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Abstract001

Large language models (LLMs) have demon-002
strated significant potential in enhancing dense003
retrieval through query augmentation. How-004
ever, most existing methods treat the LLM and005
the retriever as separate modules, overlooking006
the alignment between generation and rank-007
ing objectives. In this work, we propose Ex-008
pandR, a unified LLM-augmented dense re-009
trieval framework that jointly optimizes both010
the LLM and the retriever. ExpandR employs011
the LLM to generate semantically rich query012
expansions, which are leveraged to enhance the013
retriever’s training. Simultaneously, the LLM014
is trained using Direct Preference Optimization015
(DPO), guided by a carefully designed reward016
function that balances retrieval effectiveness017
and generation consistency. This joint opti-018
mization paradigm enables mutual adaptation019
between the LLM and the retriever, resulting020
in query expansions that are both informative021
and well-suited for retrieval. Experimental re-022
sults on multiple benchmarks show that Ex-023
pandR consistently outperforms strong base-024
lines, achieving more than a 5% improvement025
in retrieval performance. All code will be pub-026
licly released on GitHub.027

1 Introduction028

Dense retrievers (Karpukhin et al., 2020; Xiong029

et al., 2021a) encode both queries and documents030

into the same embedding space, enabling efficient031

similarity-based retrieval via approximate KNN032

search (Johnson et al., 2019). While effective, their033

performance remains highly sensitive to the quality034

of the input query. In practice, user queries (Belkin035

et al., 1982; Ingwersen, 1996) are often short and036

ambiguous, leading to a significant semantic gap037

between the query and relevant documents, mak-038

ing it challenging for dense retrievers to accurately039

capture the underlying information need.040

Recent advances in Large Language Models041

(LLMs) offer promising solutions to this challenge042

through query augmentation (Wei et al., 2022b; 043

Huang et al., 2024a; Wei et al., 2022a). Existing 044

methods along this line of research can be cate- 045

gorized into two groups. The first direction lever- 046

ages LLM-generated reformulations as supervision 047

signals to train dense retrieval models, typically 048

through contrastive training (Zhang et al., 2025; Ma 049

et al., 2025) or ranking probability distillation (Shi 050

et al., 2024; Kim and Baek, 2025). However, the 051

effectiveness of this approach is constrained by 052

the limited capacity and scalability of dense re- 053

trievers (Fang et al., 2024). The second direction 054

focuses on augmenting dense retrievers by prompt- 055

ing LLMs to generate additional terms at infer- 056

ence time (Wang et al., 2023a; Mackie et al., 2023). 057

These terms aim to increase lexical overlap with 058

relevant documents, thereby reducing the semantic 059

gap between queries and documents. While such 060

expansions are often semantically rich, they are 061

typically misaligned with the retriever, as the LLM 062

is not explicitly optimized for retrieval objectives. 063

As a result, the retriever struggles to effectively 064

utilize the LLM-augmented content. 065

In this work, we propose ExpandR, a unified 066

LLM-augmented dense retrieval framework that 067

jointly optimizes both the LLM and the dense 068

retriever. ExpandR first prompts the LLM to 069

generate semantically enriched query expansions, 070

which enhance query representations and improve 071

the retriever’s ability to rank relevant documents. 072

Rather than treating the LLM and retriever as 073

separate modules, ExpandR integrates generation 074

and retrieval under a shared training objective— 075

promoting higher ranks for ground-truth documents 076

given a query. Specifically, we optimize the dense 077

retriever via contrastive training, and train the LLM 078

using Direct Preference Optimization (DPO) with a 079

combination of self-consistency and retrieval-based 080

rewards. Through this joint optimization, the two 081

components mutually reinforce each other, leading 082

to more effective expansions and improved overall 083
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retrieval performance.084

