformers where the visual tokens represent arbitrary re-
gions instead of patches in a square grid. By using only
image-caption pairs, GroupVit can match each region from
its visual tokens to input text prompts. Zhou et al. [39]
modifies CLIP for text-guided segmentation and employs
self-training to improve the results. In contrast, our work
requires neither additional training nor text prompts but can
discover semantic segments and label them automatically.

Attention masking in transformer. Masking self-
attention is a common practice in NLP to input a word
sequence more efficiently [31]. In computer vision, few
explorations exist: Mask2Former [6]] solves supervised
segmentation by masking self-attention layers of a trans-
former decoder, achieving state-of-the-art results. Unlike
Mask2Former, which is trained on specific segmentation
datasets, our method and the base models we used (CLIP
and DINO-ViT) do not have any explicit segmentation su-
pervision. We found that using the masking mechanism of
Mask2Former yields noisy CLIP embeddings, which are of-
ten heavily biased toward the foreground objects. This can
be solved by our proposed global subtraction technique.

Image segmentation with DINO. DINO [2] is a model
that uses self-distillation to learn rich features of an input
image with no supervision and has been used as a pre-
trained network or representation extractor in many tasks
[32,133,129,[14]. Caron et al. [2] demonstrated that DINO’s
features effectively capture object boundaries and scene lay-
out [2], and Hamilton et al. [14] further showed that these
features can perform segmentation of not only foreground
objects but also other elements in the background, such as
the sky. Our method uses a simple DINO-based clustering,
inspired by Amir et al. [[1]], which requires no training and
offers reasonable results. Note that our key contribution in
attention masking is orthogonal to this clustering choice.

Image-to-text generation with CLIP. The recent ad-
vent of CLIP leads to new approaches in text-image tasks,
including generating text from an input image. ClipCap
[23] trains a mapping network that joins CLIP with a pre-
trained language model, GPT-2, and performs image cap-
tioning with faster training. ZeroCap [30]] performs zero-
shot image caption by optimizing the value matrix V' in each
attention module in GPT-2 to guide the embedding of the
output text toward the target image’s embedding. The out-
put texts display knowledge learned from CLIP’s vast and
diverse training set, such as names of celebrities and pop
culture references. This is a new ability unseen in older im-
age captioning methods. Note that our contribution is not

directly in text generation, rather we focus on inferring se-
mantic segments and mapping them to CLIP’s latent space.

3. Approach

Given an input image, our goal is to partition this im-
age into semantic segments and label each segment us-
ing words in natural language. Our framework consists of
four stages: 1) we identify segment candidates based on
clustering deep per-pixel features of DINO-VIT [2], 2) we
map each segment to an embedding in the CLIP’s visual-
language space using our proposed attention masking tech-
nique, 3) we translate each CLIP embedding into words by
optimizing a generative language model with an existing
technique, ZeroCap [30]], and 4) we merge segments with
similar semantics.

3.1. Finding segment candidates with DINO

The goal of this step is to partition the input image into
small over-segments, which will be merged in the final step.
To do so, we first extract spatial features of the input image
from DINO-VIT. In particular, we use the “key” values from
the last attention layer as the features (following [1]]), which
have a total dimension of (#patchx (). Unlike in standard
use of ViT, we use a small stride of two instead of the patch
size, resulting in a dense feature map (% X % x ().

Given this dense feature map, we initially assign each
feature vector (1 x (') its own cluster and perform agglomer-
ative clustering by repeatedly merging any two clusters with
the smallest combined feature variance. We stop this pro-
cess when the target number of clusters n = 20 is reached,
and we additionally merge clusters with similar feature vec-
tors based on their cosine similarity, detailed in Appendix
The output segments from this step may break single
objects into small parts, which lack semantic meanings by
themselves. However, our decision to oversegment first al-
lows merging in the semantic space of CLIP later on, which
takes into account both vision and language semantics and
can be done with simple thresholding.

