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Abstract
We present the E-UC3RL algorithm for regret
minimization in Stochastic Contextual Markov
Decision Processes (CMDPs). The algorithm
operates under the minimal assumptions of re-
alizable function class and access to offline least
squares and log loss regression oracles. Our al-
gorithm is efficient (assuming efficient offline re-
gression oracles) and enjoys a regret guarantee of
Õ(H3

√
T |S||A|dE(P) log(|F||P|/δ))) , with T

being the number of episodes, S the state space,
A the action space, H the horizon, P and F are
finite function classes used to approximate the
context-dependent dynamics and rewards, respec-
tively, and dE(P) is the Eluder dimension of P
w.r.t the Hellinger distance. To the best of our
knowledge, our algorithm is the first efficient and
rate-optimal regret minimization algorithm for
CMDPs that operates under the general offline
function approximation setting. In addition, we
extend the Eluder dimension to general bounded
metrics which may be of independent interest.

1. Introduction
Reinforcement Learning (RL) is a field of machine learning
that pertains to sequential decision making under uncer-
tainty. At the heart of RL is the Markov Decision Process
(MDP), a fundamental mathematical model that has been
studied extensively. An agent repeatedly interacts with an
MDP by observing its state s ∈ S and selecting an action
a ∈ A, which leads to a new state s′ and an instantaneous
reward that reflects the quality of the action taken. The
agent’s goal is to maximize her return during each episode
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of interaction with the MDP. MDPs can be applied to a wide
range of real-life scenarios, including advertising, health-
care, games, robotics (see, e.g., Sutton & Barto, 2018;
Mannor et al., 2022).

Many modern applications involve the presence of addi-
tional side information, or context, that impacts the envi-
ronment. A naive approach to handling the context is to
extend the state space of the environment to include it. How-
ever, this method increases the complexity of learning and
policy representation. Contextual MDPs (CMDPs) offer a
more efficient solution by keeping the state space small and
treating the context as additional side-information that the
agent observes at the start of each episode. Furthermore,
there exists a mapping from each context to an MDP, and
the optimal policy for a given context is the optimal policy
of the corresponding MDP (Hallak et al., 2015). An exam-
ple of a context is user information that remains constant
throughout the episode. Such information may include the
user’s age and interests, and can deeply impact decision
making. This feature makes CMDPs an excellent model for
recommendation systems.

As is common in recent works, the aforementioned mapping
from context to MDP is assumed to be taken from a known
function class, and access to the function class is provided
via an optimization oracle. A distinctive feature between
works is whether they assume access to online or offline
oracles. Intuitively, in both settings we have a function class
F = {f : X → Y }, a loss ℓ : Y × Y → R, and a dataset1

{(xi, yi)}ni=1. An offline oracle observes the entire data
and needs to find f̂⋆ ∈ argminf∈F

∑n
i=1 ℓ(f(xi), yi). An

online oracle makes a sequence of predictions f1, . . . , fn
where fi can depend on data up to i−1, and its goal is to min-
imize regret, given by

∑n
i=1 ℓ(fi(xi), yi) − ℓ(f̂⋆(xi), yi).

The offline problem can potentially be easier to solve than
the online problem. Moreover, practical deep RL applica-
tions typically work in the offline regime.

Previously, Modi & Tewari (2020) obtained Õ(
√
T ) re-

gret for a generalized linear model (GLM). Foster et al.
(2021) obtain Õ(

√
T ) regret for general function approx-

imation and adversarially chosen contexts, assuming ac-
cess to a much stronger online estimation oracle. However,
they noted the challenge of implementing their methodol-

1We think of X as the context and Y as the MDP.
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ogy using offline oracles. It thus remained open whether,
for stochastic contexts, we can restrict the access to of-
fline oracles. Recently, Levy & Mansour (2023) gave an
Õ(

√
T/pmin) regret algorithm for stochastic contexts using

offline least squares regression, where pmin is a minimum
reachability parameter of the CMDP. This parameter can be
arbitrarily small and in general CMDPs leads to an Õ(T 3/4)
regret guarantee. The question of whether the minimum
reachability assumption can be obviated or replaced by a
less restrictive assumption on the function class remained
open.

In this work, we give the first Õ(
√
T ) regret algorithm for

stochastic contexts using standard offline oracles, under
the bounded Eluder dimension (Russo & Van Roy, 2013)
assumption (more details in Section 2.3).

Contributions. We present the E-UC3RL algorithm for
stochastic CMDPs with offline regression oracles. Our algo-
rithm is efficient (assuming efficient oracles) and enjoys an
Õ
(
H3
√
T |S||A|dE(P) log(|F||P|/δ)

)
regret bound with

probability at least 1 − δ, where S is the state space, A
the action space, H the horizon, P and F are finite func-
tion classes used to approximate the context-dependent dy-
namics and rewards, respectively, and dE(P) is the Eluder
dimension with respect to Hellinger distance of the context-
dependent dynamics function class P . The algorithm builds
on the “optimistic in expectation” approach of Levy & Man-
sour (2023) but modifies it with a log-loss oracle for the
dynamics approximation and carefully chosen counterfac-
tual reward bonuses. To that end we present an extension
of the Eluder dimension to general bounded metrics (rather
than the ℓ2 norm considered by Russo & Van Roy (2013)
and Osband & Van Roy (2014)). An additional key tech-
nical tool enabling our result is a multiplicative change of
measure inequality for the value function. Both tools may
be of separate interest.

Comparison with Levy & Mansour (2023). This work
is most closely related to ours. It relies on a minimum
reachability assumption and provides a regret bound of
Õ(

√
T/pmin) where pmin is the reachability parameter of

the CMDP. This implies that any policy π will reach any
state s with a probability of at least pmin for any context
c, hence pmin ≤ 1/|S|. As such, any policy inherently ex-
plores with probability pmin, significantly simplifying the
exploration task. While the notion of minimum reachability
is intuitive, it fails even for deterministic transition functions
where pmin = 0. Moreover, it is impossible to estimate it
online as we typically observe each context only once.

The primary focus of our work is to replace minimum
reachability, which is a structural assumption about the true
CMDP, with an assumption about the dynamics function
class, which is chosen by the learner. This makes learning
an effective exploratory policy non-trivial, necessitating in-

novative confidence bounds that capture the intricacies of
the function class learning complexity. In our approach, we
employ the Eluder dimension as the complexity measure.
One can show that minimum reachability implies a bound
on the Eluder dimension, but, the Eluder dimension can be
much smaller.

The general function approximation literature. We stress
that the role of the Eluder dimension in this work is to
avoid direct dependence on the size of the context space,
which could be prohibitively large, while also maintaining
computational efficiency. This is unlike previous works on
function approximation in RL (see, e.g., Jiang et al. (2017);
Jin et al. (2021); Wu et al. (2023); Chen et al. (2022); Wang
et al. (2020b); Dann et al. (2021); Liu et al. (2022)) that
use an Eluder dimension to avoid dependence on |S|, |A|.
These works are often computationally inefficient and re-
quire additional structural assumptions regarding the MDP,
such as low Bellman-rank or Bellman completeness, or a
much stronger optimization oracle.

Additional Related Work. Hallak et al. (2015) were the
first to study regret guarantees in the the CMDP model.
However, they assume a small context space, and their re-
gret is linear in its size. Jiang et al. (2017) present OLIVE, a
sample efficient algorithm for learning Contextual Decision
Processes (CDP) under the low Bellman rank assumption.
In contrast, we do not make any assumptions on the Bell-
man rank. Sun et al. (2019) use the Witness Rank to derive
PAC bounds for model based learning of CDPs. Modi et al.
(2018) present generalization bounds for learning smooth
CMDPs and finite contextual linear combinations of MDPs.
Modi & Tewari (2020) present a regret bound of Õ(

√
T )

for CMDPs under a Generalized Linear Model (GLM) as-
sumption. Our function approximation framework is more
general than smooth CMDPs or GLM.

Foster et al. (2021) present the Estimation to Decision (E2D)
meta algorithm and apply it to obtain Õ(

√
T ) regret for

adversarial Contextual RL. Later, Xie et al. (2022) show
sample complexity bounds for online reinforcement learning
using online oracle, that can be also applied to CMDPs.
Levy et al. (2023) obtained similar results using their OMG-
CMDP! algorithm. However, these works assume access
to online estimation oracles and their bounds scale with the
oracle’s regret. In contrast, we use substantially weaker
offline regression oracles. It is not clear to us whether Foster
et al.’s Inverse Gap Minimization (IGM) technique or Levy
et al.’s convex optimization with log-barrier method can be
applied to CMDPs with offline regression oracles.

Levy & Mansour (2022) study the sample complexity of
learning CMDPs using function approximation and provide
the first general and efficient reduction from CMDPs to of-
fline supervised learning. However, their sample complexity
scales as ϵ−8, and thus they cannot achieve the optimal

√
T
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rate for the regret. Levy & Mansour (2023), previously
mentioned here in relation to upper bounds, also showed an
Ω(
√

TH|S||A| log(|G|/|S|)/ log(|A|)) regret lower bound
for the general setting of offline function approximation
with |G|, the size of the function class used to approximate
the rewards in each state.

More broadly, CMDPs are a natural extension of the ex-
tensively studied Contextual Multi-Armed Bandit (CMAB)
model. CMABs augment the Multi-Arm Bandit (MAB)
model with a context that determines the rewards (Latti-
more & Szepesvári, 2020; Slivkins, 2019). Langford &
Zhang (2007); Agarwal et al. (2014) use an optimization
oracle to derive an optimal regret bound that depends on the
size of the policy class they compete against. Regression
based approaches were presented in Agarwal et al. (2012);
Foster & Rakhlin (2020); Foster et al. (2018); Foster &
Krishnamurthy (2021); Simchi-Levi & Xu (2021); Zhang
(2022). Most closely related to our work, Xu & Zeevi (2020)
present the first optimistic algorithm for CMAB. They as-
sume access to a least-squares regression oracle and achieve
Õ(
√
T |A| log |F|) regret, where F is a finite and realizable

function class, used to approximate the rewards. Extending
their techniques to CMDPs necessitates accounting for the
context-dependent dynamics whose interplay with the re-
wards significantly complicates decision making. This is the
main challenge both in our work and in Levy & Mansour
(2023).

The Eluder dimension was introduced by Russo & Van Roy
(2013) and applied to derive sublinear regret for MABs and
CMABs. Osband & Van Roy (2014) showed an application
of the Eluder dimension to derive a regret bound for model-
based reinforcement learning and Wen & Van Roy (2017)
for deterministic systems. Wang et al. (2020a) use it to
derive a regret bound for value function approximation. Jin
et al. (2021) present the Bellman-Eluder dimension and use
it to develop sample-efficient algorithms for a family of
RL problems where both the Bellman rank and the Eluder
dimension are low. Ayoub et al. (2020) apply the Eluder
dimension to derive a regret bound for tabular episodic RL
using targeted value regression. We, on the other hand,
extend the Eluder dimension to general bounded metrics
and apply it to contextual RL.