Our experiments on the BEIR bench-085

mark (Thakur et al., 2021) demonstrate the086

effectiveness of ExpandR, yielding over a 5.8%087

improvement in supervised dense retrieval. Further088

analysis shows that the query expansions generated089

by ExpandR lead to better alignment with relevant090

documents compared to those from baseline091

methods. By jointly leveraging self-consistency092

and retrieval-based rewards, the LLM is better093

optimized to generate expansions that are both094

semantically rich and retriever-aligned. Specif-095

ically, the self-consistency reward encourages096

the LLM to generate content that is semantically097

closer to the ground-truth document, while the098

retrieval-based reward captures the retriever’s099

ranking behavior. Together, these rewards guide100

the LLM to produce expansions that are both101

relevant and retriever-friendly.102

2 Related Work103

Dense retrievers (Karpukhin et al., 2020; Xiong104

et al., 2021a; Izacard et al., 2021; Yu et al., 2021;105

Xiong et al., 2021b; Li et al., 2021) conduct seman-106

tic matching by encoding queries and documents107

into a shared embedding space, thereby alleviating108

the vocabulary mismatch problem (Belkin et al.,109

1982). To further improve the quality of seman-110

tic matching, recent work has focused on refining111

this embedding space through contrastive learning112

with relevance supervision (Karpukhin et al., 2020;113

Zhan et al., 2021) or leveraging weakly supervised114

training signals (Xie et al., 2023). While effec-115

tive, a persistent bottleneck in information retrieval116

lies in the quality of the user-issued queries them-117

selves (Jiang et al., 2025). In particular, queries are118

often underspecified, ambiguous, or semantically119

incomplete, which limits the retriever’s ability to120

accurately locate relevant content (Belkin et al.,121

1982; Ingwersen, 1996).122

Recent advances in LLMs (Achiam et al., 2023;123

GLM et al., 2024) offer new opportunities to ad-124

dress this issue by leveraging their rich knowledge125

and powerful generative capabilities to enrich or126

reformulate user queries (Yu et al., 2020; Lin et al.,127

2020; Ye et al., 2023). These augmented queries128

are often used as supervision signals or distillation129

targets to train dense retrievers more effectively.130

For instance, methods such as LLM-QL (Zhang131

et al., 2025) and DRAMA (Ma et al., 2025) pro-132

pose leveraging LLMs to generate new queries or133

training triplets for dense retriever optimization. 134

RePlug (Shi et al., 2024) has been proposed to dis- 135

till the knowledge of LLMs into a lightweight re- 136

triever. While these approaches enhance supervised 137

retrieval performance, they mainly focus on query 138

synthesis, often overlooking the limited semantic 139

expressiveness of the original queries (Wang et al., 140

2023b). Moreover, their effectiveness is funda- 141

mentally constrained by the limited capacity and 142

scalability of dense retrievers (Huang et al., 2024b). 143

LLM-based query expansion has emerged as a 144

widely adopted approach for query augmentation, 145

effectively enriching the semantic content of origi- 146

nal queries. These methods prompt LLMs to gen- 147

erate query-related documents (Wang et al., 2023a; 148

Jagerman et al., 2023; Gao et al., 2023), leverage 149

Chain-of-Thought (CoT) reasoning results (Wei 150

et al., 2022b; Trivedi et al., 2023), or utilize spe- 151

cific keywords (Li et al., 2024; Jagerman et al., 152

2023) to expand queries, thereby enhancing the 153

ranking capabilities of lexical matching based re- 154

trieval models (Jagerman et al., 2023; Wang et al., 155

2023a), dense retrieval models (Wang et al., 2023a), 156

and reranking models (Li et al., 2024). However, 157

these LLM-generated expansions are often directly 158

incorporated into the retrieval process without re- 159

training or adapting the retriever. Consequently, 160

the retriever fails to fully leverage the enriched sig- 161

nals of LLMs, resulting in limited improvements 162

in retrieval performance (Wang et al., 2023a). 163

Moreover, existing approaches that incorpo- 164

rate LLMs into retrieval systems often train the 165

LLM (Jiang et al., 2025) or the retriever inde- 166

pendently (Kim and Baek, 2025), resulting in 167

preference misalignment between the generation 168

and retrieval components. Some works, such as 169

RaFe (Mao et al., 2024), attempt to align LLM 170

rewriting with retrieval signals by using reranker 171

scores as feedback. However, these approaches rely 172

on a separate reranking model rather than incorpo- 173

rating direct training signals from dense retrievers. 174

In contrast, our approach introduces a joint training 175

framework that simultaneously optimizes the LLM 176

and the dense retriever, enabling stronger align- 177

ment between the two components to conduct a 178

more effective retrieval result. 179

3 ExpandR: An LLM Augmented Dense 180

Retriever Method 181

As illustrated in Figure 1, this section introduces 182

ExpandR, our LLM-augmented dense retrieval 183
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Figure 1: Illustration of Our ExpandR Model. ExpandR optimizes both dense retriever and LLM using the LLM-
guided contrastive training method and the ranking preference alignment method.

model that leverages query expansions to improve184

retrieval performance. We begin by describing the185

overall architecture of ExpandR (Sec. 3.1). We then186

present how LLM-generated query expansions are187

used to guide the training of the dense retriever188

(Sec. 3.2). Finally, we detail a preference-based189

optimization strategy for the LLM to generate more190

effective and tailored query expansions (Sec. 3.3).191

3.1 Toward a Framework for LLM-Guided192

Dense Retrieval193

This section illustrates how LLMs can be leveraged194

to enhance dense retrieval. We first introduce the195

architecture of a standard dense retriever, and then196

present our proposed method, ExpandR, which in-197

corporates LLM guidance to improve the retrieval198

model’s effectiveness.199

Dense Retrieval. Given a query q and a docu-200

ment collection D = {d1, ..., dk}, dense retrieval201

models (Karpukhin et al., 2020; Xiong et al., 2021a;202

Gao and Callan, 2021) first encode the query q and 203

the i-th document di into embeddings q⃗ and d⃗i us- 204

ing PLMs, such as BERT (Devlin et al., 2019): 205

q⃗ = BERTq(q), d⃗i = BERTd(di). (1) 206

Then the relevance score S(q, di) is calculated to 207

estimate the relevance between q and di: 208

S(q, di) = sim(q⃗, d⃗i), (2) 209

where sim is the dot product operation. Fi- 210

nally, dense retrieval models conduct a KNN 211

search (Douze et al., 2024) to retrieve the top- 212

ranked documents to satisfy the user needs. 213

ExpandR. Unlike traditional dense retrieval 214

models (Karpukhin et al., 2020), ExpandR lever- 215

ages the knowledge encoded in LLM to guide dense 216

retrievers via query expansions dexp, aiming to 217

achieve more accurate retrieval results. 218
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Specifically, we first prompt the LLM M to gen-219

erate a query expansion as follows:220

dexp = M(Instructq2d, q), (3)221

where Instructq2d denotes an instruction prompt-222

ing the LLM to generate an informative expansion223

for the input query (Jagerman et al., 2023). We224

then model the joint probability of retrieving the225

ground truth document d∗ conditioned on the origi-226

nal query q as:227

P (d∗ | q; Φ,Θ) = P (d∗ | q, dexp; Φ) ·P (dexp | q; Θ), (4)228

where Φ and Θ represent the parameters of the re-229

triever and the LLM, respectively. This formulation230

can be rewritten as:231

logP (d∗ | q; Φ,Θ) =

logP (d∗ | q, dexp; Φ) + logP (dexp | q; Θ).
(5)232

Our objective is to jointly optimize the retriever233

and the LLM–i.e., Φ and Θ–to maximize the above234

log-likelihood, as described in Section 3.2 and Sec-235

tion 3.3, respectively.236

3.2 Optimizing Dense Retriever through237

LLM-Guided Contrastive Training238

To maximize P (d∗ | q; Φ,Θ) by optimizing the239

retriever parameters Φ, we train the dense retriever240

using both the original query q and its correspond-241

ing expansion dexp:242

logP (d∗ | q; Φ,Θ)

= logP (d∗ | q, dexp; Φ)︸ ︷︷ ︸
Optimize w.r.t. Φ

+ logP (dexp | q; Θ)︸ ︷︷ ︸
Fixed

. (6)243

To optimize the retriever, we fix Θ and update only244

Φ by maximizing the retriever-related term:245

Φ∗ = argmax
Φ

logP (d∗ | q, dexp; Φ). (7)246

To incorporate the knowledge of dexp, we simply247

average the embeddings of both q and dexp as the248

final query representation q⃗ exp:249

q⃗ exp =
q⃗ + d⃗ exp

2
. (8)250

Then we treat the expanded query qexp as the new251

query and compute the similarity score sim(qexp, d)252

between qexp and each candidate document d. The253

retriever can be contrastively trained using the train-254

ing loss LDR:255

LDR = − log
esim(qexp,d∗)

esim(qexp,d∗) +
∑

d−∈D− esim(qexp,d−)
, (9)256

where D− represents the set of negative docu-257

ments, which are sampled from in-batch nega-258

tives (Karpukhin et al., 2020).259

3.3 Optimizing LLM for Aligning with 260

Ranking Preference 261

To maximize the probability P (d∗ | q; Φ,Θ), we 262

optimize only the LLM parameters (Θ) while keep- 263

ing the dense retriever parameters (Φ) fixed. 264

As shown in Eq. 5, updating Θ alone still affects 265

both terms of the joint probability. Therefore, we 266

optimize Θ as follows: 267

Θ∗ = argmax
Θ

[ logP (d∗ | q, dexp; Φ)

