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ABSTRACT

Radar-based precipitation nowcasting, the task of forecasting short-term precipita-
tion fields from previous radar images, is a critical problem for flood risk manage-
ment and decision-making. While deep learning has substantially advanced this
field, two challenges remain fundamental: the uncertainty of atmospheric dynam-
ics and the efficient modeling of high-dimensional data. Diffusion models have
shown strong promise by producing sharp, reliable forecasts, but their iterative
sampling process is computationally prohibitive for time-critical applications. We
introduce FlowCast, the first model to apply Conditional Flow Matching (CFM)
to precipitation nowcasting. Unlike diffusion, CFM learns a direct noise-to-data
mapping, enabling rapid, high-fidelity sample generation with drastically fewer
function evaluations. Our experiments demonstrate that FlowCast establishes a
new state-of-the-art in predictive accuracy. A direct comparison further reveals
the CFM objective is both more accurate and significantly more efficient than a
diffusion objective on the same architecture, maintaining high performance with
significantly fewer sampling steps. This work positions CFM as a powerful and
practical alternative for high-dimensional spatiotemporal forecasting.

1 INTRODUCTION

Accurate and timely short-term precipitation forecasts, or nowcasting, are of paramount importance
due to their significant socio-economic impacts, such as issuing flood warnings and managing water
resources. Precipitation nowcasting, as defined in this work, involves predicting a sequence of future
radar images from historical observations for the immediate future up to a few hours (An et al.,
2025)). Traditional methods, like Eulerian and Lagrangian persistence (Germann & Zawadzki,[2002),
rely on advecting the current precipitation field. However, their simplified physical assumptions
limit their ability to capture the complex, non-linear dynamics of atmospheric processes, especially
for rapidly evolving weather systems (Prudden et al., 2020).

Deep learning has introduced a paradigm shift in precipitation nowcasting. Deterministic mod-
els based on recurrent and transformer architectures learn complex spatiotemporal patterns directly
from large volumes of radar data (Prudden et al.| 2020; |An et al., 2025). While these models outper-
form traditional methods, optimizing for metrics like Mean Squared Error (MSE) compels them to
produce a single, best-guess forecast. This often results in overly smooth predictions at longer lead
times, failing to capture the inherent uncertainty in precipitation evolution and underrepresenting
high-impact weather events.

To address this, probabilistic generative models have become central to modern nowcasting, aiming
to predict a distribution over many plausible futures. Diffusion models (Ho et al., 2020), in particu-
lar, have emerged as the state-of-the-art, producing sharp and reliable ensemble forecasts (Gao et al.,
2023; |[Leinonen et al., 2023} |Gong et al.,|2024). However, this performance comes at a steep price:
their reliance on an iterative denoising process, often requiring hundreds of function evaluations for
a single forecast, makes them computationally expensive. This high Number of Function Evalua-
tions (NFE) poses a significant barrier to practical application in time-critical scenarios where rapid
ensemble generation is crucial.

This work investigates Conditional Flow Matching (CFM) (Lipman et al., [2023; Tong et al., [2024)
as a powerful and more efficient alternative designed for rapid sampling. We introduce FlowCast,
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the first model to apply CFM to probabilistic precipitation nowcasting. We demonstrate that Flow-
Cast resolves the tension between accuracy and efficiency, establishing a new state-of-the-art by
exceeding the performance of leading diffusion models while offering a superior performance-cost
trade-off.

Our contributions are summarized as follows:

* We introduce FlowCast, the first application of Conditional Flow Matching to precipitation
nowcasting.

* We establish a new state-of-the-art in probabilistic performance on two diverse radar
datasets, the benchmark SEVIR dataset (Veillette et al., 2020) and the local ARSO dataset.

* We provide a direct ablation study showing that the CFM objective is both more accurate
and more computationally efficient than a diffusion objective on the same architecture,
maintaining high performance with substantially fewer sampling steps.

2 RELATED WORK

Deterministic Nowcasting. Deep learning for precipitation nowcasting has evolved from RNN-
based architectures to Transformer-based models. Early work includes ConvLSTM (Shi et al.|
2013)), extending LSTMs with convolutions for spatiotemporal data, and the PredRNN family (Wang
et al., |2017; |2023), which introduced a spatiotemporal memory flow for improved long-range de-
pendency modeling. More recently, Transformer architectures like Earthformer (Gao et al., 2022)
and Earthfarseer (Wu et al., |2024) have set new benchmarks by using attention to model complex
global dynamics. A common limitation of deterministic models is that they produce overly smooth
forecasts when trained with pixel-wise losses (e.g., MSE), as they average over possible futures.

Probabilistic Nowcasting. To address uncertainty quantification, probabilistic models have be-
come central to nowcasting. GANs (Ravuri et al.||2021) were an early approach for producing sharp
forecasts, but diffusion models (Ho et al.,[2020) are now state-of-the-art, offering stable training and
high-quality samples. PreDiff (Gao et al., |2023)) and LDCast (Leinonen et al.| 2023)) are prominent
latent diffusion models for ensemble forecasting. A notable hybrid is CasCast (Gong et al., |2024),
which uses a deterministic model for large-scale patterns and a conditional diffusion model to refine
stochastic details, and is currently the state-of-the-art for probabilistic precipitation nowcasting.

