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ABSTRACT

Radar-based precipitation nowcasting, the task of forecasting short-term precipi-
tation fields from previous radar images, is a critical problem for flood risk man-
agement and decision-making. While deep learning has substantially advanced
this field, two challenges remain fundamental: the uncertainty of atmospheric
dynamics and the efficient modeling of high-dimensional data. Diffusion mod-
els have shown strong promise by producing sharp, reliable forecasts, but their
iterative sampling process is computationally prohibitive for time-critical applica-
tions. We introduce FlowCast, the first end-to-end probabilistic model leveraging
Conditional Flow Matching (CFM) as a direct noise-to-data generative framework
for precipitation nowcasting. Unlike hybrid approaches, FlowCast learns a direct
noise-to-data mapping in a compressed latent space, enabling rapid, high-fidelity
sample generation. Our experiments demonstrate that FlowCast establishes a new
state-of-the-art in probabilistic performance while also exceeding deterministic
baselines in predictive accuracy. A direct comparison further reveals the CFM
objective is both more accurate and significantly more efficient than a diffusion
objective on the same architecture, maintaining high performance with signifi-
cantly fewer sampling steps. This work positions CFM as a powerful and practical
alternative for high-dimensional spatiotemporal forecasting.

1 INTRODUCTION

Accurate and timely short-term precipitation forecasts, or nowcasting, are of paramount importance
due to their significant socio-economic impacts, such as issuing flood warnings and managing water
resources. Precipitation nowcasting, as defined in this work, involves predicting a sequence of future
radar images from historical observations for the immediate future up to a few hours (An et al.
2025). Traditional methods, like Eulerian and Lagrangian persistence (Germann & Zawadzkil [2002)),
rely on advecting the current precipitation field. However, their simplified physical assumptions
limit their ability to capture the complex, non-linear dynamics of atmospheric processes, especially
for rapidly evolving weather systems (Prudden et al., 2020).

Deep learning has introduced a paradigm shift in precipitation nowcasting. Deterministic mod-
els based on recurrent and transformer architectures learn complex spatiotemporal patterns directly
from large volumes of radar data (Prudden et al., | 2020; |An et al., 2025). While these models outper-
form traditional methods, optimizing for metrics like Mean Squared Error (MSE) compels them to
produce a single, best-guess forecast. This often results in overly smooth predictions at longer lead
times, failing to capture the inherent uncertainty in precipitation evolution and underrepresenting
high-impact weather events.

To address this, probabilistic generative models have become central to modern nowcasting, aiming
to predict a distribution over many plausible futures. Diffusion models (Ho et al., 2020), in particu-
lar, have emerged as the state-of-the-art, producing sharp and reliable ensemble forecasts (Gao et al.,
2023} [Leinonen et al., [2023; |Gong et al.| 2024)). However, this performance comes at a steep price:
their reliance on an iterative denoising process, often requiring hundreds of function evaluations for
a single forecast, makes them computationally expensive. This high Number of Function Evalua-
tions (NFE) poses a significant barrier to practical application in time-critical scenarios where rapid
ensemble generation is crucial.
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This work introduces FlowCast, a novel probabilistic nowcasting model built on Conditional Flow
Matching (CFM) (Lipman et al., [2023} Tong et al.l 2024), a powerful and efficient alternative de-
signed for rapid sampling. While recent work has applied rectified flows for the deterministic refine-
ment of blurry forecasts (Feng et al.| 2025)), FlowCast is, to our knowledge, the first to successfully
apply CFM as a full, noise-to-data generative model for this task. We demonstrate that FlowCast
alleviates the tension between accuracy and efficiency, establishing a new state-of-the-art by ex-
ceeding the performance of leading diffusion models while offering a superior performance-cost
trade-off.

We argue that CFM offers not only a computational advantage but also a superior inductive bias for
this domain, specifically regarding the simplified transport of probability mass. Radar reflectivity
distributions are highly multi-modal yet exhibit strong local temporal consistency. Standard diffu-
sion models map Gaussian noise to this complex manifold via stochastic denoising or curved proba-
bility flow ODEs, often necessitating many sampling steps to resolve fine-grained structures without
blurring modes. In contrast, CFM imposes a straight-line ODE prior on the generative process. This
enforces the simplest possible mapping between the noise and data distributions. In the context of
spatiotemporal forecasting, where temporal coherence is essential, this linear interpolation provides
a much stronger and more stable prior than the winding paths of diffusion. We demonstrate that this
geometric simplification allows FlowCast to maintain high fidelity with significantly fewer function
evaluations.

Our contributions are summarized as follows:

* We introduce FlowCast, a novel full-probabilistic application of Conditional Flow Match-
ing to precipitation nowcasting.

* We establish a new state-of-the-art in both probabilistic performance and predictive accu-
racy on two diverse radar datasets, the benchmark SEVIR dataset (Veillette et al., 2020)
and the local ARSO dataset.

* We provide a direct ablation study showing that the CFM objective is both more accurate
and more computationally efficient than a diffusion objective on the same architecture,
maintaining high performance with substantially fewer sampling steps.

