
Published as a conference paper at ICLR 2023

ONLINE LOW RANK MATRIX COMPLETION

Prateek Jain

Google Research
Bangalore, India
prajain@google.com

Soumyabrata Pal

Google Research
Bangalore, India
soumyabrata@google.com

ABSTRACT

We study the problem of online low-rank matrix completion with M users, N items
and T rounds. In each round, the algorithm recommends one item per user, for
which it gets a (noisy) reward sampled from a low-rank user-item preference matrix.
The goal is to design a method with sub-linear regret (in T) and nearly optimal
dependence on M and N. The problem can be easily mapped to the standard
multi-armed bandit problem where each item is an independent arm, but that leads
to poor regret as the correlation between arms and users is not exploited. On
the other hand, exploiting the low-rank structure of reward matrix is challenging
due to non-convexity of the low-rank manifold. We first demonstrate that the
low-rank structure can be exploited using a simple explore-then-commit (ETC)
approach that ensures a regret of O(polylog(M+ N)T2/3). That is, roughly only
polylog(M+ N) item recommendations are required per user to get a non-trivial
solution. We then improve our result for the rank-1 setting which in itself is quite
challenging and encapsulates some of the key issues. Here, we propose OCTAL
(Online Collaborative filTering using iterAtive user cLustering) that guarantees
nearly optimal regret of O(polylog(M + N)T1/2). OCTAL is based on a novel
technique of clustering users that allows iterative elimination of items and leads to
a nearly optimal minimax rate.

1 INTRODUCTION

Collaborative filtering based on low-rank matrix completion/factorization techniques are the corner-
stone of most modern recommendation systems (Koren, 2008). Such systems model the underlying
user-item affinity matrix as a low-rank matrix, use the acquired user-item recommendation data to
estimate the low-rank matrix and subsequently, use the matrix estimate to recommend items for
each user. Several existing works study this offline setting (Candès & Recht, 2009; Deshpande &
Montanari, 2012; Jain et al., 2013; Chen et al., 2019; Abbe et al., 2020). However, typical recom-
mendation systems are naturally online and interactive – they recommend items to users and need to
adapt quickly based on users’ feedback. The goal of such systems is to quickly identify each user’s
preferred set of items, so it is necessary to identify the best items for each user instead of estimating
the entire affinity matrix. Moreover, items/users are routinely added to the system, so it should be
able to quickly adapt to new items/users by using only a small amount of recommendation feedback.

In this work, we study this problem of the online recommendation system. In particular, we study the
online version of low-rank matrix completion with the goal of identifying top few items for each user
using say only logarithmic many exploratory recommendation rounds for each user. In each round
(out of T rounds) we predict one item (out of N items) for each user (out of M users) and obtain
feedback/reward for each of the predictions – e.g. did the users view the recommended movie. The
goal is to design a method that has asymptotically similar reward to a method that can pick best items
for each user. As mentioned earlier, we are specifically interested in the setting where T⌧ N i.e. the
number of recommendation feedback rounds is much smaller than the total number of items.

Moreover, we assume that the expected reward matrix is low-rank. That is, if R(t)
ij is the reward

obtained in the t
th round for predicting item-j for user-i, then ER(t)

ij = Pij , where P 2 RM⇥N

is a low-rank matrix. A similar low rank reward matrix setting has been studied in online multi-
dimensional learning problems (Katariya et al., 2017b; Kveton et al., 2017; Trinh et al., 2020). But in
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these problems, the goal is to find the matrix entry with the highest reward. Instead, our goal is to
recommend good items to all users which is a significantly harder challenge. A trivial approach is
to ignore the underlying low-rank structure and solve the problem using standard multi-arm bandit
methods. That is, model each (user, item) pair as an arm. Naturally, that would imply exploration of
almost all the items for each user, which is also reflected in the regret bound (averaged over users)
of O(

p
NT) (Remark 1). That is, as expected, the regret bound is vacuous when the number of

recommendation rounds T⌧ N.

In contrast, most of the existing online learning techniques that leverage structure amongst arms
assume a parametric form for the reward function and require the reward function to be convex
in the parameters (Shalev-Shwartz et al., 2011; Bubeck, 2011). Thus, due to the non-convexity
of the manifold of low-rank matrices, such techniques do not apply in our case. While there are
some exciting recent approaches for non-convex online learning (Agarwal et al., 2019; Suggala &
Netrapalli, 2020), they do not apply to the above mentioned problem.