Flow-Based Generative Models. While diffusion models deliver state-of-the-art results, their it-
erative sampling is computationally demanding. Continuous Normalizing Flows (CNFs) enable
more efficient sampling. Recently, Conditional Flow Matching (CFM) (Lipman et al.| 2023) has
emerged as a powerful technique for training CNFs, allowing for simulation-free training and rapid
generation. It has shown strong performance in computer vision (Tong et al.,[2024; |Dao et al.,[2023;
Jin et al., [2025), but its potential for scientific forecasting remains unexplored. To our knowledge,
this work is the first to apply CFM to probabilistic precipitation nowcasting.

3 METHOD

Our approach to probabilistic nowcasting is based on Conditional Flow Matching (CFM) within a
compressed latent space. This section details our methodology, covering the problem formulation,
our latent CFM framework, the model architecture, and the training and sampling procedures.

3.1 TASK FORMULATION

Precipitation nowcasting is framed as a video prediction task. Given a sequence of 7}, past radar
observations, Xpast = {21, Z2,...,2n, }, where each z; € RHXWXC ig g radar map, the objective
is to generate a probabilistic forecast for the next Tty frames, Xyture = {ZTi, 41, - - s T+ Toue J-
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3.2 LATENT CONDITIONAL FLOW MATCHING

To reduce the high computational cost of generative modeling, we adopt a two-stage ap-
proach inspired by latent diffusion models (Rombach et al., 2022). A Variational Autoencoder
(VAE) (Kingma et al.l [2013) compresses high-dimensional radar frames into low-dimensional la-
tents, which are used to train a generative model in the latent space.

Our generative model is built on the Conditional Flow Matching (CFM) framework (Lipman et al.,
2023)), which trains a continuous normalizing flow by learning a vector field vy that maps samples
from a prior distribution (e.g., Gaussian) to the target data distribution. We use Independent CFM (I-
CFM) (Tong et al., 2024), which defines a probability path p;(x;|zo, x1) as a Gaussian distribution
with mean (1 —¢)xo 4tz and a small constant standard deviation o. This path interpolates between
a noise sample zo ~ N(0,I) and a data sample z1. The corresponding target vector field is their
difference, u; = x1 — xo. This formulation enables direct, simulation-free training of the model vy
by regressing it against this target field.

3.2.1 FRAME-WISE AUTOENCODER

To learn a compact latent space, we train a VAE on individual radar frames. The architecture,
inspired by [Esser et al| (2021), uses a hierarchical encoder £ and decoder D with residual and
self-attention blocks for high-fidelity reconstructions. The VAE is trained with a combination of a
L1 reconstruction loss, a KL-divergence regularizer, and a PatchGAN adversarial loss (Isola et al.,
2017) to enhance perceptual quality. After training, the VAE’s weights are frozen and it is used to
encode inputs and decode latent predictions.

3.2.2 FLOWCAST ARCHITECTURE

We propose FlowCast, which consists of the adaptation of Earthformer-UNet (Gao et al., 2023)
for the CFM objective. FlowCast employs a U-Net-like encoder-decoder structure where the core
building blocks are Cuboid Attention layers from Earthformer (Gao et al.| [2022). This mechanism
efficiently processes spatiotemporal data by applying self-attention locally within 3D “cuboids” of
the data, capturing local dynamics, while global information is shared across the hierarchical U-
Net structure. The model is conditioned on the flow time ¢, which is converted into an embedding
and injected at each level of the network, enabling the model to accurately approximate the time-
dependent vector field vy. The architecture is illustrated in Figure([T}
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Figure 1: The FlowCast architecture. A U-Net with Cuboid Attention blocks processes latent spa-

tiotemporal data. Conditioning on the flow time ¢ enables the model to learn the time-dependent
vector field for generating forecasts.
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Training. The FlowCast model learns the vector field vg(Z, t, Zpas). For each data sample:

1. The past (Xpas) and future (Xpuwre) sequences are encoded into latent space (Zpast, Ztuture)-

2. A random noise sequence Zp ~ N (0,I) and a time step ¢ ~ U|0, 1] are sampled and an
interpolated latent state is computed: Z; = (1 — t)Zp + t Zpyure + O€.

3. The model predicts the vector field 0 = vg(Zy, t, Zpast)-
4. The training loss is the MSE between predicted and target fields: £ = || — (Zuure — Zp ) ||?.