+ logP (dexp | q; Θ)].
(10) 268

This objective indicates that a well-generated dexp 269

can not only directly increase the likelihood term 270

logP (dexp | q; Θ), but also indirectly improve re- 271

trieval performance by providing more informative 272

expansions for the term logP (d∗ | q, dexp; Φ). To 273

realize this dual effect, we optimize the LLM pa- 274

rameters through a reward-driven approach. The 275

optimization process involves two steps: first, we 276

define the reward modeling objective (Eq. 10); then, 277

we train the LLM using the Direct Preference Opti- 278

mization (DPO) method (Amini et al., 2024). 279

Reward Modeling. We define a reward func- 280

tion R(dexp) to evaluate each candidate expansion 281

dexp ∈ Dq. The reward combines two complemen- 282

tary signals: 283

R(dexp) = Rself(d
exp) +Rretriever(d

exp), (11) 284

where Rself(d
exp) and Rretriever(d

exp) represent the 285

self-reward and the retriever reward, respectively. 286

Self-Reward. To promote the likelihood term 287

logP (dexp | q; Θ), we incorporate a self-reward 288

that leverages the LLM’s self-consistency. Specif- 289

ically, we prompt the LLM to generate an answer 290

y according to the query q and the ground-truth 291

document d∗: 292

y = M(Instructq2a, q, d∗), (12) 293

where Instructq2a guides the LLM to produce an 294

answer y to q. We then treat the answer y as a 295

query and rank the expansion candidates Dq to 296

compute the self-reward score: 297

Rself(d
exp) =

1

Rank(y, dexp)
, (13) 298

where Rank(y, dexp) denotes the rank of document 299

dexp based on its relevance score sim(y, dexp). A 300

higher rank indicates stronger semantic similarity 301

and consistency between y and dexp. 302

Retriever Reward. While the self-reward en- 303

sures the semantic plausibility of the candidate 304
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expansion dexp, it does not necessarily guarantee305

its usefulness for retrieval, i.e., contributing to306

logP (d∗ | q, dexp; Φ) (Weller et al., 2024). To307

address this limitation, we incorporate a retriever308

reward that captures the preferences of the retriever.309

Specifically, we compute the Mean Reciprocal310

Rank (MRR) by treating the ground-truth docu-311

ment d∗ as a pseudo-query and ranking the expan-312

sion candidates Dq:313

Rrank(d
exp) =

1

Rank(d∗, dexp)
, (14)314

where Rank(d∗, dexp) denotes the rank of dexp315

based on the similarity score sim(d∗, d
exp). A316

higher reward indicates that the expansion is more317

similar to the ground-truth document, and thus318

more likely to improve retrieval performance.319

LLM Optimization. We fine-tune the LLM M320

using preference modeling via DPO. Specifically,321

we first prompt the LLM to generate a set of ex-322

pansion candidates Dq = {dexp
1 , . . . , d

exp
k } for each323

query q, by sampling with varying temperature:324

dexp ∼ M(Instructq2d, q). (15)325

Then we construct training triples (q, dexp
+ , d

exp
− ) us-326

ing the reward model R(·) (Eq. 11):327

R(d
exp
+ ) > R(d

exp
− ), (16)328

and follow the DPO method to optimize the LLM329

(M) using the loss function L(M;MRef):330

L(M;MRef) = −E(q,d
exp
+ ,d

exp
− )∼P

[
log σ

(
β log

M(dexp
+ | q)

MRef(dexp
+ | q)

− β log
M(dexp

− | q)
MRef(dexp

− | q)

)]
,

(17)331

where σ is the sigmoid function, β is a scaling332

hyperparameter, and MRef is a frozen reference333

model. The training set P is composed of prefer-334

ence pairs sampled based on reward scores.335

4 Experimental Methodology336

In this section, we introduce the datasets, evalua-337

tion metrics, baselines, and implementation details338

used in our experiments.339

Dataset. We utilize various datasets for training340

and evaluation. Data statistics are shown in Table 1.341

More details on data generation and processing are342

shown in Appendix A.2.343

Training. We use the publicly available E5344

dataset (Wang et al., 2024; Springer et al., 2024) to345

train both the LLMs and dense retrievers. We con-346

centrate on English-based question answering tasks347

Dataset Setting #Query

Train Dev Test

E5 LLM 27,000 3,000 -
Retrieval 637,866 70,874 -

MS MARCO Retrieval - - 6,980

Beir Retrieval - - 46,379

Table 1: Statistics of the datasets used in our experi-
ments. The E5 dataset is used for joint training of the
LLM and the retriever, while MS MARCO and BEIR
are used exclusively for evaluation.

and collect a total of 808,740 queries. From this set, 348

we randomly sample 100,000 queries to construct 349

the DPO data for training LLM, while the remain- 350

ing queries are used for contrastively training the 351

dense retrieval model. During the construction of 352

DPO preference pairs, we first prompt LLMs to 353

generate documents as query expansions (Wang 354

et al., 2023a). We then filter out queries whose 355

generated documents exhibit low semantic similar- 356

ity to the original queries. This results in a final 357

dataset comprising 30,000 high-quality queries. 358

Evaluation. We evaluate retrieval effectiveness 359

using two retrieval benchmarks: MS MARCO (Ba- 360

jaj et al., 2016) and BEIR (Thakur et al., 2021). 361

Evaluation Metrics. We use nDCG@10 as the 362

evaluation metric, which is the official evaluation 363

metric of BEIR (Thakur et al., 2021). Statistical 364

significance is tested using a permutation test with 365

p < 0.05. 366

Baselines. We compare our ExpandR model 367

with four representative retrieval models, including 368

BM25 (Robertson et al., 2009), DPR (Karpukhin 369

et al., 2020), CoCondenser (Gao and Callan, 2022), 370

and ANCE (Xiong et al., 2021a). 371

Then we use different retrievers as backbone 372

models and optimize them using different training 373

strategies. Three encoders as backbone retrievers to 374

examine the generalization ability of our ExpandR, 375

including vanilla BERT (Devlin et al., 2019), Con- 376

triever (Izacard et al., 2021), and AnchorDR (Xie 377

et al., 2023). Contriever pretrains PLMs on unla- 378

beled text pairs by encouraging semantically simi- 379

lar sentences to have closer representations in the 380

embedding space. In contrast, AnchorDR leverages 381

the relationships between anchor texts and their 382

linked documents to enhance pretraining. Each re- 383

triever is evaluated under three training strategies: 384

(1) Raw: directly encoding both queries and doc- 385

uments without fine-tuning; (2) FT: standard su- 386
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Task BM25 DPR CoCondenser ANCE BERT Contriever AnchorDR

Raw† FT⋄ ExpandR Raw† FT⋄ ExpandR Raw† FT⋄ ExpandR

MS MARCO 22.8 17.7 16.2 37.0 0.29 22.68† 23.54† 20.55 32.96† 33.65† 25.66 36.35† 37.14†
Trec-COVID 65.6 33.2 40.4 62.1 3.73 19.72† 19.12† 27.45 30.03† 47.98†⋄ 51.44 53.71† 78.85†⋄
NFCorpus 32.5 18.9 28.9 23.4 2.60 21.02† 23.98†⋄ 31.73 32.33 34.80†⋄ 31.23 31.04 32.13⋄

NQ 32.9 47.4 17.8 42.9 0.40 15.61† 29.64†⋄ 25.37 33.72† 50.39†⋄ 26.24 40.30† 55.91†⋄
HotpotQA 60.3 39.1 34.0 47.1 0.77 16.10† 29.70†⋄ 48.07 58.78† 70.50†⋄ 52.46⋄ 47.84 63.40†⋄