2 RELATED WORK

2.1 DETERMINISTIC NOWCASTING

Deep learning for precipitation nowcasting has evolved from RNN-based architectures to
Transformer-based models. Early work includes ConvLSTM (Shi et al.| 2015), extending LSTMs
with convolutions for spatiotemporal data, and the PredRNN family (Wang et al.,2017;2023)), which
introduced a spatiotemporal memory flow for improved long-range dependency modeling. More re-
cently, Transformer architectures like Earthformer (Gao et al., 2022)) and Earthfarseer (Wu et al.,
2024) have set new benchmarks by using attention to model complex global dynamics. A common
limitation of deterministic models is that they produce overly smooth forecasts when trained with
pixel-wise losses (e.g., MSE), as they average over possible futures.

2.2 PROBABILISTIC NOWCASTING

To address uncertainty quantification, probabilistic models have become central to nowcasting, aim-
ing to sample from the full distribution of future states.

GANs and Diffusion. GANs (Ravuri et all 2021) were an early approach for producing sharp
forecasts but suffer from training instability. Diffusion models (Ho et al., |2020) have recently
emerged as the state-of-the-art, offering stable training and high-quality samples. PreDiff (Gao
et al.;2023) and LDCast (Leinonen et al., 2023) are prominent latent diffusion models for ensemble
forecasting. A notable hybrid is CasCast (Gong et al.,|2024), which uses a deterministic model for
large-scale patterns and a conditional diffusion model to refine stochastic details.

Flow-Based Generative Models. Generative modeling with flows offers an attractive alternative
to diffusion. Traditional Continuous Normalizing Flows (CNFs) (Chen et al.l 2018) model data
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via ODEs but require expensive numerical integration during training to compute likelihoods, mak-
ing them computationally prohibitive for high-dimensional spatiotemporal data. Conditional Flow
Matching (CFM) (Lipman et al., 2023) and Rectified Flows (Liu et al., |2023) overcome this by
regressing a vector field against a conditional probability path, enabling simulation-free training.
However, while standard Rectified Flows typically utilize a singular conditional path (effectively
o — 0), our application of Independent CFM (I-CFM) incorporates a Gaussian probability path
with o > 0. This “thickens” the training trajectory, providing crucial regularization that stabilizes
the learning of the vector field for high-dimensional data compared to the singular paths of rectified
flows.

Crucially, while diffusion models rely on stochastic denoising paths that are often curved and require
many sampling steps, CFM allows for learning straight-line ODE trajectories between noise and
data (Tong et al.| 2024)). This geometric property enforces a direct mapping that preserves temporal
coherence and allows for rapid sampling. While [Feng et al.| (2025) recently used a rectified flow
module to strictly refine deterministic forecasts, FlowCast applies CFM as a standalone probabilistic
generative model. This allows it to learn the full noise-to-data distribution and capture multimodal
uncertainty without relying on a deterministic base forecast.

3 METHOD

Our approach to probabilistic nowcasting is based on Conditional Flow Matching (CFM) within a
compressed latent space. This section details our methodology, covering the problem formulation,
our latent CFM framework, the model architecture, and the training and sampling procedures.

3.1 TASK FORMULATION

Precipitation nowcasting is framed as a video prediction task. Given a sequence of T;, past radar
observations, X, = {z1,29,..., 27, }, where each z; € RHAXWXC ig 3 radar map, the objective
is to generate a probabilistic forecast for the next T, frames, Xeuture = {TT1, 415 -« » Ty +T0ue -

3.2 LATENT CONDITIONAL FLOW MATCHING

To reduce the high computational cost of generative modeling, we adopt a two-stage ap-
proach inspired by latent diffusion models (Rombach et al., 2022). A Variational Autoencoder
(VAE) (Kingma & Welling}, |2014) compresses high-dimensional radar frames into low-dimensional
latents, which are used to train a generative model in the latent space.

Our generative model is built on the Conditional Flow Matching (CFM) framework (Lipman et al.,
2023)), which trains a continuous normalizing flow by learning a vector field vy that maps samples
from a prior distribution (e.g., Gaussian) to the target data distribution. We use Independent CFM (I-
CFM) (Tong et al., 2024), which defines a probability path p;(x;|zo, 1) as a Gaussian distribution
with mean (1 —t)xzo +tx; and a small constant standard deviation o. This path interpolates between
a noise sample zo ~ N(0,I) and a data sample z1. The corresponding target vector field is their
difference, u; = x1 — xo. This formulation enables direct, simulation-free training of the model vy
by regressing it against this target field.

3.2.1 FRAME-WISE AUTOENCODER

To learn a compact latent space, we train a VAE on individual radar frames. The architecture,
inspired by [Esser et al| (2021), uses a hierarchical encoder £ and decoder D with residual and
self-attention blocks for high-fidelity reconstructions. The VAE is trained with a combination of a
L1 reconstruction loss, a KL-divergence regularizer, and a PatchGAN adversarial loss (Isola et al.,
2017) to enhance perceptual quality. After training, the VAE’s weights are frozen and it is used to
encode inputs and decode latent predictions.

3.2.2 FLOWCAST ARCHITECTURE

We propose FlowCast, which consists of the adaptation of Earthformer-UNet (Gao et al., 2023)
for the CFM objective. FlowCast employs a U-Net-like encoder-decoder structure where the core
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building blocks are Cuboid Attention layers from Earthformer (Gao et al.| [2022). This mechanism
efficiently processes spatiotemporal data by applying self-attention locally within 3D “cuboids” of
the data, capturing local dynamics, while global information is shared across the hierarchical U-
Net structure. The model is conditioned on the flow time ¢, which is converted into an embedding
and injected at each level of the network, enabling the model to accurately approximate the time-
dependent vector field vy. The architecture is illustrated in Figure([T}
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Figure 1: The FlowCast architecture. A U-Net with Cuboid Attention blocks processes latent spa-

tiotemporal data. Conditioning on the flow time ¢ enables the model to learn the time-dependent
vector field for generating forecasts.