Sampling. To generate an ensemble of forecasts:

1. The past radar sequence X, is encoded into its latent representation Zpqg.

2. For each ensemble member, a distinct initial latent sequence Z(0) is sampled from N (0, I).

3. The ordinary differential equation (ODE) dz(t = v9(Z(t),t, Zpast) 18 solved from ¢ = 0
tot = 1 with an ODE solver.

4. The resulting forecast at t = 1, Z(1), is decoded back into pixel space: Xtuture = D(Z(1)).

The training and sampling procedures are illustrated in Figure 2]
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Figure 2: FlowCast training and sampling procedures.
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4 EXPERIMENTS
4.1 EXPERIMENTAL SETTING
More details about the experimental setting are provided in Appendix [A.1]

4.1.1 DATASETS

We evaluate on two 5-minute, 1 km-resolution radar datasets: SEVIR, a US benchmark, and ARSO,
a Slovenian composite for a local deployment setting. For both, we predict 12 frames (1 hour) from
13 past frames (65 minutes), per the SEVIR Nowcasting Challenge protocol (Veillette et al., 2020).

Table 1: Summary of datasets used for evaluation.

Dataset  Nirain Nvar Ntest Resolution Dimensionality Interval Lag/Lead
SEVIR 36,351 9450 12,420 1 km 384x384 5 min 13/12
ARSO 38,229 12,743 12,744 1 km 301x401 5 min 13/12

SEVIR. SEVIR (Veillette et al., 2020) provides over 10,000 weather events in a 384 x384 km US
domain, each spanning 4 hours at 5-minute resolution. We use the 1-km Vertically Integrated Liquid
(VIL) field. Following the standard chronological split, we extract 25-frame sequences (13 context,
12 target) with a stride of 12, yielding 36,351 training, 9,450 validation, and 12,420 test samples.

ARSO. The ARSO dataset contains 5-minute, 1-km radar reflectivity composites over a 301 x401
km Slovenian grid, capturing complex Alpine and coastal dynamics. Using the same 25-frame
sequence setup but with stride 1, a 60/20/20 chronological split yields 63,716 training, 12,743 vali-
dation, and 12,744 test samples.

4.1.2 EVALUATION

Threshold-based categorical scores: Following prior work (Veillette et al.l 2020; |Gao et al.
2023} |Gong et al. [2024), we evaluate forecasts by converting radar fields to binary masks at given
thresholds and computing the False Alarm Ratio (FAR), Critical Success Index (CSI), and Heidke
Skill Score (HSS). We also use a max-pooled CSI over 16x16km regions (CSI-P16-M) to better
assess predictions of localized extreme events, crucial for warning systems. We report the mean of
these scores across all thresholds (”-M”), and also the CSI at the highest threshold for each dataset.

For SEVIR, we follow the literature in using the thresholds [16, 74, 133, 160, 181, 219]. For ARSO,
we use the thresholds [15, 21, 30, 33, 36, 39] dBZ, derived through quantile mapping to ensure that
each threshold corresponds to approximately the same exceedance probability in both datasets.

Continuous Ranked Probability Score (CRPS): We use the CRPS to evaluate probabilistic skill.
A lower CRPS indicates a more accurate and sharp forecast. For deterministic forecasts (N = 1),
CRPS reduces to the Mean Absolute Error.

Ensemble forecasting: Let z; ; ; represent the ground truth pixel value at location (¢, j) and lead
time ¢. All probabilistic models are evaluated using an ensemble of N = 8 realizations. For categor-
ical scores, we evaluate the ensemble mean prediction (Metric of Ensemble Mean), first computing

o ()

. N . .
the ensemble mean Z; ; ; = % > k—1;; and then the metric on this mean forecast.

J
4.1.3 TRAINING DETAILS

VAE. We train a separate Variational Autoencoder (VAE) for each dataset to create a specialized
latent space. We follow the architecture and training procedure from Rombach et al.|(2022)), with a
Kullback-Leibler divergence loss weight of 1e-4, the AdamW optimizer with a learning rate of le-4,
and a batch size of 12. The compressed latent space dimensions are shown in Table 2]
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Table 2: VAE latent space dimensions

Dataset Original Dimensions Latent Dimensions
(Tin/Tout x Hx W x Cin) (Tin/Tout X Hz X Wz X Cz)

SEVIR 13/12 x 384 x 384 x 1 13/12 x 48 x 48 x 4

ARSO 13/12 x 301 x 401 x 1 13/12 x 38 x 52 x 4

FlowCast. We train our CFM model for 200 epochs using the AdamW optimizer with a learning
rate of 5e-4 and a cosine scheduler. We set the standard deviation of the I-CFM probability path to a
small constant o = 0.01 (Tong et al.,2024). Model checkpoints are maintained using an exponential
moving average of weights (Ho et al.| 2020), with a decay factor of 0.999, and we keep the model
checkpoint with the highest CSI-M evaluated on a subset of the validation set. The model is trained
with 4 NVIDIA H100 for 7 days, with a global batch size of 12. Further implementation details are
provided in Appendix [A.T]

4.1.4 INFERENCE DETAILS

Generating a forecast with FlowCast involves solving the learned ODE to transform a noise-
initialized latent sequence into a prediction, conditioned on encoded past observations. Following
the procedure outlined in @], we use the Euler method (Hairer et al. |{1993) with 10 steps as the
ODE solver. To generate a probabilistic ensemble forecast, this process is repeated eight times with
different initial noise samples Z(0) ~ N (0, T).