FiQA 23.6 11.2 25.1 29.3 0.59 11.16† 15.40†⋄ 24.50 26.06† 32.40†⋄ 24.04 28.20† 34.17†⋄
ArguAna 31.5 17.5 44.4 40.2 8.19 39.36† 37.57† 37.90 53.48† 55.39†⋄ 29.50 48.51† 49.16†

Touche-2020 36.7 13.1 11.7 23.6 0.39 2.82† 5.89†⋄ 16.68⋄ 10.46 17.38⋄ 12.37 13.76† 24.53†⋄

CQADupStack 29.9 15.3 30.9 28.8 1.10 17.10† 16.47† 28.43 31.60† 33.00†⋄ 30.30 34.72† 35.18†
Quora 78.9 24.8 82.1 84.7 36.29 77.38† 72.04† 83.50 84.98† 84.67† 83.49 85.06† 79.34
DBPedia 31.3 26.3 21.5 26.5 1.57 14.08† 23.05†⋄ 29.16 36.46† 42.32†⋄ 33.58 34.55 40.73†⋄

Scidocs 15.8 7.7 13.6 11.3 0.70 6.04† 9.43†⋄ 14.91 14.94 17.85†⋄ 16.57 15.77 16.82⋄

FEVER 75.3 56.2 61.5 68.1 0.24 36.59† 57.49†⋄ 68.20 82.49† 87.07†⋄ 62.98 77.43† 84.57†⋄

Climate-FEVER 21.4 14.8 16.9 19.8 0.61 11.52† 24.63†⋄ 15.50 23.04† 29.77†⋄ 23.44 26.63† 31.76†⋄
Scifact 66.5 31.8 56.1 50.2 2.81 42.35† 46.27†⋄ 64.92 68.84† 69.68† 59.84 60.51 63.43†⋄

Avg.BEIR14 43.0 25.5 34.6 39.9 4.29 23.63 29.33 36.88 41.94 48.09 38.39 42.72 49.28
Avg.All 41.7 25.0 33.4 39.7 4.02 23.57 28.95 35.79 41.34 47.12 37.54 42.29 48.47
Best on 1 0 0 0 0 0 0 0 0 7 0 1 6

Table 2: Overall Performance of ExpandR. We follow previous work (Izacard et al., 2021) and report the average
performance on 14 BEIR tasks (BEIR14) and all tasks (All). Bold and underlined scores indicate the best and
second-best results. †, ⋄ denote significant improvements over the Raw and FT training settings of each retriever.

pervised fine-tuning using query-document triples;387

and (3) ExpandR: it integrates LLM-based query388

expansion to augment dense retriever and jointly389

optimizes both LLM and retriever.390

Implementation Details. For our query expan-391

sion model, we deploy the Meta-LLaMA-3-8B-392

Instruct (AI@Meta, 2024) as the backbone. The393

batch size is set to 16, and the learning rate is394

set to 2e − 5. Optimization is performed using395

the AdamW optimizer. We employ LoRA (Hu396

et al., 2022) to efficiently fine-tune the model for397

2 epochs. The temperature for the construction of398

the DPO data varies across τ ∈ {0.8, 0.9, 1.0, 1.1},399

with each setting sampled eight times. For the400

dense retrievers, we utilize three retrievers with dif-401

ferent structures: BERT (Devlin et al., 2019), Con-402

triever (Izacard et al., 2021) and AnchorDR (Xie403

et al., 2023) as the backbone. During training, we404

set the batch size to 1,024 and the learning rate to405

1e− 5, with the model trained for 3 epochs.406

5 Evaluation Results407

This section presents the overall performance of Ex-408

pandR, followed by ablation studies. Then we ana-409

lyze the semantic distribution of query-document410

embeddings under different training strategies and411

evaluate the effectiveness of various reward models.412

A case study is provided in Appendix A.9.413

5.1 Overall Performance414

The retrieval performance measured by nDCG@10415

across various baselines and training configurations416

is summarized in Table 2. Additional comparisons 417

with mainstream retriever baselines and extended 418

evaluation results are provided in Appendix A.3 419

and Appendix A.4, respectively. 420

As shown in the evaluation results, ExpandR 421

achieves more than 9% improvements over previ- 422

ous retriever models, such as BM25 and ANCE, 423

highlighting its effectiveness. By substituting dif- 424

ferent retrieval backbone models, ExpandR further 425

demonstrates strong generalization ability, consis- 426

tently outperforming both zero-shot retrieval (Raw) 427

and standard supervised fine-tuning (FT). Specifi- 428

cally, it achieves an average improvement of 15.6% 429

over Raw and 5.8% over FT across three backbone 430

retrievers on all tasks, validating the benefit of in- 431

corporating LLM guidance into dense retrieval. 432

Notably, ExpandR achieves the best perfor- 433

mance on 7 out of 15 tasks when using Contriever, 434

and on 6 tasks with AnchorDR, indicating that its 435

effectiveness holds even with stronger backbone 436

retrievers. The performance gains are particularly 437

pronounced on challenging datasets such as NQ, 438

HotpotQA, and TREC-COVID, where bridging the 439

semantic gap between queries and documents is 440

more difficult. These results illustrate the capabil- 441

ity of ExpandR to mitigate the semantic mismatch 442

in complex retrieval scenarios. Additional results 443

using different LLMs as the backbone for query 444

expansion are provided in Appendix A.5, showing 445

consistent improvements and further validating the 446

robustness of ExpandR across model variants. 447
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Model MARCO Trec-COVID NQ HotpotQA FiQA DBPedia FEVER Scifact Avg.

Contriever
Query 20.55 27.45 25.37 48.07 24.50 29.16 68.20 64.92 38.53
w/ Retriever Training 32.96 30.03 33.72 58.78 26.06 36.46 82.49 68.84 46.17

ExpandR 33.65 47.98 50.39 70.50 32.40 42.32 87.07 69.68 54.25
w/o LLM Training 33.45 38.64 47.20 66.45 29.74 40.97 85.18 70.55 51.52
w/o Retriever Training 25.20 59.66 43.26 65.82 30.12 38.20 82.80 67.74 51.60
w/o Self-Reward 33.05 44.07 47.74 69.62 30.74 42.24 87.63 70.65 53.21
w/o Retriever Reward 33.47 42.17 49.75 69.12 32.12 40.31 86.52 69.96 52.92

AnchorDR
Query 25.66 51.44 26.24 52.46 24.04 33.58 62.98 59.84 42.03
w/ Retriever Training 36.35 53.71 40.30 47.84 28.20 34.55 77.43 60.51 47.36

ExpandR 37.14 78.85 55.91 63.40 34.17 40.73 84.57 63.43 57.28
w/o LLM Training 35.17 70.56 51.24 59.22 29.84 36.11 80.69 61.58 53.05
w/o Retriever Training 29.59 78.50 42.30 57.41 24.91 38.67 79.00 63.40 51.72
w/o Self-Reward 36.56 75.75 54.81 62.74 32.31 40.42 84.41 63.07 56.25
w/o Retriever Reward 37.07 73.75 55.19 61.59 32.97 40.20 82.02 62.47 55.65

Table 3: Ablation Analysis of Key Components in ExpandR on Contriever and AnchorDR. We examine the
contributions of LLM training, retriever training, and reward modeling to retrieval performance on 8 important
datasets in BEIR. MARCO denotes the MS MARCO dataset.