Training. The FlowCast model learns the vector field vg(Zy, t, Zpast). The complete training pro-
cedure is detailed in Algorithm [T

Algorithm 1 FlowCast Training Process

Require: Dataset D, Pre-trained VAE Encoder £, FlowCast Model vy, standard deviation o.

1: Initialize model parameters 0

2. while not converged do

3:  Sample a batch of radar sequences (Xpast; Xtuwre) ~ D
Encode sequences into latent space: Zpase < £(Xpast) and Zgyrure < €(Xuture)
Sample prior noise Zp ~ N(0, I), time ¢ ~ (0, 1) and path Gaussian noise € ~ N'(0, )
Compute interpolated latent state: Z; < (1 — ¢)Zp + t Zgyuure + O€
Compute target vector field: u; < Zgyre — Zp
Predict vector field: 0 < vg(Zs, t, Zpast)

9:  Compute Loss: £ « |5 — uy]|?
10:  Gradient step: 6§ < 6 —nVyL
11: end while

A A S

Sampling. To generate an ensemble of forecasts, we solve the learned ODE starting from noise,
using the Euler method (Hairer et al,[1993). This process is described in Algorithm 2]

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

More details about the experimental setting are provided in Appendix [A.]
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Algorithm 2 FlowCast Ensemble Sampling

Require: Past radar sequence X, Trained FlowCast Model vg, VAE Encoder £ / Decoder D.
Require: Ensemble size N, Number of ODE steps S.

Ensure: Ensemble forecasts {Xf(u]fzre}kN:r

1: Encode past observations: Zp,g < & Xpast)
2: for k =1to N do

3:  Sample initial state: Z(0) ~ N(0, 1)
4:  Setstep size: At < 1/S
5:  Set current state: Z., < Z(0)
6: fori=0toS —1do
7: Current time: ¢ < 7 - At
8: Predict vector field: v < vo(Zeurrs t, Zpast)
9: Update state (Euler step): Zeyrr < Zeyrr + v - At
10:  end for

11:  Final latent forecast: Z(1) < Zeyrr
12:  Decode to pixel space: Xf(u]fzre —D(Z(1))
13: end for

14: return Ensemble predictions {X'f(u]:are}évzl

4.1.1 DATASETS

We evaluate on two 5-minute, 1 km-resolution radar datasets: SEVIR, a US benchmark, and ARSO,
a Slovenian composite for a local deployment setting. For both, we predict 12 frames (1 hour) from
13 past frames (65 minutes), per the SEVIR Nowcasting Challenge protocol (Veillette et al., [2020).

Table 1: Summary of datasets used for evaluation.

Dataset  Nipain Nyal Niest Resolution Dimensionality Interval Lag/Lead
SEVIR 36,351 9,450 12,420 1 km 384x384 5 min 13/12
ARSO 38,229 12,743 12,744 1 km 301x401 5 min 13/12

SEVIR. SEVIR (Veillette et al.,|2020) provides over 10,000 weather events in a 384 x384 km US
domain, each spanning 4 hours at 5-minute resolution. We use the 1-km Vertically Integrated Liquid
(VIL) field. Following the standard chronological split, we extract 25-frame sequences (13 context,
12 target) with a stride of 12, yielding 36,351 training, 9,450 validation, and 12,420 test samples.

ARSO. The ARSO dataset contains S-minute, 1-km radar reflectivity composites over a 301 x401
km Slovenian grid, capturing complex Alpine and coastal dynamics. Using the same 25-frame
sequence setup but with stride 1, a 60/20/20 chronological split yields 38,229 training, 12,743 vali-
dation, and 12,744 test samples.

4.1.2 EVALUATION

Threshold-based categorical scores: Following prior work (Veillette et al., 2020; |Gao et al.,
2023} |Gong et al., 2024), we evaluate forecasts by converting radar fields to binary masks at given
thresholds and computing the False Alarm Ratio (FAR), Critical Success Index (CSI), and Heidke
Skill Score (HSS). For spatial validation, we compute the max-pooled CSI and Fractions Skill Score
(FSS) over 16 x 16 km neighborhoods (CSI-M-P16 and FSS-M-P16). We report the mean of these
scores across all thresholds (”-M”) to evaluate general performance. Furthermore, to rigorously as-
sess the detection of extreme weather events, we separately report the categorical metrics specifically
at the highest intensity thresholds for each dataset.

For SEVIR, we follow the literature in using the thresholds [16, 74, 133, 160, 181, 219]. For ARSO,
we use the thresholds [15, 21, 30, 33, 36, 39] dBZ, derived through quantile mapping to ensure that
each threshold corresponds to approximately the same exceedance probability in both datasets.
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Continuous Ranked Probability Score (CRPS): We use the CRPS to evaluate probabilistic skill.
A lower CRPS indicates a more accurate and sharp forecast. For deterministic forecasts (N = 1),
CRPS reduces to the Mean Absolute Error.