2. Preliminaries
2.1. Episodic Loop-Free Markov Decision Process

(MDP)

An MDP is defined by a tuple (S,A, P, r, s0, H), where S
and A are finite sets describing the state and action spaces,
respectively; s0 ∈ S is the unique start state; H ∈ N is the
horizon; P : S × A × S → [0, 1] defines the probability
of transitioning to state s′ given that we start at state s and

perform action a; and r(s, a) is the expected reward of
performing action a at state s. An episode is a sequence
of H interactions where at step h, if the environment is at
state sh and the agent performs action ah then (regardless
of past history) the environment transitions to state sh+1 ∼
P (· | sh, ah) and the agent receives reward R(sh, ah) ∈
[0, 1], sampled independently from a distribution Dsh,ah

that satisfies r(sh, ah) = EDsh,ah
[R(sh, ah)].

For technical convenience and without loss of generality,
we assume that the state space and accompanying transition
probabilities have a loop-free (or layered) structure. Con-
cretely, we assume that the state space can be decomposed
into H + 1 disjoint subsets (layers) S0, S1, . . . , SH−1, SH

such that transitions are only possible between consecutive
layers, i.e., for h′ ̸= h + 1 we have P (sh′ |sh, a) = 0 for
all sh′ ∈ Sh′ , sh ∈ Sh, a ∈ A. In addition, SH = {sH},
meaning there is a unique final state with reward 0. We note
that this assumption can always be satisfied by increasing
the size of the state space by a factor of H .

A deterministic stationary policy π : S → A is a mapping
from states to actions. Given a policy π and MDP M =
(S,A, P, r, s0, H), the h ∈ [H − 1] stage value function of
a state s ∈ Sh is defined as

V π
M,h(s) = Eπ,M

[
H−1∑
k=h

r(sk, ak)

∣∣∣∣∣sh = s

]
.

For brevity, when h = 0 we denote V π
M,0(s0) := V π

M (s0),
which is the expected cumulative reward under policy π and
its measure of performance. A policy π⋆

M is optimal for
MDP M if it satisfies that π⋆

M ∈ argmaxπ:S→A{V π
M (s0)}.

It is well known that such a policy is optimal even among
the class of stochastic and history dependent policies (see,
e.g., Puterman, 2014; Sutton & Barto, 2018; Mannor et al.,
2022).

2.2. Problem Setup: Stochastic Contextual Markov
Decision Process (CMDP)

A CMDP is defined by a tuple (C, S,A,M) where C is the
context space, S the state space and A the action space. The
mapping M maps a context c ∈ C to an MDP M(c) =
(S,A, P c

⋆ , r
c
⋆, s0, H), where rc⋆(s, a) = E[Rc

⋆(s, a)|c, s, a],
Rc

⋆(s, a) ∼ Dc,s,a. We assume that Rc
⋆(s, a) ∈ [0, 1].

We consider a stochastic CMDP, meaning, the context is
stochastic. Formally, we assume that there is an unknown
distribution D over the context space C, and for each episode
a context is sampled i.i.d. from D. For mathematical con-
venience, we assume that the context space C is finite but
potentially very large. Our results do not depend on the size
of the context space and can be further extended to infinite
context spaces.

A deterministic context-dependent policy π : C × S → A
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maps a context c ∈ C to a policy π(c; ·) : S → A. Let
ΠC denote the class of all deterministic context-dependent
policies.

Interaction protocol. The interaction between the agent
and the environment is defined as follows. In each episode
t = 1, 2, ..., T the agent:

(i) Observes context ct ∼ D;
(ii) Chooses a policy πt (based on ct and the observed

history);
(iii) Observes trajectory (ct, s

t
0, a

t
0, r

t
0, . . . , s

t
H) generated

by playing πt in M(ct).

Our goal is to minimize the regret, defined as

RT :=

T∑
t=1

V
π⋆(ct;·)
M(ct)

(s0)− V
πt(ct;·)
M(ct)

(s0),

where π⋆ ∈ ΠC is an optimal context-dependent policy.
We aim to derive regret bounds that are independent of the
context space size |C|. For that purpose, we make function
approximation assumptions in Section 2.4, which rely on
the following definition of Eluder dimension.

2.3. Metric Eluder Dimension

We extend the notion of Eluder dimension, given by Osband
& Van Roy (2014), to general bounded metrics. Let X be a
set and (Y, D) a bounded metric space. Let P ⊆ {X → Y}
be a set of functions from X to Y . We say that x ∈ X
is (D, ϵ)−dependent of x1, . . . , xn if and only if for any
P, P ′ ∈ P it holds that

n∑
i=1

D2(P (xi), P
′(xi)) ≤ ϵ2 =⇒ D2(P (x), P ′(x)) ≤ ϵ2.

We say that x ∈ X is (D, ϵ)−independent of x1, . . . , xn if
it is not (D, ϵ)−dependent.

Definition 2.1 (Metric-Eluder Dimension). We say that
d := dE(P, D, ϵ) is the (D, ϵ)−Eluder dimension of a class
P if d is the maximum length of sequences x1, . . . , xd

and ϵ′1, . . . , ϵ
′
d such that for all 1 ≤ i ≤ d, xi is

(D, ϵ′i)−independent of its prefix x1, . . . , xi−1 and ϵ′i ≥ ϵ.

This quantity roughly corresponds to the number of queries
required to ϵ identify a function in P . The utility of this
definition is summarized in the following result, which
is a straightforward adaptation of Proposition 6 in Os-
band & Van Roy (2014) (proof in Appendix A). For any
P ′ ⊆ P , define its radius at x ∈ X as wP′(x) =
supP,P ′∈P′ D(P (x), P ′(x)).

Lemma 2.2. For any t ∈ [T ], h ∈ [H] let xt
h ∈ X and Pt ∈

P be arbitrary. Define the confidence sets with parameter β

as

Pt =

{
P ∈ P :

t−1∑
i=0

H−1∑
h=0

D2(P (xi
h), Pt(x

i
h)) ≤ β

}
.

We have that
T∑

t=1

H−1∑
h=0

(wPt(x
t
h))

2 ≤ 6dE(P, D, T−1/2)β log T.

2.4. Function Class Assumptions

We note that, without further assumptions, the regret may
scale linearly in the size of the context space (Hallak et al.,
2015). Even worse, if the context space contains more than
T contexts, and the distribution over the contexts is uniform,
the regret may scale linearly in T . We overcome this lim-
itation by imposing the following function approximation
assumptions, that extend similar notions in the Contextual
Multi-Armed Bandits literature (Agarwal et al., 2012; Russo
& Van Roy, 2013; Foster et al., 2018; Foster & Krishna-
murthy, 2021; Simchi-Levi & Xu, 2021) to CMDPs.

Realizable reward function approximation. Our algo-
rithm gets as input a finite function class F ⊆ C × S ×
A → [0, 1] such that there exists f⋆ ∈ F that satisfies
f⋆(c, s, a) = rc⋆(s, a) for all c ∈ C and (s, a) ∈ S ×A.

Realizable dynamics function approximation. Our algo-
rithm gets as input a finite function class P ⊆ S × (S ×
A × C) → [0, 1] such that P⋆ ∈ P , and every function
P ∈ P represents valid transition probabilities, i.e., satisfies∑

s′∈S P (s′ | s, a, c) = 1 for all c ∈ C and (s, a) ∈ S ×A.
For convenience, we denote P (s′ | s, a, c) = P c(s′ | s, a),
for all P ∈ P .

Offline regression oracles. Given a data set D =
{(ci, si, ai, s′i, ri)}

n
i=1, we assume access to offline oracles

that solve the optimization problems:

f̂ ∈ argmin
f∈F

n∑
i=1

(f(ci, si, ai)− ri)
2,

(Least Squares Regression (LSR))

P̂ ∈ arg min
P∈P

n∑
i=1

log
1

P ci(s′i | si, ai)
.

(Log Loss Regression (LLR))

Notice that the above problems can always be solved by
iterating over the function class. However, since we consider
strongly convex loss functions, there are function classes
where these optimization problems can be solved efficiently.
One particular example is the class of linear functions.

Eluder Dimension (w.r.t the Squared Hellinger distance).
As shown by Foster et al. (2021), the log-loss oracle pro-
vides generalization guarantees with respect to the squared
Helligner distance.
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Definition 2.3 (Squared Hellinger Distance). For any two
distributions P, Q over a discrete support X , the Squared
Hellinger Distance is defined as

D2
H(P,Q) :=

∑
x∈X

(√
P(x)−

√
Q(x)

)2
.

The Hellinger distance is a bounded metric. Thus, we as-
sume a known upper bound dP of dE(P, DH , T−1/2), the
Eluder dimension of P with respect to Hellinger distance.

Clearly, for a finite class the Eluder dimension is at most
the number of functions. For classes of discrete distribu-
tions, where the minimum probability is p > 0, one can
bound the Eluder dimension w.r.t. the Hellinger distance by
d2/p, where d2 is the (standard) Eluder dimension w.r.t. ℓ2.
(See Lemma A.4).

3. Algorithm and Main Result
We present Eluder Upper Counterfactual Confidence for
Contextual Reinforcement Learning (E-UC3RL), given in
Algorithm 1. At each episode t, the algorithm estimates the
reward and dynamics using the regression oracles. It then
constructs an optimistic CMDP using reward bonuses and
plays its optimal policy. The reward bonuses are inspired
by the notion of counterfactual confidence, suggested by
Xu & Zeevi (2020) for CMABs. The original idea was to
calculate the confidence bounds using the counterfactual
actions of past policies given the current context. Levy &
Mansour (2023) adapted this approach to CMDPs using
the minimum reachability assumption, without which, it be-
comes crucial to also consider counterfactual states. Notice
that the states are stochastically generated by the MDP in
response to the agent’s played actions. This makes coun-
terfactual state computation impossible without access to
the true dynamics. Instead, we consider the counterfactual
probabilities of a state-action pair and evaluate this quan-
tity using the estimated dynamics. These probabilities are
typically referred to as occupancy measures (Zimin & Neu,
2013). Concretely, for any non-contextual policy π and
dynamics P , let qh(s, a | π, P ) denote the probability of
reaching state s ∈ S and performing action a ∈ A at time
h ∈ [H] of an episode generated using policy π and dynam-
ics P . Note that, given π and P , the occupancy measure
of any state-action pair can be computed efficiently using a
standard planning algorithm.

At round t and (s, a, h, c)−tuple the cumulative occupancy
measure of past policies, i.e.,

∑t−1
i=1 qh(s, a|πc

i , P
c
⋆ ) is a

good indicator for the quality of the estimated dynamics and
rewards f̂t and P̂t. Thus we would ideally choose bonuses
inversely proportional to this quantity. Since P⋆ is unknown,
it is natural to replace it in qh(·) with the most recent esti-
mate P̂t. However, the instability of the oracle estimates

P̂t means that qh(s, a, |πc
i , P̂

c
t ) can change arbitrarily with

t, which may lead to overly large bonuses. We resolve this
instability using the Eluder dimension assumption, which
allows us to replace P̂t with P̂i in qh(·), thus stabilizing the
occupancy measure estimate of πi as qh(s, a, |πc

i , P̂
c
i ) for

all t. Finally, since our bonuses are based on past context-
dependent policies, we first have to compute πk(ct; ·) for all
k ∈ [t− 1], which is the purpose of our internal loop (Algo-
rithm 1).