4.2 COMPARISON TO THE STATE OF THE ART

We evaluate FlowCast against three deterministic baselines: U-Net (Veillette et al., [2020), Earth-
former (Gao et al., 2022)), and SimVPv2 (Tan et al. [2025), as well as two probabilistic baselines:
PreDiff (Gao et al., 2023)) and CasCast (Gong et al., 2024). All models are trained following their
publicly released code, with the training budget fixed at 200 epochs. For probabilistic models, we
adopt our evaluation protocol by selecting the checkpoint with the highest CSI-M on a validation
subset, using exponential moving average weights to ensure comparability.

As shown in Table[3]and Figure[3] FlowCast sets a new state-of-the-art, achieving the highest overall
CSI-M and HSS-M and the lowest CRPS. Its advantage is most pronounced at longer lead times,
with a final CSI-219 score 256% higher than the best deterministic model. For detecting localized
extreme events (CSI-P16-M), FlowCast is competitive with CasCast, which achieves a 2.8% higher
score but with a 17.8% higher False Alarm Ratio (FAR-M). This suggests CasCast’s score may stem
from over-prediction, while FlowCast better balances detection and precision.

Table 3: Comparison of FlowCast with baseline models on the SEVIR dataset. All metrics are
computed over a 12-step forecast, except "Forecast @ +65 min” which only uses the last frame.

| | Forecast @ 12 steps | Forecast @ +65 min
Model ‘ CRPS | ‘ CSI-M 1 CSI-P16-M 1 ‘ HSS-M 1 ‘ FAR-M | ‘ CSI-M 1 CSI-219 1
U-Net 0.0273 0.394 0.384 0.497 0.308 0.259 0.009
Earthformer 0.0252 0411 0.407 0.518 0.285 0.280 0.016
SimVP 0.0249 0.423 0.424 0.532 0.298 0.280 0.012
PreDiff 0.0189 0.413 0.423 0.523 0.313 0.281 0.018
CasCast 0.0201 0.442 0.520 0.562 0.383 0.311 0.054
FlowCast (ours) | 0.0182 | 0.460 0506 | 0580 | 0325 | 0324  0.057

Figure [ compares forecast sequences from FlowCast with the baselines. FlowCast produces sharp,
perceptually realistic forecasts, avoiding the smoothness of deterministic models. More examples

are provided in Appendix
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Figure 3: CSI-M and CSI at the 219 threshold per lead time on the SEVIR dataset. FlowCast shows
consistent improvement over baselines for CSI-M and avoids the oversmoothing of deterministic
models at longer lead times (CSI-219).
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Figure 4: Qualitative comparison of FlowCast with other baselines on a SEVIR sequence. Columns
show lead times from 10 to 60 minutes. Rows show the ground-truth, followed by the models.
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Similarly, results for the ARSO dataset are shown in Table @] FlowCast again achieves the best
scores in almost all metrics, demonstrating its advantages on a different dataset with distinct local
dynamics.

Table 4: Comparison of FlowCast with baseline models on the ARSO dataset. All metrics are
computed over a 12-step forecast, except “Forecast @ +65 min” which only considers the last frame.

| | Forecast @ 12 steps | Forecast @ +65 min
Model | CRPS | | CSEM 1 CSI-PI6-M 1 | HSS-M 1 | FAR-M | | CSIEM 1 CSI-219 1
U-Net 0.0264 0.399 0.432 0.505 0.371 0.260 0.011
Earthformer 0.0270 0.403 0.439 0.512 0.409 0.274 0.010
SimVP 0.0267 0.415 0.462 0.526 0.401 0.288 0.029
PreDiff 0.0211 0.369 0.411 0.471 0.400 0.241 0.010
CasCast 0.0253 0.373 0.511 0.483 0.488 0.277 0.057
FlowCast (ours) ‘ 0.0209 ‘ 0.420 0.514 ‘ 0.535 ‘ 0.422 ‘ 0.315 0.073

4.3 ABLATION STUDIES

Due to computational constraints, all ablation studies were run on the first 10% of the SEVIR test
set using a single NVIDIA A100 GPU.

4.3.1 CFM OBJECTIVE AGAINST DIFFUSION

To isolate the benefits of the CFM objective, we compare FlowCast against a strong baseline using
the same backbone architecture but trained with a diffusion objective. We trained a DDPM (Ho
et al.| |2020) for 1000 timesteps. For efficient inference, we employed a DDIM sampler (Song et al.,
2021) with a varying number of steps. This provides a strong and practical baseline to evaluate
FlowCast against a highly optimized diffusion process on the same powerful architecture.