Our Techniques and Contributions: We first present a method based on the explore-then-commit
(ETC) approach (Algorithm 2). For the first few rounds, the algorithm runs a pure exploration strategy
by sampling random items for each user. We use the data obtained by pure exploration to learn a
good estimate of the underlying reward matrix P; this result requires a slight modification of the
standard matrix completion result in Chen et al. (2019). We then run the exploitation rounds based on
the current estimate. In particular, for the remaining rounds, the algorithm commits to the arm with
the highest estimated reward for each user. With the ETC algorithm, we achieve a regret bound of
O(polylog(M+ N)T2/3) (Thm. 1). This bound is able to get rid of the dependence on N, implying
non-trivial guarantees even when T ⌧ N. That is, we require only polylog(M + N) exploratory
recommendations per user. However, the dependence of the algorithm on T is sub-optimal. To
address this, we study the special but critical case of rank-one reward matrix. The rank-1 setting is
itself technically challenging (Katariya et al., 2017b) and encapsulates many key issues. We provide
a novel algorithm OCTAL in Algorithm 3 and a modified version in Algorithm 8 that achieves nearly
optimal regret bound of O(polylog(M+ N)T1/2) (see Theorems 2 and E). The key insight is that in
rank-one case, we need to cluster users based on their true latent representation to ensure low regret.

Our method OCTAL consists of multiple phases of exponentially increasing number of rounds. Each
phase refines the current estimate of relevant sub-matrices of the reward matrix using standard matrix
completion techniques. Using the latest estimate, we jointly refine the cluster of users and the estimate
of the best items for users in each cluster. We can show that the regret in each phase decreases very
quickly and since the count of phases required to get the correct clustering is small, we obtain our
desired regret bounds. Finally, we show that our method achieves a regret guarantee that scales
as eO(T1/2) with the number of rounds T. We also show that the dependence on T is optimal (see
Theorem 3). Below we summarize our main contributions ( eO(·) hides logarithmic factors):

• We formulate the online low rank matrix completion problem and define the appropriate notion of
regret to study. We propose Algorithm 2 based on the explore-then-commit approach that suffers a
regret of eO(T2/3). (Thm. 1)

• We propose a novel algorithm OCTAL (Online Collaborative filTering using iterAtive user cLuster-
ing) and a modified version (Alg. 3 and Alg. 8 respectively) for the special case of rank-1 reward
matrices and guarantee a regret of eO(T1/2). Importantly, our algorithms provide non-trivial regret
guarantees in the practical regime of M� T and N� T i.e when the number of users and items is
much larger than the number of recommendation rounds. Moreover, OCTAL does not suffer an
issue of large cold-start time (possibly large exploration period) as in the ETC algorithm.

• We conducted detailed empirical study of our proposed algorithms (see Appendix A) on synthetic
and multiple real datasets, and demonstrate that our algorithms can achieve significantly lower
regret than methods that do not use collaboration between users. Furthermore, we show that for
rank-1 case, while it is critical to tune the exploration period in ETC (as a function of rounds and
sub-optimality gaps) and is difficult in practice (Lattimore & Szepesvári, 2020)[Ch. 6], OCTAL
still suffers lower regret without such side-information (see Figures 1a and 2b).

Technical Challenges: For rank-1 case, i.e., P = uvT, one can cluster users in two bins: ones with
ui � 0 and ones with ui < 0. Cluster-2 users dislike the best items for Cluster-1 users and vice-versa.
Thus, we require algorithms that can learn this cluster structure and exploit the fact that within the
same cluster, relative ranking of all items remain the same. This is a challenging information to
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exploit, and requires learning the latent structure. Note that an algorithm that first attempts to cluster
all users and then optimize the regret will suffer the same T2/3 dependence in the worst case as in
the ETC algorithm; this is because the difficulty of clustering the users are widely different. Instead,
our proposed OCTAL algorithm (Algorithms 3 and 8) in each iteration/phase performs two tasks:
i) it tries to eliminate some of the items similar to standard phase elimination method (Lattimore &
Szepesvári, 2020)[Ch 6, Ex 6.8] for users that are already clustered, ii) it simultaneously tries to grow
the set of clustered users. For partial clustering, we first apply low rank matrix completion guarantees
over carefully constructed reward sub-matrices each of which correspond to a cluster of users and a
set of active items that have high rewards for all users in the same cluster, and then use the partial
reward matrix for eliminating some of the items in each cluster.

1.1 RELATED WORKS

To the best of our knowledge, we provide first rigorous online matrix completion algorithms. But,
there are several closely related results/techniques in the literature which we briefly survey below.

A very similar setting was considered in Sen et al. (2017) where the authors considered a multi-armed
bandit problem with L contexts and K arms with context dependent reward distributions. The authors
assumed that the L⇥K reward matrix is low rank and can be factorized into non-negative components
which allowed them to use recovery guarantees from non-negative matrix factorization. Moreover,
the authors only showed ETC algorithms that resulted in T2/3 regret guarantees. Our techniques
can be used to improve upon the existing guarantees in Sen et al. (2017) in two ways 1) Removing
the assumption of the low rank components being non-negative as we use matrix completion with
entry-wise error guarantees. 2) The dependence on T can be improved from T2/3 to T1/2 when the
reward matrix P is rank-1.