3.2. Transforming segment candidates into CLIP’s
vision-language embeddings

To map a given segment to CLIP’s vision-language
space, our idea is to feed the entire input image into CLIP’s
image encoder while masking some of the encoder’s atten-
tion layers with an alpha mask corresponding to the given
segment. One major consideration is which layers should
the masking be applied to properly balance global and lo-
cal contexts. This turns out to be challenging: masking in
earlier layers destroys global contexts, whereas masking in
later layers eliminates local contexts. This finding agrees
with several studies [40, 37, [13]] showing that vision trans-
formers trained for classification suffer from an “attention
collapse,” where the attention in deeper layers becomes near
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Figure 2. Pipeline Overview. Our method first segments an input image by clustering learned per-pixel features extracted from DINO. The
input image is then fed into CLIP’s image encoder. In this step, the produced segmentation masks are used to modify CLIP’s attention to
provide embeddings that are more focused to each segment. The resulting embeddings are then used to optimize a trained language model
to generate texts closest to these embeddings. Lastly, segments with similar embeddings and text outputs are merged together to form more

coherent segmentation results.

uniform and all tokens converge to the same value. Another
study [28] also suggests that CLIP may lack the ability to
maintain local information. In Appendix [A] we show how
CLIP’s attention maps become less localized in later layers.

Masking in the middle layers also performs poorly be-
cause different objects still require different degrees of con-
text balancing depending on how salient they are in the
scene. For example, the embedding of a small, obscure ob-
ject in the background can be dominated by global contexts,
which describe other prominent objects in the scene. As a
result, these small objects may require more de-emphasis of
the global contexts for their semantics to emerge.

Based on this observation, we propose a simple tech-
nique to estimate the saliency of each segment and use it to
modulate how much global information should be removed
or subtracted from individual tokens during attention mask-
ing. We next explain how we apply masking to the attention
module, and then our global subtraction technique.

3.2.1 Masking in self-attention module

Given a logit vector x € R"™ and a flattened mask M €
[0, 1]™, we first define the masked softmax operator as:

e oM

MaskedSoftmax(x, M) = —5 )
> (€% x Mj)

(1

where © denotes the element-wise multiplication. To
mask a standard attention module, we compute ATMasked —
MaskedSoftmax (Q; K™ //d);, M) V for every token i. In
practice, when the mask size is larger than the visual patch
grid, we first downsample M to the same size using area
interpolation. We also prepend one extra element to the flat-
tened M for the global token, which is always set to one in
our algorithm, and thus #tokens = #patches + 1.

4  Attention layer |
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Figure 3. Attention masking and global subtraction. To encode
a segment into CLIP’s space, we pass the input image into CLIP’s
image encoder and mask self-attention map in some layers with
the segment’s mask. We apply this masking inside masked soft-
max function while still computing normal softmax. Cosine sim-
ilarity between masked and unmasked output is used to estimate
the saliency of the region. This similarity determines how much
global context needs to be reduced in global subtraction.

3.2.2 Global subtraction

To balance global and local contexts in our output em-
bedding, we design a proxy function that estimates the
“saliency” of each segment or the segment’s presence in the
global contexts. This value will be used to determine how
much global contexts should be removed from the attention
output. Note that our saliency value is only defined with re-
spect to the attention mechanism in CLIP and is unrelated
to other uses of “saliency” in the literature [[16}[12].

We perform the following operations separately for each
attention layer [ using its own saliency value S;. We com-
pute S; as the cosine similarity between the masked atten-
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tion output A™*kd and unmasked attention output A =
Softmax(QK™ /\/dy)V atlayer I, averaged over all tokens
(we omit the subscript [ from A and A™*%*¢ for simplicity):

#tokens

1
E cossim(A;, ATasked), 2)
i=1

- #tokens

S

The output of the attention layer [ is computed by sub-
tracting the unmasked attention output of the global token
Ay from the masked attention A™masked.

Aou[ _ Amasked _ ’LUA(), (3)
where w = exp(—(S; + 1)%/20?). 4)

This global subtraction weight w is computed by applying
a Gaussian function with a standard deviation o to (S; +1),
making w highest when §; = —1. In other words, when
an object is not salient, we remove more global contexts
from its attention output. We apply these masking opera-
tions starting from attention layer 21, which is chosen em-
pirically, to the last layer 24. Finally, the embedding of
our segment is the output from our masked CLIP’s encoder,
which additionally applies linear projection to the global to-
ken value from the last attention layer.