5.2 Ablation Study448

In this subsection, we conduct comprehensive abla-449

tion studies under both Contriever and AnchorDR450

as backbone retrievers to understand the contribu-451

tion of each component in ExpandR. We evaluate452

the impact of different reward modeling methods,453

LLM optimization strategies, and retriever training.454

As shown in Table 3, we first include two base-455

lines: “Query” uses raw queries without training,456

and “w/ Retriever Training” applies contrastive457

training using raw queries. These settings serve458

as control groups to isolate the contributions of our459

LLM optimization and expansion-based retriever460

training. In both Contriever and AnchorDR back-461

bones, we observe substantial improvements of462

ExpandR over these baselines, demonstrating that463

our joint optimization strategy yields significant464

gains over standard query-only training.465

We further assess the role of LLM optimiza-466

tion by removing the DPO training. This results467

in a 2.73% and 4.23% performance drop on Con-468

triever and AnchorDR, respectively, underscoring469

the importance of aligning LLM outputs with rank-470

ing preferences via preference modeling. Addi-471

tionally, removing retriever training while retain-472

ing LLM optimization significantly impairs perfor-473

mance (2.65 and 5.56 point drops), demonstrating474

that expansions optimization alone is insufficient475

unless the retriever is also jointly adapted to lever-476

age them. These findings validate the core moti-477

vation of ExpandR that joint optimization of gen-478

eration and retrieval is key to improving retrieval 479

performance. 480

Finally, we conduct ablation studies by individu- 481

ally removing the self-reward and retriever reward 482

to assess the impact of each reward modeling strat- 483

egy during LLM training. We observe performance 484

degradation in both cases, especially on QA bench- 485

marks such as NQ and HotpotQA, demonstrating 486

their complementary benefits in enhancing genera- 487

tion quality and aligning with retriever preferences. 488

Notably, removing the retriever reward results in a 489

slightly larger drop, indicating that retrieval-guided 490

feedback plays a more crucial role in guiding effec- 491

tive query expansion. 492

5.3 Visualization of Alignment in the 493

Semantic Embedding Space 494

We visualize the embeddings of queries and doc- 495

uments using T-SNE to investigate how different 496

query expansion strategies and retriever configura- 497

tions affect their semantic alignment. Specifically, 498

we randomly sample 10 query-document pairs and 499

project their embeddings into a two-dimensional 500

space. Each pair is assigned a unique color, with 501

the query represented by a star and the document by 502

a circle, facilitating a direct visual assessment of se- 503

mantic proximity under various settings. Through- 504

out this analysis, we employ AnchorDR as the base 505

dense retriever to encode queries and documents. 506

As shown in Figure 2, when using original 507

queries with the base retriever (Figure 2(a)), we 508
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(a) Raw Query. (b) Vanilla LLM.

(c) ExpandR (w/o DPO).

Query
Document

(d) ExpandR.

Figure 2: Embedding Visualization of Different Models.

observe that query and document embeddings are509

widely scattered, suggesting a substantial semantic510

gap between the raw query formulation and its tar-511

get document. Incorporating expansions generated512

by a vanilla LLM leads to modest improvements513

(Figure 2(b)), as some queries shift closer to their514

corresponding documents. However, the alignment515

remains inconsistent, and many query-document516

pairs still appear poorly matched. Fine-tuning the517

retriever alone results in further improvement (Fig-518

ure 2(c)), making the embedding space more com-519

pact and pulling many expanded queries closer to520

their paired documents. Nevertheless, the most521

significant alignment gain is observed when both522

the query expansion model and the retriever are523

jointly optimized via preference alignment (Fig-524

ure 2(d)). In this setting, query-document pairs525

exhibit significantly tighter and more coherent clus-526

tering, suggesting that the combined optimization527

of the expansion model and the retriever substan-528

tially improves semantic consistency and retrieval529

accuracy. These observations further underscore530

the importance of jointly aligning both components531

in dense retrieval systems.532

5.4 Effectiveness of Reward Modeling in533

Optimizing ExpandR534

Figure 3 presents an evaluation of the reward model535

designed in ExpandR, measured by the text simi-536

larity between query expansions and either LLM-537

generated answers or golden documents. We com-538

pare three variants: the full model (ExpandR), w/o539

Retriever Reward, and w/o Self-Reward.540

NQ HotpotQA
Datasets

2

4

6

8

10

12

BL
EU

5.96

10.69

4.46
5.135.24

6.96

(a) Similarity with Answers.

NQ HotpotQA
Datasets

4

5

6

7

8

BL
EU

5.72

6.45
6.19

6.57
6.24

7.15

ExpandR (w/o Retriever Reward)
ExpandR (w/o Self-Reward)
ExpandR

(b) Similarity with Golden
Documents.

Figure 3: Effect of Reward Modeling on the Semantic
Alignment of Query Expansions.

We first assess the similarity between query 541

expansions and LLM-generated answers (Fig- 542

ure 3(a)). ExpandR w/o Retriever Reward produces 543

expansions most aligned with LLM-generated an- 544

swers, yielding the highest BLEU score. In con- 545

trast, ExpandR w/o Self-Reward achieves the low- 546

est score, indicating that relying solely on the re- 547

triever reward is less effective in guiding ExpandR 548

to align with the information in answers, which 549

is particularly important for QA tasks. When the 550

self-reward is incorporated, the BLEU score im- 551

proves notably, demonstrating its effectiveness in 552

enhancing the factual precision of the expansions. 553

We then evaluate the similarity between query 554

expansions and ground-truth documents (Fig- 555

ure 3(b)). ExpandR w/o Retriever Reward again 556

performs worst, suggesting that the self-reward 557

alone is insufficient to ensure alignment with 558

golden documents. Conversely, ExpandR w/o Self- 559

Reward performs better, showing the utility of the 560

retriever reward in guiding the model to produce se- 561

mantically relevant expansions. The full model, in- 562

tegrating both rewards, achieves the highest BLEU 563

score, highlighting the complementary strengths 564

of self-reward and retriever reward in optimizing 565

LLMs to generate high-quality expansions. 566

6 Conclusion 567

This paper presents ExpandR, a joint optimization 568

framework that leverages LLM-guided query ex- 569

pansions to enhance retriever training. By jointly 570

training dense retrievers and LLMs, ExpandR im- 571

proves the effectiveness and compatibility of query 572

expansions within retrieval systems. Experimen- 573

tal results demonstrate that ExpandR consistently 574

boosts performance and offers a new perspective 575

on end-to-end alignment between generative and 576

retrieval components in retrieval pipelines. 577
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Limitations578

Despite the effectiveness of ExpandR in improving579

dense retrieval through LLM-guided query expan-580

sions, several limitations remain. First, the quality581

of expansions is still constrained by the genera-582

tive capacity of the LLM. If the LLM produces583

low-quality or biased expansions, the downstream584

retriever may be misled, even with reward-based585

supervision. Additionally, although the end-to-end586

optimization improves alignment between genera-587

tion and retrieval, it introduces additional compu-588

tational overhead from both expansion generation589

and joint training.590
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A Appendix843