Multi-dimensional online decision making problems namely stochastic rank-1 matrix bandits was
introduced in Katariya et al. (2017b;a); Trinh et al. (2020). In their settings, at each round t 2 [T],
the learning agent can choose one row and one column and observes a reward corresponding to an
entry of a rank-1 matrix. Here, the regret is defined in terms of the best (row ,column) pair which
corresponds to the best arm. This setting was extended to the rank r setting (Kveton et al., 2017), rank
1 multi-dimensional tensors (Hao et al., 2020), bilinear bandits (Jun et al., 2019; Huang et al., 2021)
and generalized linear bandits (Lu et al., 2021). Although these papers provide tight regret guarantees,
they cannot be translated to our problem. This is because, we solve a significantly different problem
with an underlying rank-1 reward matrix P where we need to minimize the regret for all users (rows
of P) jointly. Hence, it is essential to find the entries (columns) of P with large rewards for each
user(row) of P; contrast this with the multi-dimensional online learning problem where it is sufficient
to infer only the entry ((row,column) pair) in the matrix/tensor with the highest reward. Since the
rewards for each user have different gaps, the analysis becomes involved for our OCTAL algorithm.
Finally, (Dadkhahi & Negahban, 2018; Zhou et al., 2020) also consider our problem setting but they
only provide heuristic algorithms without any theoretical guarantees.

Another closely related line of work is the theoretical model for User-based Collaborative Filtering
(CF) studied in Bresler et al. (2014; 2016); Heckel & Ramchandran (2017); Bresler & Karzand
(2019); Huleihel et al. (2021). In particular, these papers were the first to motivate and theoretically
analyze the collaborative framework with the restriction that the same item cannot be recommended
more than once to the same user. Here a significantly stricter cluster structure assumption is made
over users where users in same cluster have similar preferences. Such models are restrictive as they
provide theoretical guarantees only on a very relaxed notion of regret (termed pseudo-regret).

In the past decade, several papers have studied the problem of offline low rank matrix completion on
its own (Mazumder et al., 2010; Negahban & Wainwright, 2012; Chen et al., 2019; Deshpande &
Montanari, 2012; Abbe et al., 2020; Jain et al., 2013; Jain & Kar, 2017) and also in the presence of
side information such as social graphs or similarity graphs (Xu et al., 2013; Ahn et al., 2018; 2021;
Elmahdy et al., 2020; Jo & Lee, 2021; Zhang et al., 2022). Some of these results namely the ones that
provide k · k1 norm guarantees on the estimated matrix can be adapted into Explore-Then-Commit
(ETC) style algorithms (see Sec. 4). Finally, there is significant amount of related theoretical work
for online non-convex learning (Suggala & Netrapalli, 2020; Yang et al., 2018; Huang et al., 2020)
and empirical work for online Collaborative Filtering (Huang et al., 2020; Lu et al., 2013; Zhang
et al., 2015) but they do not study the regret in online matrix completion setting.
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2 PROBLEM DEFINITION

Notations: We write [m] to denote the set {1, 2, . . . ,m}. For a vector v 2 Rm, vi denotes the i
th

element; for any set U ✓ [m], let vU denote the vector v restricted to the indices in U . Ai denotes
the i

th row of A and Aij denotes the (i, j)-th element of matrix A. [n] denotes the set {1, 2, . . . , n}.
For any set U ⇢ [m],V ⇢ [n], AU,V denotes the matrix A restricted to the rows in U and columns in
V . Also, let kAk2!1 be the maximum `2 norm of the rows of A and kAk1 be the absolute value
of the largest entry in A. We write EX to denote the expectation of a random variable X .

Consider a system with a set of M users and N items. Let P = UVT 2 RM⇥N be the unknown reward
matrix of rank r < min(M,N) where U 2 RM⇥r and V 2 RN⇥r denote the latent embeddings
corresponding to users and items respectively. In other words, we can denote Pij , hui,vji where
ui,vj 2 Rr denotes the r-dimensional embeddings of i-th user and the j-th item, respectively.
Often, we will also use the SVD decomposition of P = Ū⌃V̄ where Ū 2 RM⇥r

, V̄ 2 RN⇥r are
orthonormal matrices i.e. ŪTŪ = I and V̄TV̄ = I and ⌃ , diag(�1,�2, . . . ,�r) 2 Rr⇥r is a
diagonal matrix. We will denote the condition number of the matrix P by  , (maxi �i)(mini �i)�1.

Consider a system that recommends one item to every user, in each round t 2 [T]. Let, R(t)
u⇢u(t)

be
the reward for recommending item ⇢u(t) 2 [N] for user u. Also, let:

R(t)
u⇢u(t)

= Pu⇢u(t) +E(t)
u⇢u(t)

(1)

where E(t)
u⇢u(t)

denotes the unbiased additive noise. Each element of {E(t)
u⇢u(t)

}u2[M],t2[T] is assumed

to be i.i.d. zero mean sub-gaussian random variables with variance proxy �
2. That is, E[E(t)

u⇢u(t)
] = 0

and E[exp(sE(t)
u⇢u(t)

)]  exp(�2
s
2
/2) for all u 2 [M], t 2 [T]. The goal is to minimize the expected

regret where the expectation is over randomness in rewards and the algorithm:

Reg(T) , T

M

X

u2[M]

max
j2[N]

Puj � E[
X

t2[T]

1

M

X

u2[M]

R(t)
u⇢u(t)

]. (2)

In this problem, the interesting regime is (N,M) � T as is often the case for most practical
recommendation systems. Here, treating each user separately will lead to vacuous regret bounds as
each item needs to be observed at least once by each user to find the best item for each user. However,
low-rank structure of the rewards can help share information about items across users.
Remark 1. If T � N, then we can treat each user as a separate multi-armed bandit problem. In
that case, in our setting, the well-studied Upper Confidence Bound (UCB) algorithm achieves an
expected regret of at most O(�

p
NT logT) (Theorem 2.1 in Bubeck & Cesa-Bianchi (2012)).