3.3. Text generation from CLIP’s embedding

To translate our segment embedding in CLIP’s joint
space into words, we use an existing image-to-text gener-
ation algorithm, ZeroCap [30]. This method uses a pre-
trained language model GPT-2 [26] along with CLIP to op-
timize for a sentence that describes an input image. This is
done by optimizing specific activations of GPT-2 (K and V
matrices) to complete an initial prompt of “Image of a ...”
and minimizing the difference between the output sentence
and the input image in CLIP’s joint space.

3.4. Merging segment candidates

In this step, we merge segments that are semantically
similar or small segments that may not be so meaningful
by themselves from our oversegmentation. We compute the
similarity score between two segments using the average of
two measures: 1. the cosine similarity between their vi-
sual embeddings (Section and 2. the cosine similarity
between their predicted texts’ embeddings computed from
CLIP’s text encoder. In our implementation, we also reduce
the number of merging combinations by limiting the pairing
option. In particular, we first continue the agglomorative
clustering in the first step (Section [3.T) until there is a sin-
gle cluster representing the entire image. By keeping track
of the merging history, we obtain a binary tree where each
node represents a segment and each parent is the merged
segment of its children. We limit the pairing to only be-
tween siblings in this tree and recursively merge segments

up the tree when their similarity score is at least Tierge. The
final embedding of a merged segment is computed by pass-
ing the corresponding merged mask through the embedding
pipeline (Section[3.2)) and is then used to generate the final
predicted text.

4. New Evaluation Protocol

This section introduces new metrics to evaluate the qual-
ity of the output segments and their corresponding text la-
bels. To overcome the evaluation challenges due to the use
of synonyms or the difference in label granularity, such as
“car” vs “wheel,” we first map the predicted labels to the
predefined ones in the test set (Section [.1)) and verify the
reassignment using thresholding or human evaluation (Sec-
tion[4.2)) before applying standard metrics such as IoU.

4.1. Label reassignment

Given a predicted segment .S; and its predicted text 77,
our goal is to relabel S; with T3, which should be one of the
test labels. We describe two reassignment techniques based
on text-to-text and segment-to-text similarity.

Text-to-text similarity (TT). This technique relabels .S;
with the ground-truth label that is closest to 7; in the em-
bedding space of Sentence-BERT [27]], a pre-trained text
encoder widely used in NLP for computing text similarity
[10. 20L [7]]. Formally, the new label T3 is computed by

T = arg max [cossimSBERT(Ti, t)] ; )
ters

Segment-to-text similarity (ST). This technique rela-
bels S; with the ground-truth label that is closest to S; in
the CLIP’s joint image-text space [[L5,[17]. That is,

T = arg max [cossimCUP(Si, t)} , 6)
teTs

where cossimCLIP(s, t) uses CLIP’s image encoder for s and
text encoder for ¢. Note that this relabeling is commonly
used in open-vocabulary settings [21 [11]], but it does not
consider our predicted label 7; during relabeling. Nonethe-
less, this technique is still valuable as it offers a comple-
mentary assessment that does not involve text generation,
which is based on prior work (Section @]) or text-to-text
mapping, which can be challenging and ambiguous even for
human evaluators (Section [6).

4.2. Reassignment verification

For evaluation, we need to verify that the reassigned la-
bel 77" is sufficiently close to the original label 7; or its seg-
ment S;. We provide two kinds of verification. The first is
based on simple thresholding on the cosine similarity using
Tsgert and 7cpyp for TT and ST reassignments, respectively
(Appendix [C). The second involves human judgement, in
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which we ask human evaluators to rate how well the reas-
signed label describes its segment on a scale of 0-3, ranging
from O: incorrect, 1: partially correct, 2: correct but too
general/specific, 3: correct. The full definitions are in Ap-
pendix [F] Multiple thresholds will be used to report scores.

4.3. Metrics

Segmentation IoU evaluates the quality of the output
segments in terms of Intersection-over-Union (IoU) against
the ground-truth segments in each test image. Given a set
of predicted segments with reassigned labels 7, segments
with the same label 7™ are merged to form a single segment
for the label. Then, IoU for each image can be computed
using a standard protocol [9].