Algorithm 1 Eluder Upper Counterfactual Confidence for
Contextual RL (E-UC3RL)

1: inputs: MDP parameters: S, A, s0, H;
tuning parameters βr, βP .

2: for round t = 1, . . . , T do
3: compute using the LSR oracle:

f̂t ∈ argmin
f∈F

t−1∑
i=1

H−1∑
h=0

(f(ci, s
i
h, a

i
h)− rih)

2

4: computed using the LLR oracle:

P̂t ∈ arg min
P∈P

t−1∑
i=1

H−1∑
h=0

log

(
1

P ci(sih+1|sih, aih)

)

5: observe a fresh context ct ∼ D.
6: for k = 1, 2, . . . , t do
7: compute for all h ∈ [H] and (s, a) ∈ Sh ×A:

r̂ctk (s, a) =

f̂k(ct, s, a) + bβr

k (ct, s, a, h) +HbβP

k (ct, s, a, h)

where

bβk(c, s, a, h) =

min

(
1,

β/2

1 +
∑k−1

i=1 qh(s, a|πi(c; ·), P̂ c
i )

)
.

8: define M̂k(ct) = (S,A, P̂ ct
k , r̂ctk , s0, H).

9: compute using a planning algorithm:

πk(ct; ·) ∈ arg max
π:S→A

V π
M̂k(ct)

(s0).

10: play πt(ct; ·) and observe a trajectory σt =
(ct, s

t
0, a

t
0, r

t
0, s

t
1, . . . , s

t
H−1, a

t
H−1, r

t
H−1, s

t
H).

The following is our main result for Algorithm 1. We sketch
its proof in Section 4, and defer the complete proof to Ap-
pendix B.5.

Theorem 3.1 (E-UC3RL regret bound). For any T > 1 and
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δ ∈ (0, 1), suppose we run Algorithm 1 with parameters

βr =

√
504TH2dP log2(64T 4H|F||P|/δ2)

|S||A| log(T + 1)
,

βP =

√
2029TH2dP log2(8TH|P|/δ)

|S||A| log(T + 1)
,

and dP ≥ dE(P, DH , T−1/2). Then, with probability at
least 1− δ it holds that

RT (E-UC3RL) ≤ Õ(H3
√
T |S||A|dP (log(|F||P|/δ))).

We remark that using covering numbers analysis (Shalev-
Shwartz & Ben-David, 2014), our result naturally general-
izes to infinite function classes as well as context spaces.
In addition, when comparing our regret upper bound to the
lower bound of Levy & Mansour (2023), there is an appar-
ent gap of H2.5 and dP factors. We leave this gap for future
research.

Computational efficiency of E-UC3RL. The algorithm
calls each oracle T times, making it oracle-efficient (since
it’s oracle-call complexity is in poly(T )). Aside from simple
arithmetic operations, each of the T (T + 1)/2 iterations of
the internal loop call one MDP planning procedure and
calculate the related occupancy measure. Both of these can
be implemented efficiently using dynamic programming.
Overall, excluding the oracle’s computation time, the run-
time complexity of our algorithm is in poly(T, |S|, |A|, H).
Hence, if both the LSR and LLR oracles are computationally
efficient then E-UC3RL is also computationally efficient.

4. Analysis
Our analysis consists of four main steps:

(i) Establish an upper bound on the expected regret of the
square and log loss regression oracles;

(ii) Construct confidence bounds over the expected value
of any context-dependent policy for both dynamics and
rewards;

(iii) Define the optimistic approximated CMDP and estab-
lish optimism lemmas;

(iv) Combine the above to derive a high probability regret
bound.

In what follows, we present the main claims of our analysis,
deferring the proofs to Appendix B. Before beginning, we
discuss some of the challenges and present a key technical
result, the value change of measure lemma (Lemma 4.1).

A Key Technical Challenge

Our goal is to derive computable and reliable confidence
bounds over the expected value of any policy. The difficulty

is that the offline regression oracles have regret guarantees
only with respect to the trajectories’ distributions, which are
related to the true context-dependent dynamics P⋆. Hence,
a main technical challenge is to translate the oracle’s re-
gret to a guarantee with respect to the estimated context-
dependent dynamics P̂t. Notice that the confidence bounds
are computable only if stated in terms of P̂t. Following
ideas from Foster et al. (2021), we solve this issue using
a multiplicative value change of measure that is based on
the Hellinger distance. Concretely, the following change of
measure lemma allows us to measure the value difference
caused by the use of approximated transition probabilities in
terms of the expected cumulative Hellinger distance (proof
in Appendix B.1).

Lemma 4.1 (Value change of measure). Let r : S ×A →
[0, 1] be a bounded expected rewards function. Let P⋆

and P̂ denote two dynamics and consider the MDPs M =

(S,A, P⋆, r, s0, H) and M̂ = (S,A, P̂ , r, s0, H). Then, for
any policy π it holds that

V π
M̂
(s) ≤ 3V π

M (s)+

9H2 E
P⋆,π

[
H−1∑
h=0

D2
H(P̂ (·|sh, ah), P⋆(·|sh, ah))

∣∣∣∣ s0 = s

]
.

Notice that this bound is loose when the reward function is
not small. However, it is significantly tighter than stan-
dard results when the rewards are small. For instance,
later in the analysis we consider the reward rc(s, a) =

(f̂t(c, s, a) − f⋆(c, s, a))
2 that is the squared reward ap-

proximation error. Letting M̂ = (S,A, P̂ , rc, s0, H) and
M = (S,A, P⋆, r

c, s0, H), Lemma 4.1 implies that the ex-
pected reward approximation error with respect to P̂ is at
most a constant multiple of the expected reward and dynam-
ics approximation errors with respect to P⋆. In contrast, a
standard change of measure replaces the squared Hellinger
distance with Total Variation (TV) whose cumulative error
scales as

√
T .

Step 1: Establishing Oracle Guarantees

The regret guarantees of the least-squares oracle were es-
tablished in Levy & Mansour (2023, Lemma B.10), stated
in the Appendix as Lemma B.5. The following corollary
bounds the cumulative expected least-squares loss of the se-
quence of the oracle’s predictions (proof in Appendix B.2).
In the following, we denote the expected squared error at
round t over a trajectory generated by π where the context
is c as Et

sq(π, c). Formally,

Et
sq(π, c) :=

E
π(c;·),P c

⋆

[
H−1∑
h=0

(
f̂t(c, sh, ah)− f⋆(c, sh, ah)

)2 ∣∣∣∣∣ s0
]
.
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Corollary 4.2 (Reward approximation bound). Let f̂t ∈ F
be the least squares minimizer of Line 3 in Algorithm 1. For
any δ ∈ (0, 1) it holds with probability at least 1− δ,

Ec

[
t−1∑
i=1

Et
sq(πi, c)

]
≤ 68H log(2T 3|F|/δ), ∀t ≥ 1.

Next, we analyze the expected regret of the dynamic’s log-
loss oracle in terms of the Hellinger distance. The following
result is a straightforward application of Lemma A.14 in Fos-
ter et al. (2021) (proof in Appendix B.2). To that end, we
denote the expected squared Hellinger distance at round t
over a trajectory generated by π where the context is c as
Et
H(π, c). Formally,

Et
H(π, c) :=

E
π(c;·),P c

⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P̂ c
t (·|sh, ah))

∣∣∣∣∣ s0
]
.

Corollary 4.3 (Dynamics approximation bound). Let
P̂t ∈ P be the log loss minimizer of Line 4 in Algorithm 1.
For any δ ∈ (0, 1) it holds that with probability at least
1− δ,

Ec

[
t−1∑
i=1

Et
H(πi, c)

]
≤ 2H log(TH|P|/δ), ∀t ≥ 1.

Lastly, we apply a variant of Corollary 4.3 together with
the shrinking confidence bound guarantee in Lemma 2.2 to
derive the following bound (proof in Appendix B.2).

Lemma 4.4 (Stability error of log-loss oracle). Let P̂i ∈ P
denote the log-loss minimizer at round i ∈ [T ]. For any
δ ∈ (0, 1) it holds with probability at least 1− δ that

Ec

[
t−1∑
i=1

E i
H(πi, c)

]
≤ 112HdP log2(2TH|P|/δ), ∀t ≥ 1,

where dP ≥ dE(P, DH , T−1/2), the Eluder dimension of
P at scale T−1/2.

One of the novel contributions of our work is the use of
the Eluder dimension to bound the stability error due to the
log-loss oracle. This allows us to choose stable bonuses that
yield valid and computable confidence bounds.

Step 2: Constructing Confidence Bounds

Our main goal in this subsection is to upper bound w.h.p
the expected value difference between the true and the em-
pirical CMDPs, for any context-dependent policy π (Corol-
lary 4.7). For that purpose, we derive confidence bounds
over the rewards and dynamics approximation. Let πt de-
note the context-dependent policy selected at round t. For

any h ∈ [H] and state-action pair (s, a) ∈ Sh ×A, context
c ∈ C, and round t ≥ 1, we define the reward bonuses

bRt,h(c, s, a) := bβr

t (c, s, a, h),

bPt,h(c, s, a) := HbβP

t (c, s, a, h),
(1)

where bβt (c, s, a, h) is defined in Line 7. bRt,h is the bonus
related to the rewards approximation error, and bPt,h is the
bonus related to that of the dynamics. We remark that
these bonuses differ only in constant terms (HβP versus
βr), and are identical to the bonus terms defined in Algo-
rithm 1 (Line 7). We use these bonuses in our optimistic
construction to account for the approximation errors in the
rewards and dynamics, respectively. Next, for any context
c ∈ C and functions f ∈ F , P ∈ P we define the MDP
M(f,P )(c) = (S,A, P c, f(c, ·, ·), s0, H). The following
results derive confidence bounds for the dynamics and re-
wards approximation in terms of the reward bonuses and
approximation errors (proofs in Appendix B.3).