3 PRELIMINARIES

Let us introduce a different observation model from (1). Consider an unknown rank r matrix
P 2 RM⇥N. For each entry i 2 [M], j 2 [N], we observe:

Pij +Eij with probability p, 0 with probability 1� p, (4)

where Eij are independent zero mean sub-gaussian random variables with variance proxy �
2
> 0.

We now introduce the following result from Chen et al. (2019):
Lemma 1 (Theorem 1 in Chen et al. (2019)). Let rank r = O(1) matrix P 2 Rd⇥d with SVD
decomposition P = Ū⌃V̄T satisfy kŪk2,1 

p
µr/d, kV̄k2,1 

p
µr/d and condition

number  = O(1). Let 1 � p � Cµ
2
d
�1 log3 d for some sufficiently large constant C > 0,

� = O

⇣q
pd

µ3 log dkPk1
⌘

. Suppose we observe noisy entries of P according to observation model

in (4). Then, with probability exceeding 1�O(d�3), we can compute a matrix bP by using Algorithm
4 (Appendix B) with parameters (U = [M],V = [N],�2

, r, p) s.t.,

kbP�Pk1  O

⇣ �

mini �i
·

s
µd log d

p
kPk1

⌘
. (5)
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Algorithm 1 ESTIMATE

Require: Set of users U ✓ [M], set of items V ✓ [N], total rounds m, set of indices ⌦ ✓ U ⇥ V ,
rounds in each iteration b = maxu2U |v 2 V | (u, v) 2 ⌦|, regularization parameter �. Index of
round t is relative to the first round when the algorithm is invoked; hence t = 1, 2, . . . ,m.

1: for ` = 1, 2, . . . ,m/b do

2: For all (i, j) 2 ⌦, set Maskij = 0.
3: for `

0 = 1, 2, . . . , b do

4: for each user u 2 U in round t = (`� 1)b+ `
0

do

5: Recommend an item ⇢u(t) in {j 2 V | (u, j) 2 ⌦,Maskuj = 0} and set Masku⇢u(t) = 1.
If not possible then recommend any item ⇢u(t) in V s.t. (u, ⇢u(t)) 62 ⌦. Observe R(t)

u⇢u(t)
.

6: end for

7: end for

8: end for

9: For each (u, j) 2 ⌦, compute Zuj to be average of bm/bc observations corresponding to user u
being recommended item j i.e. Zuj = avg{R(t)

u⇢u(t)
for t 2 [m] | ⇢u(t) = j}. Discard all other

observations corresponding to indices not in ⌦.
10: Without loss of generality, assume |U|  |V|. For each i 2 V , independently set �i to be a value

in the set [d|V|/|U|e] uniformly at random. Partition indices in V into V(1)
,V(2)

, . . . ,V(k) where
k = d|V|/|U|e and V(q) = {i 2 V | �i = q} for each q 2 [k]. Set ⌦(q)  ⌦ \ (U ⇥ V(q)) for
all q 2 [k]. #If |U| � |V|, we partition the indices in U .

11: for q 2 [k] do

12: Solve convex program
min

Q(q)2R|U|⇥|V(q)|

1

2

X

(i,j)2⌦(q)

⇣
Q(q)

i⇡(j) � Zij
⌘2 + �kQ(q)k?, (3)

where kQ(q)k? denotes nuclear norm of matrix Q(q) and ⇡(j) is index of j in set V(q).
13: end for

14: Return eQ 2 RM⇥N s.t. eQU,V(q) = Q(q) for all q 2 [k] and for every (i, j) 62 U ⇥ V , eQij = 0.

Note there are several difficulties in using Lemma 1 directly in our setting which are discussed below:

Remark 2 (Matrix Completion for Rectangular Matrices). Lemma 1 is described for square matrices
and a trivial approach to use Lemma 1 for rectangular matrices with M rows and N columns (say
N � M) by appending N�M zero rows leads to an undesirable (N/M)1/2 factor (Lemma 5) in the
error bound (the (N/M)1/2 factor does not arise if we care about spectral/Frobenius norm instead of
L1 norm). One way to resolve the issue is to partition the columns into N/M groups by assigning
each column into one of the groups uniformly at random. Thus, we create N/M matrices which are
almost square and apply Lemma 1 to recover an estimate that is close in L1 norm. Thus we can
recover an estimate of the entire matrix which is close in L1 norm up to the desired accuracy without
suffering the undesirable (N/M)1/2 factor (Lemma 6 and Steps 10-12 in Algorithm 1).