Ensemble forecasting: Let x, ; ; represent the ground truth pixel value at location (i, j) and lead
time ¢. All probabilistic models are evaluated using an ensemble of N = 8 realizations. For categor-
ical scores, we evaluate the ensemble mean prediction (Metric of Ensemble Mean), first computing

. N (K . .
the ensemble mean & ; ; = % > 1, mg i) ; and then the metric on this mean forecast.

4.1.3 TRAINING DETAILS

VAE. We train a separate Variational Autoencoder (VAE) for each dataset to create a specialized
latent space. We follow the architecture and training procedure from Rombach et al.|(2022)), with a
Kullback-Leibler divergence loss weight of 1e-4, the AdamW optimizer with a learning rate of le-4,
and a batch size of 12. The compressed latent space dimensions are shown in Table 2]

Table 2: VAE latent space dimensions

Dataset Original Dimensions Latent Dimensions
(Tin/Toul x H x W x Cin) (Tin/Tout X Hz X Wz X Cz)

SEVIR 13/12 x 384 x 384 x 1 13/12 x 48 x 48 x 4

ARSO 13/12 x 301 x 401 x 1 13/12 x 38 x 52 x 4

FlowCast. We train our CFM model for 200 epochs using the AdamW optimizer with a learning
rate of 5e-4 and a cosine scheduler. We set the standard deviation of the I-CFM probability path to
a small constant ¢ = 0.01 (Tong et al., 2024). We observed that the training process was notably
stable; unlike diffusion objectives which often require complex loss weighting schedules, the [-CFM
objective utilizes a simple regression loss that converged robustly without extensive hyperparameter
tuning. Model checkpoints are maintained using an exponential moving average of weights (Ho
et al., [2020), with a decay factor of 0.999, and we keep the model checkpoint with the highest CSI-
M evaluated on a subset of the validation set. The model is trained with 4 NVIDIA H100 for 7 days,
with a global batch size of 12. Further implementation details are provided in Appendix [A.T]

4.1.4 INFERENCE DETAILS

Generating a forecast with FlowCast involves solving the learned ODE to transform a noise-
initialized latent sequence into a prediction, conditioned on encoded past observations. Following
the procedure outlined in we use the Euler method (Hairer et al.|, [1993) with 10 steps as the
ODE solver. To generate a probabilistic ensemble forecast, this process is repeated eight times with
different initial noise samples Z(0) ~ N (0, I).

4.2 COMPARISON TO THE STATE OF THE ART

We evaluate FlowCast against four deterministic baselines: U-Net (Veillette et al.l [2020), Earth-
former (Gao et al.| 2022)), Earthfarseer (Wu et al.| 2024), and SimVPv2 (Tan et al.,[2025)), as well as
two probabilistic baselines: PreDiff (Gao et al., [2023]) and CasCast (Gong et al., 2024). All models
are trained following their publicly released code, with the training budget fixed at 200 epochs. For
probabilistic models, we adopt our evaluation protocol by selecting the checkpoint with the highest
CSI-M on a validation subset, using exponential moving average weights.

General Performance (SEVIR & ARSO). As shown in Table [3| Figure [2] Table 4] and Figure 3]
FlowCast establishes a new state-of-the-art across both diverse datasets. On SEVIR, it achieves
the highest overall CSI-M, FSS-M-P16, and HSS-M and the lowest CRPS, demonstrating superior
probabilistic calibration. On ARSO, FlowCast outperforms all baselines in all metrics besides FAR-
M. Notably, on SEVIR, while the probabilistic baseline CasCast achieves the highest CSI-P16-M, it
suffers from a significantly higher FAR-M compared to FlowCast (0.383 vs. 0.325). This indicates
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that FlowCast strikes a superior balance between detection sensitivity and precision, avoiding the
tendency to over-predict precipitation coverage. Deterministic models achieve the lowest FAR-M
scores by predicting blurry fields at longer lead times, missing the most extreme events (CSI-219).

Performance on Extreme Events. To evaluate the ability of the models to detect extreme events,
we report performance at the highest intensity thresholds for both datasets in Table [5] FlowCast
demonstrates a decisive advantage here. On SEVIR (Threshold 219), FlowCast achieves a CSI of
0.202, outperforming the best deterministic baseline (SimVP, 0.137) by over 47% and the leading
probabilistic baseline (CasCast, 0.195). The trend holds for ARSO (Threshold 39 dBZ), where
FlowCast achieves the highest CSI (0.183) and HSS (0.291). Crucially, FlowCast maintains this high
detection skill while achieving a lower FAR than CasCast across all extreme thresholds, confirming
its ability to generate sharp, intense features without resorting to excessive false alarms.

Table 3: Comparison of FlowCast with baseline models on the SEVIR dataset. All metrics are
computed over a 12-step forecast, except "Forecast @ +65 min” which only uses the last frame.

Forecast @ 12 steps ‘ Forecast @ +65 min

Model | CRPS | | CSI-Mt CSI-P16-M 1 | FSS-P16-M + | HSS-M 1 | FAR-M | | CSI-M 1+ CSI-219 1
U-Net 0.0273 | 0.394 0.384 0.661 0.497 0.308 0.259 0.009
Earthformer | 0.0252 | 0.411 0.407 0.686 0.518 0.285 0.280 0.016
Earthfarseer | 0.0256 | 0.389 0.393 0.636 0.486 0.289 0.247 0.001
SimVP 0.0249 | 0.423 0.424 0.701 0.532 0.298 0.280 0.012
PreDiff 0.0189 | 0413 0.423 0.699 0.523 0313 0.281 0.018
CasCast 0.0201 | 0.442 0.520 0.763 0.562 0.383 0.311 0.054
FlowCast | 0.0182 | 0.460 0506 | 0767 | 0.580 0325 | 0324 0.057
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Figure 2: CSI-M and CSI at the 219 threshold per lead time on the SEVIR dataset. FlowCast shows
consistent improvement over baselines for CSI-M and avoids the oversmoothing of deterministic
models at longer lead times (CSI-219).