The results in Table 5| clearly demonstrate the superiority of the CFM objective. With just 10 steps,
FlowCast (CFM) drastically outperforms the DDIM sampler, even a 100-step DDIM baseline, across
key metrics like CRPS and CSI-M.

Table 5: Ablation study: CFM vs. diffusion objective. Results highlight the superior performance
and efficiency of the CFM framework. All metrics are computed over a 12-step forecast, except
“Forecast @ +65 min” which only considers the last frame.

| | Forecast @ 12 steps | Forecast @ +65 min |
Model ‘ CRPS | ‘ CSI-M 1 CSI-P16-M 1 ‘ HSS-M 1 ‘ FAR-M | ‘ CSI-M 1 CSI-219 1 ‘ Time/Seq. (s)
CFM (10 steps) 0.0168 0.455 0.514 0.572 0.338 0.303 0.014 24
DDIM (10 steps) 0.0262 0.395 0.450 0.503 0.335 0.236 0.002 24
DDIM (50 steps) 0.0212 0.398 0.451 0.504 0.321 0.236 0.002 120
DDIM (100 steps) | 0.0208 0.398 0.450 0.502 0.319 0.235 0.002 239

4.3.2 INFERENCE TIME EFFICIENCY: PERFORMANCE VS. NUMBER OF FUNCTION
EVALUATIONS

We assess inference efficiency by comparing FlowCast and the diffusion backbone across a range
of function evaluations (NFE), where one NFE is an Euler (CFM) or DDIM step. Each NFE adds
2.4s per 8-member ensemble forecast. Figure [5] shows FlowCast is highly efficient, nearing opti-
mal CRPS and CSI-M scores in just 3-10 steps. In contrast, the diffusion model requires 20-50
steps to peak and degrades sharply below 10 NFE. These results highlight the superior efficiency of
the CFM framework, which learns a more direct mapping to the data manifold and enables high-
fidelity forecasts with significantly fewer model evaluations. This efficiency is a crucial advantage
for operational settings where forecasts must be both rapid and reliable.
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Figure 5: Performance vs. efficiency trade-off. Forecast quality (CRPS |, CSI-M 1) as a function of
the Number of Function Evaluations (NFE). FlowCast (CFM) achieves near-optimal performance
with only 3 to 10 steps, while the DDIM-based model requires 20 steps for CSI-M and 50 steps for
CRPS, and degrades sharply at low NFE.

5 CONCLUSION

In this paper, we introduced FlowCast, the first model to apply Conditional Flow Matching (CFM) to
precipitation nowcasting. Our experiments on the SEVIR and ARSO datasets show that FlowCast
achieves state-of-the-art performance. Through direct ablation studies, we showed that the CFM
objective is not only more accurate than a traditional diffusion objective on the same architecture but
also vastly more efficient. FlowCast maintains high forecast quality with as few as a single sampling
step, a regime where diffusion models fail. Our results firmly establish CFM as a powerful, efficient,
and practical alternative for high-dimensional spatiotemporal forecasting.

Limitations and Future Work: While FlowCast shows significant promise, we identify two pri-
mary areas for future development. First, its reliance solely on radar data could be a limitation.
Future work should explore multi-modal data fusion (e.g., satellite, NWP) to enhance robustness
and accuracy. Second, our evaluation was limited to two datasets due to computational cost; a
broader study across more meteorological regimes is needed to confirm generalizability.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have provided comprehensive supporting materials.
Code: The full source code for our FlowCast model, including scripts for training and evaluation, is
included in the supplementary material. The repository contains detailed instructions for setting up
the required software environment and running the experiments. Datasets: Our work utilizes two
datasets. The SEVIR dataset is a public benchmark, and details for access are provided by |Veillette
et al.| (2020). The ARSO dataset was provided by the Slovenian Environment Agency (ARSO) for
this research; we are actively collaborating with the agency to facilitate its public release in the near
future. Experimental Details: Section [{.1] of the main paper provides a detailed description of
our experimental setup. Further implementation details are available in Appendix [A.T] including all
model hyperparameters.

REFERENCES

Sojung An, Tae-Jin Oh, Eunha Sohn, and Donghyun Kim. Deep learning for precipitation nowcast-
ing: A survey from the perspective of time series forecasting. Expert Systems with Applications,
268:126301, 2025.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv preprint
arXiv:2307.08698, 2023.



Under review as a conference paper at ICLR 2026

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 12873-12883, 2021.

Zhihan Gao, Xingjian Shi, Hao Wang, Yi Zhu, Yuyang (Bernie) Wang, Mu Li, and Dit-Yan
Yeung. Earthformer: Exploring space-time transformers for earth system forecasting. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 25390-25403. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/a2affd71dl5e8fedffel8d0219f4837a-Paper—Conference.pdf.

Zhihan Gao, Xingjian Shi, Boran Han, Hao Wang, Xiaoyong Jin, Danielle Maddix, Yi Zhu, Mu Li,
and Yuyang (Bernie) Wang. Prediff: Precipitation nowcasting with latent diffusion models. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 78621-78656. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/f82bababb981lfbbecf5f2ee5de7db39c-Paper—-Conference.pdf.

