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Abstract

Modern data marketplaces and data sharing consortia increasingly rely on incentive
mechanisms to encourage agents to contribute data. However, schemes that reward
agents based on the quantity of submitted data are vulnerable to manipulation, as
agents may submit fabricated or low-quality data to inflate their rewards. Prior
work has proposed comparing each agent’s data against others’ to promote honesty:
when others contribute genuine data, the best way to minimize discrepancy is to do
the same. Yet prior implementations of this idea rely on very strong assumptions
about the data distribution (e.g. Gaussian), limiting their applicability. In this
work, we develop reward mechanisms based on a novel two-sample test statistic
inspired by the Cramér-von Mises statistic. Our methods strictly incentivize agents
to submit more genuine data, while disincentivizing data fabrication and other types
of untruthful reporting. We establish that truthful reporting constitutes a (possibly
approximate) Nash equilibrium in both Bayesian and prior-agnostic settings. We
theoretically instantiate our method in three canonical data sharing problems
and show that it relaxes key assumptions made by prior work. Empirically, we
demonstrate that our mechanism incentivizes truthful data sharing via simulations
and on real-world language and image data.

1 Introduction

Data is invaluable for machine learning (ML). Yet many organizations and individuals lack the
capability to collect sufficient data on their own. This has driven the emergence of data market-
places [1-3]—where consumers purchase data from contributors with money—and consortia [4—0]
for data sharing and federated learning—where agents share their own data in return for access to oth-
ers’ data. As such platforms depend critically on data from contributing agents, they incentivize these
agents to contribute more data via commensurate rewards: consortia typically grant agents greater
access to the pooled data [7, 8], while marketplaces provide correspondingly larger payments [9, 10].

However, most existing work implicitly assume that contributors will report data truthfully. In
reality, strategic contributors may untruthfully report data to exploit the incentive scheme. As one
such example, they may fabricate data—either through naive random generation or sophisticated
ML-based synthesis —to artificially inflate their submissions and maximize their own rewards. In
naive incentive schemes, where rewards scale with the guantity of data, such behavior can flood the
system with poor quality data which undermines trust in the platform.

The central challenge in preventing such strategic misreporting, including fabrication, is that con-
sortia and marketplace operators typically lack ground-truth knowledge about the underlying data
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distribution—if the ground truth were known, the very need for learning and data sharing would
be obviated. To address this, prior work has proposed a simple and intuitive idea: compare each
agent’s data submission against the pooled submissions of other agents. In these mechanisms, when
all agents’ data come from the same distribution, truthful reporting constitutes a Nash equilibrium.
Intuitively, when others contribute genuine data, minimizing the discrepancy between one’s own
submission and the aggregate submission of others also requires submitting genuine data.

Despite this promising intuition, prior work has succeeded only under strong assumptions about data
distributions [7, | 1] and/or narrow models of untruthful behavior [12—14]. Realizing this idea to
general data distributions and arbitrary types of strategic misreporting has remained challenging.

Our contributions. This gap motivates the central premise of our work. We develop a mechanism
where agents are rewarded based on a novel loss function that is inspired by two-sample testing.
Our loss function, resembling the Cramér-von Mises (CvM) two-sample test statistic [15, 16], is
computationally inexpensive, and applies to many different data types, including complex data
modalities such as text and images. We design (approximate) Nash equilibria in which agents are
incentivized to truthfully report data, without relying on restrictive assumptions about the underlying
distribution or strategic behaviors. We theoretically demonstrate the application of our mechanism
in three data sharing problems involving purchasing data, and data sharing without money. We
empirically demonstrate its usefulness via experiments on synthetic and real world datasets.

1.1 Overview of Contributions

Model. There are m agents. Each agent ¢ possesses a dataset X; drawn from an unknown
distribution P, and submits Y;, not necessarily truthfully (i.e. ¥; # X;). In data-sharing consortia
or marketplaces, the goal is to design losses (negative rewards) L = {L;};c[m], Where agent i
is rewarded according to —L;({Y}}je[m]), s0 as to incentivize truthful reporting. A natural and
widely adopted approach [7, | 1, 10], which we also follow, is to design L; as a function of the form
L;(Y;,Y.;), where Y.; = (Yj)j ; 18 the pooled submission of all agents except i. A high value of

L;(Y;,Y.;) suggests that agent 7’s data deviates from the rest, which may indicate untruthful behavior
when other agents report truthfully (i.e. Y; = X for all j # 19).

Comparing an agent’s submission to the pooled data from others can be naturally viewed as computing
a two-sample test statistic—or simply, a two-sample test—between Y; and Y_; [15, 17]. This
perspective motivates the design of our loss function.

Key technical challenges. There are two primary challenges in designing a loss. First, we
should ensure that the loss L is truthful: specifically, when Y_; is drawn i.i.d. from P (i.e. all
other agents report truthfully), the optimal strategy for agent i to minimize L;(Y;,Y_;) should be
to also submit truthfully, i.e. Y; = X,;. Without this property, agents may have an incentive to
manipulate their submissions to reduce L;(Y;, Y ;). However, many standard two-sample tests—such
as Kolmogorov—Smirnov [ 17, 18], t-test [19], Mann—Whitney [20], and MMD [2 | ]—are not provably
truthful. The second challenge is to reward agents for higher quality submissions, i.e. L; should
decrease as the quantity of the submitted (truthful) data increases.

While each challenge is easy to address in isolation, satisfying both simultaneously is far more
difficult. For example, a mechanism that rewards agents equally is trivially truthful but offers no
incentive to collect more data. Conversely, if losses are tied solely to the quantity of submitted data,
the mechanism becomes vulnerable to data fabrication, leaving honest agents worse off.

A third, less central challenge is ensuring that we have a handle on the distribution of L, to enable
its application in data sharing use cases. For instance, penalizing large values of L; requires
understanding what constitutes “large” under truthful reporting. Prior work addresses these three
challenges only under strong assumptions on P (e.g. Gaussian [7, | 1], Bernoulli [22], restricted class
of exponential families [10]), or narrow models of untruthful reporting [12, 13, 22].

Our method and results. In §2, we consider a Bayesian setting in which each agent’s data is drawn
from an unknown distribution P, itself sampled from a known prior II. We introduce our loss L which
is inspired by the Cramér—von Mises (CvM) test. Leveraging this statistic along with user-specified
data featurizations, we design a loss in which truthful reporting forms an exact Nash equilibrium
(NE). Moreover, we show that L incentivizes the submission of larger datasets—an agent is strictly
better off by submitting more truthful data. Our loss is also bounded, and decreases gracefully with
the amount of data submitted, making it useful for data sharing applications as we will see in §4.



However, this approach has two practical limitations. First, specifying a meaningful prior can be
difficult, particularly for complex data modalities such as text or images. Second, even with a prior,
computing L may be intractable when it requires expensive Bayesian posterior computations. In §3,
we address these issues by replacing the above Bayesian version of our loss with a prior-agnostic
version that is simpler to compute. We show that this leads to a truthful e-approximate NE in both
Bayesian and frequentist settings where ¢ approaches zero as the amount of data submitted increases.
We also show that agents benefit from submitting more data, and that our new loss is also bounded
and decreases gracefully with the amount of data submitted.

Applications. In §4, we theoretically demonstrate how our Bayesian method can be applied to solve
three different data sharing problems, some of which have been studied in prior work, while relaxing
their technical conditions. The first problem is incentivizing truthful data submissions via payments
assuming agents already possess data [10]. The second is the design of a data marketplace where
a buyer is willing to pay strategic agents to collect data on her behalf [23]. The third is a federated
learning setting where agents wish to share data for ML tasks without the use of money [S].

Empirical evaluation. In §5, we empirically evaluate our methods on simulations, and real world
image and language experiments. To simulate untruthful behavior, we consider agents who augment
their datasets by fabricating samples using simple fitted models, or generative models such as diffusion
models and LLMs [24-26]. Our results demonstrate that such untruthful submissions lead to larger
losses compared to truthful reporting. This corroborates theoretical results for both methods and
demonstrates that the prior-agnostic version is practically useful for real world data sharing.

1.2 Related Work

There has been growing interest in the incentive structures underlying data sharing, federated learning,
and data marketplaces. A central goal in these settings is to incentivize data contributions. However,
most prior work do not consider untruthful reporting. When they do, they either impose restrictive
distributional assumptions, or limit how contributors may misreport.

Incentivizing data sharing without truthfulness requirements. A line of work addresses incen-
tivizing data collection in federated learning [27, 8, 28—31, 9]. Other studies focus on incentivizing
the sharing of private data [32] or truthful reporting of private data collection costs [14]. All of these
works assume agents report data truthfully, and do not encounter the challenges we address here.

Restricted distributional assumptions. Cai et al. [9] study a principal-agent model where a principal
selects measurement locations and compensates agents who exert costly effort to reduce observation
noise. Their optimal contract relies on a known effort-to-data-quality function, which may be
unknown or nonexistent in practice. Ghosh et al. [22] design a mechanism to purchase binary data
under differential privacy, compensating agents for privacy loss. Chen et al. [10] drop the privacy
constraint to handle non-binary data, proposing a fixed-budget mechanism that ensures truthful
reporting, but requiring the data distribution to have finite support or belong to an exponential
family. Other work focuses on incentivizing truthful reporting in Gaussian mean estimation for data
sharing [7, 1 1] and data marketplaces [23]; however, as our experiments show, their approach—based
on comparing means of the reported data—does not generalize beyond Gaussian data.

Restricted untruthful reporting. Falconer et al. [ 13] propose monetary incentives for data sharing,
assuming agents can only fabricate data by duplicating existing entries. Dorner et al. [12] study mean
estimation where agents may misreport only by adding a scalar to their true values.

Peer prediction. The peer prediction literature addresses a challenge similar to ours: eliciting truthful
reports without access to ground truth. Prior work [33—36] uses reported signals to cross-validate
agents’ submissions, showing that truthful reporting forms an (approximate) Nash equilibrium. Tech-
niques from [37, 38] have been applied to design payment-based mechanisms for data sharing [10],
but these rely on strong assumptions about the data distribution (e.g., exponential families or finite
support). It is not clear if these methods generally work when agents may change the number of
signals (data points) they have, which is a critical consideration in data sharing use cases where
fabrication is possible. More precisely, the mechanism designer does not know how many data points
an agent holds, yet must still incentivize truthful reporting.

Practical applicability. The vast majority of the above works focus on theoretical development, but
lack empirical evaluation, with their practicality unclear due to expensive Bayesian computations. In
contrast, our prior-agnostic method is simple and performs well on real data.