Lemma 4.5 (Confidence bound for rewards approximation
w.r.t the approximated dynamics). Let P⋆ and f⋆ be the true
context-dependent dynamics and rewards. Let P̂t and f̂t be
the approximated context-dependent dynamics and rewards
at round t. Then, for any t ≥ 1, and context-dependent
policy π ∈ ΠC ,∣∣∣Ec

[
V

π(c;·)
M(f⋆,P̂t)(c)

(s0)
]
− Ec

[
V

π(c;·)
M(f̂t,P̂t)(c)

(s0)
]∣∣∣ ≤ H

2βr

+
3

2βr
Ec

[
t−1∑
i=1

Et
sq(πi, c)

]
+

9H2

2βr
Ec

[
t−1∑
i=1

E i
H(πi, c)

]

+ Ec

H−1∑
h=0

∑
s∈Sc

h

∑
a∈A

qh(s, a|π(c; ·), P̂ c
t ) · bRt,h(c, s, a)

.
Lemma 4.6 (Confidence bound for dynamics approxima-
tion w.r.t the true rewards f⋆). Let P⋆ and f⋆ be the true
context-dependent dynamics and rewards. Let P̂t be the
approximated context-dependent dynamics at round t. Then,
for any t ≥ 1, and context-dependent policy π ∈ ΠC ,∣∣∣Ec

[
V

π(c;·)
M(f⋆,P⋆)(c)

(s0)
]
− Ec

[
V

π(c;·)
M(f⋆,P̂t)(c)

(s0)
]∣∣∣ ≤ H2

2βP

+ Ec

H−1∑
h=0

∑
s∈Sc

h

∑
a∈A

qh(s, a|π(c; ·), P̂ c
t ) · bPt,h(c, s, a)


+

6H

βP
Ec

[
t−1∑
i=1

Et
H(πi, c)

]
+

18H3

βP
Ec

[
t−1∑
i=1

E i
H(πi, c)

]
.

The proofs of Lemmas 4.5 and 4.6 are similar and can
be found in Appendix B.3. By applying the high prob-
ability approximation bounds in Corollaries 4.2 and 4.3
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and Lemma 4.4 to Lemmas 4.5 and 4.6, we obtain the de-
sired high probability confidence bound on the expected
value approximation (proof in Appendix B.3).

Corollary 4.7. Under the terms of Lemmas 4.5 and 4.6, the
following holds with probability at least 1− 3δ/4 simulta-
neously for all t ≥ 1 and π ∈ ΠC .∣∣∣Ec

[
V

π(c;·)
M(f⋆,P⋆)(c)

(s0)
]
− Ec

[
V

π(c;·)
M(f̂t,P̂t)(c)

(s0)
]∣∣∣ ≤

Ec

[H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t )b

R
t,h(c, sh, ah)

]
+ Ec

[H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t )b

P
t,h(c, sh, ah)

]
+

2029H4dP
βP

log2(8TH|P|/δ)

+
504H3dP

βr
log2(64T 4H|F||P|/δ2).

Step 3: Establishing Optimism Lemmas

In this subsection, we use the results of step 2 (Corollary 4.7)
to establish the properties of the optimistic approximated
CMDP M̂t. Namely, that its optimal value is higher than
that of the true CMDP M (Lemma 4.8), but also that the
optimistic value of πt is not significantly higher than its
true value (Lemma 4.9), in expectation over the context.
Combining both results and applying Azuma’s inequality
yields the regret bound.

We begin by defining the optimistic-in-expectation context-
dependent reward function at every round t ≥ 1 as
r̂ct (s, a) := f̂t(c, s, a) + bRt,h(c, s, a) + bPt,h(c, s, a) , where
the bonuses are defined in Equation (1), and we note that
r̂ct (s, a) ∈ [0, H + 2] for all h ∈ [H] and (c, s, a) ∈
C × Sh × A. The approximated optimistic-in-expectation
CMDP at round t is defined as (C, S,A,M̂t) where for any
context c ∈ C we define M̂t(c) := (S,A, P̂ c, r̂c, s0, H).
We also recall that M(c) = M(f⋆,P⋆)(c) is the true CMDP.
The next two Lemmas establish the properties of the opti-
mistic CMDP (proofs in Appendix B.4).

Lemma 4.8 (Optimism in expectation). Let π⋆ be an opti-
mal context-dependent policy for M. Under the good event
of Corollary 4.7, for any t ≥ 1 it holds that

Ec

[
V

π⋆(c;·)
M(c) (s0)

]
≤ Ec

[
V

πt(c;·)
M̂t(c)

(s0)
]

+
2029H4dP

βP
log2(8TH|P|/δ)

+
504H3dP

βr
log2

(
64T 4H|F||P|/δ2

)
.

Lemma 4.9 (The cost of approximation). Under the good

event of Corollary 4.7, we have that for every t ≥ 1

Ec

[
V

πt(c;·)
M̂t(c)

(s0)
]
≤ Ec

[
V

πt(c;·)
M(c) (s0)

]
+ 2

H−1∑
h=0

Ec

[
E

πt(c;·),P̂ c
t

[
bRt,h(c, sh, ah) + bRt,h(c, sh, ah)

]]

+
2029H4dP

βP
log2(8TH|P|/δ)

+
504H3dP

βr
log2(64T 4H|F||P|/δ2).

Step 4: Deriving the Regret Bound

Using the above results, we derive Theorem 3.1 as follows.
Summing Lemmas 4.8 and 4.9 over 1 ≤ t ≤ T bounds a
notion of expected regret. Next, we use a standard algebraic
argument (Lemma B.18) to bound the expected cumulative
bonuses as

T∑
t=1

H−1∑
h=0

Ec

[
E

πt(c;·),P̂ c
t

[
bRt,h(c, sh, ah) + bRt,h(c, sh, ah)

]]
≤ H|S||A|(βr +HβP ) log(T + 1).

By plugging in our choice of βP and βr we bound the
expected regret by

271H3
√
T |S||A|dP log(T + 1) log2(18T 4H|F||P|/δ2).

We derive the high probability result by using Corollary 4.7
and applying Azuma’s inequality. The complete proof is in
Appendix B.5.

5. Discussion and Conclusion
In this paper, we make a step forward in understanding RL
with offline function approximation. We consider the tabu-
lar CMDP setting, under the offline function approximation
assumption, and obtain a rate-optimal regret bound. To ob-
tain our result, we extend the Eluder dimension presented
by Russo & Van Roy (2013) to a general bounded metric,
rather than only the ℓ2 norm. This result may be of separate
interest. Further, by applying the Metric Eluder dimension
with Hellinger distance, we obtain our algorithm EUC3RL,
the first efficient algorithm for regret minimization in Con-
textual MDPs that uses offline regression oracles. We note
that our algorithm requires a known bound on the Eluder di-
mension and its regret depends on it. Obtaining an efficient
algorithm that has rate-optimal regret using offline oracles
but without dependence on the Eluder dimension is an im-
portant open question for future research. Extending our
technique to RL with rich observations is also an interesting
direction for future research.
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A. Metric Eluder Dimension
Our goal is to prove Lemma 2.2, a variant of Proposition 6 in Osband & Van Roy (2014). Recall that for any P ′ ⊆ P , its
radius at x ∈ X is

wP′(x) = sup
P,P ′∈P′

D(P (x), P ′(x)).

Now, for any t ∈ [T ], h ∈ [H] let xt
h ∈ X and Pt ∈ P be arbitrary. Define the confidence sets with parameter β as

Pt =

{
P ∈ P :

t−1∑
i=0

H−1∑
h=0

D2(P (xi
h), Pt(x

i
h)) ≤ β

}
.

Lemma A.1 (Restatement of Lemma 2.2). Suppose that β ≥ H . We have that

T∑
t=1

H−1∑
h=0

(wPt
(xt

h))
2 ≤ 6dE(P, D, T−1/2)β log T.

We first need the following result, which is a direct adaptation of Lemma 1 in (Osband & Van Roy, 2014) (see proof below
for completeness).

Lemma A.2. We have that for any ϵ > 0

T∑
t=1

H−1∑
h=0

I[wPt
(xt

h) > ϵ] ≤
(
4β

ϵ2
+H

)
dE(P, D, ϵ).

Proof of Lemma 2.2. To reduce notation, write wt,h = wPt
(xt

h), and d = dE(P, D, T−1/2). Next, reorder the sequence
(w1,0, . . . , w1,H−1, . . . , wT,0, . . . , wT,H−1) → (wi1 , . . . , wiTH

) where wi1 ≥ wi2 ≥ . . . ≥ wiTH
. Then we have that

T∑
t=1

H−1∑
h=0

(wPt
(xt

h))
2
=

TH∑
s=1

w2
is =

TH∑
s=1

w2
isI[wis ≤ T−1/2] +

TH∑
s=1

w2
isI[wis > T−1/2]

≤
TH∑
s=1

1

T
+

TH∑
s=1

w2
isI[wis > T−1/2]

= H +

T∑
s=1

w2
isI[wis > T−1/2].

Now, let ϵ ≥ T−1/2 and suppose that wis > ϵ. Since wis are ordered in descending order, this implies that∑T
t=1

∑H−1
h=0 I(wPt

(xt
h) > ϵ) ≥ s. On the other hand, by Lemma A.2, we have

T∑
t=1

H−1∑
h=0

I(wPt
(xt

h) > ϵ) ≤
(
4β

ϵ2
+H

)
dE(P, D, ϵ) ≤

(
4β

ϵ2
+H

)
d,

where the second transition used that dE(P, D, ϵ′) is non-increasing in ϵ′. We conclude that s ≤
(
4β/ϵ2 +H

)
d, and

changing sides gives that ϵ2 ≤ 4β/(s− dH). This implies that

wis > T−1/2 =⇒ w2
is ≤ 4βd

s− dH
.

11
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We thus have
TH∑
s=1

w2
isI(wis > T−1/2) ≤ 1 + dH +

T∑
s=dH+2

w2
isI(wis > T−1/2) (wis ≤ 1)

≤ 1 + dH +

T∑
s=dH+2

4βd

s− dH

≤ 1 + dH + 4βd

(∫ T

t=1

1

t
dt

)
= 1 + dH + 4βd log T

≤ 6dβ log T. (β ≥ H)

Proof of Lemma A.2. The proof follows similarly to Lemma 1 in Osband & Van Roy (2014). We begin by
showing that if wPt

(xt
h) > ϵ then xt

h is (D, ϵ)−dependent on fewer than 4β/ϵ2 disjoint sub-sequences of
(x1

0, . . . , x
1
H−1, . . . , x

t−1
0 , . . . , xt−1

H−1). To see this, note that if wPt
(xt

h) > ϵ there are P, P ′ ∈ Pt such that

D(P (xt
h), P

′(xt
h)) > ϵ.

Now, suppose that xt
h is (D, ϵ)−dependent on a sub-sequence (xt1

h1
, . . . , xtn

hn
) of (x1

0, . . . , x
1
H−1, . . . , x

t−1
0 , . . . , xt−1

H−1).
Since D(P (xt

h), P
′(xt

h)) ≥ ϵ, the dependence implies that

n∑
j=1

D2(P (x
tj
hj
), P ′(x

tj
hj
)) > ϵ2.

We conclude that, if xt
h is ϵ−dependent on K disjoint sub-sequences of (x1

0, . . . , x
1
H−1, . . . , x

t−1
0 , . . . , xt−1

H−1) then

t−1∑
i=1

H−1∑
h=0

D2(P (xi
h), P

′(xi
h)) > Kϵ2.

On the other hand, since P, P ′ ∈ Pt, we have

t−1∑
i=1

H−1∑
h=0

D2(P (xi
h), P

′(xi
h)) ≤

t−1∑
i=1

H−1∑
h=0

[
D(P (xi

h), Pt(x
i
h)) +D(Pt(x

i
h), P

′(xi
h))
]2

(triangle inequality for D)

≤ 2

t−1∑
i=1

H−1∑
h=0

D2(P (xi
h), Pt(x

i
h)) + 2

t−1∑
i=1

H−1∑
h=0

D2(Pt(x
i
h), P

′(xi
h))

((a+ b)2 ≤ 2(a2 + b2))

≤ 4β.