Urs Germann and Isztar Zawadzki. Scale-dependence of the predictability of precipitation from
continental radar images. part i: Description of the methodology. Monthly Weather Review, 130
(12):2859-2873, 2002. doi: 10.1175/1520-0493(2002)130(2859:SDOTPO)2.0.CO;2.

Junchao Gong, Lei Bai, Peng Ye, Wanghan Xu, Na Liu, Jianhua Dai, Xiaokang Yang, and Wanli
Ouyang. Cascast: skillful high-resolution precipitation nowcasting via cascaded modelling. In
Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024.

E Hairer, Syvert P Norsett, and Gerhard Wanner. Solving ordinary differential equations I: Nonstiff
problems. Springer, Berlin, Germany, 2 edition, 1993.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125-1134, 2017.

Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang
Song, Yadong Mu, and Zhouchen Lin. Pyramidal Flow Matching for Efficient Video Generative
Modeling. In International Conference on Learning Representations, 2025. URL https://
openreview.net/forum?id=YOUR_PAPER_ID_HERE.

Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

Jussi Leinonen, Ulrich Hamann, and Urs Germann. Latent diffusion models for generative precipi-
tation nowcasting with accurate uncertainty quantification. In EGU General Assembly, 2023. doi:
10.5194/egusphere-egu23-9531.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PgvMRDCJT9t.

Rachel Prudden, Samantha V. Adams, Dmitry Kangin, Niall H. Robinson, Suman V. Ravuri,
Shakir Mohamed, and Alberto Arribas. A review of radar-based nowcasting of precipitation
and applicable machine learning techniques. CoRR, abs/2005.04988, 2020. URL https:
//arxiv.org/abs/2005.04988.

Suman Ravuri, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam, Piotr Mirowski, Megan
Fitzsimons, Maria Athanassiadou, Sheleem Kashem, Sam Madge, et al. Skilful precipitation
nowcasting using deep generative models of radar. Nature, 597(7878):672-677, 2021. doi: 10.
1038/s41586-021-03854-z.

10


https://proceedings.neurips.cc/paper_files/paper/2022/file/a2affd71d15e8fedffe18d0219f4837a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a2affd71d15e8fedffe18d0219f4837a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f82ba6a6b981fbbecf5f2ee5de7db39c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f82ba6a6b981fbbecf5f2ee5de7db39c-Paper-Conference.pdf
https://openreview.net/forum?id=YOUR_PAPER_ID_HERE
https://openreview.net/forum?id=YOUR_PAPER_ID_HERE
https://openreview.net/forum?id=PqvMRDCJT9t
https://arxiv.org/abs/2005.04988
https://arxiv.org/abs/2005.04988

Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
Convolutional Istm network: A machine learning approach for precipitation nowcasting. Ad-
vances in neural information processing systems, 28, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR,
2021.

Cheng Tan, Zhangyang Gao, Siyuan Li, and Stan Z Li. Simvpv2: Towards simple yet powerful
spatiotemporal predictive learning. IEEE Transactions on Multimedia, 2025.

Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative mod-
els with minibatch optimal transport. Transactions on Machine Learning Research, 2024. ISSN
2835-8856. URL https://openreview.net/forum?id=CD9Snc73AW. Expert Certifi-
cation.

Mark Veillette, Siddharth Samsi, and Chris Mattioli. Sevir: A storm event imagery dataset for
deep learning applications in radar and satellite meteorology. Advances in Neural Information
Processing Systems, 33:22009-22019, 2020.

Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, and Philip S Yu. Predrnn: Recurrent
neural networks for predictive learning using spatiotemporal Istms. Advances in neural informa-
tion processing systems, 30, 2017.

Yunbo Wang, Haixu Wu, Jianjin Zhang, Zhifeng Gao, Jianmin Wang, Philip S. Yu, and Ming-
sheng Long. Predrnn: A recurrent neural network for spatiotemporal predictive learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(2):2208-2225, 2023. doi:
10.1109/TPAMI.2022.3165153.

Hao Wu, Yuxuan Liang, Wei Xiong, Zhengyang Zhou, Wei Huang, Shilong Wang, and Kun Wang.
Earthfarsser: Versatile spatio-temporal dynamical systems modeling in one model. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 38, pp. 15906-15914, 2024.

11


https://openreview.net/forum?id=CD9Snc73AW

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 IMPLEMENTATION DETAILS

This section details the implementation of FlowCast. The code to train and evaluate FlowCast is

provided as supplementary material.