Segment Recall measures how many objects labeled in
the ground truth are discovered. This metric disregards any
extra labels predicted by our method that are not part of the
ground truth labels. We consider each merged segment of
the same reassigned label a True Positive if its IoU against
the corresponding ground-truth segment is greater than 7y,y.
Segment Recall is the rate of True Positive over the number
of grounding segments.

Text Generation Quality measures the quality of text
generation given an oracle segmentation. That is, we feed
each ground-truth segment into our model and compute
the cosine similarity between our predicted label and the
ground-truth label. If the value is higher than Tspggrr, it
is considered a True Positive. The score is the True Posi-
tive rate over the entire test set. This metric evaluates our
attention-masking and text generation components indepen-
dent of the segment generation process (Section [3.1)).

5. Experiments

Datasets. We evaluate our results on two commonly
used segmentation datasets: Pascal Context [24] and Pas-
cal VOC 2012 [9]. Pascal Context contains 5,000 valida-
tion images with segmentation ground truths of 459 ob-
ject classes for scene segmentation task. We use PC-59,
the commonly used subset with 59 most common objects,
following [11} 34, 21]], as well as the full PC-459. Pascal
VOC (PAS-20) is a segmentation dataset with 1,500 image-
segment validation pairs of 20 object classes. For both
datasets, we report our results on the validation splits, as the
test splits are not publicly available, but the validation splits
were never used for hypertuning. For comparison with our
own variations and a crop-and-mask baseline, we test on the
first 1,000 images of Pascal Context dataset and full 1,500
image for Pascal VOC dataset (Section[5.3)). We use the full
datasets when compared to prior work (Section [5.4).

Table 1. Quantitative results on 1,000 random images from PAS-
59’s validation split. We use constants (7sgert and 7crp) and mul-
tiple human verification scores (h) for thresholding.

Text-text reassign. Segment-text reassign.
Threshold: const. h>1 constt h=3 h>2 h>1

IoU 11.2 11.0 193 142 209 227
Recall 10.3 9.8 180 132 180 194

Table 2. Distribution of human rating scores on the quality of the
predicted labels (O: incorrect, 1: partially correct, 2: correct but
too general/specific, 3: correct).

Human rating 0 1 2 3
% of labels 36.0 20.8 239 19.3

5.1. Zero-guidance segmentation results

We present our qualitative results in Figure Our
method can discover semantic segments and densely la-
bel them with diverse types of labels, including names
of objects, animal breeds, facial expressions, and places.
More results are in Appendix [G| In Table[T} we report IoU
and Recall scores using different reassignment and verifi-
cation techniques (Section 4.2), computed on 1,000 ran-
domly sampled images from PC-59. We observe that ST
tends to perform reassignment better than TT, as evident by
its higher scores. Reassigning words like ‘leg’ to the cor-
rect animal class in the ground-truth set can be challenging
when relying solely on text (TT), as it lacks any additional
context. But ST can access other visual information within
the segment, which better facilitates reassignment.

5.2. User study

We evaluate the quality of predicted labels using hu-
man evaluation. Each segment and its predicted label were
shown to three distinct human evaluators, who were asked
to rate how well the label describes the segment on a scale
of 0-3, similar to the process in Section[4.2]except we show
the predicted label T; instead of the reassigned label T7".
Full details and the score definitions are in Appendix

Table 2 shows that human evaluators found about
43% of our results to be ‘correct’ or ‘correct but too
generic/specific’ and 64% to be at least ‘partially correct.’