It follows that K < 4β/ϵ2.

Next, denote d := dE(P, D, ϵ). We show that in any action sequence (y1, . . . , yτ ), there is some element yj that is
(D, ϵ)−dependent on at least τ/d − 1 disjoint sub-sequences of (y1, . . . , yj−1). To show this, we will construct K =
⌈(τ/d)− 1⌉ disjoint sub-sequences B1, . . . , BK . First, let Bm = (ym) for m = 1, . . . ,K. If yK+1 is (D, ϵ)−dependent
on each sub-sequence B1, . . . , BK , the claim is established. Otherwise, append yK+1 to a sub-sequence Bm that yK+1

is (D, ϵ)−independent of. Repeat this process for elements with indices i > K + 1 until yi is ϵ−dependent on all sub-
sequences. Suppose in contradiction that the process terminated without finding the desired yi. By the definition of the
Eluder dimension, each Bm must satisfy |Bm| ≤ d and thus

∑K
m=1|Bm| ≤ Kd. On the other hand

Kd = ⌈(τ/d)− 1⌉d < τ =

K∑
m=1

|Bm| ≤ Kd,

12
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where the last equality follows since all elements of (y1, . . . , yτ ) where placed. This is a contradiction, and thus the process
must terminate successfully.

Now, let

τ =

T∑
t=1

H−1∑
h=0

I[wPt
(xt

h) > ϵ],

and take (y1, . . . , yτ ) to be the sub-sequence (xt1
h1
, . . . , xtτ

hτ
) of elements xt

h for which wPt(x
t
h) > ϵ. Then there exists xtj

hj

that depends on at least τ/d−1 disjoint sub-sequences (xt1
h1
, . . . , xtτ

hτ
). Notice that at most H−1 of these sub-sequences are

not sub-sequences of (x1
0, . . . , x

1
H−1, . . . , x

tj−1
0 , . . . , x

tj−1
H−1). We conclude that xtj

hj
depends on at least (τ/d)−H disjoint

sub-sequences of (x1
0, . . . , x

1
H−1, . . . , x

tj−1
0 , . . . x

tj−1
H−1). On the other hand, since wPtj

(x
tj
hj
) > ϵ then by the first part of

the proof it depends on fewer than 4β/ϵ2 such disjoint sub-sequences, thus

τ

d
−H ≤ 4β

ϵ2
,

so τ ≤ (4β/ϵ2 +H)d as desired.

A.1. Upper bound using the ℓ2 Eluder dimension

Proposition A.3. Assume that P,Q are two distributions over finite domain X , such that for all x ∈ X it holds that
P (x), Q(x) ≥ p. Then,

∥P −Q∥22 ≤ 4D2
H(P,Q) ≤ 1

p
∥P −Q∥22

Lemma A.4. Let function class P , and assume P (x) ≥ p holds for some p > 0 for every P ∈ P and x in the domain. Let
ϵ ∈ (0, 1] and assume the the Eluder dimension w.r.t the ℓ2 at scale

√
pϵ is d. Then, the Eluder dimension w.r.t the Squared

Hellinger Distance at scale ϵ is upper bounded by d/p.

Proof. Let d be the Eluder dimension w.r.t the ℓ2-norm at scale
√
pϵ of the class P . Let k > ⌈1/p⌉ and m = dk. Also let

x1, x2, . . . , xm+1 be an arbitrary sequence. We show that there must exist j ∈ [m+ 1] such that xj is ϵ dependent on its
prefix in Hellinger distance, thus the Hellinger Eluder dimension at scale ϵ is at most m. As in Lemma A.2, there exists n
and {Ij}j∈[k] disjoint subsequences such that ∪j∈[k]Ij = [n− 1], and xn is

√
pϵ dependent in ℓ2 on each Ij , j ∈ [k].

Now, let P, P ′ ∈ P such that D2
H(P (xn), P

′(xn)) ≥ ϵ2. Then, by Proposition A.3 we have that ∥P (xn)− P ′(xn)∥22 ≥
4pϵ2. Because of the dependence, for all j ∈ [k] we have that

∑
τ∈Ij

∥P (xτ )− P ′(xτ )∥22 ≥ 4pϵ2. We conclude,
using Proposition A.3 again, that

n−1∑
τ=1

D2
H(P (xτ ), P

′(xτ )) ≥
1

4

n−1∑
τ=1

∥P (xτ )− P ′(xτ )∥22 =
1

4

∑
j∈[k]

∑
τ∈Ij

∥P (xτ )− P ′(xτ )∥22 ≥
∑
j∈[k]

pϵ2 = pkϵ2 > ϵ2,

thus xn is ϵ dependent on its prefix in Hellinger distance. We conclude that no sequence of length m + 1 can have all
elements ϵ independent of their prefix in Hellinger distance. Thus, the Hellinger Eluder at scale ϵ is at most m ≈ d/p.

B. Proofs
B.1. Multiplicative Value Change of Measure

First, we give the following Bernstein type tail bound (see e.g., Rosenberg et al., 2020, Lemma D.4).
Lemma B.1. Let {Xt}t≥1 be a sequence of random variables with expectation adapted to a filtration Ft. Suppose that
0 ≤ Xt ≤ 1 almost surely. Then with probability at least 1− δ

T∑
t=1

E[Xt | Ft−1] ≤ 2

T∑
t=1

Xt + 4 log
2

δ

13
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Recall the Helligner distance given in Definition 2.3. The following change of measure result is due to (Foster et al., 2021).

Lemma B.2 (Lemma A.11 in Foster et al., 2021). Let P and Q be two probability measures on (X ,F). For all h : X → R
with 0 ≤ h(X) ≤ R almost surely under P and Q, we have

|EP[h(X)]− EQ[h(X)]| ≤
√

2R(EP[h(X)] + EQ[h(X)]) ·D2
H(P,Q).

In particular,

EP[h(X)] ≤ 3EQ[h(X)] + 4RD2
H(P,Q).

Next, we need the following refinement of the previous result.

Corollary B.3. For any β ≥ 1,

EP[h(X)] ≤ (1 + 1/β)EQ[h(X)] + 3βRD2
H(P,Q).

Proof. Let η ∈ (0, 1). Consider the following derivation.

EP[h(X)]− EQ[h(X)] ≤
√

2R(EP[h(X)] + EQ[h(X)]) ·D2
H(P,Q)

≤ η(EP[h(X)] + EQ[h(X)]) +
R

2η
D2

H(P,Q).

The above implies

EP[h(X)] ≤ 1 + η

1− η
EQ[h(X)] +

R

2η(1− η)
D2

H(P,Q)

=

(
1 +

1

β

)
EQ[h(X)] + 3R

(2β + 1)2

2β
D2

H(P,Q) (Plug η = 1
2β+1 for all β ∈ (0,∞).)

≤
(
1 +

1

β

)
EQ[h(X)] + 3RβD2

H(P,Q). (For any β ≥ 1)

Lemma B.4 (restatement of Lemma 4.1). Let r : S ×A → [0, 1] be a bounded expected rewards function. Let P⋆ and P̂

denote two dynamics and consider the MDPs M = (S,A, P⋆, r, s0, H) and M̂ = (S,A, P̂ , r, s0, H). Then, for any policy
π we have

V π
M̂
(s) ≤ 3V π

M (s) + 9H2 E
P⋆,π

[
H−1∑
h=0

D2
H(P̂ (·|sh, ah), P⋆(·|sh, ah))

∣∣∣∣∣s0 = s

]
.

Proof. We first prove by backwards induction that for all h ∈ [H − 1] the following holds.

V π
M̂,h

(s) ≤
(
1 +

1

H

)H−h
[
V π
M,h(s) + E

P⋆,π

[
H−1∑
h′=h

3H2D2
H(P̂ (·|sh′ , ah′), P⋆(·|sh′ , ah′))

∣∣∣∣∣sh = s

]]
.

The base case, h = H − 1 is immediate since V π
M̂,h

(s) = V π
M,h(s). Now, we assume that the above holds for h+ 1 and

prove that it holds for h. To see this, we have that

V π
M̂,h

(s) = E
a∼π(·|s)

[
r(s, a) + Es′∼P̂ (·|s,a)

[
V π
M̂,h+1

(s′)
]]

(By Bellman’s equations)

≤ E
a∼π(·|s)

[
r(s, a) +

(
1 +

1

H

)
Es′∼P⋆(·|s,a)

[
V π
M̂,h+1

(s′)
]
+ 3H2D2

H(P̂ (·|s, a), P⋆(·|s, a))
]

(Corollary B.3)

≤ E
a∼π(·|s)

[
r(s, a) + 3H2D2

H(P̂ (·|s, a), P⋆(·|s, a))
]

(Induction hypothesis)

14
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+ E
a∼π(·|s)

[(
1 +

1

H

)H−h

E
s′∼P⋆(·|s,a)

[
V π
M,h+1(s

′)
]]

+ E
a∼π(·|s)

[(
1 +

1

H

)H−h

E
s′∼P⋆(·|s,a)

[
E

[
H−1∑

h′=h+1

3H2D2
H(P̂ (·|sh′ , ah′), P⋆(·|sh′ , ah′))

∣∣∣∣∣sh+1 = s′

]]]

≤
(
1 +

1

H

)H−h

E
a∼π(·|s)

[
r(s, a) + E

s′∼P⋆(·|s,a)

[
V π
M,h+1(s

′)
]]

(r,D2
H ≥ 0)

+

(
1 +

1

H

)H−h

E
P⋆,π

[
H−1∑
h′=h

3H2D2
H(P̂ (·|sh′ , ah′), P⋆(·|sh′ , ah′))

∣∣∣∣∣sh = s

]

=

(
1 +

1

H

)H−h
[
V π
M,h(s) + E

P⋆,π

[
H−1∑
h′=h

3H2D2
H(P̂ (·|sh′ , ah′), P⋆(·|sh′ , ah′))

∣∣∣∣∣sh = s

]]
, (By Bellman’s equations)

as desired. Plugging in h = 0 and using that
(
1 + 1

H

)H ≤ 3 concludes the proof.

B.2. Oracle Bounds (Step 1)

Reward oracle.

Lemma B.5 (Lemma B.10 in Levy & Mansour, 2023). For any δ ∈ (0, 1), with probability at least 1− δ we have

t−1∑
i=1

E

[
H−1∑
h=0

(ft(ci, s
i
h, a

i
h)− f⋆(ci, s

i
h, a

i
h))

2

∣∣∣∣ Hi−1

]

=

t−1∑
i=1

H−1∑
h=0

Eci,sih,a
i
h
((ft(ci, s

i
h, a

i
h)− f⋆(ci, s

i
h, a

i
h))

2 | Hi−1)

≤ 68H log(2|F|t3/δ) + 2

t−1∑
i=1

H−1∑
h=0

(ft(ci, s
i
h, a

i
h)− rih)

2 − (f⋆(ci, s
i
h, a

i
h)− rih)

2

simultaneously, for all t ≥ 2 and any fixed sequence of functions f1, f2, . . . ∈ F .