Table 4: Comparison of FlowCast with baseline models on the ARSO dataset. All metrics are
computed over a 12-step forecast, except “Forecast @ +65 min” which only considers the last frame.

Forecast @ 12 steps | Forecast @ +65 min

Model | CRPS| | CSIM 1  CSI-P16-M 1 | FSS-P16-M 1 | HSS-M 1 | FAR-M | | CSEM T CSI-39 1
U-Net 0.0264 | 0399 0.432 0.659 0.505 0371 0260 0011
Earthformer | 0.0270 | 0.403 0.439 0.691 0.512 0409 | 0274 0010
Earthfarseer | 0.0280 | 0.368 0.406 0.588 0.463 0358 | 0233 0.004
SimVP 0.0267 | 0415 0.462 0.699 0.526 0401 | 0288  0.029
PreDiff 0.0211 | 0369 0411 0.614 0.471 0400 | 0241  0.010
CasCast 0.0253 | 0373 0511 0.712 0.483 0488 | 0277 0057
FlowCast | 0.0209 | 0.420 0514 | 0738 | 0535 | 0422 | 0315  0.073
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Figure 3: CSI-M and CSI at the 39 DBz threshold per lead time on the ARSO dataset. FlowCast
shows significant improvements over probabilistic baselines for earlier lead times, and over deter-
ministic baselines for later lead times.

Table 5: Comparison of FlowCast with baseline models on SEVIR and ARSO datasets for extreme
events using categorical metrics with the highest thresholds per dataset. All metrics are computed
over a 12-step forecast.

\ SEVIR ARSO
S HSS FAR csl HSS FAR
Model | 181 219 181 219 181 219 | 36 39 36 39 36 39

Earthformer | 0.229 0.109 0.348 0.180 0.354 0.343 | 0.216 0.145 0.335 0.231 0.531 0.553

|

|

|
U-Net 0205 0.122 0314 0.193 0366 0.508 | 0.209 0.145 0.318 0.226 0.474 0.505
Earthfarseer | 0.194 0.097 0.291 0.152 0.341 0412 | 0.159 0.104 0.245 0.164 0.445 0.449

SimVP 0244 0.137 0365 0.220 0.370 0.404 | 0.238 0.162 0.362 0.254 0.507 0.540
PreDiff 0237 0.128 0361 0.206 0.384 0.467 | 0.176 0.118 0.277 0.193 0520 0.566
CasCast 0286 0.195 0.427 0309 0.501 0.567 | 0.202 0.142 0.320 0235 0.647 0.694

FlowCast | 0.301 0.202 0.443 0.317 0425 0482 | 0.254 0.183 0.388 0.291 0.547 0.589

Figure ] qualitatively compares forecast sequences from FlowCast with the baselines on the SEVIR
dataset. FlowCast produces sharp, perceptually realistic forecasts, avoiding the smoothness of deter-
ministic models. Compared to the best-performing probabilistic baseline CasCast, we observe more
realistic precipitation patterns, especially at longer lead times. More examples, including on ARSO,
are provided in Appendix [A.2]

4.3 ABLATION STUDIES

Due to computational constraints, all ablation studies were run on the first 10% of the SEVIR test
set using a single NVIDIA A100 GPU.

4.3.1 CFM OBJECTIVE AGAINST DIFFUSION

To isolate the benefits of the CFM objective, we compare FlowCast against a strong baseline using
the same backbone architecture but trained with a diffusion objective. We trained a DDPM (Ho
et al.,[2020) for 1000 timesteps. For efficient inference, we employed a DDIM sampler (Song et al.,
2021) with a varying number of steps. This provides a strong and practical baseline to evaluate
FlowCast against a highly optimized diffusion process on the same powerful architecture.

The results in Table[6|clearly demonstrate the superiority of the CFM objective. With a single step,
FlowCast (CFM) drastically outperforms the DDIM sampler, even a 100-step DDIM baseline, across
key metrics like CRPS and CSI-M, whilst being almost 100 times faster.
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Figure 4: Qualitative comparison of FlowCast with other baselines on a SEVIR sequence. Columns
show lead times from 10 to 60 minutes. Rows show the ground-truth, followed by the models.

Table 6: Ablation study: CFM vs. diffusion objective. Results highlight the superior performance
and efficiency of the CFM framework. All metrics are computed over a 12-step forecast.