Review of the Cramér-von Mises test. We briefly review the Cramér—von Mises (CvM) test [15].
Let X = {X;,..., X,,} i1 FirandY ={Y1,..., Y} i 5 be samples from R-valued distribu-
tions Fy and Fy, respectively. Let Fx (t) = 137 Y e x Liz<ey and Fy (t) = (37 3 ey Liy<s) be
the empirical CDFs (ECDFs) of X and Y. Set Z = (X3,...,X,,Y1,...,Y,,). The two-sample
CvM test statistic is then defined below in (1). We have illustrated the CvM test in Fig. 1a.

n+m

CVM (X,Y) = # Z (Fx(Z:) — Fy(Z:))?. )]

2 A Truthful Mechanism in a Bayesian Setting

In this section, we design a mechanism to reward agents based on the quality of their submitted data.
We begin by specifying our model. To build intuition, we present a simplified single-variable version
of our loss (mechanism) in §2.1. We then present the general version of our mechanism in §2.2.

Setting. There are m > 2 agents, where each agent ¢ € [m] has a dataset X; = {X;1,..., X, ,,} C
{Xi,;};2, of n; € N points. Here {X; ;}7° | are drawn i.i.d. from an unknown distribution P over
X and X; € X™. We refer to X as the dataspace; examples include the space of images, text, or
simply R?. In this section, we consider a Bayesian setting where P is drawn from a publicly known
prior II. A mechanism designer wishes to incentivize the agents to report their datasets truthfully by
designing losses (negative rewards).

Let D = | |,2, X* be the collection of finite subsets of X', which forms the space of datasets an agent
could possess. A mechanism for this problem is a normal form game which maps the agents’ dataset
submissions to a vector of losses, i.e. L € {L' : D™ — R™}. Once the mechanism L is published,
each agent will submit a dataset Y; (not necessarily equal to X;). An agent’s strategy can be viewed
as a function f; € F = {f : D — D s.t. f is measurable} which maps their original dataset X; to
Y; = f;(X;). This allows for strategic data manipulations which may depend on the agent’s own
dataset. Let I be the identity (truthful) strategy which maps a dataset to itself, i.e. I(X;) = Xj.

Agent i’s loss L; is the i’th ouput of the mechanism L, and is a function of the strategies f =
{fi}icpm) adopted by other agents and the initial datasets X = {X1,..., X,,}, and can be written as
Li = Li({ fi}icim)) = Li({ fi(Xs) }icpm)) to highlight or suppress these dependencies.

Requirements. The mechanism designer wishes to design L to satisfy two key properties:

1. Truthfulness: All agents submitting truthfully (f; = I), is a Nash equilibrium, that is,
Vi€ [mlVf; € F, E[Li({I}L1)] < E[Li(fi, {I};2)]-

2. More (data) is (strictly) better (MIB): Let X;, X! be two datasets such that | X/| > | X;|. Then,
E [Li(I(X7), {I(X;)} )] < E [Li({I(X;)}jem)] -

Above, the expectation is with respect to the prior P ~ II, the data X;, X! ~ P for all i, and any
randomness in the agent strategies f; and mechanism L. As discussed in §1.1 under ‘Key technical
challenges’, while satisfying either of these requirement is easy, designing a mechanism which
satisfies both simultaneously is significantly more difficult.

2.1 Warm-up when X =R

Algorithm 1 description. To build intuition, we first study the simple one-dimensional case X' = R.
The mechanism works by aggregating all of the submissions {Yi};il and for each agent i € [m],
computing a (randomized) loss L;. To compute L;, an evaluation point 7; is first randomly sampled
from the data submitted by the other agents Y ;. The remaining data Z; is used to define the
empirical CDF Fz,. The loss L; is then defined as the squared difference between this ECDF

evaluated at T3, i.e. F'z,(T5), and its conditional expectation given (X; 1, ..., X; |v,|, T;) evaluated
at (Yi1,...,Y;|y,, Ti). Finally, the mechanism outputs L; € [0, 1] as agent i’s loss.
Design intuition:  The conditional expectation E [in (Ti) | Xo15- -5 Xi vl E] can be

thought of as the best guess for Fyz (7;) having seen (Xj1,...,X;v,)) Thus,
E [FZ,- (1) | Xin =Yin, ., Xiy, = Yi,|Yi‘,Ti] can be thought of as the best guess for F'z, (T;)
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Figure 1: Subfigure (a) shows the empirical CDFs (ECDF) for two datasets X = {X1,...,X,},
Y = {Y1,...,Y.,,}. The gray lines are the differences between the two curves at each point in

(X1,...,Xn,Y1,...,Y,,), and are used to calculate the two-sample CvM test in (1). Subfigure (b)
replaces Fy (t) with E[Fy (¢)| X] which can be thought of as the best approximation to Fy-(t) based
on having seen X.

Algorithm 1 A single variable Cramér—von Mises style statistic

1: Input parameters: A prior II over the set of R-valued distributions.

2: for each agent i € [m]:

3 Ya e (Y50 jsiery

4. Sample j ~ Unif(l, R |Kz|) and set T; < }/_,‘7]’, i (Ki/)g;ej'
5

Return L; < (E [Fy, (T)) |Xi1 = Yin, -, Xy, = Yipv, )] — Fo, (T)).

assuming that (Yj1,...,Y;y,) is the agent’s true data. A visual comparison of Fy, (T;) to
E [in (T3) | Xiq,--- ,Xi7|yi‘,Ti] can be seen in Fig. 1b.

The loss L; defined above is well-posed and computable. As demonstrated in our experiments (with
derivations in Appendix E), closed-form expressions for L; can be derived in simple conjugate
settings such as Gaussian-Gaussian and Bernoulli-Beta, enabling efficient implementations. For
more complex prior distributions, numerical approximations using methods such as MCMC [39] or
variational inference [40] can be employed.

Theoretical results. We now present the theoretical properties of Algorithm 1. To satisfy the MIB
condition, we require that the prior 1I meet a non-degeneracy condition, formalized in Definition 1.
Intuitively, this condition ensures that the posterior changes upon observing an additional data point.
Examples of degenerate priors include those that select a fixed distribution PP with probability 1, or
choose P to be a degenerate distribution d,,, x € X with probability 1. In such cases, data sharing
is meaningless, as the distribution is either fully known or revealed by a single sample. Thus, it is
natural to assume II is non-degenerate, so that additional data remains informative.

Definition 1. (Degenerate priors): Let P ~ 11 and {Xi}fil 1,7 P We say that 11 is
degenerate if for somen €N, P(Z < T|T, X1,...,X,) C P(Z<T|T,X1,...,Xns1)-

Theorem 1 shows that Algorithm 1 satisfies truthfulness for all priors II, and MIB when II is not
degenerate. The key idea for truthfulness is that by computing the aforementioned conditional
expectation, the mechanism performs, on behalf of agent ¢, the best possible guess for F, (T}) just
using Y;. Thus, it is in agent ¢’s best interest if Y; = X;.

Theorem 1. The mechanism in Algorithm I satisfies truthfulness. Moreover, when 11 is not degenerate,
then Algorithm I also satisfies MIB.

While the previous theorem indicates that submitting more data is beneficial for the agent, it does
not quantify how an agent’s loss decreases as they contribute more data. The following proposition
quantifies this by offering bounds on how an agent’s expected loss decreases with the amount of data
they submit, assuming all agents are truthful. This handle on E [L;], along with the property that
L; € [0, 1], is useful for applying our mechanism to data sharing applications as we will see in §4.



Algorithm 2 A feature-based Cramér—von Mises style statistic

1: Input parameters: A prior IT over the set of X'-valued distributions, feature maps {o* }szl.
2: for each agent i € [m]:
3 Yo (Vi)

JFLLE|YS]
4 Sample j ~ Unif(l, ey |K1|) and set T; < }/—l}j’ i (Ki7g)£¢j.
5: for each feature k € [K]:
: |Z:|
6 ZF (" (Z)) 7, TF e " (1)

2
L (B [Py (T9) | X1 = Vi, ooo Xy = Yoo TH] - Fpp (22))

(2

8: Return L; + + Zszl Lk

i

~

Proposition 1. Ler L; ({I}" ) denote the value of L; when agents are truthful in Algorithm 1. Then,

(
0 <EL; ({(IN2)) < 3=

R-valued distributions, 6|2;| <E[L;({I}]2))] < %(ﬁ + ﬁ)

+ ﬁ) Moreover, when 11 is a prior over the set of continuous
f

2.2 A General Mechanism with Feature Maps

We now extend our mechanism and to handle data from arbitrary distributions. The key modification
is the introduction of feature maps: functions chosen by the mechanism designer that transform
general data distributions into R—valued distributions to apply our mechanism to.

Feature maps. We define a feature map to be any measurable function ¢ : X — R which
maps the data to a single variable distribution. We will see that any collection of feature maps
{p* : & — R}E_| which map the data to a collection of single variable distributions supports a
truthful mechanism. However, some feature maps perform better than others depending on the use
case, so we allow the mechanism designer flexibility to select maps. For Euclidean data, coordinate
projections may suffice, while for complex data like text or images, embeddings from deep learning
models are more appropriate (as used in our experiments in §5).

Algorithm 2 description. The mechanism designer first specifies a collection of feature maps,
{gok}szl based on the publicly known prior II. After this, Algorithm 2 can be viewed as applying
Algorithm 1 for each feature k € [K], making use of ©* to map general data in X' to R.

The following theorem shows that Algorithm 2 is truthful, which is a result of the same arguments
made in Theorem 1, now repeated for each feature map. For MIB, we require an analogous condition
to the one given in Theorem 1, stating that more data leads to a more informative posterior distribution
for at least one of the K features. To state this formally, we first extend Definition 1.

Definition 2. Let P ~ [l and {X;};2,,T,Z
if for some n € N,

P We say that 11 is degenerate for feature k € K|

P (‘pk(Z) < @k(T”(pk(T)’le' . 7XTL) = P (@k(z) < @k(T)‘QDk(T)’XI’ s 7X7L+1) .

Theorem 2. The mechanism in Algorithm 2 satisfies truthfulness. Moreover, if there is a feature
k € [K)], for which 11 is not degenerate, then Algorithm 2 also satisfies MIB.

Proposition 9 (Appendix C.2), analogous to Proposition 1, quantifies how L; decreases with data size,
which will be useful when using this loss in data sharing applications. Additionally, Proposition 8
(Appendix C.2) gives an explicit relationship for how the expected loss changes when an agent
submits an additional data point, depending on the prior and feature maps. This exactly quantifies
how much lower an agent’s loss is when submitting more data.