A.1 License844

The authors of 4 out of the 15 datasets in the845

BEIR benchmark (NFCorpus, FiQA-2018, Quora,846

Climate-Fever) and the authors of ELI5 in the E5847

dataset do not report the dataset license in the paper848

or a repository. We summarize the licenses of the849

remaining datasets as follows.850

MS MARCO (MIT License); FEVER, NQ, and851

DBPedia (CC BY-SA 3.0 license); ArguAna and852

Touché-2020 (CC BY 4.0 license); CQADupStack853

and TriviaQA (Apache License 2.0); SciFact (CC854

BY-NC 2.0 license); SCIDOCS (GNU General855

Public License v3.0); HotpotQA and SQuAD (CC856

BY-SA 4.0 license); TREC-COVID (Dataset Li-857

cense Agreement).858

All these licenses and agreements permit the use859

of their data for academic purposes.860

A.2 Additional Experimental Details861

This subsection outlines the components of the862

training data and presents the prompt templates863

used in the experiments.864

Training Datasets. Following the setup of865

Wang et al. (2024), we use the following datasets:866

ELI5 (sample ratio 0.1) (Fan et al., 2019), Hot-867

potQA (Yang et al., 2018), FEVER (Thorne et al.,868

2018), MS MARCO passage ranking (sample869

ratio 0.5) and document ranking (sample ratio870

0.2) (Bajaj et al., 2016), NQ (Karpukhin et al.,871

2020), SQuAD (Karpukhin et al., 2020), and Triv-872

iaQA (Karpukhin et al., 2020). In total, we use873

808,740 training examples.874

Prompt Templates. Table 4 lists all the prompts875

used in this paper. In each prompt, “query” refers876

to the input query for which query expansions877

are generated, while “Related Document” denotes878

the ground truth document relevant to the original879

query. We observe that, in general, the model tends880

to generate introductory phrases such as “Here is881

a passage to answer the question:” or “This is the882

answer to the query:”. Before using the model883

outputs as query expansions or answer signals, we884

first filter out these introductory phrases to ensure885

cleaner and more precise expansion results.886

A.3 Comparison with Mainstream Retrievers887

To further contextualize the performance of Ex-888

pandR, we compare it with a range of widely used889

dense retrievers on the BEIR and MS MARCO890

datasets, as shown in Table 5. The baselines include891

Query Expansion
Prompt for Q2D:
Please write a passage to answer the question:
Question: {}
Passage:

Question Answering
Prompt for Q2A:
You are given a query and a related document. Based on
the query, generate a direct and relevant answer using the
information in the document. If the query is a statement,
expand on it. If it is a question, provide a direct answer.
Avoid any extra description or irrelevant content.
Query: {}
Related Document: {}
Answer:

Table 4: Prompt Templates Used in ExpandR. These
prompts are used to generate query expansion results
and produce the responses to answer the question.

RocketQA (Ren et al., 2021), BGE-M3-EN (Chen 892

et al., 2024), TAS-B (Hofstätter et al., 2021), Gen- 893

Q, ColBERT (Khattab et al., 2021), E5 (Wang 894

et al., 2022), WebDRO (Han et al., 2023), and 895

Nomic-Embed (Nussbaum et al., 2024), covering 896

both general-purpose and specialized retrieval mod- 897

els.The base retriever of the ExpandR method is 898

AnchorDR. 899

ExpandR achieves the highest average perfor- 900

mance across all datasets (48.5%), consistently out- 901

performing all baselines. Even when excluding MS 902

MARCO—which some retrievers may be specifi- 903

cally optimized for—ExpandR retains its leading 904

position with an average score of 49.3%, suggest- 905

ing strong generalization across a wide range of 906

domains and task formats. 907

Among the baselines, E5 and Nomic-Embed 908

stand out as strong retrievers. E5 performs 909

competitively on several QA-style datasets such 910

as MS MARCO and NQ, while Nomic-Embed 911

excels on tasks like ArguAna and HotpotQA. 912

However, both models exhibit noticeable perfor- 913

mance drops on other benchmarks—for instance, 914

Nomic-Embed underperforms on MS MARCO and 915

Touche-2020—indicating limitations in generaliza- 916

tion. In contrast, ExpandR demonstrates more con- 917

sistent performance across the board, achieving top- 918

tier results without compromising on robustness. 919

This highlights the robustness and generalizability 920

of our approach across diverse retrieval scenarios. 921

A.4 Evaluating Retrieval Completeness 922

through Recall@100 923

To more comprehensively assess the retrieval ca- 924

pabilities of ExpandR, we report its performance 925

under the Recall@100 metric on both the BEIR 926
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Task RocketQA BGE-M3-EN TAS-B Gen-Q ColBERT E5 WebDRO Nomic-Embed ExpandR

MS MARCO 23.2 35.2 40.8 40.8 40.1 43.1 40.6 26.4 37.1
Trec-COVID 67.5 44.6 48.1 61.9 67.7 61.7 78.0 67.1 78.9
NFCorpus 29.3 32.7 31.9 31.9 30.5 35.1 31.2 35.5 32.1
NQ 59.5 29.8 46.3 35.8 52.4 60.0 47.2 51.2 55.9
HotpotQA 35.6 68.3 58.4 53.4 59.3 52.4 57.4 69.1 63.4
FiQA 30.2 28.3 30.0 30.8 31.7 37.9 28.4 37.8 34.2
ArguAna 45.1 61.5 42.9 49.3 23.3 51.4 48.0 54.2 49.2
Touche-2020 24.7 13.5 16.2 18.2 20.2 28.3 27.6 19.0 24.5
CQADupStack 19.3 40.2 31.4 34.7 35.0 28.3 35.2 49.6 35.2
Quora 31.2 88.7 83.5 83.0 85.4 87.9 85.8 88.4 79.3
DBPedia 35.6 19.0 38.4 32.8 39.2 33.8 38.1 39.4 40.7
Scidocs 16.5 9.6 14.9 14.3 14.5 19.0 15.3 19.2 16.8
FEVER 67.6 64.3 70.0 66.9 77.1 58.2 70.9 60.3 84.6
C-FEVER 18.0 18.3 22.8 17.5 18.4 15.4 18.9 27.0 31.8
Scifact 56.8 71.5 64.3 64.4 67.1 73.1 62.2 71.8 63.4

Avg.BEIR14 38.3 42.2 42.8 42.5 44.4 45.9 46.0 49.2 49.3
Av.All 37.3 41.7 42.7 42.4 44.1 45.7 45.6 47.7 48.5

Table 5: Performance Comparison of More Mainstream Retriever Baselines on the Beir and MS MARCO Datasets
(nDCG@10). The base retriever of the ExpandR method is AnchorDR.