Corollary B.6 (restatement of Corollary 4.2). Let f̂t ∈ F be the least squares minimizer in Algorithm 1. For any δ ∈ (0, 1)
it holds that with probability at least 1− δ we have

Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

(
f̂t(c, sh, ah)− f⋆(c, sh, ah)

)2∣∣∣∣∣s0
]]

≤ 68H log(2T 3|F|/δ),

simultaneously, for all t ≥ 1.

Proof. Recall that for all t ≥ 2, f̂t is the least square minimizer at round t. Hence, by our assumption that f⋆ ∈ F

t−1∑
i=1

H−1∑
h=0

(f̂t(ci, s
i
h, a

i
h)− rih)

2 − (f⋆(ci, s
i
h, a

i
h)− rih)

2 ≤ 0.

Thus the corollary immediately follows by Lemma B.5.

Dynamics oracle. Recall the Hellinger distance given in Definition 2.3. The following lemma by (Foster et al., 2021)
upper bounds the expected cumulative Hellinger Distance in terms of the log-loss. Let X be a set and Y be a finite set. Let
x(t), y(t), t ≥ 1, be a sequence of random variables that satisfy y(t) ∼ g⋆(·|x(t)), where g⋆ : Y × X → R+ maps x ∈ X to
the density of y ∈ Y . Define H(t) = (x(1), y(1), . . . , x(t), y(t)) and let G(t) = σ(H(t)). Next, for a random variable Z, we
define EtZ := E[Z|Gt].
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Lemma B.7 (Lemma A.14 from Foster et al., 2021). Let g : Y × X → R+ be a mapping from X to densities over Y .
Consider a sequence of {0, 1}-valued random variables (It)t≤T where It is F (t−1)-measurable. For any δ ∈ (0, 1) we have
that with probability at least 1− δ,

T∑
t=1

Et−1

[
D2

H(g(·|x(t)), g⋆(·|x(t)))
]
It

≤
T∑

t=1

(
log

1

g(y(t)|x(t))
− log

1

g⋆(y(t))|x(t)

)
It + 2 log(1/δ).

Additionally, with probability at least 1− δ,

T∑
t=1

D2
H(g(·|x(t)), g⋆(·|x(t))) ≤

T∑
t=1

(
log

1

g(y(t)|x(t))
− log

1

g⋆(y(t))|x(t)

)
+ 2 log(1/δ).

Using the above lemma, we bound the realized and expected cumulative Hellinger distance between the approximated and
true dynamics, by the actual regret of the log-loss regression oracle (and constant terms), with high probability.
Lemma B.8 (Concentration of log-loss oracle). For any δ ∈ (0, 1) it holds that with probability at least 1− δ we have

Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P c(·|sh, ah))

∣∣∣∣∣s0
]]

≤
t−1∑
i=1

H−1∑
h=0

log

(
1

P ci(sih+1|sih, aih)

)
−

t−1∑
i=1

H−1∑
h=0

log

(
1

P ci
⋆ (sih+1|sih, aih)

)
+ 2H log(TH|P|/δ).

simultaneously, for all t ≥ 1 and P ∈ P .

Proof. Fix some t ≥ 1 and P ∈ P . We have with probability at least 1− δ
T |P| that

Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P c(·|sh, ah))

∣∣∣∣∣s0
]]

=

t−1∑
i=1

H−1∑
h=0

Ec

[
E

πi(c;·),P c
⋆

[
D2

H(P c
⋆ (·|sh, ah), P c(·|sh, ah))

∣∣∣∣∣s0
]]

=︸︷︷︸
(i)

H−1∑
h=0

t−1∑
i=1

E

[
D2

H(P ci
⋆ (·|sih, aih), P ci(·|sih, aih))

∣∣∣∣∣s0, πi

]

≤
H−1∑
h=0

(
t−1∑
i=1

log

(
P ci
⋆ (sih+1|sih, aih)

P ci(sih+1|sih, aih)

)
+ 2 log(HT |P|/δ)

)
(Foster et al., 2021, Lemma A.14)

=

t−1∑
i=1

H−1∑
h=0

log

(
1

P ci(sih+1|sih, aih)

)
−

t−1∑
i=1

H−1∑
h=0

log

(
1

P ci
⋆ (sih+1|sih, aih)

)
+ 2H log(HT |P|/δ)

The filtration used in (i) is over the history up to time t, Ht−1 = (σ1, . . . , σt−1). Now, by taking a union bound over every
t = 1. . . . , T and P ∈ P , we obtain the lemma.

Lemma B.9 (Realized log-loss error). For any δ ∈ (0, 1) it holds that with probability at least 1− δ we have

t−1∑
i=1

H−1∑
h=0

D2
H(P ci

⋆ (·|sih, aih), P ci(·|sih, aih))

≤
t−1∑
i=1

H−1∑
h=0

log

(
1

P ci(sih+1|sih, aih)

)
−

t−1∑
i=1

H−1∑
h=0

log

(
1

P ci
⋆ (sih+1|sih, aih)

)
+ 2H log(TH|P|/δ).

simultaneously, for all t ≥ 1 and P ∈ P .
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Proof. Fix some t ≥ 1 and P ∈ P . We have with probability at least 1− δ
T |P| that

t−1∑
i=1

H−1∑
h=0

D2
H(P ci

⋆ (·|sih, aih), P ci(·|sih, aih))

=

H−1∑
h=0

t−1∑
i=1

D2
H(P ci

⋆ (·|sih, aih), P ci(·|sih, aih))

≤
H−1∑
h=0

(
t−1∑
i=1

log

(
P ci
⋆ (sih+1|sih, aih)

P ci(sih+1|sih, aih)

)
+ 2 log(HT |P|/δ)

)
(Foster et al., 2021, Lemma A.14)

=

t−1∑
i=1

H−1∑
h=0

log

(
1

P ci(sih+1|sih, aih)

)
−

t−1∑
i=1

H−1∑
h=0

log

(
1

P ci
⋆ (sih+1|sih, aih)

)
+ 2H log(HT |P|/δ).

The filtration used in (i) is over the history up to time t, Ht−1 = (σ1, . . . , σt−1). Now, by taking a union bound over every
t = 1. . . . , T and P ∈ P , we obtain the lemma.

Corollary B.10 (restatement of Corollary 4.3). Let P̂t ∈ P be the log loss minimizer in Algorithm 1. For any δ ∈ (0, 1) it
holds that with probability at least 1− δ we have

Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P̂ c
t (·|sh, ah))

∣∣∣∣∣s0
]]

≤ 2H log(TH|P|/δ), ∀1 ≤ t ≤ T.

Proof. By our assumption that P⋆ ∈ P , and P̂t is the log loss minimizer at time t, it holds that

t−1∑
i=1

H−1∑
h=0

log

(
1

P̂ ci
t (sih+1|sih, aih)

)
−

t−1∑
i=1

H−1∑
h=0

log

(
1

P ci
⋆ (sih+1|sih, aih)

)
≤ 0.

Thus, the corollary immediately follows by Lemma B.8.

Lemma B.11 (Stability error of log-loss oracle, restatement of Lemma 4.4). Let P̂i ∈ P denote the log-loss minimizer at
round i ∈ [T ]. For any δ ∈ (0, 1) it holds with probability at least 1− δ that

Ec

[
t−1∑
i=1

Eπi(c;·),P c
⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P̂ c
i (sh, ah))

∣∣∣∣∣s0
]]

≤ 112HdP log2(2TH|P|/δ)

simultaneously, for all t ≥ 1, where dP ≥ dE(P, DH , T−1/2), the Eluder dimension of P at scale T−1/2.

Proof. Let β = 2H log(2TH|P|/δ) and define

Pt =

{
P ∈ P :

t−1∑
i=1

H−1∑
h=0

D2
H(P ci(·|sih, aih), P̂

ci
t (·|sih, aih)) ≤ β

}
.

Now, suppose that Lemma B.9 holds with δ/2. Then, since P̂t is the log-loss minimizer, we have that P⋆ ∈ Pt for all
1 ≤ t ≤ T . Next, recalling that

wPt(s, a, c) = sup
P,P ′∈Pt

DH(P c(·|s, a), P ′c(·|s, a)),

thus, we have that

t−1∑
i=1

H−1∑
h=0

D2
H(P ci

⋆ (·|sih, aih), P̂
ci
i (·|sih, aih) ≤

t−1∑
i=1

H−1∑
h=0

(wPi(s
i
h, a

i
h, ci))

2
.

17
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Applying Lemma 2.2 we get that

t−1∑
i=1

H−1∑
h=0

D2
H(P ci

⋆ (·|sih, aih), P̂
ci
i (·|sih, aih) ≤ 24dPHβ log T

≤ 48HdP log2(2TH|P|/δ).

Finally, we apply Lemma B.1 to get that with probability at least 1− δ/2

Ec

[
t−1∑
i=1

Eπi(c;·),P c
⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P̂ c
i (sh, ah))

∣∣∣s0]]

=

t−1∑
i=1

H−1∑
h=0

E
[
D2

H(P ci
⋆ (·|sih, aih), P̂

ci
i (·|sih, aih)

∣∣∣πi, s0

]
≤ 2

t−1∑
i=1

H−1∑
h=0

D2
H(P ci

⋆ (·|sih, aih), P̂
ci
i (·|sih, aih) + 16H log

2TH

δ
.

Taking a union bound and combining the last two inequalities concludes the proof.

B.3. Confidence Bounds (Step 2)

In the following analysis, we use an occupancy measures-based representation of the value function. Recall the definition of
the occupancy measures (Zimin & Neu, 2013). For any non-contextual policy π and dynamics P , let qh(s, a|π, P ) denote
the probability of reaching state s ∈ S and performing action a ∈ A at time h ∈ [H] of an episode generated using policy π
and dynamics P .

Using this notation, the value function of any policy π with respect to the MDP (S,A, P, r, s0, H) can be represented as
follows.

V π
M (s0) =

H−1∑
h=0

∑
s∈Sh

∑
a∈A

qh(s, a|π, P ) · r(s, a). (2)

Thus, the following is an immediate corollary of Lemma 4.1.

Corollary B.12. For any (non-contextual) policy π, two dynamics P and P̂ , and rewards function r that is bounded in [0, 1]
it holds that

H−1∑
h=0

∑
s∈Sh

∑
a∈A

qh(s, a|π, P̂ ) · r(s, a) ≤ 3

H−1∑
h=0

∑
s∈Sh

∑
a∈A

qh(s, a|π, P ) · r(s, a)

+ 9H2
H−1∑
h=0

∑
s∈Sh

∑
a∈A

qh(s, a|π, P ) ·D2
H(P (·|s, a), P̂ (·|s, a)).

We are now ready to prove the confidence bounds. Recall the reward bonuses bRt,h, b
P
t,h defined in Equation (1).