3 A Prior Agnostic Mechanism

While our mechanism in §2 applies broadly in Bayesian settings, it has two practical limitations. First,
specifying a meaningful prior can be difficult, especially for complex data like text or images. Second,
even with a suitable prior, computing the conditional expectation in line 7 may be intractable due to



Algorithm 3 A prior free Cramér—von Mises style statistic

1: Input parameters: Feature maps {(*} X | and an augment splitmap ¢ : N — N : ¢(n) < n—1.
2: for each agent i € [m]:
3 Yo (Vi)

JFLLENY ]

4 SplitY;into Y., = ({Tz} W, ZZ') s.t. |Wl| = (|Kz|)
5: for each feature k € [K]:

. Wi Z;
6 T R (D), WE e (¢ Win) 2 28 (& (Zin) 2,

2

7: Ly + (F(y.k,w,k) (TF) = Fzr (Tik))
8: Return L; + - Zkl,(:l Lk,

the cost of Bayesian posterior inference. To address this, we introduce a prior-agnostic variant that is
significantly easier to compute. The trade-off is that truthful reporting becomes an e-approximate
NE, where ¢ vanishes as the amount of submitted data grows.

Changes to Algorithm 2. Thus far, we have only focused on the Bayesian setting, assuming that
agents wish to minimize their expected loss Ep~1 []E{ X} ~P [Ll]] . However, this modification
also supports a frequentist view where agents wish to minimize their worst case expected loss over a
class C possible distributions, i.e. suppce E{x,}m ~p [L;]. In the frequentist setting, the class C is
the analog of the prior II. As such, our prior agnostic mechanism does not have a prior II as input.

Algorithm 3 computes each agent’s loss as follows: first partition Y_; into three parts, (1) an evaluation
point T;, (2) data to augment agent ¢’s submission with W;, and (3) data to compare agent i’s
submission against Z;. The mechanism designer is free to choose how much data to allocate to W;
as given by the map 1. For each feature k € [K], we then obtain 7, W, and ZF by applying (*.
The main modification of the prior-agnostic mechanism is that the conditional expectation in line 7
of Algorithm 2, E[F (TF) | X; = Y;, TF], is replaced with F(y yyx)(T}) which serves as an easy
to compute estimate for FZik, (TF). Here F(Yik,vwik) denotes the ECDF from the combined data of

Y and W}. The reason we allow the mechanism designer the flexibility to supplement Y;* with
WP is that doing so allows them to decrease the & parameter corresponding to truthfulness being an

e-approximate Nash in the following theorem. A reasonable choice for the size of W is to set it so
that |W;| + |Y;| = | Z,|.

Before stating the theorem, we define e-approximate truthfulness for a mechanism in both the
Bayesian and frequentist paradigms.

e-Approximate Truthfulness: All agents submitting truthfully (f; = I), is an e-approximate Nash
equilibrium. In the Bayesian setting this means Vi € [m|,Vf; € F

JE [Eixigm ~p [Li({T})]] < B [Eix,ym,~p [Li (fi, {T} )] + €

In the frequentist setting this means Vi € [m],Vf; € F

sup Byx,ym ~p [Li({1}Y72))] < supEpx,ym op [Li (fi, {T} )] + €
Pec Pec

Algorithm 3 requires a similar non-degeneracy condition for MIB. In the Bayesian setting, the
same condition given in Theorem 2 suffices. In the frequentist setting, we require that the class
of distributions C is not solely comprised of distributions for which all of the feature map induced
distributions are degenerate. The following theorem summarizes the main properties of Algorithm 3.
We see that as the total amount of data increases, the approimate truthfulness parameter vanishes
provided that the datasets (X;, W;) and Z; are balanced.

Theorem 3. The mechanism in Algorithm 3 is % ( W + ﬁ) -approximately truthful in both

the Bayesian and frequentist settings. Moreover, if there is a feature k € [K], for which 11 is
not degenerate, then Algorithm 3 satisfies MIB in the Bayesian setting. If it is not the case that

Cc {77 EM(X):Vke[K],Po (gp"“)71 €0y,1 € R} then Algorithm 3 satisfies MIB in the

[frequentist setting.



Proposition 10 (Appendix D) gives, for both the Bayesian and frequentist settings, bounds on how an
agent’s expected loss decreases with the amount of data they submit, assuming all agents are truthful.

—1. . . .
Moreover, when the pushforward P* = P o (gok) is a.s. continuous Yk € [K], this proposition
provides an exact expression for the expected loss in both the Bayesian and frequentist settings.

4 Applications to Data Sharing Problems

1. A data marketplace for purchasing existing data. Our first problem, studied by Chen et al.
[10] is incentivizing agents to truthfully submit data using payments from a fixed budget B in a
Bayesian setting. Their mechanism requires the data distribution to have finite support or belong to the
exponential family to ensure budget feasibility (payments do not exceed B) and individual rationality
(agents receive non-negative payments). Our method removes these distributional assumptions.

In this setting, m agents each posses a dataset X; = {X; 1, ..., X, », } with points drawn i.i.d. from
an unknown distribution P in a Bayesian model. A data analyst with budget B wishes to purchase
this data. Agents submit datasets {Y;}!", in return for payments {m;({Y;},)}/,. Chen et al.
[10], building on Kong and Schoenebeck [38], design a truthful mechanism based on log pairwise
mutual information, but their payments can be unbounded, violating budget feasibility and individual
rationality. We address this using Algorithm 2 to construct bounded payments satisfying truthfulness,
individual rationality, and budget feasibility without distributional assumptions. Algorithm 4 (see
Appendix A.1) implements this, and Proposition 2 guarantees these properties.

2. A data marketplace to incentivize data collection at a cost. The second problem, studied
by Chen et al. [23], involves designing a data marketplace in which a buyer wishes to pay agents to
collect data on her behalf at a cost. They study a Gaussian mean estimation problem in a frequentist
setting. We study a simplified Bayesian version without assuming Gaussianity.

In a data marketplace mechanism, the interaction between the buyer and agents takes place as follows.
First, each agent chooses how much data to collect, n; € N, paying a known per-sample cost ¢, and
obtains the dataset X; = {X; 1,..., X, ,, } with data drawn i.i.d. from an unknown P ~ II. They
submit Y; = f; (X;) to the mechanism, and in return, receive a payment 7; ({Y;}." ) charged to the
buyer. The buyer derives value v : Z>q — Rx( from the total amount of truthful data received. An
agent’s utility is their expected payment minus collection cost v = E [m; ({Y;},~ )] — cn;, and the
buyer’s utility, when agents are truthful, is the valuation of the data received minus the expected sum
of payments. u = v (S0, [Yi]) — E [Sr, m (Y}, ).

The goal of a data market mechanism is to incentivize agents to collect and truthfully report data.
If not carefully designed, the mechanism may incentivize agents to fabricate data to earn payments
without incurring collection costs, undermining market integrity and deterring buyers. To address
this, we propose Algorithm 5 (see Appendix A.2), using Algorithm 2, which—unlike Chen et al.
[23]—does not assume Gaussianity. Proposition 3 shows that, under a market feasibility condition,
the mechanism is incentive compatible for agents and individually rational for buyers.

3. Federated learning. The third problem is a simple federated learning setting, similar to Karim-
ireddy et al. [8], where agents share data to improve personalized models. Unlike their work, which
assumes agents truthfully report collected data, we allow strategic misreporting.

Each of m agents, possess a dataset X; = {X; 1,..., X, ,} of points drawn i.i.d. in a Bayesian
model, and have a valuation function v; : N — R (increasing), quantifying the value of using a given
amount of data for their machine learning task. Acting alone, an agent’s utility is simply v; (| X;]).
When participating, the federated learning mechanism delopys a subset of the others’ data submitted,
Z;, for agent 4’s task based on the quality of their submission f;(X;). This result in a valuation
of v;(|Z;|) when the others are truthful. Thus, an agent’s utility when participating is defined as
u; = E[v;(|Z;])]. We propose Algorithm 6 (see Appendix A.3), based on Algorithm 2, which does
not assume truthful reporting. Proposition 4 shows it is truthful and individually rational.

S Experiments

Synthetic experiments. We consider two Bayesian models with conjugate priors (beta-Bernoulli
and normal-normal) where the calculation of the conditional expectation in line 7 of Algorithm 1 is
analytically tractable. In both setups, X = R and we will use the method in Algorithm 1.
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Flgure 2: (a): Losses when submitting truthfully, adding Bern (1/2) samples, and adding Bern (p) samples
in the beta-Bernoulli experiment. (b): Losses when submitting truthfully and adding fabricated data between
adjacent pairs of true data points in the normal-normal experiment. In (b), the CvM bar for fabrication behavior
extends to ~ 1.6. Losses for truthful submission in each method and subfigure are normalized to 1 (gray lines);
values < 1 indicate fabrication improves performance, > 1 means it worsens. A truthful mechanism should
yield losses above 1 for all fabrication behavior.

Baselines: We compare our mechanism to three standard two-sample tests, used here as losses:
(1) the KS-test KS(Y;,Y.;) = sup,cp |Fy,(t) — Fy,(t)]. (2) The CvM test (the direct version,
not our adaptation): CvM(Y;,Y;) (see (1)). (3) The mean difference (similar to the ¢-test):
Mean-diff(Y;,Y.;) = ]ﬁ Yyevi Y = v Lyev, Y|, which has been used to incentivize truth-
ful reporting for normal mean estimation in a frequentist settings [7, 23].

1) Beta-Bernoulli. Our first model is a beta-Bernoulli Bayesian model with p ~ Beta(2,2) and
then X; ;|p ~ Bern (p) i.i.d. We evaluate whether an agent can reduce their loss (increase rewards)
by adding fabricated data to their submission. We consider two types of fabrication: (1) adding
Bern (1/2) samples and (2) estimating p via p = ﬁ D owe x,, © then adding Bern (p) samples.
We compare this to an agent’s loss when submitting truthfully, assuming in both cases that other
agents are truthful. Fig. 2a shows average losses under Algorithm 1 and the three two-sample tests
under truthful and non-truthful reporting. Under Algorithm 1, fabricated data always leads to higher
loss, while the baselines yields lower loss under at least one fabrication strategy. Thus, the two-sample
tests are susceptible to data fabrication whereas Algorithm 1 is not. Notably, Mean-diff, which is
used in [7, 11], fails, showing their methods do not work beyond normal mean estimation settings.
2) Normal-normal. Our second experiment is a normal-normal Bayesian model, where p ~ N(0, 1)
and then X, |y ~ N (4, 1) i.i.d. Here, we fabricate data by inserting fake points in between real
observations. Fig. 2b presents the results. Truthful reporting yields lower loss under Algorithm 1,
CvM, and Mean-diff, while KS gives lower loss for fabrication, revealing its susceptibility.