Remark 3 (Observation Models). The observation model in equation 4 is significantly different
from equation 1. In the former, a noisy version of each element of P is observed independently
with probability p while in the latter, in each round t 2 [T], for each user u 2 [M], we observe
noisy version of a chosen element ⇢u(t). Our approach to resolve this discrepancy theoretically is to
first sample a set ⌦ of indices according to equation 4 and subsequently use equation 1 to observe
the indices in ⌦ (see Steps 3-6 in Algorithm 1 and Corollary 1). Of course, this implies obtaining
observations corresponding to indices in a super-set of ⌦ (see Step 5 in Algorithm 1) and only using
the observations in ⌦ for obtaining an estimate of the underlying matrix. In practice, this is not
necessary and we can use all the observed indices to obtain the estimate in Step 12 of Algorithm 1.

Remark 4 (Repetition and Median Tricks). The smallest error that is possible to achieve by us-
ing Lemma 1 is by substituting p = 1 and thereby obtaining kbP � Pk1  O

⇣
�(mini �i)�1 ·

p
µd log dkPk1

⌘
and moreover, the probability of failure is polynomially small in the dimension d;

however, this is insufficient when d is not large enough. Two simple tricks allow us to resolve this
issue: 1) First we can obtain repeated observations from the same entry of the reward matrix and
take its average; s repetitions can bring down the noise variance to �

2
/s 2) Second, we can use the
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median trick where we obtain several independent estimates of the reward matrix and compute the
element-wise median to boost the success probability (see proof of Lemma 2).

We address all these issues (see Appendix B for detailed proofs) and arrive at the following lemma:
Lemma 2. Let rank r = O(1) reward matrix P 2 RM⇥N with SVD decomposition P = Ū⌃V̄T

satisfy kŪk2,1 
p

µr/M, kV̄k2,1 
p

µr/N and condition number  = O(1). Let d1 =
max(M,N), d2 = min(M,N) such that d2 = ⌦(µr log(rd2)) and 1 � p � Cµ

2
d
�1
2 log3 d2 for

sufficiently large constant C > 0. Suppose we observe noisy entries of P according to observation
model in (1). For any positive integer s > 0 satisfying �p

s
= O

⇣q
pd2

µ3 log d2
kPk1

⌘
, there exists

an algorithm A with parameters s, p,� that uses m = O

⇣
s log(MN��1)(Np +

p
Np logM��1)

⌘

rounds to compute a matrix bP such that with probability exceeding 1�O(� log(MN��1))

kP� bPk1  O

⇣
�rp
sd2

s
µ3 log d2

p

⌘
. (6)

Remark 5. Alg. A repeats the following process O(log(MN��1)) times: 1) sample subset of indices
⌦ ✓ [M]⇥ [N] such that every (i, j) 2 [M]⇥ [N] is inserted into ⌦ independently with probability p.
2) By setting b = maxi2[M] |j 2 [N] | (i, j) 2 ⌦|, Algorithm A invokes Alg. 1 with total rounds bs,
number of rounds in each iteration b, set ⌦, set of users [M], items [N] and regularization parameter
� = C��

p
min(M,N)p for a suitable constant C� > 0 in order to compute an estimate of P. The

final estimate bP is computed by taking an entry-wise median of each individual estimate obtained as
output from several invocations of Alg. 1. Alternatively, Alg. A is detailed in Alg. 7 in Appendix B.

Note that the total number of noisy observations made from the matrix P is m · M � MN · p · s.
Therefore, informally speaking, the average number of observations per index is p · s which results in
an error of eO(�/

p
sp) ignoring other terms (contrast with error eO(�/

p
p) in equation 5.)

Remark 6 (Setting parameters s, p in lemma 2). Lemma 2 has three input parameters namely
s 2 Z, 0  p  1 and 0  �  1. For any set of input parameters (⌘, ⌫), our goal is to set s, p, �
as functions of known �, r, µ, d2 such that we can recover kP � bPk1  ⌘ with probability 1 � ⌫

for which the conditions on � and p are satisfied. From (17), we must have psp = c�rp
d2

p
µ3 log d2

⌘

for some appropriate constant c > 0. If r = O(1) and ⌘  kPk1, then an appropriate choice
of c also satisfies the condition �p

s
= O

⇣q
pd2

µ3 log d2
kPk1

⌘
. More precisely, we are going to set

p = Cµ
2
d
�1
2 log3 d2 and s =

l⇣
c�r

p
µ

⌘ log d2

⌘2m
in order to obtain the desired guarantee.