A.1.1 VAE

The VAE was configured with the following hyperparameters:

Table 6: VAE hyperparameter summary

Category Parameter Value / Setting
Dataset
Source SEVIR (vil) & ARSO (zm)
Input Dimensionality (per frame) 384 x 384 x 1 (SEVIR), 301 x 401 x 1 (ARSO)
Input Preprocessing Frame values scaled to [0, 1]
Training Objective
Loss Components Reconstruction + KL Divergence + Adversarial
KL Divergence Weight (Ax ) 1x1074
Discriminator Weight (Ay4.) 0.5
Adversarial Loss Type Hinge Loss
Discriminator Architecture PatchGAN (Isola et al.|2017)
Discriminator Activation Warmup 35 epochs (SEVIR), 15 epochs (ARSO)
Optimization

Optimizer (Generator & Disc.)
Learning Rate (Initial)

Weight Decay

AdamW Betas

LR Scheduler

LR Warmup Fraction

LR Min Warmup Ratio

Min. LR Ratio

AdamW

1x107*

1x107°

(0.9,0.999)

Cosine Annealing with Linear Warmup
20% of total training steps

0.1

1073

Training Configuration

Batch Size 12 (Global), 3 (Local)
Max. Number of Epochs 250
Gradient Clipping Norm 1.0
Early Stopping Patience 50 epochs
Early Stopping Metric Generator validation loss
Training Nodes 4 x H100 GPUs
FP16 Training Disabled

Model Configuration
Latent Channels 4
GroupNorm Num 32
Layers per Block 2
Activation Function SiLU
Encoder-Decoder Depth 4
Block Out Channels [128, 256, 512, 512]

A.1.2 FLOWCAST

Architecture. The FlowCast architecture, adapted from Earthformer-UNet (Gao et al., [2023)) for
latent-space Conditional Flow Matching, has the following configuration:
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* Core U-Net Architecture:
— Hierarchical Stages: A U-Net with 2 hierarchical stages (one level of downsam-
pling/upsampling within the main U-Net body, in addition to initial/final processing).

— Stacked Cuboid Self-Attention Modules: Each stage in both the contracting (en-
coder) and expansive (decoder) paths contains a depth of 4 Stacked Cuboid Self-
Attention modules.

— Base Feature Dimensionality: 196 units.
* Spatial Processing:

— Downsampling: Achieved using Patch Merge (reducing spatial dimensions by a fac-
tor of 2 and doubling channel depth).

— Upsampling: Uses nearest-neighbor interpolation followed by a convolution (halving
channel depth).

¢ Cuboid Self-Attention Details:

Pattern: Follows an axial pattern, processing temporal, height, and width dimensions
sequentially.

Attention Heads: 4 attention heads.

Positional Embeddings: Relative positional embeddings are used.

— Projection Layer: A final projection layer is part of the attention block.

— Dropout Rates: Dropout rates for attention, projection, and Feed-Forward Network
(FFN) layers are set to 0.1.

* Global Vectors: The specialized global vector mechanism from the original Earthformer
is disabled.

* FFN and Normalization:
— FFN Activation: Feed-forward networks within the attention blocks use GELU acti-
vation.
— Normalization: Layer normalization is applied throughout the relevant parts of the
network.
¢ Embeddings:
— Spatiotemporal Positional Embeddings: Added to the input features after an initial
projection.
— CFM Time Embeddings (t):

+ Generation: Generated with a channel multiplier of 4 relative to the base feature
dimensionality (resulting in 196 x 4 = 784 embedding channels).

# Incorporation: Injected into the network at each U-Net stage using
residual blocks that fuse the time embedding with the feature maps
(TimeEmbedResBlock modules).

» Skip Connections: Standard U-Net additive skip connections merge features from the
contracting path to the expansive path.

* Padding: Zero-padding is used where necessary to maintain tensor dimensions during
convolutions or cuboid operations.

Training and Inference Hyperparameters. The FlowCast training and inference hyperparame-
ters are as follows:
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Table 7: FlowCast hyperparameter summary

Category Parameter

Value / Setting

Dataset
Source
Input Dimensionality
Input Preprocessing

Latent-space sequences from VAE
13 x 48 x 48 x 4 (SEVIR), 13 x 38 x 52 x 4 (ARSO)
Standardized with training set statistics (mean, std)

Training Configuration
Loss Function

MSE: L = HTA} - (quturc - ZP)H2

Batch Size 12 (Global), 3 (Local)
Max. Number of Epochs 200
Gradient Clipping Norm 1.0
Early Stopping Patience 50 epochs
Early Stopping Metric CSI-M evaluated on subset (40 batches) of validation set
Training Nodes 4 x H100 GPUs
FP16 Training Enabled
Exponential Moving Average Weights Enabled
Exponential Moving Average Weights Decay  0.999

Optimization
Optimizer AdamW
Learning Rate (Initial) 5x 10~*
Weight Decay 1x1074
AdamW Betas (0.9,0.999)
LR Scheduler Cosine Annealing with Linear Warmup
LR Warmup Fraction 1% of total training steps
LR Min Warmup Ratio 0.1
Min. LR Ratio 1072

CFM Parameters
o 0.01
ODE Solver Euler Method with 10 steps

Choice of ODE Solver. We conducted an ablation study to compare various ODE solvers, includ-

ing adaptive methods (Adaptive Heun, Dormand-Prince 5) and fixed-step methods (Euler, Midpoint,
Runge-Kutta 4). Since no significant performance differences were observed, we selected the Euler
method with 10 steps for its computational efficiency and simplicity.