Language data. Next, we evaluate our method and the above baselines on language data. For this,
we use data from the SQuAD dataset [4 1], where each data point is a question about an article. We
model the environment with m = 20 and m = 100 agents, where all agents have 2500 and 500
original data points respectively. We fabricate data by prompting Llama 3.2-1B-Instruct [26] to
generate fake sentences based on the legitimate sentences that agent 1 has. We fabricate the same
number of sentences in the original dataset. Agent 1 then submits the combined dataset, both true
and fabricated, to the mechanism. We instantiate Algorithm 3 with feature maps obtained from the
feature layer of the DistilBERT [42] encoder model, which corresponds to 768 features. We apply
the baselines to the same set of features and take the average. We have provided additional details on
the experimental set up and some true and fabricated sentences generated in Appendix B.1.

The results are presented in Table 1, showing that all methods perform well, obtaining a smaller loss
for truthful submission when compared to fabricating. It is worth emphasizing that only our method
is provably approximately truthful, and other methods may be susceptible to more sophisticated types
of fabrication.

Image data. We perform a similar experiment on image data using the Oxford Flowers-102
dataset [43] dataset. where each data point is an image of a flower. We model the enviornment with
m = b and m = 47, where all agents have roughly 1000 and 100 original data points respectively.



Table 1: An agent’s average loss (4 the standard error) when reporting sentences truth-
fully/untruthfully, assuming the others are reporting truthfully. The experiments were run once
assuming all agents had 500 sentences, then again assuming all agents had 2500 sentences. In each
row the smaller loss is bolded.

Sentences Method Avg. truthful loss Avg. untruthful loss
Algorithm 3 0.0003 =1.8-10~°>  0.0011 £5.8-107°
500 KS-test 0.0379 £ 7.6-10"*  0.0524 +9.7-104
CvM-test 0.1547 £9.2-1073  0.8598 4.8 - 1072

Mean diff. 0.0043 £2.5-10"*  0.0095 +3.4-10~*

Algorithm 3 0.00003 +3.3-10~%  0.0005 + 7.1-10~¢
KS-test 0.0127 £2.4-10~%  0.0309 +1.2-10~%
CvM-test 0.1609 +7.1-10~3  3.2760 + 3.4- 102
Mean diff. 0.0015 +8.4-1075  0.0069 +5.9-10~°

2500

We fabricate data by using Segmind Stable Diffusion-1B [25], a lightweight diffusion model, to
generate fake images of flowers based on the legitimate pictures. We fabricate the same number of
images that an agent possesses. Algorithm 3 is instantiated with 384 feature maps corresponding to
the 384 nodes in the embedding layer of DelT-small-distilled [44], a small vision transformer. As
above, we apply the baselines to the same set of features and take the average. Additional details on
the experimental set up can be found in Appendix B.2.

Table 2 shows that, similar to text, all methods perform well, truthful submission leads to a lower loss
compared to the fabrication procedure detailed above.

Table 2: An agent’s average loss (& the standard error) when reporting images truthfully/untruthfully,
assuming the others are reporting truthfully. The experiments were run once assuming agent 1 had
100 images, then again assuming agent 1 had 1000 images. The 4,612 images in the test set of [43]
were used to represent the data submitted by other agents. In each row the smaller loss is bolded.

Images Method Avg. truthful loss Avg. untruthful loss
Algorithm 3 0.0015+3.2-10~°  0.0040 £1.2-10~*
100 KS-test 0.0833 £4.2-107*  0.0993 +1.3-1073

CvM-test 0.1491 £2.6-107%  0.7730 £2.0- 1072
Mean diff. 0.0462 +1.0-107%  0.0953 £1.1-1073

Algorithm 3 0.0002 +3.7-10~6  0.0032 +2.9.10~5
KS-test 0.0290 +2.1-10~%  0.0738 +£2.7-10~4
CvM-test  0.1458 £3.5.10"3  4.5478 + 3.0 102
Mean diff.  0.0157 521074  0.0896 + 3.2 - 104

1000

6 Conclusion

We study designing mechanisms that incentivize truthful data submission while rewarding agents
for contributing more data. In the Bayesian setting, we propose a mechanism that satisfies these
goals under a mild non-degeneracy condition on the prior. We additionally develop a prior-agnostic
variant that applies in both Bayesian and frequentist settings. We illustrate the practical utility of
our mechanisms by revisiting data sharing problems studied in prior work, relaxing their technical
assumptions, and validating our approach through experiments on synthetic and real-world datasets.

Limitations. The mechanisms in §2 rely on Bayesian posterior computations, which may be com-
putationally expensive for complex priors. We also require specifying feature maps that effectively
represent the data. While this offers flexibility for the mechanism designer to select application-
specific features, there is no universally optimal way to choose them.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A discussion of limitations can be found in the conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Yes, the paper provides complete proofs of all the results provided in the
appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experiment details can be found under the experiments section and in the
appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Sufficient code to replicate the experiments is provided.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurlPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more de-
tails.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Hyperparameter choices are explained in the experiments section and in the
appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Appropriate information about the statistical significance of experiments is
provided in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The appendix provides such sufficient information.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, the research conducted conforms with the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our paper is a theory paper and does not have direct societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Assets are properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are released.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19



16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core contributions of this paper do not use LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Omitted application algorithms

A.1 A data marketplace for purchasing existing data

Recall the problem setup from §4. Below we provide a short algorithm that incentivizes agents to
truthfully report their data, {X;}",, using payments. The idea is to use Algorithm 2 to quantify the
quality of an agent’s submission and, based on it, determine what fraction of the budget to pay them.

Definition 3. We say an algorithm is budget feasible if the sum of the payments never exceeds
the budget (3., m; < B), and individually rational (for participants) if the payments are always
nonnegative (Vi € [m], m; > 0).

Algorithm 4 A data marketplace for purchasing existing data

: Input parameters: A prior IT over the set of X'-valued distributions, feature maps {o*} 5.
: Receive datasets Y7, ..., Y,, from the agents.

: Execute Algorithm 2 with {Y;}7" ,, II, {¢*}X_ | to obtain the loss L; € [0, 1] for agent i.

+ Pay agenti: m; ({Yi}L,) = & (1— Li ({Yi}Ly)).

AW N =

Proposition 2. Algorithm 4 is truthful, individually rational, and budget feasibility.

Proof. Since L; € [0, 1], we have 0 < m; < %, so it immediately follows that Algorithm 4 is both
individually rational for the agents and budget feasible. For truthfulness, notice that for any f; € F,

we can appeal to Theorem 2 to get
e (1o t1,)] = 2 (-5 1 (5.00,)])
(1 -E[L; {TH2)])

= E[m (1))

Therefore, Algorithm 4 is also truthful, as agents maximize their expected payment when submitting
truthfully. O

IA
S|lw3lw

A.2 A data marketplace to incentivize data collection at a cost

Recall the problem setup from §4, which is a simplified version of the problem studied by [23]. Our
setting does not subsume [23], as they allow for agents to have varying collection costs, study a
frequentist setting (whereas we consider a Bayesian setting), and derive payments that are easy to
compute. We now motivate a solution to our simplified setting.

To facilitate data sharing between a buyer and agents, a mechanism must first determine how much
data agents should be asked to collect based on the cost of data collection ¢, and the buyer’s valuation
function v. To do this, suppose that the buyer could collect data himself. In this case, he would
choose to collect n®T := argmax,,cy (v(n) — cn) points to maximize his utility. However, as he

. . oPT .
cannot, when there are m agents, the mechanism will ask each of them to collect ”7 points on his
behalf in exchange for payments.

An important detail is that for the marketplace to be feasible, an agent’s expected payment must
outweigh the cost of data collection. This requirement is reflected in the first technical condition
in Proposition 3, which at a high level says that the change in an agents expected payment with

OPT
respect to n;, when collecting *— points, is at least c. This can be thought of requiring that the

. . . OPT
derivative with repect to n;, of the expected payment at “——, be at least c. We also assume that IT
is not degnerate for all the features and there are deminishing returns for collecting and submitting
more data under Algorithm 2.
When these condition holds, Proposition 3 shows that it is individually rational for a buyer to

.. . . . OPT . .
participate in the marketplace, and in agents’ best interest to collect *— points and submit them
truthfully.
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The idea of Algorithm 5 is to determine what fraction of ”( v(n™)

of her submission, as measured by L;.

to pay agent ¢ based on the quality

Algorithm 5 A data marketplace to incentivize data collection at a cost

Input parameters: A prior II over the set of X'-valued distributions, feature maps {gok}kK:l.
Receive datasets Y7, ..., Y,, from the agents.

Execute Algorithm 2 with {Y;}." |, II, {o*}_ | to obtain the loss L; € [0, 1] for agent i.
Pay agent i: m; ({Yi};2,) = (fZPT) (1 — aL;) where « is given in Definition 4.

Charge the buyer: p ({Y;}",) = > 0" m ({Yi}ie,) .

A N T

Definition 4. For Algorithm 5 we introduce notation for the change in an agent’s expected payment
when collecting and submitting one more data point truthfully, assuming others are truthful:

8?“1[*] [Li (ni,nz)] == E[Li (ni + 1,n) {32 )] — E[Li ((ni,nes) , {42 )] -

When 11 is not degenerate Vk € [K], %E [Li ({ %} )] < 0 (by Theorem 2) and we define
i i=1

cm

(e )

Proposition 3. Suppose that the following technical conditions are satisfied in Algorithm 5:

g (7))

I1 is not degenerate ¥k € K], and —a%IE [L; (g, n_;)] is decreasing in n;.

m
Then, the strategy profile { (”07”, I ) } is individually rational for the buyer, i.e.
i=1

S({C))L) =

and incentive compatible for the agents, i.e. foranyn; € N, f; € F,

(o {(),) w ()

Proof. We start with individual rationality for the buyer. Notice that if the inequality holds then we
have

— cm < cm
~E (L ({5} )] oo et
so € (0, 1]. Since L; € [0, 1], this implies that
. OPT)
m ({YitiZi) =

so summing over the payments to all agents we find

PN Zm (IVH) < o).

=1

v(n

(1 — OZLZ) S

OPT

Therefore, the strategy profile { ("m

w({(50) }ni) — ()~ E [p ({¥i})] > 0.
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We now prove incentive compatibility for the agents in two parts. First we show that regardless of
how much data an agent has collected, it is best for her to submit it truthfully when others follow the

v TLOPT . .

recommended strategy profile { (%, I ) } o Second, we show that % is the optimal amount
VE

of data to collect based on our choice of .