Lemma B.13 (restatement of Lemma 4.5). Let P⋆ and f⋆ be the true context dependent dynamics and rewards. Let P̂t and
f̂t be the approximated context-dependent dynamics and rewards at round t. Then, for any t ≥ 1, and context-dependent
policy π ∈ ΠC the following holds.∣∣∣Ec

[
V

π(c;·)
M(f⋆,P̂t)(c)

(s0)
]
− Ec

[
V

π(c;·)
M(f̂t,P̂t)(c)

(s0)
]∣∣∣

≤ Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t )b

R
t,h(c, sh, ah)


+

3

2βr
Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

(
f⋆(c, sh, ah)− f̂t(c, sh, ah)

)2 ∣∣∣∣∣s0
]]
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+
9H2

2βr
Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P̂ c
i (·|sh, ah))

∣∣∣∣∣s0
]]

+
H

2βr
.

Proof. We have that∣∣∣Ec

[
V

π(c;·)
M(f⋆,P̂t)(c)

(s0)
]
− Ec

[
V

π(c;·)
M(f̂t,P̂t)(c)

(s0)
]∣∣∣

=
∣∣∣Ec

[
V

π(c;·)
M(f⋆,P̂t)(c)

(s0)− V
π(c;·)
M(f̂t,P̂t)(c)

(s0)
]∣∣∣ (By linearity of expectation)

=

∣∣∣∣∣∣Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t ) ·

(
f̂t(c, sh, ah)− f⋆(c, sh, ah)

)∣∣∣∣∣∣ (Equation (2))

≤ Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t ) ·

∣∣∣f̂t(c, sh, ah)− f⋆(c, sh, ah)
∣∣∣
 (Triangle ineq.)

= Ec

H−1∑
h=0

min

1,
∑

sh∈Sc
h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t ) ·

∣∣∣f̂t(c, sh, ah)− f⋆(c, sh, ah)
∣∣∣



≤ Ec

[
H−1∑
h=0

min

{
1,
∑

sh∈Sc
h

∑
ah∈A

βr

2

qh(sh, ah|π(c; ·), P̂ c
t )

1 +
∑t−1

i=1 qh(sh, ah|πi(c; ·), P̂ c
i )

(AM-GM)

+
1

2βr
qh(sh, ah|π(c; ·), P̂ c

t )

(
1 +

t−1∑
i=1

qh(sh, ah|πi(c; ·), P̂ c
i )

)(
f⋆(c, sh, ah)− f̂t(c, sh, ah)

)2}]

≤ Ec

H−1∑
h=0

min

1,
∑

sh∈Sc
h

∑
ah∈A

βr

2

qh(sh, ah|π(c; ·), P̂ c
t )

1 +
∑t−1

i=1 qh(sh, ah|πi(c; ·), P̂ c
i )




+
H

2βr
+

1

2βr
Ec

t−1∑
i=1

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|πi(c; ·), P̂ c
i )
(
f⋆(c, sh, ah)− f̂t(c, sh, ah)

)2
≤ Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
i )min

{
1,

βr/2

1 +
∑t−1

i=1 qh(sh, ah|πi(c; ·), P̂ c
i )

}
+

3

2βr
Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

(
f⋆(c, sh, ah)− f̂t(c, sh, ah)

)2 ∣∣∣s0]] (Corollary B.12)

+
9H2

2βr
Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P̂ c
i (·|sh, ah))

∣∣∣∣∣s0
]]

+
H

2βr
,

and the lemma follows by bRt,h definition.

Lemma B.14 (restatement of Lemma 4.6). Let P⋆ and f⋆ be the true context dependent dynamics and rewards. Let P̂t be
the approximated context-dependent dynamics at round t. Then, for any t ≥ 1, and context-dependent policy π ∈ ΠC we
have ∣∣∣Ec

[
V

π(c;·)
M(f⋆,P⋆)(c)

(s0)
]
− Ec

[
V

π(c;·)
M(f⋆,P̂t)(c)

(s0)
]∣∣∣ ≤ Ec

H−1∑
h=0

∑
s∈Sc

h

∑
a∈A

qh(s, a|π(c; ·), P̂ c
t ) · bPt,h(c, s, a)


+

6H

βP
Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P̂ c
t (·|sh, ah))

∣∣∣∣∣s0
]]
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+
18H3

βP
Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P̂ c
i (·|sh, ah))

∣∣∣∣∣s0
]]

+
H2

2βP
.

Proof. The following holds for any t ≥ 1 and a context-dependent policy π ∈ ΠC .

∣∣∣Ec[V
π(c;·)
M(f⋆,P⋆)(c)

(s0)]− Ec[V
π(c;·)
M(f⋆,P̂t)(c)

(s0)]
∣∣∣

=
∣∣∣Ec

[
V

π(c;·)
M(f⋆,P⋆)(c)

(s0)− V
π(c;·)
M(f⋆,P̂t)(c)

(s0)
]∣∣∣ (By linearity of expectation)

=

∣∣∣∣∣Ec

[
Eπ(c;·),P̂ c

t

[
H−1∑
h=0

∑
s′∈S

(P c
⋆ (s

′|sh, ah)− P̂ c
t (s

′|sh, ah))V π(c;·)
M(f⋆,P⋆),h+1

(s′)

] ∣∣∣∣∣s0
]∣∣∣∣∣ (Lemma C.2)

=

∣∣∣∣∣∣Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t )
∑
s′∈S

(P c
⋆ (s

′|sh, ah)− P̂ c
t (s

′|sh, ah))V π(c;·)
M(f⋆,P⋆),h+1

(s′)

∣∣∣∣∣∣ (Equation (2))

≤ Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t )

∣∣∣∣∣∑
s′∈S

(P c
⋆ (s

′|sh, ah)− P̂ c
t (s

′|sh, ah))V π(c;·)
M(f⋆,P⋆),h+1

(s′)

∣∣∣∣∣


(Triangle inequality)

≤ HEc

H−1∑
h=0

min

1,
∑

sh∈Sc
h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t )
∑
s′∈S

∣∣∣P c
⋆ (s

′|sh, ah)− P̂ c
t (s

′|sh, ah)
∣∣∣



(f⋆ ∈ [0, 1], V π(c;·)
M(f⋆,P⋆),h

(s′) ∈ [0, H] for all h ∈ [H] and s′ ∈ S)

≤ HEc

[
H−1∑
h=0

min

{
1,
∑

sh∈Sc
h

∑
ah∈A

(
βP

2

qh(sh, ah|π(c; ·), P̂ c
t )

1 +
∑t−1

i=1 qh(sh, ah|πi(c; ·), P̂ c
i )

(AM-GM)

+
qh(sh, ah|π(c; ·), P̂ c

t )

2βP
(1 +

t−1∑
i=1

qh(sh, ah|πi(c; ·), P̂ c
i ))

(∑
s′∈S

∣∣∣P c
⋆ (s

′|sh, ah)− P̂ c
t (s

′|sh, ah)
∣∣∣)2)}]

≤ Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t )Hmin

{
1,

βP /2

1 +
∑t−1

i=1 qh(sh, ah|πi(c; ·), P̂ c
i )

}+
H2

2βP

+
H

2βP
Ec

[
t−1∑
i=1

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|πi(c; ·), P̂ c
i )

(∑
s′∈S

∣∣∣P c
⋆ (s

′|sh, ah)− P̂ c
t (s

′|sh, ah)
∣∣∣)2]

≤ Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t )Hmin

{
1,

βP /2

1 +
∑t−1

i=1 qh(sh, ah|πi(c; ·), P̂ c
i )

}+
H2

2βP

+
3H

2βP
Ec

[
t−1∑
i=1

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|πi(c; ·), P c
⋆ )

(∑
s′∈S

∣∣∣P c
⋆ (s

′|sh, ah)− P̂ c
t (s

′|sh, ah)
∣∣∣)2]

+
18H3

βP
Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P̂ c
i (·|sh, ah))

∣∣∣∣∣s0
]]

(Corollary B.12)

≤ Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t )Hmin

{
1,

βP /2

1 +
∑t−1

i=1 qh(sh, ah|πi(c; ·), P̂ c
i )

}+
H2

2βP
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+
6H

βP
Ec

[
t−1∑
i=1

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|πi(c; ·), P c
⋆ )D

2
H(P c

⋆ (·|sh, ah), P̂ c
t (·|sh, ah))

]
(TV2 ≤ 4D2

H )

+
18H3

βP
Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P̂ c
i (·|sh, ah))

∣∣∣∣∣s0
]]

= Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t )b

P
t,h(c, sh, ah)

+
H2

2βP

+
6H

βP
Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P̂ c
t (·|sh, ah))

∣∣∣∣∣s0
]]

+
18H3

βP
Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P̂ c
i (·|sh, ah))

∣∣∣∣∣s0
]]

.

Corollary B.15 (restatement of Corollary 4.7). Under the terms of Lemmas 4.5 and 4.6, the following holds with probability
at least 1− 3δ/4 simultaneously for all t ≥ 1 and π ∈ ΠC:∣∣∣Ec

[
V

π(c;·)
M(f⋆,P⋆)(c)

(s0)
]
− Ec

[
V

π(c;·)
M(f̂t,P̂t)(c)

(s0)
]∣∣∣

≤ Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t )
(
bRt,h(c, sh, ah) + bPt,h(c, sh, ah)

)
+

2029H4dP
βP

log2(8TH|P|/δ) + 504H3dP
βr

log2(64T 4H|F||P|/δ2).

Proof. We begin by taking a union bound on the events of Corollaries 4.2 and 4.3 and Lemma 4.4 to get that with probability
at least 1− 3δ/4, simultaneously for all t ≥ 1

Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

(
f̂t(c, sh, ah)− f⋆(c, sh, ah)

)2∣∣∣∣∣s0
]]

≤ 68H log(8T 3|F|/δ)

Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P̂ c
t (·|sh, ah))

∣∣∣∣∣s0
]]

≤ 2H log(4TH|P|/δ) (3)

Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P̂ c
i (·|sh, ah))

∣∣∣∣∣s0
]]

≤ 112HdP log2(8TH|P|/δ).

Assuming this event holds, we get that for all t ≥ 1 and context-dependent policy π ∈ ΠC .∣∣∣Ec

[
V

π(c;·)
M(f⋆,P⋆)(c)

(s0)
]
− Ec

[
V

π(c;·)
M(f̂t,P̂t)(c)

(s0)
]∣∣∣

≤
∣∣∣Ec

[
V

π(c;·)
M(f⋆,P⋆)(c)

(s0)
]
− Ec

[
V

π(c;·)
M(f⋆,P̂t)(c)

(s0)
]∣∣∣ (By triangle inequality)

+
∣∣∣Ec

[
V

π(c;·)
M(f⋆,P̂t)(c)

(s0)
]
− Ec

[
V

π(c;·)
M(f̂t,P̂t)(c)

(s0)
]∣∣∣

≤ Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t )
(
bRt,h(c, sh, ah) + bPt,h(c, sh, ah)

) (Lemmas 4.5 and 4.6)

+
3

2βr
Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

(
f⋆(c, sh, ah)− f̂t(c, sh, ah)

)2 ∣∣∣∣∣s0
]]
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+
6H

βP
Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P̂ c
t (·|sh, ah))

∣∣∣∣∣s0
]]

+

(
9H2

2βr
+

18H3

βP

)
Ec

[
t−1∑
i=1

E
πi(c;·),P c

⋆

[
H−1∑
h=0

D2
H(P c

⋆ (·|sh, ah), P̂ c
i (·|sh, ah))

∣∣∣∣∣s0
]]

+
H

2βr
+

H2

2βP

≤ Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t )
(
bRt,h(c, sh, ah) + bPt,h(c, sh, ah)

) (Equation (3))

+
3

2βr
68H log(8T 3|F|/δ) + 6H

βP
2H log(4TH|P|/δ)

+

(
9H2

2βr
+

18H3

βP

)
112HdP log2(8TH|P|/δ)

+
H

2βr
+

H2

2βP

≤ Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t )
(
bRt,h(c, sh, ah) + bPt,h(c, sh, ah)

)
+

2029H4dP
βP

log2(8TH|P|/δ) + 504H3dP
βr

log2(64T 4H|F||P|/δ2),

as stated.