4 EXPLORE-THEN-COMMIT (ETC) ALGORITHM

In this section, we present an Explore-Then-Commit (ETC) based algorithm for online low-rank
matrix completion. The algorithm has two disjoint phases of exploration and exploitation. We will
first jointly explore the set of items for all users for a certain number of rounds and compute an
estimate bP of the reward matrix P. Subsequently, we commit to the estimated best item found for
each user and sample the reward of the best item for the remaining rounds in the exploitation phase
for that user. Note that the exploration phase involves using a matrix completion estimator in order
to estimate the entire reward matrix P from few observed entries. Our regret guarantees in this
framework is derived by carefully balancing exploration phase length and the matrix estimation error
(detailed proof provided in Appendix C).
Theorem 1. Consider the rank-r online matrix completion problem with M users, N items, T
recommendation rounds. Set d2 = min(M,N). Let R(t)

u⇢u(t)
be the reward in each round, defined

as in equation 1. Suppose d2 = ⌦(µr log(rd2)). Let P 2 RM⇥N be the expected reward matrix
that satisfies the conditions stated in Lemma 2 , and let �2 be the noise variance in rewards. Then,
Algorithm 2, applied to the online rank-r matrix completion problem guarantees the following regret:

Reg(T) = O

⇣⇣
T

2
3 (�2

r
2kPk1)

1
3

⇣
µ
3N log d2

d2

⌘1/3
+

Nµ2kPk1
d2

⌘
log5(MNT) +

kPk1
T2

⌘
. (7)
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Algorithm 2 ETC ALGORITHM

Require: users M, items N, rounds T, noise �2, rank r of P, upper bound on magnitude of expected
rewards ||P||1, no. of estimates f = O(log(MNT)).

1: Set d2 = min(M,N) and v = (NkPk1)�2/3
⇣

T�rp
d2

p
µ3 log d2

⌘2/3
. Set p = Cµ

2
d
�1
2 log3 d2,

s = dvp�1e and � = C��
p
d2p for some constants C,C� > 0.

2: for k = 1, 2, . . . , f do

3: For each tuple of indices (i, j) 2 [M]⇥ [N], independently set �ij = 1 with probability p and
�ij = 0 with probability 1� p.

4: Denote ⌦ = {(i, j) 2 [M] ⇥ [N] | �ij = 1} and b = maxi2[M] | |j 2 [N] | (i, j) 2 ⌦| to be
the maximum number of index tuples in a particular row. Set total number of rounds to be bs.

5: Compute the k
th estimate bP(k) = ESTIMATE([M], [N], bs,⌦, b,�). # (Algorithm 1 is used to

recommend items to every user for bs rounds.
6: end for

7: Compute final estimate estimate bP by taking the entry-wise median of bP(1)
, bP(2)

, . . . , bP(f).
8: for each of remaining rounds do

9: Recommend argmaxj2[N]
bPij for each user i 2 [M]. # Number of remaining rounds is T� bsf .

10: end for

Remark 7 (Non-trivial regret bounds). Theorem 1 provides non-trivial regret guarantees in the key
regime when N � T and M > N where the regret scales only logarithmically on M,N. This is
intuitively satisfying since in each round we are obtaining M observations, so more users translate
to more information which in-turn allows better understanding of the underlying reward matrix.
However, the dependence of regret on T (namely T2/3) is sub-optimal. In the subsequent section, we
provide a novel algorithm to obtain regret guarantees with T1/2 for rank-1 P.

Remark 8 (Gap dependent bounds). Define the minimum gap to be � =
minu2[M]

��Pu⇡u(1) �Pu⇡u(2)

�� where ⇡u(1),⇡u(2) corresponds to the items with the highest
and second highest reward for user u respectively. If the quantity � is known then it is possible to
design ETC algorithms where length of the exploration phase is tuned accordingly in order to obtain
regret bounds that scale logarithmically with the number of rounds T.

5 OCTAL ALGORITHM

In this section we present our algorithm OCTAL (Algorithm 3) for online matrix completion where
the reward matrix P is rank 1. The set of users is described by a latent vector u 2 RM and the set of
items is described by a latent vector v 2 RN. Thus P = uvT with SVD decomposition P = �̄ūv̄T.

Algorithm Overview: Our first key observation is that as P is rank-one, we can partition the set of
users into two disjoint clusters C1, C2 where C1 ⌘ {i 2 [M] | ui � 0} and C2 ⌘ [M] \ C1. Clearly,
for all users u 2 C1, the item that results in maximum reward is jmax = argmaxt2[N]vt. On the other
hand, for all users u 2 C2, the item that results in maximum reward is jmin = argmint2[N]vt. Thus,
if we can identify C1, C2 and estimate items with high reward (identical for users in the same cluster)
using few recommendations per user, we can ensure low regret.