Fix n;. Unpacking the definition of an agent’s utility and applying Theorem 2 we have

(e {(50), )
(o5,
-l o (59, )
(e {0}, )]

(e {(),)

This means that regardless of how much data agent 7 collects, it is best for them to submit it truthfully.

=E

IN

=K

opr ™M .
For the second part we now assume {f;};~, = {I},~, and n_; = { B _, so for convenience we
omit writing the dependence on these parts of the strategy profile for random variables.

Notice that since u¢(n;) is concave, the optimal amount of data for agent 4 to collect and submit is
the smallest n; € N such that

ui (n; +1) < wuy (ny)

i.e. the point at which the marginal increase in payment no longer offsets the collection cost of an
additional point. By the definition of agent utilities and our choice of o we see

,U(nOPT)

m

ud (n; +1) <uf (n;) = ( (I1—=aE[Li(n; +1)]) —c(n; + 1))

< (M2 (- aB L) - cf)
— —aiiE[Li(ni)] < %
— —8iiE[Li(ni)] < ii]E [LZ— (”:T” .

.. . OPT . . . .
This implies that “— is the optimal amount of data to collect since —=2-E [L; (n;, n_;)] is decreasing
m on

in n;. Putting both parts togeter we find that for any n; € N, f; € F, '

# (o {0, ) 2 (e {0,
nOPT m
< uf <{<mf>}_>

so we have incentive compatibility for the agents.

23



A.3 Federated learning

Recall the problem setup from §4. For convenvience we assume that Vi € [m], | X;[ < 32, [ Xj].

The idea of Algorithm 6 is to determine how much of the others’ data agent ¢ should receive for her
task based on the quality of her submission, as measured by L;.

Algorithm 6 Federated learning

: Input parameters: A prior IT over the set of X'-valued distributions, feature maps {¢* }i;l.
: Receive datasets Y7, ..., Y,, from the agents.

: Execute Algorithm 2 with {Y;}!" | TI, {¢*} | to obtain the loss L; € [0, 1] for agent 4.

: for each agent i € [m]:

T; v (|Ya]), a< (% — vl X)) L

2T; ) E[L: ({1},)]
Zi < ’U;l ((1 — OéLl) Tl)
Deploy Z;, a random subset of Y_; of size z; for agent ¢’s machine learning task.

In Algorithm 6 and Proposition 4 we assume that E [L; ({{},~,)] > 0 which ensures « is well
defined by rulling out trivial data sharing problems.

Proposition 4. Suppose that Vi € [m],|X;| < >,;|X;|. Then Algorithm 6 is truthful and
individually rational.

Proof. Fix f; € F. Unpacking the definition of an agent’s utility and applying Theorem 2, we have
U (fu {I}j;éi) =E {Ui (zl (fi’ Hb#)ﬂ
sl (ot 10, ) )
=T, — TiaE |:Li (fn {I}j#i)]
<T; - TiaE[L; ({I};2))]
= U ({1}111) :

Therefore, Algorithm 6 is truthful. For individual rationality, notice that by the definition of « and
the assumption that | X;| < |X_;| (and thus v;(X;) < v;(X_;)), we have

w ({IY)) =T, — TiaE [L; ({T})]

2 2715
_ v ([ XL]) v (1XG])
N 2 T3
> v; (|Xz|) .

Therefore, agent i is better off participating in Algorithm 6 than working alone so individual rationality
is satisfied. [

B Extended experimental results and details

B.1 Text based experiments

Our first real world experiment supposes that agents possess and wish to share text data drawn from
a common distribution. To simulate this text distribution, we use data from the SQuAD! dataset
[41] which contains 100,000 questions generated by providing crowdworkers with snippets from
Wikipedia articles and asking them to formulate questions based on the snippet’s content. We simulate

IThis work uses the Stanford Question Answering Dataset (SQuAD), which is licensed under the Creative
Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.
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data sharing when m = 20 and m = 100, where agents have 2,500 and 500 original data points
respectively.

When agents are truthful, they simply submit their sentences to the mechanism (Algorithm 3).
However, an untruthful agent can fabricate fake sentences to augment their dataset with in hopes of
achieving a lower loss. We consider when agents attempt to do this using an LLM (Llama 3.2-1B-
Instruct [26]) by prompting it to produce authentic looking sentences based on legitimate sentences
Fig. 3 shows an example of the prompting and Table 4 shows examples of the LLM-generated
sentences. For consistency, we filter out duplicates and any outputs not ending in a question mark.

Prompt

Generate five new questions that follow the same style as the examples below.
Each question should be separated by a newline.

According to Southern Living, what are the three best restaurants in Richmond?
When did the Arab oil producers lift the embargo?

Complexity classes are generally classified into what?

About how many acres is Pippy Park?

Which BYU station offers content in both Spanish and Portuguese?

Figure 3: Pictured above is an example prompt fed into Llama 3.2-1B-Instruct as part of an untruthful
agent’s submission function to generate fabricated text data. The agent uses their five questions drawn
from the SQuUAD to fabricate similar five additonal questions.

Table 3: Comparison of SQUAD questions versus LLM-generated fabrications.

SQuAD questions (Real)

LLM-generated questions (Fabricated)

Which tribe did Temiijin move in with at nine
years of age?

What is the most widely known fictional work
from the Islamic world?

New Delhi played host to what major athletic
competition in 2010?

Why did the FCC reject systems such as
MUSE?

Along with the philosophies of music and art,
what field of philosophy studies emotions?

What percentage of the population of France
lived in urban areas as of 2019?

The term solar eclipse refers to what phe-
nomenon?

Is it true that the first computer bug was an
actual insect?

How many Earth years is Neptune’s south
pole exposed to the Sun?

Military spending based on conventional
threats has been dismissed as what?

To incentivize truthful submission, we instantiate Algorithm 3 with 768 feature maps corresponding
to the 768 nodes in the embedding layer of DistilBERT [42], a lightweight encoder model distilled
from the encoder transformer model Bert [45]. For simplicity, we chose the split map ¢ (n) = 0. As
a point of comparison, we also apply the KS, CvM, and Mean diff. tests (described in §5), now to the
768 node feature space.

Our results comparing the average loss agent ¢ receives when submitting truthfully/untruthfully, under
the four methods, over five runs, are given in Table 1. We see that under all of the methods truthful
submission results in a lower average loss than untruthful submission.

B.2 Image based experiments

Our second experiment supposes that agents wish to share image data from a common distribution.
To simulate this image distribution, we use data from the Oxford Flowers-102 dataset [43], which
contains 6,149 images across 102 flower categories. We simulate data sharing when an agent 1
has 100 and 1,000 images as data points. We use the test dataset of [43], which consists of 4,612
images, to represent authentic data submitted by the other agents. In the two scenarios, this roughly
corresponds to m = 47 agents each with 100 images and m = 5 agents each with 1000 images.

When agent are untruthful, they may fabricate images using a diffusion model to augment their
dataset. We consider when agents use Segmind Stable Diffusion-1B [25], a lightweight diffusion
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model, to do this. More specifically, for each sampled image, we use it in conjunction with the
prompts and parameters in Table 4 to generate an additional fabricated image.

Table 4: Parameters and prompts used for Segmind Stable Diffusion-1B to generate the fabricated
images. Here cls_name is replaced with the type of flower being generated.

Parameter Value

Text Prompt Photorealistic photograph of a single {cls_name}, realistic colors, natural
lighting, high detail, sharp focus on petals. Another unique photo of the
same flower species.

Negative Prompt oversaturated, highly saturated, neon colors, garish colors, vibrant colors,
illustration, painting, drawing, sketch, cartoon, anime, unrealistic, blurry,
low quality, text, watermark, signature, border, frame, multiple flowers

Strength 0.7

Guidance Scale 6

Num. Inference Steps 50

To discourage fabrication, Algorithm 3 is now instantiated with 384 feature maps corresponding to
the 384 nodes in the embedding layer of DelT-small-distilled [44], a small vision transformer. For
simplicity, we chose the split map ¢(n) = 0. As a point of comparison, we again apply the KS, CvM,
and Mean diff. tests (described in §5), now to the 384 node feature space. Our results comparing the
average loss agent ¢ receives when submitting truthfully/untruthfully, under the four methods, over
five runs, can be found in Table 2.

We find that truthful reporting outperforms untruthful reporting for all methods, demonstrating they
are not susceptible to diffusion based fabrication.

C Results and proofs omitted from Section 2

C.1 Results and proofs omitted from Subsection 2.1
Theorem 1. The mechanism in Algorithm [ satisfies truthfulness. Moreover, when 11 is not degenerate,

then Algorithm 1 also satisfies MIB.

Proof. For truthfulness we refer to Proposition 5.

Forn = (n1,...,nm,) € N, let L; (n,{I};",) denote the value of L; in Algorithm 1 when agent
Jj € [m] has n; data points and agents use {I};~, € F™. Proposition 6 tells us that

B (Li (n, AT} ) — B L (0 + 0, {T})] = B [(B[F, (T3) Gu) — EFz, (T)Gn,s1))?]

where G; = o (X;1,... X; ;,T;). Also notice that

P(Zin <Ti|Xin, .., Xin, Ti) =E[Fz,(T3)|Gn.] s
P(Zia <TilXix,. o, Xin+1,Ti) = E[Fz,(T;)|Gn,+1] -

By definition II being non-degenerate means that the conditional probabilities are not almost surely
equal. This implies that

E[Li (n, {T}2))] = E[Li (n + ei, {T}2,)] > 0
so the MIB property is satisfied.
O

Proposition 5. Let L; ({f;};~,) denote the value of L; in Algorithm I when all agents use { f;}~, €
F™. Then, forany f; € F, E[L; ({I}}~,)] <E [Li (fl-, {I}j#)]
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Proof. By definition E [Fz, (T;)|Xi1,- .., Xi v, T3] is (Xi1,-.., X v;|,Ti)-measurable, so
there exists a measurable function g : RIYi[*1 — R such that

9 (X, Xy, i) =B [Fz, (T) | Xin, .. X v T -

The conditional expectation E [FZ |XZ 1=Y1,...,X; Jvi| = Yi7|m,ﬂ] is shorthand for
g (Yix,..., Y v, T;). Since we assume fZ is measurable, ( ¢ 1,...,}/7;,|yi‘) =fi(Xit, o, Xin,)
is (Xi,l, . le) -measurable. Therefore, we know that

g(Yirt, Yoy ) =E[Fz, (T) | Xin =Y, Xi v, = Yi v, T
is (X1, .., Xin;, T;)-measurable. This lets us apply Lemma 5 to get
B (L (fid}s) | =B [( [Fz, (T) [ Xix = Yir, o, Xo vy = Vv, T2 — Fz, ()]
[ [Pz, (T3) | X, X, To) = Fz, (1)’
[Lz({f}z ok
O

Proposition 6. Forn = (n1,...,ny,) € N™let L; (n,{I}." ) denote the value of L; in Algorithm 1
when agent j € [m] has n; data points and agents use {I};", € F™. Then

E (L (nAT})] = E[Li (0 + €5, A} = E [(E[Fz, () [6n,] — E[Fz, (T3) |G +1))°]

where G; = o (X, 1,...X,;,T;) .