B.4. Establishing Optimism Lemmas (Step 3)

Lemma B.16 (restatement of Lemma 4.8). Let π⋆ be an optimal context-dependent policy for M. Under the good event of
Corollary 4.7, we have that for any t ≥ 1

Ec

[
V

π⋆(c;·)
M(c)

]
≤Ec

[
V

πt(c;·)
M̂t(c)

(s0)
]
+

2029H4dP
βP

log2(8TH|P|/δ)

+
504H3dP

βr
log2(64T 4H|F||P|/δ2).

Proof. Fix any round t ≥ 1 consider the following derivation.

Ec

[
V

π⋆(c;·)
M(c) (s0)

]
= Ec

[
V

π⋆(c;·)
M(f⋆,P⋆)(c)

(s0)
]

≤ Ec[V
π⋆(c;·)
M(f̂t,P̂t)(c)

(s0)] (By Corollary 4.7)

+ Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|π(c; ·), P̂ c
t )
(
bRt,h(c, sh, ah) + bPt,h(c, sh, ah)

)
+

2029H4dP
βP

log2(8TH|P|/δ) + 504H3dP
βr

log2(64T 4H|F||P|/δ2)

=Ec[V
π⋆(c;·)
M̂t(c)

(s0)] +
2029H4dP

βP
log2(8TH|P|/δ) (Equation (2))

+
504H3dP

βr
log2(64T 4H|F||P|/δ2)

≤Ec

[
V

πt(c;·)
M̂t(c)

(s0)
]
+

2029H4dP
βP

log2(8TH|P|/δ) (πt is optimal in M̂t)
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+
504H3dP

βr
log2(64T 4H|F||P|/δ2),

as the lemma states.

Lemma B.17 (restatement of Lemma 4.9). Under the good event of Corollary 4.7, we have that for every t ≥ 1

Ec

[
V

πt(c;·)
M̂t(c)

(s0)
]
≤ Ec

[
V

πt(c;·)
M(c) (s0)

]
+ 2

H−1∑
h=0

Ec

[
E

πt(c;·),P̂ c
t

[
bRt,h(c, sh, ah) + bPt,h(c, sh, ah)

]]

+
2029H4dP

βP
log2(8TH|P|/δ)

+
504H3dP

βr
log2(64T 4H|F||P|/δ2).

Proof. For all t ≥ 1 the following holds.

Ec

[
V

πt(c;·)
M̂t(c)

(s0)
]

= Ec

H−1∑
h=0

∑
s∈Sc

h

∑
ah∈A

qh(s, a|πt(c; ·), P̂ c
t ) ·

(
f̂t(c, sh, ah) + bRt,h(c, sh, ah) + bPt,h(c, sh, ah)

) (Equation (2))

= Ec

[
V

πt(c;·)
M(f̂t,P̂t)(c)

(s0)
]

+ Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|πt(c; ·), P̂ c
t )
(
bRt,h(c, sh, ah) + bPt,h(c, sh, ah)

)
≤ Ec

[
V

πt(c;·)
M(f⋆,P⋆)(c)

(s0)
]

(Corollary 4.7)

+ 2Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|πt(c; ·), P̂ c
t )
(
bRt,h(c, sh, ah) + bPt,h(c, sh, ah)

)
+

2029H4dP
βP

log2(8TH|P|/δ) + 504H3dP
βr

log2(64T 4H|F||P|/δ2),

and the proof follows by writing the second term as an expectation over sh, ah when playing πt(c; ·) on the dynamics
P̂ c
t .

B.5. Regret Bound

We begin with a technical result that bounds the expected cumulative bonuses.

Lemma B.18. Let bRt,h(c, sh, ah), b
P
t (c, sh, ah) be the reward bonuses in Equation (1). We have that

T∑
t=1

H−1∑
h=0

Ec

[
Eπt(c;·),P̂ c

t

[
bRt,h(c, sh, ah) + bPt (c, sh, ah)

]]
≤ H|S||A|(βr +HβP ) log(T + 1).

Proof. First we bound bRt,h(c, sh, ah), b
P
t,h(c, sh, ah) by the second term in the minimum to get that

T∑
t=1

H−1∑
h=0

Ec

[
Eπt(c;·),P̂ c

t

[
bRt,h(c, sh, ah) + bPt,h(c, sh, ah)

]]

= Ec

 T∑
t=1

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|πt(c; ·), P̂ c
t )
[
bRt,h(c, sh, ah) + bPt,h(c, sh, ah)

]
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≤ 1

2
(βr + βPH)Ec

 T∑
t=1

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

qh(sh, ah|πt(c; ·), P̂ c
t )

1 +
∑t−1

i=1 qh(sh, ah|πi(c; ·), P̂ c
i )


=

1

2
(βr + βPH)Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

T∑
t=1

qh(sh, ah|πt(c; ·), P̂ c
t )

1 +
∑t−1

i=1 qh(sh, ah|πi(c; ·), P̂ c
i )


≤ 1

2
(βr + βPH)Ec

H−1∑
h=0

∑
sh∈Sc

h

∑
ah∈A

2 log(T + 1)


= H|S||A|(βr + βPH) log(T + 1),

where the last inequality used Lemma C.1 with xt = qh(sh, ah|πt(c; ·), P̂ c
t ).

Using all the above, we derive our main result stated in the following theorem.

Theorem B.19 (E-UC3RL regret bound, restatement of Theorem 3.1). For any T > 1 and δ ∈ (0, 1), suppose we run
Algorithm 1 with parameters

βr =

√
504TH2dP log2(64T 4H|F||P|/δ2)

|S||A| log(T + 1)
, βP =

√
2029TH2dP log2(8TH|P|/δ)

|S||A| log(T + 1)
,

and dP ≥ dE(P, DH , T−1/2). Then, with probability at least 1− δ

RT (E-UC3RL) ≤ Õ
(
H3
√
T |S||A|dP (log(|F|/δ) + log(|P|/δ))

)
.

Proof of Theorem 3.1. We prove a regret bound under the following good events. The first event is that of Corollary 4.7,
which occurs with probability at least 1− 3δ/4. The second event is that

T∑
t=1

V
π⋆(ct;·)
M(ct)

(s0)− V
πt(ct;·)
M(ct)

(s0) ≤
T∑

t=1

Ec

[
V

π⋆(c;·)
M(c) (s0)

]
− Ec

[
V

πt(c;·)
M(c) (s0)

]
+H

√
T log(8/δ). (4)

By Azuma’s inequality (where the filtration is the histories {Ht}Tt=1), the above holds with probability at least 1 − δ/4.
Taking a union bound, the good event holds with probability at least 1− δ. Hence, assume the good events hold, and consider
the following derivation.

T∑
t=1

Ec

[
V

π⋆(c;·)
M(c) (s0)

]
− Ec

[
V

πt(c;·)
M(c) (s0)

]
=

T∑
t=1

Ec

[
V

π⋆(c;·)
M(c) (s0)

]
− Ec

[
V

πt(c;·)
M̂t(c)

(s0)
]

+

T∑
t=1

Ec

[
V

πt(c;·)
M̂t(c)

(s0)
]
− Ec

[
V

πt(c;·)
M(c) (s0)

]
≤2

T∑
t=1

H−1∑
h=0

Ec

[
E

πt(c;·),P̂ c
t

[
bRt,h(c, sh, ah) + bPt,h(c, sh, ah)

]]
(Lemmas 4.8 and 4.9)

+ 2T
2029H4dP

βP
log2(8TH|P|/δ)

+ 2T
504H3dP

βr
log2(64T 4H|F||P|/δ2)

≤2H|S||A|(βr +HβP ) log(T + 1) (Lemma B.18)

+ 2T
2029H4dP

βP
log2(8TH|P|/δ)
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+ 2T
504H3dP

βr
log2(64T 4H|F||P|/δ2)

=4

√
504T |S||A|H4dP log(T + 1) log2(64T 4H|F||P|/δ2 (Plugging in βP , βr)

+ 4

√
2029T |S||A|H6dP log(T + 1) log2(8TH|P|/δ

≤4

√
2029T |S||A|H6dP log(T + 1) log2(8TH|P|/δ

270H3
√

T |S||A|dP log(T + 1) log2(18T 4H|F||P|/δ2).

Finally, we get that

RT (E-UC3RL) =
T∑

t=1

V
π⋆(ct;·)
M(ct)

(s0)− V
πt(ct;·)
M(ct)

(s0)

≤
T∑

t=1

(
Ec

[
V

π⋆(c;·)
M(c) (s0)

]
− Ec

[
V

πt(c;·)
M(c) (s0)

])
(Equation (4))

+H
√
T log(8/δ)

≤271H3
√
T |S||A|dP log(T + 1) log2(18T 4H|F||P|/δ2)

=Õ
(
H3
√
T |S||A|dP (log(|F|/δ) + log(|P|/δ))

)
.

C. Auxiliary lemmas
Lemma C.1. Let St = λ+

∑t−1
k=1 xt. Suppose xt ∈ [0, λ] and , then

T∑
t=1

xt

St
≤ 2 log(T + 1).

Proof. The following holds.
T∑

t=1

xt

St
=

T∑
t=1

St+1 − St

St

=

T∑
t=1

St+1

St
− 1

≤ 2

T∑
t=1

log
St+1

St
(1 ≤ St+1

St
≤ 2 since xt ≤ λ)

= 2

T∑
t=1

logSt+1 − logSt

= 2 log
ST+1

S1
(telescopic sum)

≤ 2 log(T + 1).

Lemma C.2 (value-difference, Corollary 1 in Shani et al., 2020). Let M , M ′ be any H-finite horizon MDPs. Then, for any
two policies π, π′ the following holds

V π,M
0 (s)− V π′,M ′

0 (s) =

H−1∑
h=0

E
[
⟨Qπ,M

h (sh, ·), πh(·|sh)− π′
h(·|sh)⟩|s0 = s, π′,M ′

]
+

H−1∑
h=0

E
[
rh(sh, ah)− r′h(sh, ah) + (ph(·|sh, ah)− p′h(·|sh, ah))V

π,M
h+1 |sh = s, π′,M ′

]
.

25