We provide example images and their scores given by
the human evaluators in Figure [§] According to the result,
most of our score-0 labels are single-word adjectives, such
as ‘black’, or collective nouns, such as ‘group’. Another
kind of score-0 labels is caused by biases toward stereotyp-
ical appearances of objects, such as when a pet dog was
mislabeled as ‘stray’ due to its shabby appearance (row
4). Some of score-1 labels correspond to descriptions or
abstract nouns that are related to their segments but may
not fully describe them, such as ‘reflection’, ‘dining’, and
‘sunny’, and some other labels describe specific but incor-
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Figure 4. Qualitative results. Our method gives reasonable segments and output free-language text labels representing all regions. The
labels can describe regions by different kinds of descriptions, such as object names, facial expressions, locations, car models, or even

animal breeds.
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Figure 5. Ablation results. Comparison between the results from different segment encoding methods. The crop-and-mask baseline often
outputs text labels that is not relevant to segments/input images. Our method without global subtraction suffers from global leak and often
mislabels non-salient objects. Without semantic merging, text outputs look good, but it tends to over-segment.

rect types of objects, such as ‘uber’ or ‘military’. Most labels from traditional segmentation methods.
of our score-2 labels are nearly accurate, but the segments
may incompletely or excessively cover the referred objects, 5.3. Ablation study

such as ‘lush moss’ and ‘few puppies’ (row 2). Most of our
score-3 labels accurately represent their segments, such as
‘plane’, and they can be descriptive even on background ob-
jects, such as ‘sandy beach’ and ‘crowd observing’, unlike

We compare our method with alternative attention-
masking methods, which include 1) cropping and masking
the input image to fit the segment region [36]], 2) our method
without global subtraction, and 3) our method without the
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Figure 6. Examples of segmentation results that were evaluated by
human evaluators with scores ranging from 3 (correct) to 0 (incor-
rect). The definitions of the scores can be found in Appendix [{|

Score 0

merging step. Note that we also apply the same merging in
the crop-and-mask baseline for a fair comparison. We show
the results in Figure 5]and in Table[3]

In Figure 5] the crop-and-mask baseline often returns
text labels that are unrelated to the segments, like ‘video’ in
column 2-4. Without global subtraction, our method often
fails to recognize objects in the background due to the leak
of global contexts. For example, the sky in column 1 is la-
beled ‘tower’, and almost everything in column 2 is labeled
‘room’. Our full pipeline yields reasonable results, and can
label ‘ladder’, ‘lamp’, ‘floor’, and ‘reader’ correctly.

In Table 3] we report results based on ST reassignment
and constant thresholding. Our method outperforms all al-
ternative masking techniques in terms of IoU, Recall, and
Text Generation Quality scores on PC-59. Global subtrac-
tion also helps improve both IoUcpp by 3.0-3.1 points. On
PAS-20, our method achieves a slightly lower IoU than not
using global subtraction (1.1 lower). Upon inspection, we
observe that the 20-class PAS-20 tends to label only a few
foreground objects while ignoring much of the background
(see Appendix [D), and not using global subtraction may
preserve the embedding of these few objects better. This
bias toward primary objects, however, would not be benefi-
cial if the goal is to discover all semantic objects.

5.4. Comparison to zero-shot open-vocab baseline

As a reference, we provide a comparison with GroupVit
[34], which solves a related but different segmentation prob-
lem, open-vocabulary segmentation. This task requires text
queries to specify which objects to segment, although the
queries can be arbitrary or unseen during training. Our
method, on the contrary, predicts arbitrary text labels at in-

Table 3. Ablation study of our CLIP’s mask attention technique.
IoU and Recall are computed with ST and constant thresholding.

PC-59 PC-459 PAS-20
Method IoU. Recall. TGQ IoU, IoU.

Crop and Mask 121 102 169 54 14.0
Ours w/o globsub. 14.5 150 11.8 7.2 21.2
Ours w/o merge 16.4 11.8 - 10.2 18.3
Ours 175 150 190 113 20.1

Table 4. Comparison to GroupVit [34]], which solves a related but
different segmentation problem and requires input text queries.
*denotes scores computed on 1,000 random test images. IoU. and
IoUy, are IoU with constant thresholding or human verification.
GroupVit’s numbers have been updated according to [33]]

PC-59 PC-459  PAS-20
Method IoU. IoUp > IoUp >y ToU. ToU,
Group Vit 25.9 - - 49 50.7
Ours 19.6  20.9* 22.7* 11.3 20.1

ference time and is not directly comparable using the same
standard benchmarks. Nonetheless, our proposed relabel-
ing procedure can allow useful comparative analysis against
open-vocabulary baselines on the same benchmarks.