A.1.3 EVALUATION METRICS

Continuous Ranked Probability Score (CRPS). The CRPS is evaluated directly at the original
data resolution, without applying any spatial pooling. For each ensemble of /N forecast members,
CRPS is calculated at every pixel and then averaged across all spatial positions and forecast lead
times to obtain a single summary metric. If the predictive distribution F' at a given pixel and time
step is approximated by a Gaussian with mean g and standard deviation o (estimated from the
ensemble), and x is the observed value, the CRPS can be computed as:

e (552) ) (5) )

where ® and ¢ denote the cumulative distribution function (CDF) and probability density function
(PDF) of the standard normal distribution, respectively.

CRPS(F,z) = o < (1)

Threshold-based categorical metrics. For each chosen intensity threshold u, we binarize the
continuous ground truth field x;; ; to obtain an observation mask ¥[x;; ; > u]. The represen-
tative forecast 2 ; ; (see Section 4.1.2)) is likewise thresholded to produce a binary forecast mask
H‘[i‘t ij > ’U,}
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Using these binary masks and the dataset-specific thresholds, we construct a 2 x 2 contingency table
for each evaluation:

H : Hits (True Positives),
‘ Observ. yes Observ. no M : Misses (False Negatives),
Forecast yes H F ) .
Forecast no M C F' : False Alarms (False Positives),
C

: Correct Negatives.

The values H, M, F', C' are summed over all spatial locations, batches, and forecast lead times. The
following metrics are then computed:

False Alarm Ratio (FAR): The proportion of forecasted events that did not actually occur.

2

Critical Success Index (CSI): The fraction of observed and/or forecasted events that were cor-
rectly predicted, ignoring correct negatives. This metric is sensitive to both missed events and false
alarms.

H

CSl= —————. 3
H+M+F ®)
Heidke Skill Score (HSS): The accuracy of the forecast relative to random chance.
2(HC — MF
HSS — ( ) )

(H+ MM +C)+ (H+F)(F+C)

Pooled CSI (CSI-P16): Forecasts and ground truth fields are first downsampled by applying a
max-pooling operation over non-overlapping 16 x 16 pixel blocks. CSI is then recomputed on
these pooled fields. A hit anywhere within a 16 x 16 block is registered as a success, thereby
rewarding models that capture the local presence and intensity of precipitation, even if exact pixel-
level alignment is imperfect.

A.2 MORE QUALITATIVE EXAMPLES

This section presents additional qualitative examples comparing FlowCast against the baseline mod-
els
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A.2.1 SEVIR

+10 min +20 min +30 min +40 min +50 min +60 min

Cascast PreDiff SimVP Earthformer U-Net Ground Truth

FlowCast

Figure 6: Qualitative comparison of FlowCast with other baselines on a SEVIR sequence.
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+10 min +20 min +30 min +40 min +50 min +60 min

3

Ground Truth

Cascast PreDiff SimVP Earthformer

FlowCast

160

Figure 7: Qualitative comparison of FlowCast with other baselines on a SEVIR sequence.
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+10 min

+20 min

&

+40 min

+50 min +60 min

Ground Truth

PreDiff SimVP Earthformer U-Net

Cascast

FlowCast

Figure 8: Qualitative comparison of FlowCast with other baselines on a SEVIR sequence.

18



Under review as a conference paper at ICLR 2026

A.2.2 ARSO

+10 min

+30 min

+40 min +50 min

+20 min +60 min

Cascast PreDiff SimVvP Earthformer U-Net Ground Truth

FlowCast

27 30
Radar Reflectivity (dBZ)

Figure 9: Qualitative comparison of FlowCast with other baselines on an ARSO sequence.
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+10 min +20 min +30 min +40 min

+50 min

+60 min

SimvpP Earthformer U-Net Ground Truth

PreDiff

Cascast

FlowCast

4
33 36 39 57

27 30
Radar Reflectivity (dBZ)

Figure 10: Qualitative comparison of FlowCast with other baselines on an ARSO sequence.

+10 min +20 min +30 min +40 min +50 min +60 min

Cascast PreDiff SimvP Earthformer U-Net Ground Truth

FlowCast

33 36 39 57

27 30
Radar Reflectivity (dBZ)

Figure 11: Qualitative comparison of FlowCast with other baselines on an ARSO sequence.
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A.3 LLM USAGE STATEMENT

During the preparation of this manuscript, we utilized a large language model (LLM) as a writ-
ing assistant. The LLM’s primary role was to help refine sentence structure, improve clarity, and
ensure grammatical correctness and consistency in tone. All scientific contributions, including the
research ideation, methodological design, experimental analysis, and interpretation of results, were
conducted solely by the authors, who take full responsibility for the content of this work.
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