Model | CRPS | | CSI-M 4 CSI-P16-M 1 | FSS-M-P161 | HSS-M t | FAR-M | | Time/Seq. (s)
CEM (1 steps) 0.0207 | 0.454 0.504 0.763 0.571 0.337 2.6
CEM (10 steps) | 0.0168 | 0.455 0.514 0.764 0.572 0.338 24
DDIM (10 steps) | 0.0262 | 0.395 0.450 0.622 0.503 0.335 24
DDIM (50 steps) | 0.0212 | 0.398 0.451 0.635 0.504 0.321 120
DDIM (100 steps) | 0.0208 | 0.398 0.450 0.664 0.502 0.319 239
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4.3.2 INFERENCE EFFICIENCY: PERFORMANCE VS. NUMBER OF FUNCTION EVALUATIONS

We assess inference efficiency by comparing FlowCast and the diffusion backbone across a range
of function evaluations (NFE), where one NFE is an Euler (CFM) or DDIM step. Each NFE adds
2.4s per 8-member ensemble forecast. Figure [5] shows FlowCast is highly efficient, nearing opti-
mal CRPS and CSI-M scores in just 3-10 steps. In contrast, the diffusion model requires 20-50
steps to peak and degrades sharply below 10 NFE. These results highlight the superior efficiency of
the CFM framework, which learns a more direct mapping to the data manifold and enables high-
fidelity forecasts with significantly fewer model evaluations. This efficiency is a crucial advantage
for operational settings where forecasts must be both rapid and reliable.

CRPS vs. Number of Steps CSI-M vs. Number of Steps
—s— FlowCast (CFM) 0.46 —_—

0.045 Flowcast (Diffusion) —

0.040

0.035

CRPS
CSI-M

0.030

0.025 036

0.34
0.020
\\—S‘ —— FlowCast (CFM)
0.32 Flowcast (Diffusion)

0 10 20 30 40 50 0 10 20 30 40 50
Number of Steps Number of Steps

Figure 5: Performance vs. efficiency trade-off. Forecast quality (CRPS |, CSI-M 1) as a function
of NFE. FlowCast (CFM) achieves near-optimal performance with only 3 to 10 steps, while the
DDIM-based model requires 20 steps to 50 steps, and degrades sharply at low NFE.

5 CONCLUSION

In this paper, we introduced FlowCast, the first fully probabilistic model applying Conditional Flow
Matching (CFM) as a direct noise-to-data generative framework for precipitation nowcasting. Our
experiments on the SEVIR and ARSO datasets show that FlowCast achieves state-of-the-art perfor-
mance. Through direct ablation studies, we showed that the CFM objective is not only more accurate
than a traditional diffusion objective on the same architecture but also vastly more efficient. Flow-
Cast maintains high forecast quality with as few as a single sampling step, a regime where diffusion
models fail. Our results firmly establish CFM as a powerful, efficient, and practical alternative for
high-dimensional spatiotemporal forecasting.

Limitations and Future Work: While FlowCast shows significant promise, we identify two pri-
mary areas for future development. First, its reliance solely on radar data could be a limitation.
Future work should explore multi-modal data fusion (e.g., satellite, NWP) to enhance robustness
and accuracy. Second, our evaluation was limited to two datasets due to computational cost; a
broader study across more meteorological regimes is needed to confirm generalizability.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have provided comprehensive supporting materials.
Code: The full source code for our FlowCast model, including scripts for training and evaluation, is
included in the supplementary material. The repository contains detailed instructions for setting up
the required software environment and running the experiments. Datasets: Our work utilizes two
datasets. The SEVIR dataset is a public benchmark, and details for access are provided by |Veillette
et al.| (2020). The ARSO dataset was provided by the Slovenian Environment Agency (ARSO) for
this research; we are actively collaborating with the agency to facilitate its public release in the near
future. Experimental Details: Section [{.1] of the main paper provides a detailed description of
our experimental setup. Further implementation details are available in Appendix[A.T] including all
model hyperparameters.
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A APPENDIX

A.l

This section details the implementation of FlowCast. The code to train and evaluate FlowCast is

IMPLEMENTATION DETAILS

provided as supplementary material.

A.l.1

The VAE was configured with the hyperparameters shown in Table [/} Different warmup periods
were empirically selected based on the convergence speed of the VAE on the respective datasets;
ARSO converged faster due to less diversity in the data, attributed to factors such as its fixed geo-

VAE

graphical coverage and the significantly smaller stride used during sequence extraction.

Table 7: VAE hyperparameter summary

Category Parameter

Value / Setting

Dataset

Source
Input Dimensionality (per frame)
Input Preprocessing

SEVIR (vil) & ARSO (zm)

384 x 384 x 1 (SEVIR), 301 x 401 x 1 (ARSO)

Frame values scaled to [0, 1]

Training Objective

Loss Components

KL Divergence Weight (Ax 1)
Discriminator Weight (\g4,)
Adversarial Loss Type
Discriminator Architecture
Discriminator Activation Warmup

Reconstruction + KL Divergence + Adversarial

1x1074

0.5

Hinge Loss

PatchGAN (Isola et al.|2017)

35 epochs (SEVIR), 15 epochs (ARSO)

Optimization

Optimizer (Generator & Disc.)
Learning Rate (Initial)

Weight Decay

AdamW Betas

LR Scheduler

LR Warmup Fraction

LR Min Warmup Ratio

Min. LR Ratio

AdamW

1x107*

1x107°

(0.9,0.999)

Cosine Annealing with Linear Warmup
20% of total training steps

0.1

1073

Training Configuration

Batch Size 12 (Global), 3 (Local)
Max. Number of Epochs 250
Gradient Clipping Norm 1.0
Early Stopping Patience 50 epochs
Early Stopping Metric Generator validation loss
Training Nodes 4 x H100 GPUs
FP16 Training Disabled