Task BM25 DPR CoCondenser ANCE BERT Contriever AnchorDR

Raw FT ExpandR Raw FT ExpandR Raw FT ExpandR

MS MARCO 65.8 55.2 58.2 83.8 3.32 67.29 69.06 67.19 82.81 83.64 74.95 84.56 84.83
Trec-COVID 49.8 21.2 7.0 9.6 0.71 2.05 3.30 3.68 3.19 6.58 10.70 10.67 14.44
NFCorpus 25.0 20.8 29.1 22.3 8.66 21.40 25.79 29.41 15.97 34.07 28.72 28.93 30.78
NQ 76.0 88.0 67.9 82.2 2.81 65.82 83.23 77.12 88.18 94.88 80.42 89.67 94.30
HotpotQA 74.0 59.1 54.7 58.8 5.97 42.57 60.95 70.45 75.64 87.33 65.86 66.89 78.72
FiQA 53.9 34.2 60.3 58.2 4.66 39.45 47.52 56.19 61.04 70.03 54.89 61.07 65.44
ArguAna 94.2 75.1 93.0 92.3 45.73 95.45 95.38 90.11 98.43 99.00 80.65 96.51 96.80
Touche-2020 53.8 30.1 27.1 45.2 1.33 14.30 30.37 37.36 31.52 46.35 39.91 38.30 47.00
CQADupStack 60.6 40.3 60.3 57.1 7.05 42.81 42.78 61.40 65.20 67.39 62.41 66.44 66.37
Quora 97.3 47.0 98.5 98.6 70.10 96.96 96.06 98.71 99.09 93.55 95.71 98.11 96.15
DBPedia 39.8 34.9 34.8 30.8 3.85 25.92 34.69 45.29 48.22 54.00 43.94 43.73 48.83
Scidocs 35.6 21.9 34.1 25.2 5.67 22.55 27.28 35.99 37.10 40.50 36.99 35.15 36.78
FEVER 93.1 84.0 89.6 91.1 1.91 78.48 88.69 93.56 95.93 96.94 93.65 93.09 95.05
C-FEVER 43.6 39.0 37.0 45.6 4.23 44.01 56.84 44.14 58.56 64.56 60.08 60.25 64.81
Scifact 90.8 72.7 91.4 81.4 22.39 80.36 81.47 92.60 94.00 96.00 90.77 91.43 93.43

Avg.BEIR14 63.4 48.3 56.1 57.0 13.22 48.01 55.31 59.71 62.29 67.94 60.34 62.87 66.35
Avg.All 63.6 47.7 56.2 58.8 12.56 49.29 56.23 60.21 63.66 68.99 61.31 64.32 67.58
Best on 2 0 0 0 0 0 0 0 1 10 0 0 2

Table 6: Overall Performance of ExpandR on Recall@100.

and MS MARCO datasets. This metric reflects927

the model’s ability to retrieve a broad set of rel-928

evant documents, complementing earlier evalua-929

tions based on ranking accuracy. The results are930

presented in Table 6.931

Across all retriever backbones, ExpandR con-932

sistently achieves the highest Recall@100 scores,933

surpassing both the original query (Raw) and super-934

vised retriever (FT) baselines. The improvements935

are particularly notable on complex multi-hop and936

fact-seeking datasets such as NQ, HotpotQA, and937

FEVER, where purely lexical signals are often in-938

sufficient for comprehensive retrieval.939

These findings suggest that ExpandR not only940

improves ranking precision but also significantly941

enhances semantic recall, demonstrating its abil- 942

ity to uncover a wider range of relevant documents. 943

This further validates the robustness and general ap- 944

plicability of our LLM-augmented strategy across 945

diverse retrieval scenarios. 946

A.5 Robustness under Different LLM 947

Backbones 948

To examine the robustness of ExpandR across dif- 949

ferent language model backbones, we replace the 950

LLM used for query expansion with Qwen2.5-7B- 951

Instruct (Yang et al., 2024), a high-quality Chinese- 952

English bilingual model trained with instruction 953

tuning. We keep Contriever as the base retriever. 954

The results are shown in Table 7. 955
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Task Contriever

Raw FT ExpandR

MS MARCO 20.55 32.96 33.32
Trec-COVID 27.45 30.03 48.18
NFCorpus 31.73 32.33 34.58
NQ 25.37 33.72 50.86
HotpotQA 48.07 58.78 70.04
FiQA 24.50 26.06 31.98
ArguAna 37.90 53.48 55.15
Touche-2020 16.68 10.46 18.09
CQADupStack 28.43 31.60 32.95
Quora 83.50 84.98 84.58
DBPedia 29.16 36.46 41.47
Scidocs 14.91 14.94 17.48
FEVER 68.20 82.49 87.21
C-FEVER 15.50 23.04 30.50
Scifact 64.92 68.84 70.00

Avg.BEIR14 36.88 41.94 48.08
Avg.All 35.79 41.34 47.09
Best on 0 1 14

Table 7: Extended Comparison Results under Qwen2.5-
7B-Instruct (nDCG@10). The basic retriever in this
experiment is Contriever.

The results show that ExpandR consistently out-956

performs both the original query baseline (Raw)957

and the supervised retriever trained with raw958

queries (FT), achieving the best performance on 14959

out of 15 datasets. The performance trend closely960

mirrors that observed in our original experiments961

using LLaMA, indicating that the improvements962

are not tied to a specific LLM architecture. Instead,963

ExpandR captures a generally effective joint opti-964

mization strategy that transfers well across different965

language models.966

A.6 Query Expansion Quality of ExpandR967

This section evaluates the quality of query expan-968

sion of ExpandR. As shown in Figure 4, we ran-969

domly select 100 samples from each dataset to970

assess the improvement in retrieval performance971

before and after applying ExpandR.972

Overall, the evaluation results demonstrate that973

ExpandR consistently improves retrieval perfor-974

mance in both unsupervised (Figure 4(a)) and su-975

pervised (Figure 4(b)) settings. However, for the976

MS MARCO dataset, ExpandR demonstrates lim-977

ited effectiveness in the supervised setting. This978

can be attributed to the fact that MS MARCO pro-979

vides higher-quality training signals, allowing the980

dense retriever to learn sufficient matching signals981

from relevance labels. In contrast, ExpandR leads982

to more substantial performance improvements on983

the NQ and HotpotQA datasets. This indicates that984
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(a) Unsupervised Dense Retriever.
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(b) Supervised Dense Retriever.

Figure 4: Improvements of ExpandR in Both Unsuper-
vised and Supervised Dense Retrievers. We plot the
change of nDCG@10 scores before and after the query
expansion using our ExpandR model.