Proof. For convenience define U = Fyz, (T;) and V = E[U|G,,]. By the definition of L; in
Algorithm 1 and conditional variance we have

E[Li (AT} )] = B |(B[Fz, (T) |Xin- o, Xim, T = Fz, (1))

Similarly we have

E[Li (n+ e, {I}Z,)] = E [Var (U|Gn, 41)] -
LetY = E[U|G,,+1]- We can now appeal to Lemma 4 to get

E(Li (n, {I}2))] = E[Li (n + ei, {I};,)] = E [Var (U|Gn,)] — E[Var (U|Gn, 11)]
= E [Var (Y[Gn,)] .

Using the tower property gives

E [Var (Y[G,,)] = {E{(Y E[Y|Gn.]) |gnH

E
=E|(E[U16.] ~E[UlGn+1])’]
E |(E[Fz, (T) [Gn.] — E[Fz, (T3) [Gn,1))*] .
O

Proposition 1. Let L; ({I }n; ) denote the value of L; when agents are truthful in Algorithm 1. Then,
0<E[L; ({I}HL)] < %

R-valued distributions, 6| E[L; ({I}]2))] < <‘X T+ 1z |)

+ ﬁ) Moreover, when 11 is a prior over the set of continuous
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Proof. Since Fx,(T;)is 0 (X 1, ..., Xin,,T;)-measurable, Lemma 5 tells us that
E[L; {I}2)] =E [(E [Fz (Ti) | Xin, s Xin,, Ti] — Fo, (Ti))ﬂ
<E|[(Fx, (T)) - Fz (T))*].

Now we can condition on P apply the first part of Lemma 2 to the inner expectation to get

[ 50— i (007] =B [ o, 10— ) < (o ).

Recognizing that L; is non-negative, we conclude

0 <E[L ({1 < 5 (|Xi| * |zi|> '

For the second part we assume that IT € M; (MS (R)), i.e. II is a distribution over the set of
continuous R-valued probability distributions. Again conditioning on P, we can now apply the
second part of Lemma 2 to the inner expectation to get

1

Ep [Exi,zi,Ti [(FX (T;) — Fz, (Tl))zn =6 (P; * |le>

so the upper bound improves to

E[L; ({I}2)] < 6 <|X7| * |Zv|) .

For the lower bound notice that o (X;1,...,X;,,Ti) € 0 (Xi1,...,Xin,;,Ti,P). Therefore
Lemma 5 tells us that

E[Ls (1Y) = E [(E[Fz, (T) | Xon, o Xin, T = Pz, (1))
> E[(B[Fz, () X, X, Ti P = Fz, (T))°]
But appealing to Lemmas 3 then 1 (using that P € M§ (R)) gives
E[(E[Fz (T) | Xia,. o, Xino, Tis Pl = Fz, (T2)] = E [(Fp (T3) = Fz, (Ty))?]

=Ep [EZ,:,TZ' [(FP (Ti) = Fz, (Ti))QH

1
=E
7 [6|Zi|:|
1

6 i
which concludes the proof of the lower bound. O
C.2 Proofs omitted from Subsection 2.2

Theorem 2. The mechanism in Algorithm 2 satisfies truthfulness. Moreover, if there is a feature
k € [K], for which 11 is not degenerate, then Algorithm 2 also satisfies MIB.

Proof. For truthfulness we refer to Proposition 7.

Forn = (n1,...,n,) € N, let L; (n, {I};",) denote the value of L; in Algorithm 2 when agent
Jj € [m] has n; data points and agents use {I};", € F™. Proposition 8 tells us that

E([Li (n,{T}2)] = E[Li (n + ei, {T}2,)]

= % é[@ [(E |Fzr (TF) 168, = B [Fa (TF) 1G5, 1. )2] .
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where GF = o (Xi1,... X ;, TF). Also observe that

3

P(z}, <THXin, ..., Xin,, T}) =E {ink (TF) |Q,’§J :
P(Zf <TH X, Xinp1, TF) = E [sz (1) |g§i+1} :

Since we assume there is a feaure k € [K] for which IT is non-degenerate, the conditional probabilities
are not almost surely equal for at least one feature. Therefore,

E[Li (n, {I}2)] = E[Li (n + e, {T},)] > 0
so the MIB property is satisfied.
O

Proposition 7. Let L; ({f;};~,) denote the value of L; in Algorithm 2 when all agents use { f;}~, €
F™. Then, for any f; € F, E[L; ({I}™,)] <E [Li (f {I}#i)]

Proof. By the definition of Algorithm 2 we have

B 1 (5 000)] = 2 - 1 (5 401,00)]

By definition E {sz (TF) ’XM, s Xyl Tf} is (Xi1,..., X, y;), T})-measurable, so there

exists a measurable function ¢ : X¥il x R — R such that
9 (Koo Xogyis TE) = B [Py (TF) X, Xy, T
The conditional expectation
B [Fyz (TF) [ Xin = Yio s Xogvy = i, TF ]
is shorthand for g (Yi1,...,Y; y;), TF). Since we assume f; is measurable,

(Yits o Yiy) = fi(Xin, o Xin,)

is (Xi1, .., Xin, )-measurable. Therefore, we know that
g (Yias- - Yy, IF) =E [Fzgs (TF) | Xia = Yig,. o, Xijyy = YmmTﬂ
is (Xi1,..., Xin,, T")-measurable. This lets us apply Lemma 5 to get
B2 (£ 47))|
E[Fyr (TF) | Xia = Yit, o, Xy = Vi T = Fas (Tf)ﬂ
E [sz (TF) | X,y Ximes Tﬂ ~ Fy (Tf)ﬂ
=E[LF ({I}L)]-

Repeatedly applying this argument for each feature gives us

M SE [t (5o t1)] 2 SO (2 ()] = B (1)
k=1 k=1
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Proposition 8. Forn = (n1,...,n,,) € N™let L; (n,{I},~,) denote the value of L; in Algorithm 2
when agent j € [m] has n; data points and agents use {I}.", € F™. Then

E[L; (n,{I};1,)] = E[Li (n+ e;, {T};,)]
K})ﬁ([@k 1168 - & [Py (14)165..)) |
where QJ’»“ =0 (Xm,. X”,Tk)

Proof. By the definition of Algorithm 2

E[Li (n,{I}Z,) nA{TH)]

N \

SRl
z [( 7o (14)165] ~ s (1))

Let U* = Fy. (TF). From the equation above, the tower property and definition of conditional
variance tell us that

K
E[L; (n, {I}]",)] Z [Var (U*(GF))] -
k:

An analogous argument gives

L
K

Mw

E[Li (n+ e, {I}]2))] = [Var (U |gnl+1):|

~
Il

1

Let Y* = E [U*|GF . |]. We can now repeatedly appeal to Lemma 4 to get
E[L ‘( AL —E[Li (n+ e, {T}2,)]
72 [Var (U*|GF )] — E [Var (U*|GF . 1)])
;
Z [Var (Y*|GF )] .

Using the tower property now lets us conclude that

%38 Var (465 )] = & 3B [B[(v* - B 45 )71t

_;éEWWWM—[WMMW}
o (AR

O

Proposition 9. Let L; ({I }nil) denote the value of L; when all agents are truthful in Algorithm 2.
Then, 0 < E[L; ({I}}",)] < <‘X 1z |) Moreover, if Vk € [K], Pk = Po (wk)*l is a.s.

continuous, then 6|Zl| <E[L ({I}2)] < § (\ 17:\ +1 li|).
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Proof. By definition
K
B (L (1)) = 2 SOE[E (0],

k=1

Define X} = (F (X”));l \- We have Fy (TF) is (X;,1,. .., Xin,, T))-measurable. Therefore,

Lemma 5 tells us that
B (4 (Y20) = B [ (B [Fas (08) [Xinsoo X TE] = P (1)) |
<[ (B (1) - £ (1)
=Ep |:EX7{“,Z75,T1.’€ {(Fxf (TF) — Fy (Tik))2:|:| :

Applying the first part of Lemma 2 to the inner expectation gives

2 1 1 1 1 1 1
Ep |:EXf:ZFvTik [(Fxlk (Tik) —FZf (Tik)) :|:| < Z (‘X}c‘ + ’Zk‘> - Z (Xz| + Zz|)

so we conclude

0 <E[Li ({I}1)] < § <|X| " |Z|) '

For the second part, when we assume P is a.s. continuous, we can apply the second part of Lemma 2
to get

Ep {E ‘g [(F k(T-’“)Fk(T-’“))Q”1 B 1( = +1)
so the upper bound improves to
1 1 1
EL;{I})] <=+ — ).
Biel=g (|Xi| " |zi|)

For the lower bound, note that o (Xi,la . ,Ximi,Tik) Co (Xi,1; . ,XLm,Tik, 77’“) so Lemma 5
gives us that

B[4 () =B | (B [Fap (7)1 Xens - Xin T = P (1)
>E [(E [Pz (T Xias s X T PY] = Py (Tf))z} :
Now appealing to Lemmas 3 then 1 gives
E [(]E {sz (TF) | X;1, - .,Xi,m,Tf,Pk} — Fyu (TZ"))Q}
=E [(Fpk (TF) = Fzr (Tf))z}

= Ep {Ez;sm;c [(F o (1) = Fiy <Tik)>2H

1
6\Z.ky

(2

== Epk

- 1
C6]Z]

Therefore, we conclude that 6|1Zi| <EI[L;, ({I}]2))]. O
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D Proofs omitted from Section 3

Theorem 3. The mechanism in Algorithm 3 is i (W + ﬁ) -approximately truthful in both

the Bayesian and frequentist settings. Moreover, if there is a feature k € [K]|, for which 11 is
not degenerate, then Algorithm 3 satisfies MIB in the Bayesian setting. If it is not the case that

C C {7) eEM;(X):Vke[K],Po (gok)_l € 0y,T € R} then Algorithm 3 satisfies MIB in the

frequentist setting.