But, initially C1, C2 are unknown, so all users are unlabelled i.e., their cluster is unknown. In
each phase (the outer loop indexed by `), Algorithm 3 tries to label at least a few unlabelled users
correctly. This is achieved by progressively refining estimate eQ of the reward matrix P restricted to
the unlabelled users and all items (Step 12). Subsequently, unlabelled users for which the difference
in maximum and minimum reward (inferred from estimated reward matrix) is large are labelled
(Step 19). At the same time, in Step 13 users labelled in previous phases are partitioned into two
clusters (denoted by M(`,1) and M(`,2)) and for each of them, the algorithm refines an estimate of
two distinct sub-matrices of the reward matrix P by recommending items only from a refined set
(N (`,1) and N (`,2) respectively) containing the best item (jmax or jmin). We also identify a small set
of good items for each labelled user (including users labelled in previous phases), which correspond
to large estimated rewards. We partition all these users into two clusters (M(`+1,1) and M(`+1,2))
such that the set of good items for users in different clusters are disjoint. We can prove that such a
partitioning is possible; users in same cluster have same sign of user embedding.

7



Published as a conference paper at ICLR 2023

Algorithm 3 OCTAL (ONLINE COLLABORATIVE FILTERING USING ITERATIVE USER CLUSTERING)

Require: Number of users M, items N, rounds T, noise �
2, bound on the entry-wise magnitude of

expected rewards ||P||1, incoherence µ.
1: Set M(1,1) = M(1,2) = � and B(1) = [M]. Set N (1,1) = N (1,2) = �. Set f = O(log(MNT))

and suitable constants a, c, C,C 0
, C� > 0.

2: for ` = 1, 2, . . . , do

3: Set �` = C
02�` min

⇣
kPk1,

�
p
µ

logN

⌘
.

4: for k = 1, 2, . . . , f do

5: for each pair of non-null sets (B(`)
,N), (M(`,1)

,N (`,1)), (M(`,2)
,N (`,2)) ✓ [M]⇥ [N] do

6: Denote (T (1)
, T (2)) to be the considered pair of sets and i 2 {0, 1, 2} to be its index.

7: Set d2,i = min(|T (1)|, |T (2)|). Set p`,i = Cµ
2
d
�1
2,i log

3
d2,i and s`,i =

l⇣
c�

p
µ

�` log d2,i

⌘2m
.

8: For each tuple of indices (u, v) 2 T (1)⇥T (2), independently set �uv = 1 with probability
p`,i and �uv = 0 with probability 1� p`,i.

9: Denote ⌦(i) = {(u, v) 2 T (1) ⇥ T (2) | �uv = 1} and b`,i = maxu2U |v 2 V | (u, v) 2
⌦|. Set total number of rounds to be m`,i = b`,is`,i.

10: end for

11: Set m` = maxi2{0,1,2} m`,i.
12: Compute eQ(`,k) = ESTIMATE(|B(`)|, [N],m`,⌦(0)

, b`,0,� = C��
p

d2,0p`). # Algorithm
1 is used to recommend items to every user in B(`) for m` rounds.

13: For i 2 {1, 2}, compute eP(`,i,f) = ESTIMATE(|M(`,i)|, |N (`,i)|,m`,⌦(i)
, b`,i,� =

C��
p

d2,ip`). # Algorithm 1 recommends items to every user in M(`,i) for m` rounds.
14: end for

15: Compute eQ(`) =Entrywise Median({eQ(`,k)}fk=1), eP(`,i) =Entrywise Median({eP(`,i,k)}fk=1)
for i 2 {1, 2}.

16: Set B(`+1) ⌘
n
u 2 B(`) |

���maxt2[N]
eQ(`)

ut �mint2[N]
eQ(`)

ut

���  2a�`

o

17: Compute T (`+1)
u = {j 2 [N]} | eQ(`)

uj +�` > maxt2[N]
eQ(`)

ut } for all u 2 B(`) \ B(`+1).
18: For i 2 {1, 2}, for all users u 2 M(`,i), compute T (`+1)

u = {j 2 N (`,i) | eP(`,i)
uj + �` >

maxt2N (`,i)
eP(`,i)
ut }.

19: Set v to be any user in [M]\B(`+1). Set M(`+1,1) = {u 2 [M]\B(`+1) | T (`+1)
u \T (`+1)

v 6= �}.
Set M(`+1,2) = [M] \ (B(`+1) [M(`+1,1)).

20: Compute N (`+1,1) =
T

u2M(`+1,1) T (`+1)
u , N (`+1,2) =

T
u2M(`+1,2) T (`+1)

u .
21: For i 2 {1, 2}, if |M(`+1,i)|  Mp

T
, then set B(`+1)  B(`+1)[M(`+1,i) and M(`+1,i)  �.

22: end for

We also prove that the set of good items contain the best item for each labelled user (jmax or jmin). So,
after each phase, for each cluster of users, we compute the intersection of good items over all users in
the cluster. This subset of items (joint good items) must contain the best item for that cluster and
therefore we can discard the other items (Step 20). We can show that all items in the set of joint good
items (N (`+1,1) and N (`+1,2)) have rewards which is close to the reward of the best item. Therefore
the algorithm suffers small regret if for each group of labelled users, the algorithm recommends items
from the set of joint good items (Step 13) in the next phase. We can further show that for the set of
unlabelled users, the difference in rewards between the best item and worst item is small and hence
the regret for such users is small, irrespective of the recommended item (Step 12). Note that until
the number of labelled users is sufficiently large, we do not consider them separately (Step 21). A
crucial part of our analysis is to show that for any subset of users and items considered in Step 5, the
number of rounds sufficient to recover a good estimate of the expected reward sub-matrix is small
irrespective of the number of considered items (if the number of users is sufficiently large).