Table [ shows that GroupVit obtains a better IoU on
PAS-20 with 20 classes. However, our method is signifi-
cantly narrowing the gap on PC-59, especially with human-
threshold IoU, and our IoU with constant-threshold even
surpasses GroupVit’s on challenging PC-459, which has
much more classes (459). Figure |Z| shows that our method
can discover more objects and provide more fine-grained la-
beling, while GroupVit labels only a few objects and does
not label every part of the image.

5.5. Comparison to supervised baselines

Table 5] presents an IoU comparison with existing super-
vised open-vocabulary baselines on three datasets based on
the numbers presented in [21]. Unlike our approach, these
methods require segmentation annotations (or pretrained
segmentation models) during training and text queries to
guide the segmentation. Our IoU scores in Table [3 are
computed using segment-to-text [oU with a constant thresh-
old 7crrp = 0.1 and human score > 1. There is still a
gap in performance between our unsupervised method and
these supervised baselines, though our method performs
only slightly worse on the more challenging PC-459.

6. Discussion and Analysis

Mismatched text labels during evaluation. Evaluation
in our new setup is still challenging, despite using label re-
assignment. For example, in Figure([8] our algorithm breaks
down the ‘building’ ground-truth segment into ‘roof’ and
‘pub’, which are correct. But ST reassignment assigns ‘pub’
to ‘sign’, which is still technically correct but not counted
toward our IoU score for ‘building’. Another problematic
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Figure 7. Qualitative comparison to GroupVit [34]. Despite achieving lower IoU scores, our method can discover objects beyond the
labels in the dataset, such as ‘hay’ and ‘mirror’, and can provide more fine-grained labels, such as ‘stool’.

Table 5. IOU scores comparison between supervised open-
vocabulary segmentation baselines (trained with segmentation la-
bels) and our unsupervised method.

Method PAS-20 PC-59 PC-459
Lseg 47.4 - -
SimBaseline 74.5 - -
ZegFormer [8] 80.7 - -
OpenSeg - 42.1 9.0
OVSeg 94.5 55.7 12.4
Ours - IoU, 20.1 19.6 11.3
Ours - IoUy, > - 22.7 -

Ground truth

Figure 8. Label reassignment issue. Our predicted labels ‘roof”
and ‘pub’ are correct but are not matched to the ground-truth class
‘building’ during label reassignment.

Our result

class is ‘person’ whose parts like ‘face’, ‘hair’, ‘shirt’ ap-
pear distinct in CLIP’s space and may not be mapped to
‘person’ (Figure ). To overcome this challenge, we may
need a new kind of embedding space that understands the
hierarchical nature of object parts.

Global context leakage. Some background segments
that share boundaries with primary objects can be misla-
beled due to the influence of global contexts as shown in
Figure[9] Another problem that can cause context leakage is
the low-resolution 24x24 image grid of CLIP visual tokens.
As we downsample our segment masks to fit this grid, we
lose masking precision and information can leak between
neighboring segments.

 recording
M typical hairstyle
W real nose

m selfie

m smiling denise
shirt

real hair

russian
2007
- jewish
M young cancer

Merge aiI

Global Leak

Figure 9. Failure cases. 1) Classes that have many visually dis-
tinct parts, such as ‘person’, are difficult to reassign labels cor-
rectly. 2) Background regions that share boundaries with salient
objects are still prone to global context leakage. 3) Semantic merg-
ing may fail when the text outputs of the same object give different
descriptions.

Merge fail due to different labels of the same object.
Our over-segment outputs may use a wide variety of de-
scriptions for the same object, such as car model and car
color. These segments may fail to merge into a single ob-
ject during the merging step (see Figure [0).

Conclusion. We have presented the first framework for
zero-guidance segmentation, a novel problem that seeks to
segment and label an image using natural language auto-
matically. We leverage two generalist models, DINO and
CLIP, and propose a technique to map a given segment to
CLIP’s joint space by masking CLIP’s attention, allowing
zero-shot segmentation without the need for any segmenta-
tion dataset or fine-tuning. We also introduce a new evalua-
tion protocol for this problem and will release our code.
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