Proof. For X <W + 1z ‘) -approximate truthfulness we refer to Proposition 11.

Let P* =Po (<pk) . For MIB we first look at the Bayesian setting and then the frequentist setting.

For the Bayesian setting, from the assumption about IT we know that 3k € [K] where Vn; € Nitis
not the case that

P(ZF <TH X, Xino TF) 2 P (2] < TF X, X1, TF)

Now notice that this implies that for at least one of the k € [K] features, P (P* € {0, : 2 € X}) <1,
or else the conditional probabilities above would automatically be equal for each k € [K].

We know from Proposition 12 that

[ -( AN~ E[Li (n+ e, {T}2))]

1 1

But notice that
Jke[K] st. P(P"ef{s,:xzeX}) <l

implies & >/ | E [Fps (TF) (1 — Fpr (TF))] > 0. Therefore
E[Li (n,{T}2)] = E[Li (n+ 5, {I}2,)] > 0

which proves MIB for the Bayesian setting.

For the frequentist setting, we have from Proposition 13 that

sup E [Li (n, {T}20)] = sup [Li (n+ e, {T}2,)]

1 1
<7svlgc)KZE Fe (T lFPk(Tz))D <ni+|Wini+1+|Wi|>.

If it is not the case that

cc {PeMl(X) k€ [K],Po (o) eéx,xeR}

then
K
sup?z; F’]Dk 1_Ffpk (TZ))] >0

so we find

sup E[L; (n, {I};2))] = sup E [L; (n + e;, {I}]2,)] > 0
Pec Pec

which proves MIB for the frequentist setting.
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Proposition 10. Ler L; ({I}." ) denote the value of L; when all agents follow {I}!*, € F™ in
Algorithm 3. Then,

m m 1 1 1
0< B (Ep L (1) s e (20 < 1 (e + o)

Moreover, if Yk € [K], P* =P o (@k)_l is a.s. continuous, then

m = su ; ™Y = L 1
A LX}ENP [L; ({I}H)}] —PGQEP [L; ({T})] 5 <|XZ-| i + Zi|).

Proof. By the definition of Algorithm 3 we have
1 & 2
L ({0 )| = — E(F (TH = F Tk)
E foiw[ ( }Hn] E [Kg_jl |(Fotey (1) = £y (21)
and
1 & 2
sup Ep [L; ({T}7,)] = sup — E{(F TF) = Fy (TF ]
up Ep (L (2] = e 2 3 | () () = Fize (71)

The first part of Lemma 2 tells us that in both the frequentist and Bayesian setting,

5 | (Fvpaney ) =P 00) ] < (e + 22)

so we find

m m 1 1 1
0< P]EH [Ep [Li {111 ;%I(’:EP [Li ({1}2))] < 1 <|XZ|+|WZ| + |Zz|) :

When V& € [K], P* is a.s. continuous, we apply the second part of Lemma 2 to get

= | (Fvpaney () = P ) ] = (e )

in both the frequentist and Bayesian setting. Under this additional hypothesis, we get

o = su ; m :1 # L
'pIEH LX}ENP [Li ({1}1_1”] = PeI(DZ Ep [Lz ({I}’L:l)} 6 <|Xz| T |Wz| + Zz|> .

O

Proposition 11. Let L; ({f;}.",) denote the value of L; in Algorithm 3 when agents use { f;};~., €
F™. Let II be a Bayesian prior, and C C M (X) a class of X-valued distributions. Then, for any
fieF

. I}E +¢e and
X;},~P

L <{I}2’il>]] < E, [

P]EH in]ENP [Li (fm {I}j;ﬂ)}

s B (LN <sw B [Li(fdlha)] e
PeC{Xi},~P PeC{Xi};,~P

where ¢ = i (W + ‘71|) Moreover, if Vk € [K], Pk =Po (gok)_l is a.s. continuous in

the Bayesilan setting and Y'P € C in the frequentist setting, then the above inequalities hold with

S (A TAR

1
1Z;]

Proof. The first part of the claim, when ¢ = % (Wl\vv\ + ), follows immediately from

Proposition 10 and recognizing that

E [Li <fi’{l}j¢i>ﬂ , sup E {Li (fi,{l}jyéi)} .

0< E
P~II
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Now consider when Vk € [K], Pk is a.s. continuous, where P has either been fixed in the frequentist
setting or drawn in the Bayesian setting. By the defintion of Algorithm 3 we have

ENP [Lz' (fiv {I}j;&i)} K Z [Lf (fi’ {I}jﬁ)]

{Xi}ts 1t } -
Il(k_ {X7 ~P {( YEWE) (TF) = Fyy (T"k))z]
%Z {Xk} ~Pk [( (vFhw) (le) a FZ{C (Tik))z] .

Thus in the Bayesian setting we have
E

Pl {XiI}EiNP [Li (fi’ {I}#i)”

=é§@4 ; WMMW”*@WW”

{X k } ~Pk
To get a lower bound we apply Lemma 5 followed Lemmas 3 then 2 which give
1 & [ - 2
LN E (FkkT!c_Fka”
Kg%miw»m-<vmﬂz> 2 (TF)

I _{x;c}ﬂprk (E [F(Y,’“Wf) (T7) |Xi7W¢,Tik,’Pk} — Fy (le))QH

2| B (e - )]

I {xk} ~Pr L

iy |1
T K £~pin _6|Zf|

In the frequentist setting, independence and Lemma 1 give us

o [y @) - )

{xt} s

) {X-k%.w'ﬂ {(F(Yik’ww (1) = P (Tik)f t B l:(FZf (T) — Fpr (C/}’“))Q}

97
1
6(Zi|

Therefore,

>

<sup E [Li (fi,{I}j#)} )

6(Zi| = pec{xi},~P

Together we have the following lower bound in both the frequentist and Bayesian setting

E [Li <fi’{1}j#)ﬂ , sup E [Li (fi,{l}j;éi)} .

{Xi},~P PeC{Xi};~P

<
61Z:] = ron
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From part two of Lemma 2 we have that when agents submit truthfully

E _[LF({IHL)]

{Xi};~P

k3

==

I
==
5 T T

E [Li({I}5)] =

{Xi};~P

{Xi]ENP {(F(Yik,w,ﬁ) (TF) = Fzn (Tik))Q]

1 .
= 6\ Y[+ W] [ 2]

1 1 )
X+l 1zl

olm -

/ N

which implies that

1 1 1
E E [L{)]| =sup E D)=t — ).
v»ml{xi}iw[ ({}1”] P o L Wiz 6<Xz-|+wz-| |Zz-|>

Combining this with the lower bounds, we conclude

m 1
e LX,LI}EI.NP (L ({1}1:1)}] T oin LXENP [ <f“ {I}H’”)H 6 (][ + [Wil)
wp B L) -sw B (L ()] < s
PEC {Xi},~P PEC {Xi},~P 6 (1X:i| + [Wil)
which completes the proof. O

Proposition 12. Forn = (ny,...,n,,) € N™ let L; (n,{f;}.~,) denote the value of L; in Algo-
rithm 3 when agent j € [m] has n; data points and agents use { f;}!", € F™. Then

E[L '( ATHZDI = E[Li (n+ e, {T}2)]
1 1
721}3 Fn (78) (U= Fou (T (0 — o)

where P* =P o (gok)fl.

Proof. By the definition of Algorithm 3 we have
K

E[L; (n, {I}]2))] = Ilfiﬂ‘: [Lf (n, {I}}2))] Z {( Xk, WE) (TF) = Fzr (Tz‘k))z_

k:

Let Fp« be the CDF for P*. We start by rewriting each term in the sum above as

Pk

E {(F(Xf,wf) (TF) = Fy (Tf))j

k k 7k Tk
XFWE 28T

2
B | (Rt (1) = P (1)) =
Following the same steps in Lemma 2 up to equation (5) gives us

Xk W}“EZF‘ Tk [(F(vawik) (Tik> — (T

= E [Fpk(T ) (1= Fpe(T}))] <

1
n; + |[Wi

i Zi| > .
Therefore,

K 1 1
E[L; (n, {1},)] Z [Ppe (T, 1FPk<T>>](m+|wi|+zi|>'
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The same argument gives an analogous result for E [L; (n + e;, {I}.—,)] . Taking the difference we
find

E[L; (n,{I}2))] —E[Li (n + e, {T}2,)]

K
1 o " 1 1
_K;E[Fpk(n)(l Fpu(T))] <n¢+|Wi| ni+|Wi|+1>'

O

Proposition 13. Forn = (ny,...,n,,) € N™ let L; (n,{f;}.~,) denote the value of L; in Algo-
rithm 3 when agent j € [m] has n; data points and agents use {f;}!*, € F™. Then

SupE[ ({132 1)]—5%%E[Li(n+€m{f}§n:1)]

- <7b>1§ézﬂ*3 Fpi (TF) (1 = Fpr (T} )ﬂ) (n +1|Wi| o +11+ IWZ->

where P¥ =P o (o* )71.

Proof. By the definition of Algorithm 3 we have

K
sup E [L; (n, {I}I"))] = sup % Z]E [LE (n, {1} )]

;‘;%*ZE (ot (1) - £ (1))

Let Fpp be the CDF for P¥. Following the same steps in Lemma 2 up to equation (5) gives us

| (Foxtane) (1) = P (1)) | = & [Fon (78 0 P 090 (5 + 1)
Therefore, ’
sup E[L; (n, {I}]2,)] = bUp—i]E Fk(T)(l—F x(TF )] <1_|_1)
PecC pec K r P ni + Wil 1Zi| )

The same argument gives an analogous result for E[L; (n +e;, {I}.~,)] . Applying this to each
feature, we find

E[L '( {[}’,” )] —E[Li (n+ e, {I}]))]
= sup — ZE Fpi( T ) (1 — Fpk(Tk))] <1 + 1>

pec K n; + Wil |Zil
_ sup — f:E [Fpe (TF) (1 — Fpu (T))] (1 4 1)
Pechzl n; +|W;i| +1 | Z;]
- supiiﬂz[p o (TF) (1 = Fpu (TH))] LR .
pec K &= [ ni + Wil ni+ 1+ [Wil

E Examples of the conditional expectation in Algorithm 1

E.1 The normal-normal model
Proposition 14. Suppose that {f;},,; = {I};,; in Algorithm 1. Let p ~ N (a,b?) and X; =
(Xins s Ximi b Zi = {Zin, -, Ziyz } where X 5, T, Z, 51p "5 N (1, 02), then

T—p
E[Fy (T) | Xits. ., Xin,, T] = & | ———t
F2(T) | X X T = @ )

36



where

sum(Xi 1y, Xim, , T _
o on(Xe T ) and &2 = 1 " (ni +1)\ "
B BT )

Proof. Start by noticing that the conditional expectation can be rewritten as

1
E[Fz,(T)| Xi1,- -, Xim,, T) =E Z > ey | Xy Xin,, T
" zez;
E 1z, <ty | Xig, oo Xim,, T
E [E [1{Z1,,1§T} | H, Xi,la s aXi,niaT} | Xi,lv s aXi,an] .
@)
where the last line follows from the tower property. By the definition of our model we know that
T —
E Lz, <y | Xin, oo Xin,, T) = @ < ﬂ) .

g

Recall from standard normal-normal conjugacy arguments that
X, Xin,, T ~ N (L, 52) where

sum(Xi 1,00, X5 m, T _
gt (1 @D\
2 b%+n£1 b2 o2 :

Therefore, we can write (2) as

E {(I) (T_“) |XZ-,1,...,XZ-,,11.,T} :/ o (T_’”‘) .52 (1) dpe.
o oo o

where ¢;; 52 is the PDF of a normal distribution with mean /i and variance 2. Recall the following
Gaussian integral formula

/_OO b(a — fz)p(x)de = D (\/m) .