Model Configuration
Latent Channels 4
GroupNorm Num 32
Layers per Block 2
Activation Function SiLU
Encoder-Decoder Depth 4
Block Out Channels [128, 256, 512, 512]

Data Preprocessing and Padding. To accommodate the VAE’s downsampling factor of f = 8,
inputs must be spatially divisible by the downsampling rate. For the ARSO dataset, the native
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resolution of 301 x 401 is not divisible by 8. We handle this by applying replication padding to
the input frames to reach the nearest multiple of 16 prior to encoding. Specifically, the height is
padded from 301 to 304, and the width from 401 to 416. This results in the latent dimensions of
38 x 52 reported in Table(304 /8 and 416/8, respectively). During inference, the generated fields
are cropped back to the original 301 x 401 dimensions before evaluation metrics are computed.
SEVIR dimensions (384 x 384) are naturally divisible by 8, requiring no padding.

A.1.2 FLOWCAST

Architecture. The FlowCast architecture, adapted from Earthformer-UNet (Gao et al., [2023) for
latent-space Conditional Flow Matching, has the following configuration:

* Core U-Net Architecture:
— Hierarchical Stages: A U-Net with 2 hierarchical stages (one level of downsam-
pling/upsampling within the main U-Net body, in addition to initial/final processing).

— Stacked Cuboid Self-Attention Modules: Each stage in both the contracting (en-
coder) and expansive (decoder) paths contains a depth of 4 Stacked Cuboid Self-
Attention modules.

— Base Feature Dimensionality: 196 units.
* Spatial Processing:
— Downsampling: Achieved using Patch Merge (reducing spatial dimensions by a fac-
tor of 2 and doubling channel depth).
— Upsampling: Uses nearest-neighbor interpolation followed by a convolution (halving
channel depth).
* Cuboid Self-Attention Details:
Pattern: Follows an axial pattern, processing temporal, height, and width dimensions
sequentially.
Attention Heads: 4 attention heads.
Positional Embeddings: Relative positional embeddings are used.
— Projection Layer: A final projection layer is part of the attention block.

— Dropout Rates: Dropout rates for attention, projection, and Feed-Forward Network
(FFN) layers are set to 0.1.

* Global Vectors: The specialized global vector mechanism from the original Earthformer
is disabled.

* FFN and Normalization:
— FFN Activation: Feed-forward networks within the attention blocks use GELU acti-
vation.
— Normalization: Layer normalization is applied throughout the relevant parts of the
network.
* Embeddings:
— Spatiotemporal Positional Embeddings: Added to the input features after an initial
projection.
— CFM Time Embeddings (t):
+ (Generation: Generated with a channel multiplier of 4 relative to the base feature
dimensionality (resulting in 196 x 4 = 784 embedding channels).
# Incorporation: Injected into the network at each U-Net stage using
residual blocks that fuse the time embedding with the feature maps
(TimeEmbedResBlock modules).

» Skip Connections: Standard U-Net additive skip connections merge features from the
contracting path to the expansive path.

* Padding: Zero-padding is used where necessary to maintain tensor dimensions during
convolutions or cuboid operations.
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Training and Inference Hyperparameters. The FlowCast training and inference hyperparame-
ters are as follows:

Table 8: FlowCast hyperparameter summary

Category Parameter Value / Setting
Dataset
Source Latent-space sequences from VAE
Input Dimensionality 13 x 48 x 48 x 4 (SEVIR), 13 x 38 x 52 x 4 (ARSO)
Input Preprocessing Standardized with training set statistics (mean, std)
Training Configuration
Loss Function MSE: £ = ||# — (Zuwure — Zp)||?
Batch Size 12 (Global), 3 (Local)
Max. Number of Epochs 200
Gradient Clipping Norm 1.0
Early Stopping Patience 50 epochs
Early Stopping Metric CSI-M evaluated on subset (40 batches) of validation set
Training Nodes 4 x H100 GPUs
FP16 Training Enabled
Exponential Moving Average Weights Enabled
Exponential Moving Average Weights Decay  0.999
Optimization
Optimizer AdamW
Learning Rate (Initial) 5x 1074
Weight Decay 1x107*
AdamW Betas (0.9,0.999)
LR Scheduler Cosine Annealing with Linear Warmup
LR Warmup Fraction 1% of total training steps
LR Min Warmup Ratio 0.1
Min. LR Ratio 1072
CFM Parameters
o 0.01
ODE Solver Euler Method with 10 steps

Choice of ODE Solver. We conducted an ablation study to compare various ODE solvers, includ-
ing adaptive methods (Adaptive Heun, Dormand-Prince 5) and fixed-step methods (Euler, Midpoint,
Runge-Kutta 4) on the first 10% of the SEVIR test set using a single NVIDIA A100 GPU. For adap-
tive solvers, a relative and absolute tolerance of 10~2 and 103 were used, respectively. Since
no significant performance differences were observed, as shown in Table [0 we selected the Euler
method with 10 steps for its computational efficiency and simplicity.

Table 9: Ablation study: ODE solvers. Results highlight minor differences in performance between
the different solvers.