ExpandR provides essential matching signals for 985

dense retrievers, particularly in retrieval scenarios 986

where high-quality training signals are scarce. 987

A.7 Generalization Analysis of 988

Ranking-Aligned LLM Expansions 989

To examine the generalizability of our ranking- 990

aligned query expansions beyond the retriever used 991

during training, we evaluate ExpandR under two 992

structurally distinct dense retrievers—AnchorDR 993

and BGE-large-1.5—while keeping the reward sig- 994

nals derived from Contriever fixed. 995

As shown in Table 8, the results show that re- 996

trieval using expansions generated by ExpandR 997

consistently yields better performance than using 998

either the original queries or expansions produced 999

by a vanilla LLM, across both retrievers. Although 1000

the LLM is optimized using reward signals from 1001

Contriever, it achieves strong performance under 1002

both AnchorDR and BGE, obtaining the best re- 1003

sults on 12 out of 15 datasets in each setting. No- 1004

tably, even on BGE—an already highly effective 1005

retriever—ExpandR still achieves further gains, in- 1006

dicating that the learned expansions do not simply 1007

overfit to the behavior of a specific model, but in- 1008

stead capture a transferable ranking preference that 1009
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Task AnchorDR BGE-large-1.5
Query Vanilla LLM ExpandR Query Vanilla LLM ExpandR

MS MARCO 25.7 28.9 29.4 42.0 39.4 40.3
Trec-COVID 51.4 77.9 77.1 64.5 77.8 78.5
NFCorpus 31.2 31.3 31.4 36.8 37.2 39.3
NQ 26.2 39.2 43.0 51.7 59.6 60.8
HotpotQA 52.5 58.0 59.3 74.3 75.2 76.7
FiQA 24.0 24.9 25.4 44.3 44.3 46.2
ArguAna 29.5 28.0 28.2 63.5 61.6 62.6
Touche-2020 12.4 23.5 25.6 24.2 25.3 26.3
CQADupStack 30.3 31.1 31.6 41.7 42.2 42.6
Quora 83.5 63.2 66.4 89.0 87.9 88.0
DBPedia 33.6 38.8 39.3 42.1 45.1 45.2
Scidocs 16.6 16.9 17.0 20.9 22.9 23.7
FEVER 63.0 77.5 79.7 84.6 86.5 88.6
C-FEVER 23.4 29.7 30.0 28.4 30.6 31.7
Scifact 59.8 62.4 63.2 73.5 75.1 75.3

Avg.BEIR14 38.4 43.3 44.1 52.8 55.1 56.1
Avg.All 37.5 42.4 43.1 52.1 54.0 55.1
Best on 2 1 12 3 0 12

Table 8: Cross-Retriever Evaluation of Ranking-Aligned Expansions (nDCG@10).
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Figure 5: Average Length of Query Expansions Gener-
ated by Different Models.

generalizes across different retrieval architectures.1010

A.8 More Insights into the Self-Reward1011

While the primary purpose of introducing the self-1012

reward is to enhance the semantic relevance be-1013

tween the generated expansions and the gold an-1014

swer, we observe that it also serves as an effec-1015

tive regularizer for controlling generation quality.1016

Specifically, we compare the average lengths of1017

the expansions produced by three variants of our1018

model. As shown in Figure 5, removing the self-1019

reward leads to significantly longer generations,1020

which are not necessarily more informative and1021

may introduce hallucinated or off-topic content—a1022

known issue in preference-based tuning methods1023

such as DPO.1024

With the self-consistency signal in place, the1025

model generates shorter and more focused expan- 1026

sions. To further assess the semantic faithfulness 1027

of these generations, we conduct a natural lan- 1028

guage inference (NLI) based entailment evaluation. 1029

As shown in Table 9, although removing the self- 1030

reward increases the average length, it results in 1031

lower entailment scores, suggesting reduced seman- 1032

tic alignment with the gold answer. In contrast, the 1033

full model—trained with both the retriever-based 1034

and self-rewards—achieves the highest entailment 1035

scores while keeping the generation length moder- 1036

ate, indicating a better balance between informa- 1037

tiveness and faithfulness. 1038

These results suggest that the self-reward not 1039

only enhances logP (dexp | q; Θ), but also im- 1040

plicitly constrains the LLM from over-generating, 1041

thereby mitigating hallucination and improving the 1042

overall quality of the query expansions during DPO 1043

training. 1044

A.9 Case Study 1045

To further demonstrate the effectiveness of Ex- 1046

pandR, we conduct a case study by randomly sam- 1047

pling a query from the evaluation dataset. We 1048

then compare retrieval performance using the raw 1049

queries, expanded queries by vanilla LLM, and 1050

expanded queries by ExpandR. 1051

As shown in Table 10, query expansion signifi- 1052

cantly improves retrieval effectiveness over using 1053

the raw query, with both LLM-generated variants 1054

achieving higher nDCG@10. While the vanilla 1055

LLM introduces relevant terms such as “temper- 1056

ature” and “humidity”, its expansions are often 1057
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Model NQ HotpotQA
NLI Score Avg. Length NLI Score Avg. Length

Vanilla LLM 6.44 221.76 16.38 129.63
ExpandR (w/o Retriever Reward) 8.12 174.20 17.81 102.60
ExpandR (w/o Self-Reward) 6.65 192.76 13.75 178.29
ExpandR 8.64 185.11 18.67 120.52

Table 9: Comparison of NLI Entailment Scores and Average Lengths of Extensions Generated by Different Models.

Query: How does the coronavirus respond to changes in the weather?
Golden Pagssage: Epidemics ... occur during the winter months. ... Two major contributing factors are the changes in
environmental parameters and human behavior. Studies have revealed the effect of temperature and humidity on respiratory
virus stability and transmission rates. More recent research highlights the importance of the environmental factors,
especially temperature and humidity ...

Raw Query
nDCG@10: 22.01%
Original Query: How does the coronavirus respond to changes in the weather?

Vanilla LLM
nDCG@10: 76.63%
Expanded Query: The coronavirus, like many other viruses, has been observed to respond to changes in the weather by
experiencing fluctuations in transmission and spread. ... the virus tends to thrive in environments with high humidity,
typically above 40%, and a temperature range of 37°C to 46°C. ... studies have found that the virus can survive on surfaces
for longer periods at lower temperatures and humidity levels, ...

ExpandR
nDCG@10: 100.00%
Expanded Query: The coronavirus responds to changes in the weather by adapting its transmission and spread patterns.
This is because temperature, humidity, and other environmental factors can affect the stability and survival of the virus on
surfaces, ... research suggests that the virus may thrive in cooler and more humid environments, ... such as air circulation,
ventilation, and human behavior.

Table 10: Case Study. All experiments are conducted based on the Contriever model under the zero-shot setting. To
facilitate evaluation, we highlight the potential matching phrases between the golden passage and both the original
and expanded queries. Different colors are used to annotate these matched phrases for each method: Green for
Direct Retrieval, Red for Vanilla LLM, and Blue for ExpandR.

verbose and include redundant or inconsistent con-1058

tent (e.g., conflicting temperature ranges). This1059

reflects a lack of alignment between generation and1060

retrieval utility.1061

In contrast, ExpandR produces expansions that1062

are more concise and semantically aligned with1063

the golden passage, incorporating key concepts1064

such as “human behavior”, “environmental fac-1065

tors”, and “virus transmission”. These expansions1066

better match the relevance signals favored by the1067

retriever, leading to improved ranking performance.1068

This example illustrates how preference-guided1069

fine-tuning in ExpandR enables the LLM to gener-1070

ate expansions that are both informative and behav-1071

iorally aligned with the retrieval model.1072
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