By the change of variables z = %ﬂ we get (%) = (H — %x), so applying the formula

g

gives us
o0 T—pu T—0
S| — | dus2(p)duy =@
/—oo ( g >¢p" (’u) a ( U2+&2>
Therefore,
T'—p
EFf,(T)| X1, s Xin, T =0 | — | .
02+ 52

E.2 The beta-bernoulli model

Proposition 15. Suppose that {fi}j;ﬁi = {I}j# in Algorithm 1. Let p ~ Beta(«, ) and X; =
{Xi717 - 7Xi,ni }, Zz = {Zi,b ey Zi,|Zi| }, where Xi,ja T‘7 Zi,j \p l'{j Bern (p), then
ﬁ —+ (’I’Ll —|- ].) — sum(Xiyl, ‘e aXi,ni)

a+ B+ (n+1) '

E[FZz(T) | Xi,l?'“aXi,ni»T] :T+(1 —T)

Proof. Start by noticing that the conditional expectation can be rewritten as

1
E[Fz,(T)| Xi1,- ., Xin,, T] =E Zi > ey | Xinyeoo, Xin,, T
i z2E€Z;

=E [1{Zi,1§T} | Xi717 o 7Xi,n,-7T]
= P(Ziy <T|Xineoo, Xom,,T).

37



The law of total probability tells us that
P(Zii <T|Xi1,...,Xin;,T)
= /P(ZH <TIp,Xi1,. .., Xin, T)VdP (p| Xin,. ., Xin:, T) . 3)
‘We now consider two cases based on whether 7"is 0 or 1. When 7' = 1, (3) becomes
P(Zii <T|Xi1,..., Xin,, T=1)= /1-dP(p| Xit,oo s Xim;, I) = 1.

When T" = 0, recall from standard Beta-Bernoulli conjugacy arguments that

P | Xi,l; e 7Xi,ni;T
~ Beta (Oé + sum (Xi,lu . 7Xi,ni7T) 75 + (nl + ].) — sum (Xi,la e »Xi,nivT))

= Beta | « —+ sum (Xi,la N 7Xi,ni)76 —+ (ni + 1) — Sum (Xi,h .. -;Xi,ni)

agi= Bo:=

Also observe that whenT' =0, P (Z; 1 < T | p, Xi1,...,Xin;,T) = 1—p. Therefore, (3) becomes

[P ST Ip X X TV AP (0] Xio Xi 1)

[P =)
_/(1 P) B(ag, fo)

Recall that if Z ~ Beta («g, fp) then

E[Z] = /(1 )

Zlma0(1 — z)i=Fo
B(ao, Bo)

(7)) o
ag + Bo

Therefore,

/(1 —P)pl_w(l o S /pl_%(l -p)' —/ppl_%(l —p)t

B(Omaﬂo) B(QOa/BO) B(a07ﬂo)
1 Qo
=1 ag + Bo
__bo
ag + Bo

so we conclude that
/3 + (Tll + ].) — Sum (Xi71, e 7Xi,n7;)

P(Zin <T| X0, X, T=0) = o+ B+ (D)

Putting both cases together gives us

ﬂ-l— (TLZ + ].) — sum(Xiyl,...,Xi_yni)

E[Fz (D) | Xi1,. ., Xin,, T)=T+(1-T) ot Bt i)

F Proofs of Technical results

In this section we derive a series of technical results which aid in the main proofs.
Lemma 1. Ler P € MS(R) be a continuous probability distribution over R, and X =
{X1,...,X,}, where X;, T P Then

1

E[(Fx(T) - Fp(T))] = .
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Proof. Notice that for a fixed t € R,

n

E[Fx(t)] = %ZE [Lixi<n] = Pr(t).

i=1

Using this observation and noticing that 1;x,<7}|T" ~ Bern (Fp(T')) gives

E[(Fx(T) - Fp(T))?] = Br [Ex [(Fx(T) - Fp(T))? 7]
= Ep [Var (Fx (T)|T)]
:E{%@m—m@w

n

_ /°° Fp(T)(1 = Fp(T))

n

dP(T).

— 00

Since P is continuous, the probability integral transform (Lemma 6) tells us that if we set U := Fp (7))
then U ~ Unif(0, 1). The above equation can now be written as

/°° Fp(T)(1 = Fp(T) . o :/1 va-0) - 1

n n 6n

—00

which concludes the proof. O

Lemma 2. Let P € M (R) be a probability distribution over R, and X = {X1,...,X,,},Y =
{Y1,...,Y,.} where X;,Y;, T " P. Then

E [(FX(T) - Fy(T))Q} <1 (1 + 1) .

4 \n m

Moreover, when P € M§ (R)

E[(Fx(T) - Fy(T))’] = ( + > .

Proof. We start with proving the inequality. Let Fp(t) be the CDF of P. Notice that for a fixed
teR, E[Fx(t)] = 13" E[1{x,<i;] = Fp(t). Together with independence we have

E|(Fx(T) - Fy (T))°]
—E; [EX,Y [(FX(T) ~ By (7)) \T”
= Eq [Ex,y [(Fx(T) = Fp(T) + Fp(T) - Fy(T))*|T||

= Exr [Ex [(Fx(T) = Fp(T))* [T] + By [(Fp(T) - Fy(T))* |T|] @
= B [Var (Fx (T)|T) + Var (Fy (T)|T)] .

Given T', Fx (T) and Fy (T') are sums of i.i.d. bernoulli random variables, thus

%@m—m@»+m@m—%@w

Er [Var (Fx (T)|T) + Var (Fy (T)|T)] = Er [

ETw%awl—Fbuw1(l+1) )

n m
)
-+ — .
n m
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For the equality, we rewrite (4) and apply Lemma 1 twice to get
Eq [Ex |[(Fx(T) - Fp(T))’] + By [(Fp(T) - Fy(T))’]]

= Exr [(Fx(T) - Fp(T))*] + By [(Fo(T) - Fr(T))?]

11
T 6\n m)’

Lemma 3. Let 1T € M, (M1 (R)) be a distribution over the collection of R-valued distributions.
Suppose that P ~ Il and then X = {X1,..., X}, Y ={Y1,..., Y} where X, Y;, T P Let
Fp(t) be the CDF of P. Then,

E[Fy (T)|X1,...,Xn,T,P] = Fp(T).

O

Proof. Using conditional independence we have

1 m
E[FY (T) |X17"'7XnaT7IP} = EZ]E [1{3’]§T}‘X1,;XH7T7’P]

j=1
1 m
=~ E[ly<nT.P]
m =
- LS mm
Tme="
j=1
= Fp(T
O
Lemma 4. Let F C G, suppose X € L?, and define Y = E[X|G] then
E [Var (X|F)] — E [Var (X|G)] = E[Var (Y|F)].
Proof. Applying the law of total variation with respect to F and G gives us
Var(X) = E [Var (X|G)] + Var (E [X|G]) (6)
Var(X) = E [Var (X |F)] + Var (E [X|F]) . @)
Subtracting (6) from (7) gives
E [Var (X|F)] — E[Var (X|G)] = Var (E [X|G]) — Var (E [X|F]) . ®)
Now notice that by the tower property we have
E[Y|F] =E[E[X|G]|F] = E[X|F].
Combining this with another application of the law of total variation yields
Var (E[X|G]) = Var (Y) = E [Var (Y|F)] + Var (E [Y|F])
= E [Var (Y|F)] + Var (E [X|F]) .
Plugging this into the right hand side of (8) gives us
E [Var (X|F)] — E[Var (X|G)] = (E [Var (Y|F)] + Var (E [X|F])) — Var (E [X|F])
= E [Var (Y|F)].
O
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G Known results

In this section we present two well known results and give proofs of them for completeness.

Lemma 5 (Durrett [46] Theorem 4.1.15). Let X be a random variable such that E [X 2] < oo and
F be a o-algebra on the underlying probability space. Then E [ X |F| is the F-measurable random
variable Y which minimizes E [(X — Y)?].

Proof. Notice that if Z is F-measurable and E[Z?] < oo then Z - E [X|F] = E[Z - X|F] which
implies
EZ -EX|F]]=E[E[Z- - X|F]] =E[Z- X].

Rearranging we find
E[Z- (X —E[X|F))] =

Now suppose that Y is F-measurable and E[Y 2] < oo, and define Z = E[X|F] — Y. Then,
E[(X -Y)*] =E [(X - E[X|F] + 2)7]
=E[(X —E[X|F))*] +E[Z - (X - E[X|F])] + E[Z2?]
=E [(X - E[X|F])*] +E[Z?]
which implies that the mean squared error is minimized when Y = E[X | F]. O
Lemma 6 (Probability integral transform). Suppose that X is a continuous R-valued random variable.

Let U = Fx(X), i.e. the CDF of X evaluated at X. Then U ~ Unif(0, 1).

Proof. As Fx(t) may not be strictly increasing, define the generalized inverse CDF F~1(u) =
inf {t € R: Fx(t) > u}. Now notice that we can write the CDF of U as

Fy(t)=P({U <t)=P(Fx(X)<t)=P (X < ﬁ—l(t)) = Fx (ﬁ—l(t)) —t

from which we conclude that U ~ Unif(0, 1). O
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