Solver | CRPS | | CS-M T CSI-P16-M 1 | FSS-M-P164 | HSS-M 1 | FAR-M . | Time/Seq. (s)
Euler (1 steps) 0.0207 | 0.454 0.504 0.763 0.571 0.337 2.6
Euler (10 steps) 0.0168 | 0.455 0.514 0.764 0.572 0.338 24
Dormand-Prince 5 0.0168 | 0.450 0.516 0.762 0.567 0.341 46
Midpoint (10 steps) 0.0167 | 0451 0.516 0.762 0.568 0.341 44
Runge-Kutta 4 (10 steps) | 0.0167 | 0.451 0.516 0.762 0.567 0.341 83
Adaptive Heun 0.0167 | 0451 0.516 0.762 0.568 0.341 50

A.1.3 EVALUATION METRICS

Continuous Ranked Probability Score (CRPS). The CRPS is evaluated directly at the original
data resolution, without applying any spatial pooling. For each ensemble of N forecast members,
CRPS is calculated at every pixel and then averaged across all spatial positions and forecast lead
times to obtain a single summary metric. If the predictive distribution F' at a given pixel and time
step is approximated by a Gaussian with mean p and standard deviation o (estimated from the
ensemble), and x is the observed value, the CRPS can be computed as:
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CRPS(F,x)=a<x;“<2<1> (56;”)—1)+2¢<x;”>—\/17?>, (1)

where ® and ¢ denote the cumulative distribution function (CDF) and probability density function
(PDF) of the standard normal distribution, respectively.

Threshold-based categorical metrics. For each chosen intensity threshold u, we binarize the
continuous ground truth field x;; ; to obtain an observation mask W[z, ; ; > u]. The represen-
tative forecast & ; ; (see Section 4.1.2)) is likewise thresholded to produce a binary forecast mask
Hé[i‘t ij > u}

Using these binary masks and the dataset-specific thresholds, we construct a 2 x 2 contingency table
for each evaluation:

: Hits (True Positives),
| Observ. yes  Observ. no
H F
M C

: Misses (False Negatives),

Forecast yes

Forecast no : False Alarms (False Positives),

SHOI

: Correct Negatives.

The values H, M, F, C are summed over all spatial locations, batches, and forecast lead times. The
following metrics are then computed:

False Alarm Ratio (FAR): The proportion of forecasted events that did not actually occur.

F

FAR = .
H+F

2

Critical Success Index (CSI): The fraction of observed and/or forecasted events that were cor-
rectly predicted, ignoring correct negatives. This metric is sensitive to both missed events and false

alarms.

H
Sl=miuTr @

Heidke Skill Score (HSS): The accuracy of the forecast relative to random chance.

2HC — MF)

HSS = (H+M)M+C)+(H+F)(F+C)

4)

Pooled CSI (CSI-P16): Forecasts and ground truth fields are first downsampled by applying a
max-pooling operation over non-overlapping 16 x 16 pixel blocks. CSI is then recomputed on
these pooled fields. A hit anywhere within a 16 x 16 block is registered as a success, thereby
rewarding models that capture the local presence and intensity of precipitation, even if exact pixel-
level alignment is imperfect.

Fractions Skill Score (FSS): We compute FSS to evaluate spatial alignment. Let Sy (4, j) and
S,(3, ) denote the fraction of pixels exceeding the threshold within a neighborhood of size n x n
centered at (i, 7) for the forecast and observation, respectively. The FSS is calculated as:

Zi,j[sf(ivj) - So(ivj)]Q

FSS=1-— — —
Zi’j Sp(i,5)* + Zi,j So(i,7)?

®)

A.2 MORE QUALITATIVE EXAMPLES

This section presents additional qualitative examples comparing FlowCast against the baseline mod-
els
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A.2.1 SEVIR

Cascast PreDiff SimVP EarthFarseer Earthformer U-Net Ground Truth

FlowCast

+10 min +20 min +30 min +40 min +50 min +60 min

Figure 6: Qualitative comparison of FlowCast with other baselines on a SEVIR sequence.
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Cascast PreDiff SimVP EarthFarseer Earthformer U-Net Ground Truth

FlowCast

+10 min +20 mi +30 min +40 min +50 min +60 min

W

Figure 7: Qualitative comparison of FlowCast with other baselines on a SEVIR sequence.
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Cascast PreDiff SimVP EarthFarseer Earthformer U-Net Ground Truth

FlowCast

+50 min +60 min

Figure 8: Qualitative comparison of FlowCast with other baselines on a SEVIR sequence.
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A.2.2 ARSO

+10 min +20 min +30 min

+40 min +60 min

+50 min

Cascast PreDiff Simvp EarthFarseer  Earthformer U-Net Ground Truth

FlowCast

Figure 9: Qualitative comparison of FlowCast with other baselines on an ARSO sequence.
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FlowCast

Figure 10: Qualitative comparison of FlowCast with other baselines on an ARSO sequence.

20

M
8
Radar Reflectivity (dBZ)

N

w
8
Radar Reflectivity (dBZ)

Y



Under review as a conference paper at ICLR 2026

+10 min +20 min +30 min +40 min +50 min +60 min
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Earthformer
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Figure 11: Qualitative comparison of FlowCast with other baselines on an ARSO sequence.

A.3 LLM USAGE STATEMENT

During the preparation of this manuscript, we utilized a large language model (LLM) as a writ-
ing assistant. The LLM’s primary role was to help refine sentence structure, improve clarity, and
ensure grammatical correctness and consistency in tone. All scientific contributions, including the
research ideation, methodological design, experimental analysis, and interpretation of results, were
conducted solely by the authors, who take full responsibility for the content of this work.
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