Remark 9 (Practical considerations). In general OCTAL (Alg. 3) is computationally faster than the
ETC Algorithm (Alg. 2) with a higher exploration length. This is because OCTAL eliminates large
chunks of items in every phase and therefore has to solve easier optimization problems; on the other
hand, ETC has to solve a low rank matrix completion problem in MN variables that becomes slower
with the exploration length (datapoints). Moreover, OCTAL algorithm runs in phases with the initial
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phases being very small; hence the users do not have to wait for a long time to even get personalized
recommendations like in ETC. These features make OCTAL much more practical than ETC.

To summarize, in Algorithm 3, the entire set of rounds [T] is partitioned into phases of exponentially
increasing length. In each phase, for the set of unlabelled users, we do pure exploration and
recommend random items from the set of all possible items (Step 12). The set of labelled users are
partitioned into two clusters; for each, we follow a semi-exploration strategy where we recommend
random items from a set of joint good items (Steps 13). We now introduce the following definition:

Definition 3 ((↵, µ)-Local Incoherence). For 0  ↵  1, a vector v 2 Rm is (↵, µ)-local incoherent
if for all sets U ✓ [m] satisfying |U| � ↵m, we have kvUk1 

q
µ
|U|kvUk2.

Local incoherence for a vector v implies that any sub-vector of v having a significant size must be
incoherent as well. Note that the local incoherence condition is trivially satisfied if the magnitude of
each vector entry is bounded from below. We are now ready to state our main result:

Theorem 2. Consider the rank-1 online matrix completion problem with T rounds, M users s.t.
M �

p
T and N items. Denote d2 = min(M,N). Let R(t)

u⇢u(t)
be the reward in each round, defined

as in equation 1. Let �2 be the noise variance in rewards and let P 2 RM⇥N be the expected reward
matrix with SVD decomposition P = �ūv̄T such that ū is (T�1/2

, µ)-locally incoherent, kv̄k1 p
µ/N, d2 = ⌦(µ log d2) and |v̄jmin | = ⇥(|v̄jmax |). Then, by suitably choosing parameters

{�`}`, positive integers {s(`,0), s(`,1), s(`,2)}` and 1 � {p(`,0), p(`,1), p(`,2)}` � 0 as described
in Algorithm 3, we can ensure a regret guarantee of Reg(T) = O(

p
TkPk1 + J

p
TV) where

J = O

⇣
log

⇣
1p

VT�1
min

⇣
kPk1,

�
p
µ

logN

⌘⌘⌘
and V =

⇣
max(1, N

p
T

M )�2
µ
3 log2(MNT)

⌘
.

Similar to Algorithm 2, Algorithm 3 allows non-trivial regret guarantees even when N� T provided
the number of users is significantly large as well i.e. M = e⌦(N

p
T).

Remark 10. Under slightly stronger local incoherence conditions on the vector ū, we can analyze a
modified version of OCTAL (Alg. 8) without requiring users M to be large. When |C1| ⇡ |C|2, the
regret guarantee (Thm. E) scales as eO(

p
NT/M). Due to space limitations, details of Algorithm 8

and the proof of Theorem E can be found in Appendix E

Finally, we show that the above dependence on N,M,T matches the lower bound that we obtain by
reduction to the well-known multi-armed bandit problem.

Theorem 3. Let P 2 [0, 1]M⇥N be a rank 1 reward matrix and the noise variance �
2 = 1. In that

case, any algorithm for online matrix completion problem will suffer regret of ⌦(
p
NTM�1).

6 CONCLUSIONS

We studied the problem of online rank-one matrix completion in the setting of repeated item recom-
mendations and blocked item recommendations, which should be applicable for several practical
recommendation systems. We analyzed an explore-then-commit (ETC) style method which is able
to get the regret averaged over users to be nearly independent of number of items. That is, per
user, we require only logarithmic many item recommendations to get non-trivial regret bound. But,
the dependence on the number of rounds T is sub-optimal. We further improved this dependence
by proposing OCTAL that carefully combines exploration, exploitation and clustering for different
users/items. Our methods iteratively refines estimate of the underlying reward matrix, while also
identifying users which can be recommended certain items confidently. Our algorithms and proof
techniques are significantly different than existing bandit learning literature. We believe that our work
only scratches the surface of an important problem domain with several open problems. For example,
Algorithm 3 requires rank-1 reward matrix. Generalizing the result to rank-r reward matrices would
be interesting. Furthermore, relaxing assumptions on the reward matrix like stochastic noise or
additive noise should be relevant for several important settings. Finally, collaborative filtering can
feed users related items, hence might exacerbate their biases. Our method might actually help mitigate
the bias due to explicit exploration, but further investigation into such challenges is important.
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